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Abstract

By regulating how firms collect and use data, privacy laws may alter firm demand
for information technology inputs. We study how firms respond to privacy laws in
the context of the EU’s General Data Protection Regulation (GDPR) by using seven
years of data from a global cloud-computing provider. Our difference-in-difference
estimates indicate that, in response to the GDPR, EU firms decreased data storage
by 26% and data processing by 15% relative to comparable US firms, becoming less
"data-intensive." To estimate the costs of the GDPR for firms, we propose and estimate
a production function where firms combine data and computation in firm production.
We find that data and computation are strong complements and that firm responses
are consistent with the GDPR representing a 20% increase in the cost of data. This
increase translates into only a 0.1-0.5% rise in overall production costs because data
plays a relatively small role in firm production compared to computation.
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1 Introduction
In the information age, the production of goods and services increasingly relies on the
processing of data (Agrawal et al., 2018; Goldfarb and Tucker, 2019). Since some of the
most valuable data concerns personal information, its growing use has led to new policy
attention and regulation. One of the most influential privacy laws is the European General
Data Protection Regulation (GDPR), which was enacted in 2016 and affects more than 20
million firms across dozens of countries (GDPR.eu, 2019; Johnson, 2022). Many countries
have since followed this example: as of early 2022, 157 countries had enacted legislation to
secure data and privacy (Greenleaf, 2022).

While these privacy laws help harmonize and improve data collection practices, they
can also be costly for firms (Peukert et al., 2022; Johnson et al., 2023; Aridor et al., 2023;
Goldberg et al., 2023). For example, privacy regulations may generate a wedge between
the marginal product of data and its (perceived) marginal cost, leading firms to substitute
data with other inputs. Variations in these wedges across firms can result in misallocation
of inputs in the economy (Hsieh and Klenow, 2009). Given the increasing role of data in
firm production, understanding the cost of privacy regulations and how they affect firms’
input decisions is of utmost importance.

However, large-scale empirical evidence of how privacy laws affect firm data decisions
is scant. Studying this question is complicated for a number of reasons (Johnson, 2022).
First, firms’ data and computation usage are inherently difficult to observe, as standard
firm datasets do not provide information on these measures. Second, there is no unified
framework for analyzing the role of data in firm production (Veldkamp and Chung, 2023).
Any such framework needs to be parsimonious while having enough flexibility to allow
the effect of privacy laws to depend on the importance of data and computation for firms.

In this paper, we make progress on these fronts by studying how the GDPR affected
firms’ input choices by proposing a production framework with data and computation and
using a dataset from a large global cloud-computing provider. The cloud is an ideal setting
for this study because it enables us to observe firms’ high-frequency data and computation
usage across tens of thousands of firms over a seven-year period from 2015 to 2021. This
data spans most major industries, from manufacturing to services, allowing us to analyze
the effect of privacy regulations beyond the digital economy.

In our first set of analyses, we apply this data toward studying the direct effect of the
GDPR on firm data and computation choices. We compare domestic firms in the European
Union (EU) subject to the GDPR to similar, non-treated firms from the same industry in
the US using a difference-in-differences approach. In our second set of analyses, we
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develop a production function model with data and computation. Using this model, we
estimate how firms combine data and computation in production and quantify the wedges
generated by the GDPR along with the corresponding increase in production costs.

We begin by summarizing the key features of the GDPR. The GDPR is a landmark
privacy policy enacted in 2016 and implemented in 2018. Its regulations apply to all firms in
the EU, as well as non-EU firms offering goods or services to “data subjects” within the EU.
This law increased the cost of collecting and storing data for firms by requiring enhanced
data protection, increasing penalties in case of data breaches, and giving consumers data-
rights requests such as data correction and deletion. Survey evidence suggests that GDPR
compliance is costly, ranging from $1.7 million for small to medium-sized businesses to
$70 million for large ones (Accenture, 2018; Hughes and Saverice-Rohan, 2018).

Next, we discuss the specific context in which we observe firm data decisions: the cloud.
Cloud computing is a widely adopted information technology (IT) that enables firms to
store and process data remotely over the internet (Byrne et al., 2018; Brand et al., 2024).
Using data from our cloud computing provider, we observe firm-level monthly usage of
“storage”—the amount of data stored in gigabytes—and “compute”—the number of core-
hours of computation. We also observe other information, such as prices and the locations
of the data centers where firms do computation and store their data. We match our cloud
usage data to other data sources that provide information on firm characteristics.

Our first set of results comes from an event study design comparing data and compu-
tation use among comparable firms in the EU and the US after the GDPR. We find that
EU firms stored on average 26% less data than US firms two years after the GDPR. The
direction of this relative decline in data is perhaps unsurprising, given that the GDPR pri-
marily regulates data usage, but the magnitude is noteworthy. We also find that EU firms
decreased their computation relative to US firms by 15%—implying that firms became
less data-intensive after the GDPR.1 Furthermore, our heterogeneity analysis suggests that
these patterns are present across all industries we study (software, services, and manufac-
turing). Finally, we look at how these effects vary with a measure of regulatory stringency
across EU countries created by Johnson (2022), as enforcement of the GDPR is delegated
to individual countries. Although the differences are not statistically significant at the 5%
level, our estimates suggest a larger decline in both data and computation in countries
with higher regulatory stringency.

While our event study findings provide direct evidence of the GDPR’s impact on
firms’ data and computation inputs, they offer a limited understanding of the associated

1It is ex-ante unclear how the GDPR would affect computation; this effect theoretically depends on the
substitutability between data and computation (Acemoglu, 2002).

2



economic costs of the regulation. Since data are inputs in firm production, recovering the
regulatory wedges from firms’ input choices and, ultimately, the effect of regulation on
firms’ overall production costs depends on how firms use data in production.

Motivated by this, we propose a production function model where firms aggregate data
and computation through a constant elasticity of substitution (CES) function. This aggre-
gation function, which we call “information production,” includes two key parameters: (i)
the firm-specific compute-augmenting productivity, which determines relative factor intensity
of computation and data (Doraszelski and Jaumandreu, 2018; Raval, 2019; Demirer, 2022)
and (ii) the elasticity of substitution between computation and data, which governs how firms
adjust these inputs in response to changes in factor prices (Hicks, 1932). Our model ac-
commodates many of the uses of data proposed in the literature (Jones and Tonetti, 2020;
Farboodi and Veldkamp, 2022) and emphasizes the role of computation in firm production.

Our production function model provides an input demand function that links firms’
cost-minimizing data and computation choices to input prices and model parameters.
Using a shift-share design to instrument input prices, we estimate this input demand
function for each industry to recover the parameters of the production function. We
find that data and computation are strong complements in production, with elasticity of
substitution ranging from 0.44 (services) to 0.34 (manufacturing). This complementarity
suggests that firms cannot easily substitute toward computation when faced with increased
data costs. To our knowledge, this is the first estimate of a production function with data
inputs, which contributes to our understanding of production functions in modern firms.

To recover the distortion generated by the GDPR, we model it as a wedge between the
variable cost of storing data in the cloud and the total variable cost that includes GDPR
compliance costs. This wedge arises from various sources of regulatory costs, including
penalties in case of breaches, higher data security requirements, and the need for detailed
data records. We estimate firm-specific wedges by attributing them to the changes in post-
GDPR input choices unexplained by changes in input prices or changes in the elasticity of
substitution.

Our estimates suggest that the GDPR increased the variable cost of data inputs by
20% for firms on average. Firms in data-intensive industries faced higher costs, with the
largest effect observed in the software sector (24%), followed by manufacturing (18%) and
services (18%). What determines the increase in costs? To provide suggestive evidence, we
analyze the relationship between firm-specific wedges and two firm characteristics: (i) firm
size, measured by the number of employees, and (ii) compute-augmenting productivity,
estimated from the production function. We find that larger and more compute-intensive
firms experienced smaller cost increases from the GDPR.
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In the last part of the paper, we use our production function estimates to quantify how
the 20% GDPR-induced increase in the cost of data translates into firms’ total variable
production costs. Our analysis proceeds in two steps. First, we analyze its impact on the
cost of aggregating data and computation in information production and then examine
how changes in information costs affect total production costs.

We find that although the average firm-level wedge is quite large (20%), the resulting
increases in the variable cost of producing information are quite low (3.7%), primarily
because data’s cost share in information production is considerably smaller than that of
computation (19% vs. 81%). In other words, although strong complementarity limits
firms’ ability to substitute data for computation when data becomes more costly, the
expenditure share of the data is small to begin with, limiting the GDPR’s impact on the
cost of information.

Next, to estimate the effect of the GDPR on the total production cost, we perform a
simple back-of-the-envelope calculation, assuming a CES technology in IT and non-IT
inputs (e.g., capital, labor). We calibrate this model using estimates from Lashkari et al.
(2024) and other data sources. We find that the GDPR increases variable production costs
by 0.47% for software firms, with smaller effects in less data-intensive industries. When
aggregated across all EU firms in the industries we analyze, this corresponds to an annual
increase in production costs of approximately €16 billion.

We conduct additional analyses to show that our results are robust to many concerns.
First, we show that our results are similar when we exclude multi-cloud firms, suggesting
that results are not driven by EU firms substituting toward other cloud providers. Second,
we find similar results when estimating our empirical strategy using only start-ups, which
tend to use cloud computing as their only IT—suggesting that substitution to on-premises
IT (hybrid cloud) is not a large concern. Third, we show that our results are not driven
by differential trends in cloud prices in the EU and the US. Finally, we estimate our
specification while excluding firms using web services, showing that the results do not
only come from websites, which experienced cookie consent changes under the GDPR.

Nevertheless, we acknowledge some relevant limitations of our study. Unlike many
previous GDPR studies, our paper is based on a large sample of firms. While this allows
us to draw more generalizable conclusions about firms’ data uses, the trade-off is that
we observe less detailed information than an in-depth single-firm study. For example,
although we observe detailed measures of the quantity of information stored in our data,
we cannot be as precise about the role of data for the firm as more focused studies can be.
Finally, we highlight that our results focus on the costs imposed on firms and do not speak
to the consumer benefits of privacy (Arrieta-Ibarra et al., 2018), where further evidence is
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needed to understand the benefits of these laws.2

Contribution to the Literature The first body of literature we contribute to is the research
on the impact of the GDPR on firms (Johnson, 2022). This literature finds that the GDPR
decreased the investment in technology ventures, encouraged app exit, and discouraged
app development (Kircher and Foerderer, 2020; Jia et al., 2021; Janßen et al., 2021). Sev-
eral papers document adverse impacts on digital tracking and advertising: the GDPR
decreased the usage of tracking technology tools (Lefrere et al., 2022; Aridor et al., 2023;
Lukic et al., 2023), decreased page views and e-commerce revenue (Goldberg et al., 2023),
decreased the number of website visits (Schmitt et al., 2022), increased market concentra-
tion in the advertising sector (Peukert et al., 2022; Johnson et al., 2023) and increased search
frictions (Zhao et al., 2021). On the benefits side, Aridor et al. (2023) find an increase in the
average value of data for advertising, while Godinho de Matos and Adjerid (2022) docu-
ment improvements in targeting effectiveness due to the GDPR. Although most evidence
suggests that the GDPR has impacted data-driven economic activity, Zhuo et al. (2021)
find a null short-term effect on the formation and termination of internet infrastructures
between GDPR and non-GDPR countries.3

While our paper builds on an identification strategy similar to some of these GDPR
papers, it differs in two aspects. First, because of the unique feature of our data, we
go beyond digital outcomes to analyze firms’ data and computation decisions, margins
directly targeted by the regulation. By studying these outcomes, we also complement the
literature that focuses on accounting and aggregate measures of firm performance, such
as profit and sales (Koski and Valmari, 2020; Frey and Presidente, 2024). Second, we take
a production function approach. This approach allows us to structurally estimate the role
of data and computation in production and to calculate the cost of the GDPR for firms.

Second, our study relates to the production function literature by estimating a produc-
tion function with data inputs (Olley and Pakes, 1996; Ackerberg et al., 2015). A recent
theoretical literature has proposed different ways of how firms use data, with Jones and
Tonetti (2020) modeling data as a non-rival input generated as a byproduct of produc-
tion and Farboodi and Veldkamp (2022) modeling data as a productivity-enhancing input
through better prediction. On the empirical side, some studies have included IT in firm
production by using various IT expenditures, such as software and hardware, as inputs
(Brynjolfsson and Hitt, 2003; Lashkari et al., 2024). We contribute to this literature by
estimating a micro-level production function that incorporates physical measures of two
fundamental modern IT inputs: data and computation.

2Quantifying the privacy benefits is known to be difficult (Acquisti et al., 2016; Lin and Strulov-Shlain, 2023).
3A recent literature has studied the California Consumer Privacy Act (Canayaz et al., 2022; Doerr et al., 2023).
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Third, our paper is related to the misallocation literature, which studies inefficiencies
in factor allocations resulting from various frictions (Restuccia and Rogerson, 2008; Hsieh
and Klenow, 2009). We employ a similar empirical strategy by modeling distortions as
wedges between the marginal revenue product of an input and its price. Although this
literature often abstracted from the origins of frictions, some recent papers have focused on
their sources, such as labor market institutions (Bertrand et al., 2021), market power (Asker
et al., 2019; Peters, 2020) and monopsony power (Berger et al., 2022). We contribute to this
literature by studying the input distortions introduced by a landmark global regulation.

Our paper also contributes to the economics of privacy literature (Goldfarb and Tucker,
2011, 2012; Acquisti et al., 2016; Athey et al., 2017; Choi et al., 2019; Montes et al., 2019;
Ichihashi, 2020; Loertscher and Marx, 2020; Chen et al., 2021; Krähmer and Strausz, 2023)
by evaluating the effects of the largest privacy regulation on firms.

2 Institutional Setting
This section first discusses the relevant details of the GDPR. We then describe cloud
computing technology, the setting for our primary data source in this paper.

2.1 The European General Data Protection Regulation

There is perhaps no policy more important in the modern privacy landscape than the
GDPR. As Johnson (2022) notes, "In many ways, the GDPR set the privacy regulation
agenda globally.” As such, understanding the consequences of the GDPR is vital not only
because of its impacts on firms but also because of its crucial role in shaping privacy laws.
In this section, we describe the key features of this policy and its implications for firms.

The GDPR is a set of rules that govern the collection, use, and storage of personal
data belonging to individuals within the EU. It was enacted in April 2016 and came into
force in May 2018. By consolidating and enhancing existing privacy provisions, the GDPR
introduced a harmonized approach to privacy regulations across the EU.4 We provide a
detailed description of the changes required for firms after the GDPR in Appendix B.1 and
summarize its most important characteristics below.

The GDPR applies whenever the firm that controls the data (“data controller”) is
established in the EU or whenever the individuals (“data subjects”) whose data is collected
are located in the EU, regardless of their citizenship or residence (Article 3). It broadly
defines personal data as any information relating to an identified or identifiable natural

4Unlike the GDPR, which is directly binding across the EU, the preceding Directive 95/46/EC had to be
incorporated into each member state’s national laws, leading to variation in its implementation across states.
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person (Article 4). This includes information such as name, address, email address, and
internet protocol (IP) address. It applies to all personnel data both in the client and
employee context, making even business-to-business firms subject to compliance.

Two aspects of the GDPR are particularly important for our paper. First, the GDPR
takes a data protection approach rather than a consumer protection approach as in the US
(Boyne, 2018; Jones and Kaminski, 2020). A data protection approach imposes a set of costly
responsibilities on firms to protect data, in addition to a substantive system of individual
rights. Second, the GDPR takes a risk-based approach to data protection without clarity on
the specific measures firms must take, making implementation firm-dependent (Hustinx,
2013; Gellert, 2018). For example, Article 25 (Data Protection by Design and by Default)
uses phrases such as "taking into account the state of the art, the cost of implementation
[. . . ] as well as the risks” and requires that controllers “implement appropriate technical
and organizational measures [. . . ] in an effective manner.” This risk-based approach
makes regulatory costs heterogeneous across firms.

From the firm perspective, the GDPR mainly increased the cost of collecting and stor-
ing data by imposing costly responsibilities on firms. These include designating a data
protection officer (Article 37), preparing data protection impact assessments (Article 35),
implementing appropriate technical and organizational measures for data security (Article
32), keeping a record of processing activities (Article 30), providing timely notifications in
case of data breaches (Article 33), fulfilling consumers’ requests for data transfer, erasure,
or rectification (Article 14-21), and paying penalties in case of data breaches (Article 83).5

The cost of complying with the GDPR can vary depending on the size and complexity
of an organization. There are no official statistics, but most survey evidence suggests that
complying with the GDPR is costly. The estimates range from an average of $3 million
(Hughes and Saverice-Rohan, 2018) and $5.5 million (Ponemon Institute, 2017) to $13.2
million (Ponemon Institute, 2019) depending on the composition of surveyed firms. The
survey evidence indicates that a large percentage of the costs (between one-fifth and one-
half) are labor costs, followed by technology, outside consulting, and internal training
(Ponemon Institute, 2019; Hughes and Saverice-Rohan, 2019).

The changes mandated by the GDPR entail both fixed and variable costs. For example,
the cost of having a data protection officer may not scale with data size, so it could
be considered a fixed cost. On the other hand, the costs of handling customers’ access
requests, the liability in case of a data breach, and keeping data secure would increase

5Firms also must have a legal basis for processing personal data. Contrary to popular belief, consent is
not the only appropriate legal basis—contractual necessity, legal obligation, vital interests, public task, and
legitimate business interest may also serve as a basis for processing data (Article 6).
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Figure 1: Distribution of Publicly Reported GDPR Fines
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Notes: The figure presents the distribution of 1,730 publicly available GDPR fines, noting that not all GDPR
fines are made public. Appendix B.3 describes the data collection process. Fines are presented in undeflated
nominal terms (€), and five examples from the data have been highlighted.

with data and firm size. As such, it may be more sensible to interpret these kinds of costs
as marginal costs. We provide a detailed classification of GDPR costs into these fixed and
variable cost categories and present corresponding survey evidence in Appendix B.2.

In addition to these direct costs, firms may also incur indirect costs such as cybersecurity
insurance or penalties if they are found to be non-compliant.6 Non-compliant firms may
face fines of up to 4% of an organization’s annual global revenue or €20 million (whichever
is greater). We scraped publicly available GDPR fine data from a database maintained by
CMS, an international law firm.7 In Figure 1, we provide the size distribution of these
GDPR fines.8 We note two key features of these fines. First, enforcement is not limited
to large violations: 25% of the fines have been under €2,000 levied on small businesses.
Second, the GDPR applies to a much broader set of businesses and industries than just
software and technology firms. Figure 1 highlights some of these cases, which include
fines on restaurants and manufacturers.

2.2 Our Setting: Cloud Technology

Cloud computing provides scalable IT resources on demand over the internet. According
to the National Institute of Standards and Technology (Mell et al., 2011), cloud computing

6There are likely additional costs beyond the direct financial costs of compliance, including opportunity costs
of diverting existing employees towards GDPR compliance and disruption caused by operational changes.

7See https://www.enforcementtracker.com. Appendix B.3 describes this dataset.
8The total cumulative fines imposed in this dataset have amounted to over €3 billion, with over 1,700 being
fined. This figure is likely to be an underestimate because not all GDPR fines are made publicly available.
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is defined as “a model for enabling ubiquitous, convenient, on-demand network access to
a shared pool of configurable computing resources that can be rapidly provisioned and
released.” Cloud computing has experienced rapid growth since its introduction, with
nearly 80% of firms using at least one cloud function as of 2018 (Zolas et al., 2021).9

We focus on the two primary cloud services: storage and computation. Storage services
allow users to store data in a data center. Computation services allow users to run appli-
cations and perform computations in a virtual machine (VM). Firms may use storage and
computing services in multiple parts of their production, such as powering digital services,
optimizing logistics, supporting product development, and handling administrative tasks
like human resources and accounting. Firms may also use storage without computing
services, such as a newspaper hosting website photographs in the cloud and providing
them directly without computing. However, it is rare to observe firms using computation
without storage, although non-data simulations might serve as an exception.10

From the researchers’ point of view, the cloud’s existence and ubiquity provide impor-
tant advantages over traditional IT. Because cloud computing is typically provided by large
third-party firms, it is possible to aggregate data from tens of thousands of firms. More-
over, cloud providers keep detailed records of their users’ activity for billing purposes,
allowing usage to be tracked consistently over time.

Despite these advantages, there are limitations to using data from cloud computing.
First, many firms use a mix of cloud computing and on-premises IT, especially during
the transition to the cloud. In such cases, we can only observe firm data in the cloud
and not from their on-site hardware, which may bias our results if the GDPR changes the
composition of cloud and on-site data. Second, firms frequently use cloud services from
multiple providers, known as multi-cloud (Accenture, 2022). For these firms, a decline in
cloud usage from one provider could come from substitution to another provider. We take
these concerns seriously and provide several robustness checks in our empirical strategy.

3 Data and Summary Statistics
This section describes the main datasets used in the paper and presents basic summary
statistics. We leave the exact data construction details to Appendix C.

9See Jin and McElheran (2017); Jin (2022); DeStefano et al. (2023) for recent studies on firm’s cloud adoption
and the effects of cloud technology on firms.

10See several case studies of how firms in different industries use cloud computing at AWS Case Studies, Azure
Customer Stories, and Google Cloud Customers. All web links in the paper were accessed on Nov 26, 2024.
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3.1 Cloud Computing Data (2015-2021)

We obtain information through one of the largest cloud technology providers. Using
this data, we observe monthly-level storage and computation usage information for the
universe of their customers between 2015 and 2021. For each service, we observe the
number of units purchased, the location of the data center, the date, and the price paid.
Therefore, we have both the physical unit of usage and expenditures.

We measure storage in gigabytes and computing in core-hours (number of cores ×
number of hours). Core-hours are a commonly used metric to quantify computational
work in cloud computing.11 We use this data to construct monthly usage at the firm-
location (data center) level for storage and computation from July 2015 to December 2021.
As a result, we can observe data stored in the US and EU separately by the same firm.
Through this data, we also observe SIC industry codes, headquarters location, and whether
a firm is a start-up or not.12 Additional details on this data are provided in Appendix C.1.

One limitation of our dataset is that it does not allow us to see which specific data firms
are collecting nor the exact ways in which they use the data. This limits our ability to
speak to some important questions about how firms specifically use data.

3.2 Cloud Computing Usage from Other Providers (2016-2021)

To address the concern of observing data from a single provider, we use an establishment-
level IT data panel produced by a market research company called Aberdeen (previously
known as “Harte Hanks”). Aberdeen compiles data on cloud technology adoption (includ-
ing provider) using web crawling, surveys, and publicly available sources. This dataset
covers around 1.9 million companies worldwide between 2016 and 2021 at the yearly level.
Previous versions of this data have been widely used by researchers to construct measures
of IT usage.13 We use this data to identify single cloud firms and examine differential
changes in market shares of cloud providers in the EU and US around the GDPR.

3.3 Other Datasets: Firm Characteristics

Aberdeen also provides information on other firm characteristics, such as employment
and revenue from Duns & Bradstreet. We match our cloud computing data to Aberdeen

11To illustrate the concept, consider the example of a software engineer in a startup who runs a VM with eight
cores for five hours. In this case, the usage is recorded as 40 units of compute.

12The “start-up" classification is defined internally by the cloud technology provider.
13See e.g., Bloom et al. (2012). Note that Aberdeen’s data has undergone changes in recent years, relying more

on web scraping and extrapolation than on surveys. We conduct cross-checks with our internal data to
assess the quality of Aberdeen’s accuracy for cloud adoption. See Appendix C.3 for more details.
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Table 1: GDPR Applicability Matrix by Location from Peukert et al. (2022)

Firm Location
EU US

Location of
Consumer /
Employee
Data Used

Case 1 Case 3
EU GDPR applies GDPR applies

Art. 3(1) GDPR Art. 3(2) GDPR
Case 2 Case 4

US GDPR applies GDPR does not apply
Art. 3(1) GDPR –

Notes: Table is taken from Table 1 of Peukert et al. (2022). The matrix shows whether the GDPR is applicable
to firms located within and outside the EU.

firms using a matching procedure described in Appendix C.3 based on name, location,
domain, and other information. We match close to 60% of our cloud firms to the Aberdeen
dataset. We further augment our data by merging it with employment data from the
European Orbis database from Bureau van Dĳk through name and domain matching.
With this procedure, we link cross-sectional employment data to approximately 80% of
the European firms. We use the employment information in 2018 to define firm size.

3.4 Sample Construction and Summary Statistics

We begin by presenting a framework that will allow us to classify firms by their exposure to
the GDPR. Following Section 2, Table 1 presents information on whether the GDPR applies
to firms depending on the location of the firm and data subjects (using the language from
Peukert et al., 2022). Now, while we cannot directly observe the location of each firm’s
employees and consumers, we use the fact that we can observe firm server locations to
approximate the locations of their consumers and employees. We view this as a reasonable
approximation because firms tend to choose data centers close to them to reduce latency
(Greenstein and Fang, 2020). We argue that firms based solely in one geographic region
are unlikely to use servers across the Atlantic unless they have consumers or employees
located in the other location.14

By combining information on the locations of firm server choices before the GDPR
with the locations of firm headquarters, we attempt to categorize firms into the four cases
described in Table 1. We consider a firm multi-national (Cases 2 and 3) if they use data
centers both in Europe and in the US. We consider a firm to be a domestic EU or US firm

14One piece of evidence that supports server location choice being predictive of firm location is that when we
construct EU vs US firms classifications using only server locations, the assigned regions coincide with the
headquarter locations in our data for 98% of the firms.
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Table 2: Summary Statistics

Industry Number Share Share Mean Mean Mean Share
of Firms Compute (%) Storage (%) Storage Compute Data Intensity EU (%)

Services 15,886 36.3 31.9 844 628 1.84 40.9
Software 9,480 17.6 20.8 690 670 1.69 59.8
Manufacturing 3,095 10.5 11.6 1,293 986 1.81 54.4
Retail Trade 2,152 5.2 5.4 1,101 917 2.02 46.9
Finance & Insurance 2,057 11.4 10.8 1,652 1,571 1.89 44.9
Wholesale Trade 1,945 3.7 4.5 925 885 2.10 52.3
Other 2,689 15.3 15.0 1,714 1,616 2.23 46.1
All 37,304 100.0 100.0 1,000 803 1.86 48.1

Notes: Table presents summary statistics from our matched sample of firms. A description of the sample’s
construction can be found in Section 3.1, and a more detailed description of the sample construction can be
found in Appendix C. Industries are defined as the ten divisions classified by SIC codes, with the exception
of software firms, which are carved out of the services division and represent SIC codes 7370 - 7377. For
confidentiality purposes, mean storage and compute have both been normalized such that mean storage is
denoted by 1,000 units. We calculate mean data intensity at the firm level while restricting to firms that use
both storage and computing services.

(Cases 1 and 4) if they use data centers only in Europe or in the US.15 As we explain later
in the paper, our empirical strategy focuses on comparing domestic EU and US firms, and
therefore, these domestic firms constitute our main sample throughout the paper.16

As we discuss in Appendix C.2, we restrict our attention to firms that continuously used
our cloud provider’s services for the full year beginning two years prior to the introduction
of the GDPR. This sample accounts for 90% of storage and computation. We use this sample
restriction to focus our analysis on relatively stable users of cloud computing. Our sample
is, therefore, comprised of firms that are both responsible for the vast majority of storage
and computation in the pre-GDPR period and that have been continuously attached to our
cloud computing provider.

Table 2 presents summary statistics for our baseline sample of nearly forty thousand
firms. We categorize each firm’s industry by using the firm’s SIC code, and we intentionally
split software firms from other firms in the services division due to their large share in
our sample.17 Therefore, throughout the paper, we use “services” to describe firms in the
service industry excluding software firms, and “software” to describe firms in the software
industry. The majority of firms belong to the services (43%) and software (25%) industries,
but firms from manufacturing and various other industries are also represented in our

15We also include UK firms in our EU sample. The UK was part of the EU when the GDPR came into effect on
May 25, 2018. After the UK’s withdrawal from the EU, the GDPR was incorporated into UK law as the UK
GDPR, which largely mirrors the provisions of the GDPR, with some minor changes.

16While multinational firms are important, their exposure and responses to the GDPR are more complex than
those of domestic firms, which requires us to focus on domestic firms.

17We define software firms as those with SIC codes between 7370 and 7377.
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Figure 2: Histogram of Data Intensity by Industry
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Notes: Figure presents a histogram of data intensity at the firm level, defined as the ratio of data stored to
computation (the ratio of gigabytes to core hours) for each industry. Industries are defined through SIC
codes (with the exception of software firms, which are carved out of the services division). We limit the
sample to firms that have ever used both storage and computation (𝑁 = 11, 858).

sample. As reported in Columns 5-6, while there is variation in usage across industries—
likely driven in part by the difference in the average size of firms using cloud computing—
we observe significant storage and computation in all industries. We also note some slight
variation in the share of firms in the US versus the EU by industry in Column 8, although
each region always accounts for at least 40% of firms in each industry.

Lastly, Column 7 of Table 2 presents the mean data intensity for each industry, which
is defined as the ratio of storage to computation. We find that the average data intensity
ranges from 1.69 to 2.23. However, these averages mask significant within-industry het-
erogeneity, as shown in Figure 2, which plots the distribution of data intensity for the three
largest industries in our sample. The large firm-level variation in data intensity suggests
that the roles of data and computation likely vary across firms.18 This result is consistent
with the large evidence of within-industry heterogeneity in other firm outcomes, such
as productivity (Syverson, 2011), labor shares (Kehrig and Vincent, 2021), and markups
(Autor et al., 2020; De Loecker et al., 2020). As we will see in Section 5, taking into account
this heterogeneity will be important when developing a production function framework
with data and computation.

4 Event Study Evidence
In this section, we apply an event study design to study the effect of the GDPR on firms’ data
and computation decisions. We begin by defining our empirical strategy and providing
intuition for our identifying assumptions. Next, we present our baseline estimates and

18This result remains even if we focus on more narrowly defined 4-digit SIC industries.
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discuss the robustness of our strategy across various alternative samples and specifications.

4.1 Empirical Strategy

Our empirical strategy aims to identify the causal effect of the GDPR on firms’ computation
and data choices. In order to identify a relevant treatment and control group for our
strategy, we turn to our classifications of firm locations from Section 3. Following Table 1,
we define “Case 1” as our treatment group and “Case 4” as our control group.

Notably, these two definitions exclude multi-national firms (i.e., those with branches
and/or consumers across countries). We choose to do so for two reasons. First, we
may think of multi-national firms as being partially treated: only some of their data may
be subject to the GDPR. Thus, we might want to separate the estimation of the treatment
effects of these firms from the fully treated firms (Case 1). Second, multi-national firms may
systematically differ from the control firms that we define (Case 4). They may respond
to the GDPR along different margins than our control group, choosing to shift data,
computation, and even business operations into or out of the EU—responses that are
outside the scope of this paper.

We focus on three outcomes: data, computation, and “data intensity” (the ratio of data
to computation). Our empirical specification uses a difference-in-differences design and
estimates the following regression:

log(𝑌𝑖𝑡) =
∑
𝑞≠−1

𝛽𝑞 · 1{EU𝑖} + 𝛼𝑖 + 𝜏𝑘𝑞𝑠 + 𝜀𝑖𝑡 , (1)

where 𝑌𝑖𝑡 is the outcome of interest for firm 𝑖, in month 𝑡. We use 𝑞 to denote quarter, 𝑘 to
denote industry, and 𝑠 to pre-GDPR cloud usage decile. In this specification, 𝛼𝑖 is a firm-
level fixed effect while 𝜏𝑘𝑞𝑠 are industry-by-quarter-by-size-decile fixed effects which allow
for time trends to differ flexibly in each quarter for an industry-size decile combination.19
We define eleven industries using the ten mutually exclusive and exhaustive divisions
defined by one-digit SIC codes and carving out software from services.

We estimate this specification for the sample period from July 2015 to March 2020.20
The coefficients of interest, 𝛽𝑞 , represent the difference in outcomes relative to the quarter
before the GDPR came into force. The identifying assumption of our empirical strategy is a

19We measure cloud usage deciles for storage and computation outcomes by using a firm’s computation or
storage, respectively, as measured one year before the GDPR. For data intensity, we use terciles of firm
storage interacted with terciles of firm compute to increase power.

20Even though we have data for a few more quarters, we end the sample in March 2020 to rule out the effects
of the COVID-19 pandemic. This sample restriction also limits the potential effects of another privacy law,
the California Consumer Privacy Act, which came into effect in January 2020.
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conditional parallel trends assumption. We take advantage of our large sample and allow
time trends in our outcomes to vary flexibly by industry and initial cloud usage levels in
our baseline specification, with 110 distinct bins for each quarter (11 defined industries ×
ten pre-GDPR cloud usage deciles).

To discuss the short- and long-run estimates of the effect of the GDPR, we also present
results in a table format using an alternative regression specification given by:

log(𝑌𝑖𝑡) = 𝛿1 · 1{EU𝑖} · 1{𝑡∈Jun/18-May/19} + 𝛿2 · 1{EU𝑖} · 1{𝑡∈Jun/19-May/20} + 𝛼𝑖 + 𝜏𝑘𝑞𝑠 + 𝜀𝑖𝑡 , (2)

where the notation of 𝛼𝑖 and 𝜏𝑘𝑞𝑠 is the same as in Equation (1). Our estimates are relative
to the excluded group, which is the pre-GDPR period. Thus, the short-run coefficient (𝛿1)
and long-run coefficient (𝛿2) estimate the average difference in 𝑌𝑖𝑡 between treated and
untreated firms in the first and second year after the GDPR came into force.

4.2 Results

Our main event study results are shown in Figure 3, which plots the estimated coefficients
𝛽𝑞 from Equation (1) for three outcomes. We discuss each of these outcomes separately
and present the corresponding short- and long-run estimates from Equation (2) in Table 3.

Results on Data Panel (a) of Figure 3 shows the results for data storage. First, we find
no evidence of significant differential pre-GDPR trends in the US and EU, as all pre-GDPR
coefficients are close to zero. We also find limited evidence for anticipation effects, which
is consistent with the survey evidence that only 10% of firms expected to be compliant
with the GDPR before May 2018 (Ponemon Institute, 2018). After the implementation of
the GDPR, however, firms in the EU, relative to US firms, started to decrease their relative
amount of data stored gradually, with cumulative effects growing steadily over the two
years after the GDPR. The fact that the decrease is gradual rather than sudden may be due
to the fact that it took time for firms to implement necessary changes, as noted by Aridor
et al. (2023) in the case of a large website.

The decline in data is perhaps not surprising, as the GDPR increased the cost of storing
data. What is perhaps more surprising, however, is the magnitude of the effect. Table 3
shows that the short-run effect is around a 13% decrease in data while the long-run effect
doubles to around 26%.21

21Importantly, firms are not necessarily deleting data, as our identification strategy relies on comparing EU
and US firms. Data storage for EU and US firms could be increasing but at different rates.
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Table 3: Short- and Long-Run Effects of the GDPR
(Data, Computation, and Data Intensity)

(1) (2) (3) (4)

Panel A. Dependent variable: Log of Data

Short-Run Effect -0.129 -0.132 -0.125 -0.134
(0.018) (0.017) (0.017) (0.017)

Long-Run Effect -0.257 -0.260 -0.228 -0.242
(0.024) (0.024) (0.024) (0.024)

Observations 1,143,149 1,143,149 1,143,149 1,143,149
US Firms 16,409 16,409 16,409 16,409
EU Firms 16,281 16,281 16,281 16,281

Panel B. Dependent variable: Log of Computation

Short-Run Effect -0.078 -0.082 -0.132 -0.148
(0.016) (0.016) (0.016) (0.016)

Long-Run Effect -0.154 -0.164 -0.224 -0.256
(0.024) (0.024) (0.024) (0.024)

Observations 672,942 672,942 672,942 672,942
US Firms 10,294 10,294 10,294 10,294
EU Firms 8,927 8,927 8,927 8,927

Panel C. Dependent variable: Log of Data Intensity

Short-Run Effect -0.072 -0.071 -0.025 -0.021
(0.020) (0.020) (0.020) (0.019)

Long-Run Effect -0.131 -0.126 -0.049 -0.035
(0.029) (0.029) (0.029) (0.029)

Observations 418,803 418,803 418,803 418,803
US Firms 5,487 5,487 5,487 5,487
EU Firms 5,872 5,872 5,872 5,872

Time Trends Vary By: Industry × Pre- Pre-GDPR Industry -GDPR Size Deciles Size Deciles

Notes: Table presents estimates of Equation (2) of the short-run (𝛿1) and long-run (𝛿2) coefficients, which
estimate the effect of the GDPR in the first and second year after the GDPR came into force. Column (1)
presents our baseline specification, where we allow for time trends to vary flexibly across industry and
pre-industry size decile interactions. Column (2) restricts these time trends so that they only vary by pre-
GDPR size decile, while Column (3) only allows for variation at the industry level. Column (4) shows
estimates when we include no time-trend interactions. Industries are defined as the ten divisions classified
by SIC codes. Pre-GDPR size deciles are measured thirteen months before the GDPR. For data intensity,
we define “size decile” as the interaction between storage and computation terciles when measured in the
period. Standard errors are clustered at the firm level.
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Figure 3: Event Study Estimates of the Effects of the GDPR on Cloud Inputs
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(b) Effect on Computation
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(c) Effect on Data Intensity
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Notes: Figure presents estimates of equation (1) of 𝛽𝑞 , the coefficient on the quarter of the move interacted
with our treatment indicator. The coefficient in the quarter before the GDPR’s implementation is normalized
to zero. Dotted bars represent the 95% confidence intervals, and standard errors are clustered at the firm
level. Sample sizes are presented in Table 3.

Results on Computation Turning towards computation, we first note that there is no
clear theoretical prediction for how the GDPR should affect firms’ computation decisions.
The GDPR’s primary goal is to protect personal data, with limited direct implications for
computation. Therefore, the effect of the GDPR on computation likely depends on the
elasticity of substitution between computation and data and the intensity of these inputs
in the production function. If data and computation are substitutes, firms can respond to
increases in data costs by substituting away from data toward computation. On the other
hand, if data and computation are complements, then an increase in data cost would lead
to a decrease in computation. Thus, the direction and magnitude of firm computation
responses is ultimately an empirical question.
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Panel (b) of Figure 3 shows that EU firms gradually decreased their computation relative
to US firms after the introduction of the GDPR. The effect on computation is smaller than
what we observe for data, with only a 15% decline two years after the GDPR. Similar to
the results on data, we find no evidence of significant differential pre-GDPR trends.

The results on computation are also important because they indicate that firms do
not simply eliminate (or stop accumulating) unused data. One potential explanation for
our data results is that before the GDPR, firms stored data that they never utilized and
subsequently deleted it to comply with the GDPR. Our findings suggest that this hypothesis
is unlikely because of the substantial reduction in computation, which we conjecture would
not have happened if data that was not being used was simply eliminated.22

Results on Data Intensity Comparisons of the magnitudes between our data storage
and computation results suggest that firms became less data-intensive after the GDPR.
However, in order to account for potential compositional effects, we investigate the effects
of the GDPR on data intensity by using the natural logarithm of the ratio of storage to
computation as an outcome. We estimate our specification on firms that used both types
of inputs for the full year beginning exactly two years before the GDPR came into force.

Panel (c) of Figure 3 shows that firm data intensity decreased immediately after the
GDPR. Panel (c) of Table 3 estimates a decrease of around 7% in the short run and 13% in
the long run. The fact that firms in the EU become less data-intensive post-GDPR (relative
to comparable US firms) suggests that storage and computation are likely complements in
production, which we revisit using a production framework in Section 5.23

Robustness of Results There are several potential threats to our identification strategy.
In Appendix D, we go through these threats and provide evidence indicating they do not
drive our results. We summarize the main exercises below, and we leave the additional
exercises (e.g., alternative sample definitions and empirical specifications) in Appendix D.

The most salient identification threat is that we observe only one, albeit large, cloud
provider. What we observe as declines in cloud usage could simply be firms substituting
usage towards other providers (“multi-cloud”) or to their on-premises IT services (“hybrid
cloud”). For multi-cloud, we show that our results are similar when we restrict our sample
to firms that only use our cloud provider according to Aberdeen data (Table OA-2 and
Figure OA-8). For hybrid cloud, we first show that our empirical exercise yields similar

22This hypothesis also appears unlikely because cloud computing incurs a marginal cost for storing data, even
if it remains unused. Additionally, in Section 5, we find that firms are responsive to changes in cloud prices.

23Table 3 also shows the robustness of including flexible time trends by industry and size-decile fixed effects.
We observe that excluding the pre-GDPR size fixed effects results in similar storage estimates, slightly higher
(in absolute value) computation estimates, and lower data intensity estimates. These differences likely reflect
compositional variations in treatment responses by firm size between EU and US firms.
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results for the start-up firms in our sample, which are less likely to use on-premises IT
(Table OA-4 and Figure OA-10).24 Second, we find no evidence of differential trends in
interest in hybrid cloud usage—as proxied for by Google Trends—across the EU and the
US.25 Third, we show that EU firms are less likely to leave the cloud relative to the US firms
after the GDPR (Figure OA-13). Therefore, it is unlikely that the declines we observe are
simply driven by substitution to on-premises IT.

Another natural explanation for our results is the possibility of differential price trends
in the EU and the US. If cloud prices increase in the EU relative to the US post-GDPR
(perhaps to cover GDPR compliance costs, for example), we could see a decline in data
and computation even without the GDPR having any additional effects on firms. To check
this hypothesis, we use the paid prices for cloud storage as a dependent variable and find
no differential price changes between the EU and the US (Figure OA-12).

We also consider whether our results are particularly being driven by websites’ cookie
consent notices and the clauses governing the collection and storage of data from websites.
We might expect firms with active website use—which we proxy for through the usage of
cloud-based web services—to be more affected by the policy than those without. Table
OA-5 shows larger effects among firms that used web services in storage and computation.
However, we find that the data and computation adjustments of web users and non-web
users are proportional and that their reductions in data intensity are similar.

4.3 Heterogeneity

By Industry The relationship between data and computation may vary by industry,
depending on how each industry incorporates data inputs into its production processes.
For this reason, we investigate whether the effects of the GDPR on data and computation
vary across four mutually exclusive and exhaustive industry groups: software, services,
manufacturing, and all other industries. Table 4 shows our estimates of the short- and long-
run effects of the GDPR when we estimate Equation (2) across different industry groups.26
One striking result is the breadth of our results: we find declines in data, computation,
and data intensity across all industry groups. This suggests that the direct impact of the
GDPR extends beyond the subset of previously studied industries or mechanisms—e.g.,

24See Jin and McElheran (2017) and Ewens et al. (2018) for research supporting this assumption.
25Figure OA-11(a) shows no differential time trends in hybrid cloud-related searches between the US, the UK,

or Germany, which is suggestive that differential uptake of hybrid cloud services in the EU is unlikely to
explain our results. Furthermore, hybrid cloud remains an order of magnitude less popular as a search term
than cloud computing (Figure OA-11(b)). See Appendix D.1 for more information.

26We show the quarterly dynamics in Figures OA-1 and OA-2, and the (lack of) pretrends at the industry level.
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Table 4: Short- and Long-Run Effects of the GDPR
(Heterogeneous Effects by Industry)

Baseline Software Services Manufacturing Other
Industries

(1) (2) (3) (4) (5)

Panel A. Dependent variable: Log of Data

Short-Run Effect -0.129 -0.113 -0.080 -0.259 -0.190
(0.018) (0.035) (0.026) (0.063) (0.037)

Long-Run Effect -0.257 -0.253 -0.180 -0.404 -0.354
(0.024) (0.048) (0.036) (0.086) (0.051)

Observations 1,143,149 291,781 486,457 94,612 270,299
US Firms 16,409 3,196 8,141 1,141 3,931
EU Firms 16,281 5,150 5,912 1,508 3,711

Panel B. Dependent variable: Log of Computation

Short-Run Effect -0.078 -0.078 -0.048 -0.171 -0.077
(0.016) (0.032) (0.024) (0.051) (0.033)

Long-Run Effect -0.154 -0.150 -0.100 -0.322 -0.163
(0.024) (0.050) (0.037) (0.073) (0.049)

Observations 672,942 165,752 270,846 65,532 170,812
US Firms 10,294 2,050 4,623 900 2,721
EU Firms 8,927 2,747 3,204 914 2,062

Panel C. Dependent variable: Log of Data Intensity

Short-Run Effect -0.072 -0.084 -0.084 -0.078 -0.043
(0.020) (0.042) (0.031) (0.066) (0.039)

Long-Run Effect -0.131 -0.196 -0.161 -0.043 -0.069
(0.029) (0.064) (0.045) (0.097) (0.055)

Observations 418,804 103,606 168,020 41,449 105,729
US Firms 5,487 1,054 2,473 496 1,464
EU Firms 5,872 1,755 2,123 610 1,384

Notes: Table presents estimates of Equation (2) of 𝛿1 and 𝛿2, re-estimated across for various industry
divisions. For comparison, Column (1) presents our baseline estimates across all industry divisions. Column
(2) restricts our sample to software firms, which are defined through SIC codes 7370 - 7377. Column (3)
restricts the sample to services firms, Column (4) restricts the sample to firms in the manufacturing division,
and Column (5) presents estimates on the remaining firms in the sample (non-software, non-services, and
non-manufacturing industry divisions). Standard errors are clustered at the firm level.
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websites or venture capital investments—to affect firms across all industries.27
Furthermore, we find substantial heterogeneity between industries in the magnitudes

of the effects. Panel A shows that the most significant decreases in data in response to the
GDPR come from manufacturing firms (40% in the long run), followed by software firms
(25%), and services firms (18%). Similarly, Panel B shows that for computation, the fall is
largest in magnitude for manufacturing (32% in the long run), followed by software (15%)
and services (10%).

While it may seem surprising that IT-intensive industries like software and services
firms have more muted responses to the GDPR than manufacturers, this may reflect
several factors. First, manufacturers are still subject to the GDPR if they sell directly to
customers, employ workers in the EU, or work with EU suppliers or trading partners.
Second, manufacturers might be able to substitute compute and data with other inputs
more easily in response to the GDPR because data and computation are less essential parts
of their production than software and services firms. Alternatively, they might be less
sophisticated in terms of their existing data infrastructure and comply with the GDPR by
simply reducing data usage.28

Finally, Panel C of Table 4 shows results for data intensity. We find that data intensity
decreases in all industries, although the standard errors are large for some of these esti-
mates. Our point estimates suggest that long-run data intensity decreases the most in the
industries that experienced the smallest declines in storage and computation.

By Regulatory Stringency Although the GDPR harmonized data protection regulations
across the EU, enforcement was delegated to each country’s data protection authority.
Thus, enforcement policies can vary across countries due to differences in resources avail-
able to data protection authorities and their approaches to data protection. (Johnson,
2022). Because of these differences, we might expect firms in countries with more lenient
regulators to respond less to the GDPR. To test this hypothesis, we use a measure of per-
ceived regulatory strictness created by Johnson et al. (2023) using data from European
Commission (2008) that varies at the country level. This measure calculates a z-score for
each country based on firms’ stated perceptions of their country’s relative data protection
regulatory strictness. We then classify each firm as above or below the normalized median
strictness in the survey according to the strictness of their country’s regulator.

We modify Equation (2) by introducing two additional coefficients to account for poten-

27Some papers in the literature find a decrease in venture capital investment in the EU after the GDPR (Jia et al.,
2021; Janßen et al., 2021), but our results extend to both large firms and industries, such as manufacturing,
that are less like to receive venture capital investment.

28For some commercial products offered to manufacturers for GDPR compliance, see GrowthDot and Ground-
Labs. For an overview of how GDPR applies to manufacturers, see Data Protection Laws for Manufacturers.
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Table 5: Short- and Long-Run Effects of the GDPR by Regulatory Strictness

Data Computation Data Intensity
(1) (2) (3)

Short-Run Effect -0.028 -0.061 -0.042
(0.044) (0.032) (0.042)

Long-Run Effect -0.040 -0.047 -0.015
(0.055) (0.049) (0.059)

Observations 1,143,149 672,942 418,803
EU Firms 16,281 8,927 5,872

Notes: Table presents estimates of Equation (2) with an additional term to measure the effect of above-
median GDPR strictness. The short-run term captures the triple interaction of the short-run post-GDPR
coefficient, the EU categorical variable, and a categorical variable indicating firms in the above-median
regulatory stringency countries. The long-run term repeats the same procedure but uses the long-run post-
GDPR period instead. Regulatory strictness is measured according to Johnson et al. (2023) using data from
European Commission (2008). For data intensity, we define “size decile” as the interaction between data and
computation terciles when measured in the period. Standard errors are clustered at the firm level.

tial heterogeneity by regulatory stringency. Specifically, we interact a categorical variable
indicating above-median stringency with the EU categorical variable to measure the short-
and long-run differences in𝑌𝑖𝑡 for EU firms across different levels of regulatory stringency.

Table 5 summarizes these results. The interaction coefficients—although many are not
statistically significant—are all negative, suggesting that firms in above-median regulatory
strictness countries face larger declines in data, computation, and data intensity. In the
short run, data decreases by 2.8 pp. more in above-median strictness countries than in
below-median ones, while computation declines by 6.1 pp. more. In the long run, data and
computation go down by 4 pp. and 4.7 pp. more in above-median strictness countries,
respectively. Similarly, data intensity shows larger declines for firms in above-median
strictness countries. Overall, these findings suggest a non-negligible role for regulatory
stringency beyond the simple presence of privacy regulation itself.

4.4 Discussion

Our findings suggest that EU firms responded to the GDPR by storing less data, performing
less computation, and becoming less data-intensive compared to US firms. These results
provide direct and large-scale evidence that firms comply with the GDPR by adjusting
their data inputs. Moreover, the results are not driven by a single industry or websites
affected by cookie consent policies, indicating the far-reaching implications of the GDPR.

Although these findings provide insight into how privacy laws affect firm behavior, they
do not offer a comprehensive understanding of the economic costs imposed on firms. Such
an analysis requires understanding the role of data in firm production and considering
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firms’ adjustment margins in response to privacy regulations. For this reason, we take a
more structural approach in the next section.

5 A Model of Production with Data
This section introduces a production function framework with data and computation and
estimates its parameters. We use our framework to study both how firms use data and
computation in production and how privacy regulations might affect these decisions. We
model the GDPR as a wedge between the cost of storing data and the total (perceived)
cost of data that includes regulatory costs. We focus on estimating the size of this wedge,
corresponding increases in production costs, and their implications for firms.

5.1 Production Function with Data

Firm 𝑖 in month 𝑡 produce output 𝑌𝑖𝑡 by combining compute (𝐶𝑖𝑡), data (𝐷𝑖𝑡) and other
inputs (𝑋𝑖𝑡):

𝑌𝑖𝑡 = 𝐹
(
𝑋𝑖𝑡 , 𝐼𝑖𝑡(𝐶𝑖𝑡 , 𝐷𝑖𝑡

)
, 𝜔𝑖𝑡),

where the function 𝐼𝑖𝑡(·) aggregates compute and data inputs to be used in firm production
and 𝜔𝑖𝑡 is firm productivity. It is natural to model the contribution of data and computation
to firm production in this way, as these inputs are inherently interdependent: firms use
computation to process data, and the processed data is then combined with other inputs.
We assume a CES functional form for the aggregation of data and computation:

𝐼𝑖𝑡(𝐶𝑖𝑡 , 𝐷𝑖𝑡) =
(
𝜔𝑐
𝑖𝑡(𝐶𝑖𝑡)

𝜌 + 𝛼𝐷
𝜌
𝑖𝑡

)1/𝜌
, (3)

where 𝜔𝑐
𝑖𝑡

is compute-augmenting productivity, 𝛼 denotes data intensity, and 𝜎 = 1/(1−𝜌)
is the elasticity of substitution between data and compute.29 While CES imposes parametric
assumptions, it offers flexibility in the elasticity of substitution, the key parameter that
governs how firms re-optimize their inputs in response to the GDPR. We refer to the
intermediate input 𝐼𝑖𝑡 = 𝐼𝑖𝑡(𝐶𝑖𝑡 , 𝐷𝑖𝑡) as “information” throughout our analysis.30

29As we will show later, 𝛼 can be normalized without loss of generality because the ratio of 𝜔𝑐
𝑖𝑡

to 𝛼 serves as
a sufficient statistic that determines the relative intensity of compute and data in production. We retain 𝛼 in
the notation to highlight the role of data intensity in the derivations we will present later.

30Information 𝐼𝑖𝑡 lacks a natural unit in the production function shown in Equation (3). This is because any
monotone transformation ℎ(·) of the information production function can be offset by applying ℎ−1(𝐼) inside
the 𝐹 function. However, as we show in Appendix E.4, this scale invariance does not affect our identification
strategy of wedges and associated production cost increases as we focus on changes in firms’ costs due to the
GDPR instead of its levels. This robustness to monotone transformations also accommodates information
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Our empirical analysis will primarily use the CES model of data and compute aggrega-
tion in Equation (3) rather than the full production function. This choice is motivated by
the lack of a standardized framework for modeling data in firm production. For example,
data could increase overall firm productivity (Jones and Tonetti, 2020), serve as an input
in production (Bessen et al., 2022), increase labor productivity (Agrawal et al., 2019), and
increase revenue by better customer targeting (Eeckhout and Veldkamp, 2022).31 While
this limits potential counterfactual analyses we could perform, we consider it a reasonable
trade-off given our study’s large-scale coverage across firms and industries.

Our production function model in Equation (3) includes a firm-specific compute-
augmenting productivity term, 𝜔𝑐

𝑖𝑡
, to capture heterogeneity in production technology

across firms. This heterogeneity can arise from two main sources. First, firms may differ
in their inherent production technologies regarding how much data they need, making
production more data-intensive for some firms than others. Second, even with similar un-
derlying technologies, firms may achieve different levels of compute productivity through
differences in resources they have, including technical infrastructure and human capital
(e.g., advanced software tools and skilled engineers). The large firm-level variation in data
intensity that we documented in Figure 2 underscores the importance of accounting for
these technological differences.

Our approach relies on estimating input demand functions derived from the CES form
under the assumption that firms choose inputs to minimize static production cost of 𝐼𝑖𝑡 ,
taking 𝜔𝑐

𝑖𝑡
as given. In particular, we assume that 𝐶𝑖𝑡 and 𝐷𝑖𝑡 are variable inputs that firms

optimize every period. We view this assumption as reasonable for cloud computing given
that firms can easily adjust their usage of storage and computation. We also assume that
firms are price-takers in the input markets for 𝐶𝑖𝑡 and 𝐷𝑖𝑡 , which is again a reasonable
assumption for cloud computing because firms typically pay a linear price by the hour.32
Overall, this static cost minimization assumption enables us to bypass the dynamics of
firms’ decision-making, which would necessitate additional assumptions.

We use 𝑝𝑐
𝑖𝑡

and 𝑝𝑑
𝑖𝑡

to denote the input prices for compute and data, which may vary
across firms, as we explain later. Based on the cost minimization assumption, we derive
the following first-order condition (FOC) for firms’ ratio of compute and data choices from

production to be non-constant returns to scale through the transformation ℎ = 𝐼𝜃. However, we note that
our empirical strategy does not identify the returns to scale parameter.

31More formally, our setting covers: (i) 𝑌 = 𝑓 (𝑋)𝜔(𝐼) (productivity increasing), (ii) 𝑌 = 𝑓 (𝑋, 𝐼, 𝜔) (input in
production), (iii) 𝑌 = 𝑓 (𝑋, 𝜔𝐿(𝐼) · 𝐿, 𝜔) (labor-augmenting), and (iv) 𝑅 = 𝑝(𝐼) 𝑓 (𝑋, 𝜔) (price discrimination).
In these examples,𝑌 and 𝑅 are output and revenue; 𝜔𝐿 is labor-augmenting productivity, and 𝑝 is the output
price. In each specification, information affects a different part of the production function.

32An exception is very large firms, which can negotiate their prices bilaterally. Since we focus on domestic
firms, this exception likely affects a very small fraction of our sample. See footnote 34 for more information.
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the CES production function:

log
(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝛾 + 𝜎 log

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ 𝜎 log(𝜔𝑐

𝑖𝑡), (4)

where 𝛾 = −𝜎 log(𝛼). We provide the complete derivations in Appendix E.1 and also show
in Appendix E.2 that we obtain the same FOC if we were to include labor (e.g., software
engineers) in the information production function. We note that the level of 𝜔𝑐

𝑖𝑡
is not

separately identified in this equation from 𝛼, so we normalize it to 1 in the estimation.
According to this FOC, the relationship between input ratios and input prices is gov-

erned by the elasticity of substitution. A key feature of this equation is that the elasticity
of substitution and compute-augmenting productivity can be estimated from firms’ input
demand functions alone, without requiring data on other inputs or outputs. This property
of the CES functional form has been commonly used in the literature for estimating the
elasticity of substitution (Doraszelski and Jaumandreu, 2018; Raval, 2019; Demirer, 2022).

Although our framework extends the production function literature by incorporating
computation and data, it has certain limitations. While we account for potential variations
in data quality across firms through 𝜔𝑐

𝑖𝑡
, we assume that data is homogeneous within each

firm. This limitation becomes particularly relevant if, for instance, firms have data types
with varying levels of quality, and the GDPR impacts the composition of data. Relaxing
this assumption requires incorporating different data types into the production function,
which we do not observe. It is worth noting, however, that the assumption of homogeneous
inputs within a firm is a common practice in the production function literature.

5.2 The GDPR as a Cost Shock to Data

We model the GDPR as a cost shock to data input—as we have extensively argued data
is the main focus of GDPR regulations. While some aspects of the GDPR do pertain to
computation (e.g., Article 30, records of processing activities), the effects of the regulation
on data are significantly larger, and computation is less salient to regulators than data.

As mentioned before in Section 2 and in Appendix B.2, the GDPR increased the fixed
and variable costs of using data. For example, customer data-rights requests under the
GDPR may impose variable costs on firms that increase with data amount. Similarly,
the probability of a data breach and penalties in case of non-compliance likely increase
with the amount of data firms have.33 By contrast, fixed costs are one-time expenses
that do not vary with data amount—e.g., hiring data protection officers and developing a

33This observation aligns with the fact that larger firms tend to receive more substantial fines in our fine data.
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data protection management system. Since fixed costs do not affect input demand in the
intensive margin, we focus on modeling the variable cost.

We make the following assumptions about data costs before and after the GDPR:

Pre-GDPR: �̃�𝑑𝑖𝑡 = 𝑝𝑑𝑖𝑡 , Post-GDPR: �̃�𝑑𝑖𝑡 = (1 + 𝜆𝑖)𝑝𝑑𝑖𝑡 .

Here, 𝑝𝑑
𝑖𝑡

represents the variable cost of data without the GDPR (i.e., the cost of storing
data paid to the cloud provider), and �̃�𝑑

𝑖𝑡
is the cost after accounting for the regulatory costs

introduced by the GDPR. Therefore, 𝜆𝑖 denotes the wedge between the actual cost of data
and the total variable cost that includes complying with the GDPR. We follow the literature
and model 𝜆𝑖 as a multiplicative wedge (e.g., Chari et al., 2007; Hsieh and Klenow, 2009).
This wedge is firm-specific because compliance costs are likely to be heterogeneous across
firms, depending on their size and the types of data they collect. Alternatively, we can also
interpret 𝜆𝑖 as each firm’s perceived cost of the GDPR, as they may hold different beliefs
about enforcement or have varying levels of risk aversion that affect the expected cost of
liability in the event of a data breach (Ganglmair et al., 2024).

Although we have modeled the GDPR as affecting the variable cost of data, we show in
Section E.3 that our estimation procedure is consistent with several other interpretations
of the GDPR. First, we show that if there are other unobserved variable costs to data that
generate wedges before the GDPR, our estimate captures the additional wedges driven
by the GDPR. Next, we consider a model with data-augmenting productivity where the
GDPR generates a negative shock to this productivity by reducing the effectiveness of
data. We demonstrate that our estimation procedure approximately recovers the size of
this negative productivity shock in such a model. Finally, if the GDPR generates wedges in
compute in addition to data, our wedge estimate will reflect the ratio of data-to-compute
wedges, making our estimate of costs conservative.

5.3 Identification of Parameters

Our end goal is to estimate the production function parameters and the firm-level wedges
introduced by the GDPR. To illustrate the potential identification problems when estimat-
ing these objects, consider the FOC in Equation (4) after the GDPR for EU firms:

log
(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝛾 + 𝜎 log

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ 𝜎 log(1 + 𝜆𝑖) + 𝜎 log(𝜔𝑐

𝑖𝑡). (5)

This FOC reveals a fundamental identification challenge: the GDPR wedge, 𝜆𝑖 , cannot be
separately identified from a level shift in 𝜔𝑐

𝑖𝑡
post-GDPR. Intuitively, firms may decrease
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their compute-to-data ratio either because their compute-augmenting productivity has
increased or because the GDPR has imposed additional data costs. Without additional
assumptions, we cannot distinguish these two cases using our data. To this end, we impose
the assumption that compute-augmenting productivity can be decomposed as follows:

log(𝜔𝑐
𝑖𝑡) = log(𝜔𝑐

𝑖 ) + log(𝜙𝑐𝑡 ) + log(𝜂𝑖𝑡). (6)

Here 𝜔𝑐
𝑖𝑡

is decomposed into a firm-specific component (𝜔𝑐
𝑖
), an industry-specific time

trend (𝜙𝑐𝑡 ), and a mean-zero (in logs) idiosyncratic component (𝜂𝑖𝑡). This decomposition
suggests that we need to control for 𝜔𝑐

𝑖
and 𝜙𝑐𝑡 to identify the wedges generated by the

GDPR.
Our identification strategy therefore involves two steps. In the first step, we recover

𝜔𝑐
𝑖

and 𝜙𝑐𝑡 using data from EU firms in the pre-GDPR period and data from US firms,
respectively. In particular, we assume that firm-specific compute technology does not
change after the GDPR and that each EU industry follows the same compute-technology
trend as the same industry in the US. With these assumptions, we can control for firm-
specific compute-augmenting technology in the second step and estimate the GDPR wedge
as a percentage of the observed data storage cost. We explain each of these steps below
and provide more detail in Appendix F.4.

5.3.1 First Step: Identification of Compute Productivity and Elasticity of Substitution

To estimate the elasticity of substitution and compute-augmenting productivity, we use
pre-GDPR data and estimate the following equation:

log
(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝛾1 + 𝜎1 log

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ 𝜎1 log(𝜔𝑐

𝑖 ) + 𝜎1 log(𝜙𝑐𝑡 ) + 𝜎1 log(𝜂𝑖𝑡), (7)

where 𝜎1 is the pre-GDPR elasticity of substitution. Two important considerations arise
when estimating this equation. First, the estimation requires variation in the data-to-
compute price ratio across firms over time. Second, these prices might be correlated with
unobservable productivity shocks (𝜂𝑖𝑡). To address this endogeneity, it is important to
understand the factors generating price variation in cloud computing.

Cloud computing prices typically vary depending on the region where the data center
is located. These posted prices can be considered orthogonal to the firm-level idiosyncratic
compute-augmenting productivity shocks (𝜂𝑖𝑡) because it is unlikely that any single firm
is large enough to affect them conditional on 𝜙𝑐𝑡 . In addition, cost improvements and
increased competition were the main drivers of price changes in the last decade (Byrne
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et al., 2018). However, the prices that firms pay may differ from these posted prices for
two reasons. First, firms may have differential preferences over data center locations based
on distance. Second, firms may receive a percentage discount from the listed price based
on long-term commitments.34 These two sources of price variation can create endogeneity
because, for example, firms with a high compute-augmenting productivity shock may
switch between data centers based on price differences, or they may receive long-term
commitment discounts. We address these potential sources of endogeneity by developing
a shift-share design (Bartik, 1991; Goldsmith-Pinkham et al., 2020; Borusyak et al., 2022).

We first introduce the broad intuition behind our instrument. Our approach aims to
address endogeneity in prices by leveraging two features of our data. First, because we
observe both list prices and paid prices, we can use changes in list prices to instrument for
the changes in paid prices. These changes, however, are still predictive of the prices that
firms face because discounts are applied to list prices. Second, we construct a measure
of exposure to specific data centers for each firm and period. We use historical exposure
shares rather than contemporary ones because previous data center choices are sunk.
However, previous data center choices remain predictive of current data centers firms
use due to switching costs, as transferring data between locations is time-consuming and
costly, especially for large datasets. As a result, firms’ data center location choices are
highly persistent over time.

More formally, the shift-share design combines list prices with variations in firms’ pre-
existing data center location choices. We construct instruments 𝑧𝑑

𝑖𝑡
and 𝑧𝑐

𝑖𝑡
for the data

storage and computation prices each firm 𝑖 faces at time 𝑡. The exposure shares in a given
period are calculated as the ratio of firm 𝑖’s usage in a specific data center to its total usage
across all data centers. These exposures yield the following equation for the instrument:

𝑧
{𝑐,𝑑}
𝑖𝑡

=
∑
𝑙∈ℒ

𝑠
{𝑐,𝑑}
𝑖𝑙(𝑡−12)𝑝

{𝑐,𝑑}
𝑙𝑡

(8)

where 𝑠{𝑐,𝑑}
𝑖𝑙(𝑡−12) denotes firm 𝑖’s usage share for data center location 𝑙 as measured 12 months

34Cloud providers offer discounts if firms commit to using cloud resources over a specific period of time
(typically one or three years). These discounts are called “reserved instance” or “committed use” discounts,
depending on the provider. These discounts are applied to the list prices and are the same across customers
except for very large customers, who might individually negotiate prices. A survey of 750 companies
conducted in 2023 finds that only one-third of them use these discounts (Flexera, 2023), which is likely lower
during our sample period and among domestic firms. Moreover, firms that receive long-term commitment
discounts can resell or refund their commitments for a fee in most major cloud providers (AWS Reserved
Instance Marketplace). Therefore, we believe that linear prices are a good approximation for firms’ monthly
decisions of storage and computation. For examples of these pricing policies, see AWS Reserved Instance
Market and Azure Reserved VM Instances. We provide more information about cloud computing pricing
in Appendix F.1.
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before 𝑡, 𝑝{𝑐,𝑑}
𝑙𝑡

is the price index for each service in location 𝑙 at time 𝑡, and ℒ denotes
the set of data center locations.35 Our exposure shares are lagged by 12 months because
contemporaneous shares are susceptible to reverse causality. While shift-share instruments
can be driven by assumptions about either the exogeneity of “shares" or the independence
and exogeneity of “shocks" (Borusyak et al., 2022), the identifying assumption underlying
our exposure shares is most similar to the “shares" assumption discussed in Goldsmith-
Pinkham et al. (2020). In particular, the exclusion restriction behind our shift-share design
is that contemporary shocks to the compute-augmenting productivity of each firm are
exogenous to the changes in the ratio of list prices of cloud computing in the firm’s
historical data center choices, controlling for industry-specific trends.36

We use 𝑧𝑐
𝑖𝑡
/𝑧𝑑

𝑖𝑡
as an instrument for price ratio 𝑝𝑑

𝑖𝑡
/𝑝𝑐

𝑖𝑡
and estimate Equation (7) for three

EU industries (software, services, and manufacturing) separately using pre-GDPR data,
as the pre-GDPR data does not include a regulatory wedge. This allows us to estimate
compute-augmenting productivity (𝜔𝑐

𝑖
) and elasticity of substitution parameters before

the GDPR. We also estimate Equation (7) for US industries over the entire sample period,
as US firms do not experience any regulatory distortion. This allows us to recover the
industry-specific compute-augmenting productivity trends, 𝜙𝑐𝑡 , for US industries.

5.3.2 Second Step: Identification of the Cost of the GDPR

In the second step, we use the EU post-GDPR data to estimate the wedges generated by
the GDPR and the EU post-GDPR elasticity of substitution between compute and data.
Incorporating this into the firm’s input demand function, we obtain the following equation:

log
(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝛾2 + 𝜎2 log

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ 𝜎2 log(1 + 𝜆𝑖) + 𝜎2 log(𝜔𝑐

𝑖 ) + 𝜎2 log(𝜙𝑐𝑡 ) + 𝜎2 log(𝜂𝑖𝑡), (9)

where 𝜎2 is the post-GDPR elasticity of substitution. Here, unlike in the pre-GDPR period,
GDPR wedge, 𝜆𝑖 affects the compute-to-data ratio: a higher 𝜆𝑖 leads firms to substitute
away from data toward compute. To use this equation for identifying 𝜆𝑖 , we make the
following assumptions:

Assumption 1. Firms’ compute-augmenting productivity (𝜔𝑐
𝑖
) remains the same after the GDPR.

35We provide more detail on our price index construction in Appendix F.2.
36One example of a potential threat to identification would be if 𝜂𝑖𝑡 are correlated over time after accounting

for aggregate industry time trends, and this caused firms to select data centers with specific trends in the
ratio of prices. However, given that our model is estimated with the ratio of prices rather than direct price
levels and considering that forecasting data center-specific trends in these price ratios is difficult, we view
our identification assumption as reasonable for the setting. We provide further details for the instrumental
variable construction in Appendix F.3.
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We note that this assumption still allows for industry-specific trends in compute due to
log(𝜙𝑐𝑡 ) in Equation (9). The assumption also does not restrict firms’ ability to respond to
the GDPR by changing their compute-to-data ratio. Rather, it implies that the firm-specific
component of the underlying information production technology remains the same.

At this point, it is worth comparing our approach to the approaches taken in the liter-
ature that estimate distortionary wedges. The large literature on misallocation identifies
distortions as the difference between the marginal product of an input and its price (Restuc-
cia and Rogerson, 2008; Hsieh and Klenow, 2009). This literature assumes that production
technology is the same across firms up to Hicks-neutral productivity because otherwise,
the firm-specific wedges cannot be distinguished from arbitrary firm-level heterogeneity
in production technology. We face the same identification problem but take a different
approach. Instead of assuming homogeneous production technology, we allow for het-
erogeneity through compute-augmenting productivity but assume that this heterogeneity
is time-invariant within a window of a few years. We note that both approaches have
strengths and weaknesses, but we believe that in our context, it is essential to allow for
heterogeneous production technology.

We also differ from the misallocation literature by analyzing input demand functions
for two variable inputs—one distorted and one undistorted—instead of estimating a full
production function. In our approach, we can net out the sources of distortions common
to both inputs, such as market power, and recover the distortion specific to the data input.
This identification strategy is similar to the approach used in the literature to identify input
market power from the two variable inputs (Morlacco, 2020; Kirov and Traina, 2023).

Assumption 2. EU and US industries follow the same time trends in aggregate compute-
augmenting productivity (𝜙𝑐𝑡 ) post-GDPR.

This is the second assumption necessary for identifying the GDPR wedges by control-
ling for industry-level changes in compute-augmenting productivity. Otherwise, any level
shift in the compute-to-data ratio of EU firms post-GDPR may be attributed to arbitrary
changes in aggregate compute-augmenting productivity in the EU. Therefore, we use the
estimated post-GDPR industry trend from the US firms to control for industry trends in
the EU. The parallel trends we find within industries before the GDPR in our reduced-form
results support this assumption (Figures OA-1, OA-2 and OA-3).

With these two assumptions, we can estimate the following equation:

log
(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝛾2 + 𝜎2

(
log

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ log(�̂�𝑐𝑡 )

)
+ 𝜎2

(
log(1 + 𝜆𝑖) + log(�̂�𝑐

𝑖 )
)
+ log(𝜂𝑖𝑡), (10)
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Table 6: Elasticity of Substitution Results by Industry

Industry Software Services Manufacturing
OLS IV OLS IV OLS IV

Elasticity of Substitution (𝜎1) 0.45 0.41 0.45 0.44 0.38 0.34
(0.02) (0.03) (0.02) (0.04) (0.04) (0.05)

First-Stage (Instrument) - 0.15 - 0.16 - 0.18
- (0.01) - (0.01) - (0.01)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Month FE ✓ ✓ ✓ ✓ ✓ ✓

F-Stat - 5,637 - 5,147 - 1,949
Observations 130,560 130,560 106,594 106,594 44,708 44,708

Notes: Table presents our estimation results of the elasticity of substitution between data and compute
across industries. Estimates are presented for pre-GDPR elasticities for EU firms (𝜎1). Standard errors are
calculated using 100 bootstrap repetitions at the firm level.

where �̂�𝑐
𝑖

denotes estimates of compute-augmenting productivity using pre-GDPR data
and �̂�𝑐𝑡 denotes the estimates of compute-augmenting productivity trend of the US firms.
By estimating this equation using EU firms’ post-GDPR data, we can identify our main
object of interest (𝜆𝑖) along with the post-GDPR elasticity of substitution.37 Our specifica-
tion, therefore, allows for changes in the elasticity of substitution post-GDPR. To account
for the uncertainty in the two-step estimation procedure, we calculate standard errors via
a bootstrap procedure that treats firms as independent observations and resamples firms
with replacement within industries over 100 repetitions. We provide the details of the
estimation procedure in Appendix F.

6 Production Function Estimation Results

This section provides results on the elasticity of substitution between data and compute,
the wedges introduced by the GDPR, and how these wedges affect firms’ production costs.

6.1 The Elasticity of Substitution Between Data and Computation

We begin by presenting estimates for the elasticity of substitution using pre-GDPR data.
Table 6 presents these elasticities for three industries separately—software, services, and
manufacturing—using both OLS and IV estimates.38 We also present the first-stage es-

37Appendix F.5 provides useful intuition behind the identification of 𝜆𝑖 . Roughly speaking, the estimated
wedges capture the variation in data intensity (the ratio between inputs) among comparable EU and US
firms that is not explained by changes in prices, changes (over time or across regions) in the elasticity of
substitution, or differences in compute-augmenting productivity.

38We exclude “other industries” analyzed in the event study from the production function analysis because
we do not want to impose a single production function for different industries.
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Figure 4: Elasticity of Substitution Between Data and Compute for EU Firms
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Notes: Figure presents our estimation results of the elasticity of substitution between data and compute (𝜎)
across industries, and we present separate estimates for the pre- and post-GDPR (𝜎1 and 𝜎2, respectively).
Solid lines denote the 95% confidence intervals, and standard errors are calculated using 100 bootstrap
repetitions at the firm level.

timates for each industry and their associated 𝐹-statistics. The first-stage coefficients are
positive, indicating a positive relationship between our shift-share instruments and the
contemporaneous prices faced by firms. Our results also indicate 𝐹-statistics in the thou-
sands, suggesting that our instruments strongly correlate with the endogenous variables.

Our estimates suggest that data and compute are strong complements in all industries,
with the estimated elasticities ranging from 0.34 to 0.44. The larger magnitudes in the
software industry suggest that software firms can more easily substitute between data
and compute. Furthermore, our IV estimates are smaller than the OLS ones. This bias
is consistent with our intuition that firms with higher compute-augmenting productivity
may be more likely to search for lower relative computation prices.

We also assess whether the GDPR led to any change in production technology in
Figure 4, which separately reports the elasticity of substitution estimates before and after
the GDPR for EU firms. We find a slight decline in the elasticity of substitution in all
industries, suggesting that even though the GDPR affected firms’ production technology,
its impact is limited.39

Finally, we compare our estimated elasticity of substitution between data and compute
to the existing elasticity of substitution estimates of other inputs to understand how the IT
inputs differ from traditional inputs. While the estimates vary, they range from 0.3 to 0.7
for capital and labor (Caballero et al., 1995; Chirinko, 2008; Raval, 2019) and from 1.5 to 3
for labor and intermediate inputs such as materials (Chan, 2023; Peter and Ruane, 2023).

39In Figure OA-4, we repeat this exercise for US firms for comparison. We find comparable elasticities of
substitution for firms in the US before and after the GDPR.
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Figure 5: Wedge Estimates
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Notes: This figure presents our estimation results for the wedge induced by the GDPR (𝜆𝑖). Panel (a) presents
the average estimated wedge for firms within each industry. Panel (b) presents the full distribution of
estimated wedges. Solid lines denote the 95% confidence intervals, and standard errors are calculated using
100 bootstrap repetitions at the firm level.

This indicates that data and compute are more complementary than traditional inputs.
We view these estimates as a contribution to the production function literature, as there is
limited empirical evidence on how firms use data despite its growing importance.

6.2 The Regulatory Wedge Induced by the GDPR

Next, we examine our estimates of the wedges introduced by the GDPR (𝜆𝑖). Panel (a)
of Figure 5 displays the average wedge for EU firms across industries together with the
95% confidence intervals. The estimates are statistically significant and range from 17%
to 24% across industries, implying that the GDPR raised the cost of data for firms. The
wedge is the highest for software firms, likely due to their higher exposure to GDPR
compliance requirements. These average estimates, however, hide substantial firm-level
heterogeneity. As shown in Panel (b) of Figure 5, there is considerable heterogeneity in
the wedge generated by the GDPR. For some firms, the wedge is close to zero, while for
others, it can be as large as one.40

To better understand this heterogeneity and to study the determinants of these regula-
tory wedges, we look at how they correlate with two firm-level characteristics: (i) firm size,
as measured by the number of employees, and (ii) compute-augmenting productivity, as

40Around 8% of our wedge estimates are negative, which we attribute to noise in the estimation.
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Figure 6: Wedge Heterogeneity by Firm Size and Compute-Augmenting Productivity
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Notes: Figure presents our estimation results for the wedge induced by the GDPR (𝜆𝑖), averaging across
firms within each of the given groups. Panel (a) shows these estimates across the five firm-size quintiles,
while Panel (b) shows these estimates across the five compute-augmenting productivity (𝜔𝑐

𝑖
) quintiles

computed using pre-GDPR estimates. Solid lines denote the 95% confidence intervals, and standard errors
are calculated using 100 bootstrap repetitions at the firm level.

measured by 𝜔𝑐
𝑖

estimates. The results are reported in Figure 6. Panel (a) shows the aver-
age wedge estimates across the five firm-size quintiles, where the quintiles are calculated
within each industry. The results suggest that the distortionary effects of the GDPR are
highest for the smallest firms (25%), with monotonically decreasing effects as the firm size
gets bigger. This finding is consistent with other evidence on the effects of the GPPR in
the literature (Campbell et al., 2015; Koski and Valmari, 2020; Goldberg et al., 2023) and
may reflect the fact that larger firms have better resources to comply with the GDPR. In
panel (b), we report the wedge distribution across quantiles of the compute-augmenting
productivity distribution. As firms become more compute-intensive, the magnitude of the
wedge decreases monotonically from 26% in the first quantile to 15% in the last quantile.

6.3 The Effect of the GDPR on the Cost of Information

How do the additional data costs resulting from the GDPR affect firms’ production costs?
To answer this question, we begin by deriving the effects of wedges on the “cost of in-
formation”, the cost of producing a given level of information. This cost function can be
derived from the CES production function as follows:

𝐶𝐼∗(𝐼𝑖𝑡 , 𝑝𝑖𝑡 ,𝜆𝑖) = 𝐼𝑖𝑡

(
(𝜔𝑐

𝑖𝑡)
𝜎 (
𝑝𝑐𝑖𝑡

)1−𝜎 + 𝛼𝜎
(
(1 + 𝜆𝑖)𝑝𝑑𝑖𝑡

)1−𝜎
)1/(1−𝜎)

, (11)

with the derivation provided in Appendix E.4. This equation shows that the impact of 𝜆𝑖
on the information cost increases with data intensity (𝛼), and decreases with the elasticity
of substitution (𝜎).
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Figure 7: Percent Increases in Information Costs
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Notes: Figure presents the estimates of the percentage change in the cost of information induced by the GDPR
calculated using Equation (11). Panel (a) presents the average estimated percentage increase in the cost of
information for firms within each industry. Solid lines denote the 95% confidence intervals, and standard
errors are calculated using 100 bootstrap repetitions at the firm level. Panel (b) presents the full distribution
of the estimated percentage increase in the cost of information.

We use Equation (11) to estimate the percentage increase in the cost of information
post-GDPR by considering two scenarios: (i) a case in which there was no wedge (𝜆𝑖 = 0),
so the cost of data is 𝑝𝑑

𝑖𝑡
, and (ii) the realized case in which the cost for firms included the

costs of regulations: (1 + 𝜆𝑖)𝑝𝑑𝑖𝑡 .41 Using our estimates of model parameters, we calculate
the ratio of (ii) to (i) for every firm-month at the estimated parameters (as prices and 𝜔𝑐

𝑖𝑡

change month to month). This calculates the percentage change in information cost, which
we further average to obtain firm-level measures.

The results for the percentage increases in information costs are reported in Figure 7.
Panel (a) shows the average change by industry, plotting the mean along with standard
errors. The average increase in the cost of information ranges from 2.5% for manufacturing
to 4.2% in software, with significant firm-level heterogeneity reported in Panel (b).

Why does an average of 20% increase in the cost of data reported in the previous section
lead to only a 2.5-4.2% increase in the information cost? To analyze this, we decompose

41Note that we can calculate the percentage increase in the cost for a given information level 𝐼, without taking
into account the effects of changing 𝐼 on information costs. The level of 𝐼 would affect the unit cost of
information when the information production function exhibits increasing or decreasing returns to scale.
See Equation (19) in Appendix E.4 for more information.
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the effects of 𝜆𝑖 on information cost as follows:

d𝐶𝐼∗
𝑖𝑡

d𝜆𝑖
𝜆𝑖
𝐶𝐼∗

𝑖𝑡

=

(����𝑠𝑑𝑖𝑡 𝜆𝑖 ����)
direct effect (+)

+
[
𝑠𝑑𝑖𝑡

(
𝜕𝐷∗

𝑖𝑡

𝜕𝜆𝑖

𝜆𝑖
𝐷∗
𝑖𝑡

)
+

(
1 − 𝑠𝑑𝑖𝑡

) (
𝜕𝐶∗

𝑖𝑡

𝜕𝜆𝑖

𝜆𝑖
𝐶∗
𝑖𝑡

)]
firm re-adjustment margin (-)

,

where 𝑠𝑑
𝑖𝑡

denotes the cost share of data in information production. In this decomposition,
the first term—the direct effect—represents the increase in costs if firms do not re-optimize
their data-compute input mix, while the second term—the firm re-adjustment margin—
is the extent to which firms can mitigate the increase in costs by substituting data for
compute while holding production fixed. Conceptually, if firms do not re-optimize their
inputs, the increase in the cost of information would be determined by the expenditure
share of data in information (𝑠𝑑

𝑖𝑡
) multiplied by the wedge (hence the positive direct effect).

However, firms’ input re-optimization would reduce this effect depending on the elasticity
of substitution (hence the negative re-adjustment margin).

Both channels explain why the cost of information increase is about a fifth of the av-
erage wedge. First, we find that the average direct effect is small at 3.9% because data
expenditures account for only 19% of information production costs. The small expendi-
ture share of data is an equilibrium outcome determined by both the data’s role in the
production function and its price relative to the compute. This observation—that firms
allocate substantially more resources to computation than to data—provides an important
insight into the role of data and computation in firm production.

Looking at the re-adjustment margin, we find that given the strong complementarity
of data and compute, firms are limited in their ability to mitigate the increase in the infor-
mation cost by substituting data for compute. Therefore, the average firm re-adjustment
margin is only −0.2% (see Figure OA-5(b) for the distribution), contributing minimally to
the overall effect of the GDPR on the cost of information.

To summarize, the small increase in the cost of information primarily comes from the
small expenditure share of data in information production, with the re-optimization mar-
gin having little impact. Overall, this section highlights the importance of understanding
the firm production with data to quantify the cost of privacy regulations.

6.4 The Effect of the GDPR on Firm Production Costs

Up until now, we have limited the scope of our analysis to the firm’s production of
information. In this subsection, we sacrifice some generality to analyze how changes
in information costs translate into changes in production costs using simple back-of-the-
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Table 7: Effects of the GDPR on Production Costs by Industry

Software Services Manufacturing
(1) (2) (3)

Panel A. Key Parameter Values
Increase in Information Costs (Δ𝐶𝐼𝑖)

Mean increase 0.04 0.03 0.02
5th - 95th percentile increase [0.03 - 0.05] [0.02 - 0.04] [0.01 - 0.03]

Elasticity of Substitution (�̄�)
Lashkari et al. (2023) 0.83 0.18 0.17

Information Expenditure Share (𝑠 𝐼
𝑖
)

Median share 11.8% 5.0% 3.1%
Range of estimates 8.7% - 16.7% 2.9% - 5.0% 2.3% - 3.3%

Panel B. Estimation Results
Increase in Production Costs (Δ𝐶𝑖)

Mean increase 0.47% 0.15% 0.06%
Range of estimates [0.26% - 0.82%] [0.06% - 0.20%] [0.02% - 0.10%]

Notes: Table presents estimates of Equation (13) calibrated with increases in the cost of information estimated
in Section 6.3 and information expenditure shares estimated from Aberdeen and other industry surveys for
each industry. The mean increase in production costs is calculated with the mean increase in information
costs and the median information expenditure share. The range of estimates is calculated by combining
the 5th - 95th percentile increases in information costs with the lower and upper range of information
expenditure share estimates, respectively. Columns (1), (2), and (3) show estimates for software firms (SIC
7370-7377), services firms, and manufacturing firms, respectively. Appendix G provides more detail about
the information expenditure share estimates, the point estimates of �̄� taken from Lashkari et al. (2024).

envelope calculations under additional assumptions.
We follow Lashkari et al. (2024) by using a nested CES production technology, where

information 𝐼 is combined with non-information inputs such as capital and labor, 𝑀(𝐿, 𝐾).
We denote the production function by:

𝑌𝑖 = 𝜔𝑖

(
𝛽𝐼

�̄�
𝑖
+ (1 − 𝛽)𝑀 �̄�

𝑖

)1/�̄�
, (12)

where 𝜔𝑖 denotes firm productivity, 𝛽 denotes information intensity in production, and �̄� =

1/(1− �̄�) represents the elasticity of substitution between information and non-information
inputs. We drop the time subscript since we conduct this analysis cross-sectionally.

We show in Appendix G.1 that under some simplifying assumptions—that all inputs
are flexible, firms are price takers in the input market, and that firms do not have market
power—we can derive how information cost changes translate into production costs by
using sufficient statistics. More explicitly, the expenditure share of information in total pro-
duction cost (𝑠 𝐼

𝑖
) and elasticity of substitution between information and non-information
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inputs (�̄�) are sufficient statistics for the effect of the GDPR on production costs:

Δ𝐶𝑖 =
(
(1 + Δ𝐶𝐼𝑖)1−�̄� · 𝑠 𝐼𝑖 + 1 − 𝑠 𝐼𝑖

)1/(1−�̄�) − 1, (13)

whereΔ𝐶𝑖 denotes the percentage increase in variable production costs due to the percent-
age increase in the cost of information (Δ𝐶𝐼𝑖). Equation (13) reveals intuitive comparative
statics: a given increase in (Δ𝐶𝐼𝑖) translates into larger increases in production costs for
larger information shares (𝑠 𝐼

𝑖
) and lower elasticities (�̄�).

Now, we turn towards estimating Δ𝐶𝑖 . We note that we previously calculated Δ𝐶𝐼𝑖

at the firm level in Section 6.3. We will use its mean value for our baseline estimates in
this section and its 5-95th percentile to establish bounds. The remaining parameters in
Equation (13) are the elasticity of substitution between information and non-information
inputs (�̄�) and the information expenditure shares 𝑠 𝐼

𝑖
. For the elasticity of substitution, we

rely on the estimates by Lashkari et al. (2024), who estimated the elasticity of substitution
between IT and non-IT input using firm-level data in different industries.42 We follow this
approach because the estimation of �̄� requires information on non-IT inputs, which we
do not observe fully. The Lashkari et al. (2024) estimates, reported in Table 7, suggest that
information and non-information inputs are complements in all industries.

For the information expenditure shares 𝑠 𝐼
𝑖
, the estimates are difficult to calculate directly

at the firm level, as most production datasets do not provide detailed information on IT-
related inputs. Instead, we calculate expenditure shares at the industry level by using
the Aberdeen dataset and various industry-level surveys, which we discuss in detail in
Appendix G.2.43 While we might expect each source to suffer from distinct drawbacks,
we find that the sources generate remarkably consistent estimates across industries. Table
7 reports the median and the interquartile range of these estimates, whereas Table OA-10
provides the estimates from each source separately.

We present the estimated ranges for Δ𝐶𝑖 from Equation (13) in Panel B of Table 7.
We estimate that production costs increase by 0.47% for software firms due to the GDPR.
These increases are significantly larger than corresponding increases in the services and
manufacturing industry, which we estimate as 0.15% and 0.06%, respectively. This differ-
ence is primarily driven by the larger information expenditure shares of software firms:
the median expenditure share estimate for software firms is 11.8% compared to 5.0% for
services and 3.1% for manufacturing firms. This difference is compounded by the fact that

42Lashkari et al. (2024) study France from 1995 - 2007. Although their setting predates ours, their comprehen-
sive data on firm-level information technology investment and industry-level parameter estimates provide
useful information on production functions with IT and non-IT inputs.

43While these sources only partially capture the information expenditure share and capture different samples
of firms, we aim to provide a range of plausible values by combining estimates across surveys and years.
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software firms also face the largest average wedges and resulting increases in the cost of
information.44

To provide a sense of the quantitative magnitudes associated with our estimated in-
creases in production costs, we multiply our estimates (Δ𝐶𝑖) by the amount of GDP
accounted for by each industry in the Euro Area in 2018.45 This exercise implies an an-
nual variable production cost increase for the software industry on the order of €3 billion.
Furthermore, although service and manufacturing industries experienced smaller relative
increases in production costs, the importance of these industries implies associated annual
GDPR costs on the order of €11.8 and €1.2 billion, respectively.46

Although these calculations rely on strong assumptions, we view these results as
informative in showing how the economic costs estimated from our production function
translate into aggregate costs across different industries.

7 Conclusions
In this paper, we examine the impact of the GDPR on firm data input choices and their
production costs. Comparing EU firms affected by the GDPR to similar firms in the US, we
document that firms stored 26% less data and did 15% less computation two years after the
GDPR, becoming less data-intensive. Our results contribute to the literature documenting
the potential costs of the GDPR, complementing the existing literature by focusing on data
inputs in firm production that have rarely been studied.

To map the observed shifts in input choices to changes in firms’ production costs,
we also propose a production function in which firms aggregate data and computation
through a CES functional form. Estimates of this production function suggest that data
and computation are strong complements in production. We then model the cost of the
GDPR as a wedge between the marginal product of data and its price and find that the
GDPR drove an average increase in the variable cost of data of 20%, with small firms
experiencing more significant cost increases.

Using our estimates of production model parameters, we find that these increases in
data costs translate into an average increase of only 3.7% in the variable costs of “infor-

44This exercise does not take into account the effects of economy-wide reallocation of production between
firms (Oberfield and Raval, 2021) and other general equilibrium responses (Lashkari et al., 2024) which can
be quantitatively important.

45Our estimates of the GDP accounted by each industry (and their share of the GDP) are €639 billion (5.53%),
€7.84 trillion (67.86%), and €1.95 trillion (16.88%) for software, services, and manufacturing, respectively.
We discuss how we attribute GDP to industries in greater detail in Appendix G.2.

46These numbers are in the same ballpark as some of the available estimates from surveys. For example, Ernst
& Young estimated that in 2018, the largest 500 corporations in the world were on track to spend a total of
$7.8 billion to comply with the GDPR (Bloomberg Businessweek, 2018).
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mation.” This relatively modest effect, despite an average 20% increase in data input
costs, stems primarily from data’s smaller expenditure share in firm production relative
to computation. Finally, by assuming that the firm production takes a nested-CES form
in information and other inputs, we estimate that these wedges imply a 0.06% increase in
production costs for manufacturing firms and substantially larger increases around 0.47%
for more data-intensive software firms.

Our results reinforce the importance of studying the impact of privacy regulation
on firm production, and they emphasize the importance of considering “data usage” as a
multi-dimensional object in a firm production with data and computation. We leave several
important margins for future research, including studying the fixed costs of compliance
and multi-national firms. We reiterate, however, that this paper is only a partial analysis
of the welfare effects of the GDPR, as we are completely agnostic to the benefits that
consumers derive from privacy protections. A full welfare analysis must incorporate these
benefits into a single estimation framework.
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A Additional Exhibits

Figure OA-1: Event Study Estimates of the Effect of the GDPR on Cloud Inputs
(Effects on Storage by Industry)
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Notes: Figure presents estimates of equation (1) of 𝛽𝑞 , the coefficient on the quarter of the move interacted
with our treatment indicator, when the outcome is log storage. The coefficient in the quarter before the
GDPR’s implementation is normalized to zero. Dashed bars represent the 95 percent confidence intervals,
and standard errors are clustered at the firm level. Results are broken down by industry, and red dots show
the main estimates from the paper. The full definition of industries and the corresponding observation
numbers are available in Table 4.
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Figure OA-2: Event Study Estimates of the Effect of the GDPR on Cloud Inputs
(Effects on Compute by Industry)
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Notes: Figure presents estimates of equation (1) of 𝛽𝑞 , the coefficient on the quarter of the move interacted
with our treatment indicator, when the outcome is log computation. The coefficient in the quarter before the
GDPR’s implementation is normalized to zero. Dashed bars represent the 95 percent confidence intervals,
and standard errors are clustered at the firm level. Results are broken down by industry, and red dots show
the main estimates from the paper. The full definition of industries and the corresponding observation
numbers are available in Table 4.
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Figure OA-3: Event Study Estimates of the Effect of the GDPR on Cloud Inputs
(Effects on Data Intensity by Industry)
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Notes: Figure presents estimates of equation (1) of 𝛽𝑞 , the coefficient on the quarter of the move interacted
with our treatment indicator, when the outcome is log data intensity. The coefficient in the quarter before the
GDPR’s implementation is normalized to zero. Dashed bars represent the 95 percent confidence intervals,
and standard errors are clustered at the firm level. Results are broken down by industry, and red dots show
the main estimates from the paper. The full definition of industries and the corresponding observation
numbers are available in Table 4.
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Figure OA-4: Elasticity of Substitution Between Data and Compute for US Firms
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Notes: This table presents our estimation results of the elasticity of substitution between data and compute
(𝜎) across industries. We present separate estimates for the pre- and post-GDPR (𝜎1 and 𝜎2, respectively).
Standard errors are calculated using 100 bootstrap repetitions.

Figure OA-5: Additional Results on Information Cost
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Notes: Figure presents our additional estimation results for the change in the cost of information induced
by the GDPR. Panel (a) presents the average estimated increase in the cost of information by the pre-GDPR
level of the total expenditures in data. Panel (b) shows our estimates of the "firm re-adjustment" contribution
to the total change in the cost of information, computed firm by firm as the difference between the increase
in the cost of information and the first-order approximation given by the data expenditure share times the
wedge.
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B The Impact of the GDPR on Firms

B.1 GDPR Summary

In this section, we present a more detailed description of the GDPR. In particular, we focus
on the main changes that firms must implement to comply with the GDPR. This section
is compiled from information presented in IT Governance Privacy Team (2017), Dibble
(2019), Voigt and Von dem Bussche (2017), O’Kane (2017) and original GDPR legal text.

Definition of Controller and Processor (Article 4). A controller is defined as an entity
that determines the purposes and means of processing personal data. A processor, on the
other hand, is defined as an entity that processes personal data on behalf of a controller.
Under the GDPR, a processor is not considered a third party, so the controller can involve
a processor at its discretion and does not need a legal basis to do so. If a processor is
chosen, it must be suitable and provide sufficient guarantees to implement appropriate
technical and organizational measures that meet GDPR requirements and protect data
subjects’ rights. Both parties must enter into a written contract or other legal agreement to
bind the processor to the necessary conditions.

Records of Processing Activities (Article 30). Controllers and processors must create
records of their processing activities that include details on the purposes of processing, the
categories of data being processed, and descriptions of the technical and organizational
security measures in place. There are exceptions to record-keeping requirements for
organizations with fewer than 250 employees unless the processing it carries out is likely to
result in a risk to the rights and freedoms of data subjects, the processing is not occasional,
or the processing includes special categories of data.

Designation of a Data Protection Officer (Article 37). The GDPR requires data con-
trollers and processors to designate a Data Protection Officer (DPO) in the following cases:
(i) the processing is carried out by a public authority or body, except for courts acting
in their judicial capacity; (ii) the core activities of the controller or the processor involve
regular and systematic monitoring of data subjects on a large scale; (iii) the core activities
of the controller or the processor consist of processing on a large scale of special categories
of data listed in Article 9 and Article 10.

Preparing a Data Protection Impact Assessment (Article 35). If an intended processing
activity, especially one involving new technologies, is likely to result in a high risk to the
rights and freedoms of data subjects, then firms must conduct a Data Protection Impact
Assessment (PIA) to identify and implement appropriate measures to mitigate privacy
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risks. The PIA should be conducted at the start of a project so that all stakeholders are
aware of any potential privacy risks. The PIA should include the following components:
(i) a systematic description of the purposes and planned processing operations, including
the controller’s legitimate interests (if applicable); (ii) an assessment of the necessity and
proportionality of the processing in relation to the purpose; (iii) an assessment of the risks
to the rights and freedoms of the data subjects; and (iv) the measures planned to address
these risks.

Technical and Organizational Measures for Data Security (Article 32). The controllers
must put technical and organizational measures in place to protect personal data. They
should implement appropriate data protection policies that are proportionate to their
processing activities with a risk-based approach. The GDPR does not specify a specific set
of security controls that firms must implement but rather encourages data controllers and
processors to implement "appropriate" controls based on risk.

Data Subject Rights (Article 14-21). Under the GDPR, individuals have extensive rights
when their personal data is collected by data controllers. These rights include requesting
data erasure, data transfer, and data access. If a request is made by a data subject, the
firm must respond to the request without undue delay and generally within one month
of receiving the request. As a result, firms may need to proactively fulfill a number of
obligations so that they can quickly provide information about their processing, erase
personal data, provide or transfer specific data, or correct incomplete personal data.

Data Breach Notification (Article 33). Under the GDPR, controllers have a general duty
to report personal data breaches to supervisory authorities within 72 hours of becoming
aware of them. When a personal data breach is likely to result in a high risk to the rights
and freedoms of natural persons, the controller must notify the affected data subjects
without undue delay.

Penalties and Increased Liability Risk (Article 83). The GDPR makes it easier for data
subjects to bring civil claims against data controllers and processors. The data subject
does not need to have suffered financial loss or material damage (e.g., loss or destruction
of goods or property) to bring a claim. They can also claim for non-material damage, such
as distress or hurt feelings. The GDPR sets out two levels of administrative fines. The
higher level of fines can be up to €20 million or 4% of the total global annual turnover of the
preceding financial year, whichever is higher. This level applies to infringements of certain
fundamental principles, such as individuals’ basic rights and freedoms. The lower level
of fines can be up to €10 million or 2% of the total global annual turnover of the preceding
financial year, whichever is higher. This level applies to other types of infringements.
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B.2 The Compliance Cost of the GDPR

Compliance with the GDPR is likely to create significant costs for firms. Some of these costs
are one-time fixed costs that are associated with actions required for initial compliance with
the GDPR, while others are ongoing variable costs required for continuous compliance.
In this section, we present evidence highlighting the impact of the GDPR on firm costs
collected from various firm surveys. See Chander et al. (2021) for an overview of the costs
of compliance associated with data privacy laws for businesses.

Although there are no official statistics available on the overall costs of the GDPR,
surveys provide information on the cost of compliance with GDPR regulations. The
estimates range from an average of $3 million (Hughes and Saverice-Rohan, 2018) and
$5.47 (Ponemon Institute, 2017) to $13.2 million (Ponemon Institute, 2019) depending on
the composition surveyed firms. Importantly, the responses to these surveys indicate that
these costs do not consist solely of one-time costs, and firms expect to incur these costs
repeatedly (Ponemon Institute, 2019). Studies that provide a breakdown of these costs
indicate that a high percentage of the costs (between one-fifth and one-half) are the labor
costs of privacy compliance personnel. Depending on the study, technology accounts for
12 to 17% of total GDPR cost, and outside consultants and lawyers account for another 19
to 24% (Ponemon Institute, 2019; Hughes and Saverice-Rohan, 2019).

B.2.1 Fixed and Sunk Costs

Operational Changes for Data Security and Processing The GDPR potentially requires
many operational changes from firms, such as implementing data protection management
systems. These changes involve sunk and fixed costs. The cost component associated with
operational changes can be quite large, independent of the quantity of data a firm has
or uses. This is because firms must develop and implement technical and organizational
measures to comply with potential consumer requests and other reporting requirements
for data breaches. Other components of fixed costs include data mapping, writing privacy
notices, and training employees on GDPR compliance.

Data Protection Officer The GDPR requires a data protection officer (DPO) for some
firms, depending on their data processing activity. Even though DPO is a primarily fixed
cost, it can also be seen as a variable cost since the number of employed DPOs can increase
with firm size and data. A survey by IAPP with 370 respondents suggests that 18% of
firms have appointed multiple DPO (Hughes and Saverice-Rohan, 2017), indicating that
DPO could be a variable cost for large firms.
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B.2.2 Variable Costs

Some of the costs associated with GDPR compliance are variable and scale with the
size of the organization and the amount of data it possesses. According to a survey
conducted by DataGrail, 88% of firms spend over $1 million, and 12% spend more than
$10 million annually to maintain GDPR compliance (DataGrail, 2020). The heterogeneity
in continuous compliance costs suggests that some costs are variable and change with
firm size and amount of stored data. Below, we provide some examples of variable GDPR
compliance costs.

Handling Customer Requests Under the GDPR, consumers have the right to have their
data erased, transferred, or even made available for their downloading. The costs of han-
dling these requests are likely to be variable, as companies with more data are more likely
to receive requests. Survey evidence supports this conclusion. According to (DataGrail,
2020), 58% of companies receive more than 11 customer requests per month, and 28%
receive more than 100 requests. More than half of companies have at least 26 employees
managing these requests. Moreover, only 1% of companies report fully automating these
requests, with 64% handling them entirely manually.

Recording Data Processing Activities An important aspect of the GDPR is creating a
plan for new projects that involve data collection and processing. For example, if a firm
needs to implement a new machine learning algorithm with new variables, it must do
a detailed analysis for risk assessment, cost-benefit analysis, and necessary safeguards to
prevent potential future issues. This constitutes a significant project-specific cost that might
affect the cost-benefit trade-off for implementing new data collection projects. Therefore,
some projects that involve data might not be implemented due to this additional cost.

Improved Data Security Keeping data in a more secure environment can also increase
the variable cost of data, especially for cloud computing users. Cloud providers offer
different tiers of security for their storage services, with higher levels of security typically
corresponding to higher costs. Purchasing these additional storage services due to the
GDPR would increase the marginal cost of storing data for firms.

Liabilities The maximum penalties under the GDPR include fines of up to €20 million
or 4% of the company’s global annual revenue, whichever is greater. However, the actual
penalty amount is determined by the nature and severity of the violation and is likely to
be increasing with the amount of data stored by the firm. Moreover, one can imagine that
the probability of a cyberattack could increase with the amount of data. Another related
variable cost is cybersecurity insurance. Of the 1,263 organizations surveyed in Ponemon
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Institute (2019), 31% of respondents purchased cyber-risks insurance. Of those insured,
43% had insurance coverage for GDPR fines and penalties.

B.3 Publicly Available GDPR Fine Data

Our primary source of publicly available fine data is a database maintained by CMS Legal
Services, a large international law firm that operates in over 40 countries. This data
provides an overview of the public fines and penalties that data protection authorities
have imposed under the GDPR. Although not all fines are made public, the data on public
fines is quite rich, containing the fine amount, the entity being fined, the country of the
fine, and the GDPR articles under which the fine was leveled.47 The database contains
more than €3 billion in fines levied in the five years after the implementation of the GDPR.
Furthermore, there are primary and secondary sources associated with each of the fines
in the database.

For each fine, we scrape the fine amount, the entity it was levied on, the date, and why
the fine was levied. In Figure 1 in the paper, we show the distribution of fine sizes, high-
lighting that there is considerable variation in the size of the fines. There is also substantial
variation in the specific reasons that fines were levied, and these reasons fall into eight cat-
egories: (a) insufficient legal basis for data processing, (b)insufficient involvement of data
protection officer, (c) insufficient technical and organizational measures to ensure infor-
mation security, (d) insufficient fulfillment of information obligations, (e) non-compliance
with general data processing principles, (f) insufficient fulfillment of data subjects rights,
(g) insufficient cooperation with the supervisory authority, and (h)insufficient fulfillment
of data breach notification obligations. For brevity, we label these as “legal basis", “data
protection officer", “data security", “information obligations", “data principles", “data
subject rights", “non-cooperation", and “data breach notifications" respectively.

In Figure OA-6, we show the share of fines that were levied under each reason and the
median fine size conditional on the reason. Perhaps unsurprisingly, data security concerns
result in the largest types of fines. The median fines for insufficient information security
and insufficient notification of data breaches are €15,000 and €18,850, respectively, while
the median fines for non-cooperation and insufficient fulfillment of information obligations
are €3,000 and €2,000 respectively. Overall, the distribution of the reasons given for the
publicly available GDPR fines suggests that fines may be levied against firms for various
reasons.

47We scraped this data in May 2023 through https://www.enforcementtracker.com/.
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Figure OA-6: Publicly Reported GDPR Fines
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Notes: Figure presents the distribution of reasons given for GDPR fines, using the publicly reported fine
data described in Appendix Section B.3. Fine reasons are derived from the GDPR Article quoted in the fine,
and these reasons are broken out into eight categories by CMS Law. We drop the 1.5% of fines that have
no quoted GDPR article. Appendix Section B.3 describes these categories in further detail. The median fine
size by reason is provided in blue text on the right side of the figure.
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C Data Appendix

C.1 Cloud Computing Details

This section details how firms perform computation and storage in cloud computing,
which is the main focus of our paper.

C.1.1 Computation

Firms requiring cloud computation typically opt for virtual machines (VMs). VMs are
a type of cloud computing “compute" product that allows users to create and manage
servers virtually instead of maintaining their own physical hardware.48 These VMs run
on virtualized infrastructure provided by a cloud computing provider and can access
software and computing resources. These machines are typically fully customizable and
controlled by the user. Cloud computing VMs can be configured in various ways. Some of
the features of VMs that can be customized include memory, storage, networking options,
CPU, operating system, and the data center’s location. Cloud computing providers offer
hundreds of different configurations, and the user chooses the exact configuration when
requesting a VM.

In our paper, we use the number of CPU cores in a virtual machine as the key measure
of computation outcome because this is the key vertical VM characteristic that determines
compute capacity. However, we note that this approach does not consider heterogeneity in
other characteristics, such as memory, networking capacity, and VM manufacturer/series.

The unit of observation is “core-hours”, which refers to the amount of computing time
a VM uses over a given period. The number of core-hours is calculated by multiplying the
number of CPU cores by the number of hours the VM runs. For example, if a user runs a
VM with 4 CPU cores for 10 hours, the total compute use would be 4 x 10 = 40 core hours.
Cloud providers typically use core-hours as the primary measure of VM usage for billing
purposes.

C.1.2 Storage

Cloud providers offer a wide range of storage products that can be used for various
purposes, including storing and managing data, backing up and recovering data, and
archiving data for long-term retention. These products can be categorized into two types:
disk storage and database storage. Disk storage provides physical hardware where firms

48There are other “compute" products—such as containers and serverless computing—that were also available
during our sample period, but they were not extensively used.
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can store a wide variety of data, including operating system files, applications, documents,
and multimedia files. Disk storage can include different physical configurations, such as
Hard Disk Drives (HDDs) and Solid-State Drives (SSDs), as well as Storage Area Networks.
Disk storage can also differ based on other characteristics, such as upload and download
speed. Databases, on the other hand, are collections of structured data that are hosted and
managed in a cloud computing environment by a cloud provider. The differentiation of
databases refers to the various types of databases available and their specific features and
characteristics, such as MySQL, NoSQL, Oracle, and PostgreSQL.

Firms typically use storage in one of two ways. First, when a firm creates a VM
on a cloud provider’s infrastructure, it can choose the amount of disk storage it needs
and specify the required performance characteristics. They would use this disk storage
when computing on that virtual machine. Second, firms might request either disk storage
or databases to store and manage application data, and this storage might be used for
supporting real-time applications and services or as archiving storage.

Our unit of observation for storage is storage capacity measured in gigabytes (GB). It
represents a direct measure of how much data firms store, although it does not measure
how storage products may be vertically or horizontally differentiated. An important
example of storage differentiation is upload and download speed.

C.2 Sample Selection and Cleaning

In this section, we discuss our sample construction in greater detail. We define a firm as
a unique internal identifier for whom we are able to observe industry classification and
location information. Using this definition, we are able to capture approximately 90% of
storage and 95% of computation in our entire sample.

Next, we clean the data by removing outlying observations. To tag a firm as an outlier,
we require that we observe the firm’s usage in the months immediately preceding and
following a given month. We define outliers as large and sudden temporary spikes or
temporary dips. These are months where a firm’s usage is either twenty times more or less
usage than the same firm’s usage in the months immediately preceding and following the
month. We also filter these by minimum size change to ensure that we are not spuriously
removing small firms with more volatile usage. This cleaning removes less than 0.1 percent
of observations. We also worked with internal employees to conduct some minor cleaning
to remove a small fraction of firms whose observations are affected by the introduction
and phaseout of older service models for our provider.

We then construct our sample by conditioning it on continuous firm observation for
one full year, exactly two years before the GDPR. Although the resulting sample of firms is
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smaller, conditioning on the continuously observed firms does not significantly change the
share of data that we observe. In fact, these continuously observed firms are responsible
for about 90 percent of storage and computation before the GDPR. We present summary
statistics on these sets of firms below in Table OA-1. While for confidentiality, we cannot
provide direct comparisons between the number of firms before and after this conditioning,
the mean storage and compute are given relative to a baseline normalization of 1,000 mean
units of storage for our baseline sample in Table 2.

Table OA-1: Summary Statistics: Before Conditioning on Observation Period

Industry Share Share Share Mean Mean Share
of Firms Compute Storage Storage Compute EU

Software 18.0 20.6 16.6 341 331 58.6
Services 47.1 34.5 38.6 408 296 38.2
Manufacturing 7.7 11.4 10.2 593 518 55.5
Other 27.2 33.6 34.6 651 479 49.7

All 100 100 100 468 345 46.3

Notes: Table presents summary statistics from our matched sample of firms. A description of the sample’s
construction can be found in Section 3.1, and a more detailed description of the sample construction can be
found in Appendix C. This sample presents firms in Cases 1 and 4, as described in Table 1. For confidentiality
purposes, we do not report the total number of firms. We also normalize the units of mean storage and mean
computation such that everything is presented relative to a mean of 1,000 mean storage units in our baseline
sample (Table 2).

C.3 Aberdeen Sample

Aberdeen is a market research firm that gathers data from various sources on firms’ hard-
ware and software investments. Every year, they survey a sample of senior IT executives
about their software and hardware usage and extrapolate this information to non-surveyed
firms. Additionally, they conduct large-scale data collection efforts, such as web scrap-
ing job postings and purchasing customer lists from vendors to identify software choices.
Our understanding is that information on technology adoption comes only from the latter
source. This data also includes sales, the number of employees, industry, and a DUNS
number, which are sourced from Duns & Bradstreet. Our sample of Aberdeen data covers
the period from 2015 to 2021 at the annual level. The data from Aberdeen has been pre-
viously used to study digitization and technology adoption (Graetz and Michaels, 2018;
Tuzel and Zhang, 2021).

We use Aberdeen to measure the market shares of cloud providers in the EU and the
US. Aberdeen provides information at two levels: the site level and the enterprise level.
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A site refers to a physical location, while an enterprise corresponds to a firm (which may
have multiple sites). The data includes unique site and enterprise IDs and a crosswalk that
links the two. On average, the dataset covers more than 2 million sites, and the technology
adoption information is reported at the site level. We aggregate this site-level information
to the enterprise level by assuming that if at least one site of an enterprise uses a technology
from a given provider, the enterprise uses the technology from that provider.

C.3.1 Match Procedure Between Aberdeen and Cloud Data

Aberdeen’s data contains valuable information, such as revenue and employment, that we
use to study the heterogeneity of our results and to illustrate how firms use the cloud.
However, there is no single identifier we can use to match the anonymous cloud provider’s
data to Aberdeen, so we must resort to ‘non-exact’ procedures (also known as fuzzy
matching) to link these two datasets. In both the cloud provider’s and Aberdeen’s data, we
observe names, DUNS numbers (partial coverage in the cloud data), websites (URL), and
partial address information, including postal codes, city, state, and country of the given
firms. Additionally, we observe both the subsidiary name and the parent company’s name
in the Aberdeen data, which provides us with two potential strings to match each of our
observations in our cloud data. Below, we provide details on the matching algorithm.

We use the Jaro-Winkler (JW) distance to match names, which considers the number
of transpositions and the number of matching characters between two strings. Intuitively,
strings with more characters in common and requiring fewer transpositions for one string
to be contained within the other have lower distances. For the same number of character
matches and transpositions, the JW distance is smaller for strings that match the first
characters of the strings.49

For each firm in the cloud computing dataset, we find the “closest” match in the
Aberdeen dataset (either by using the parents or the subsidiaries’ names). We sequentially
match using the following criteria and say that two firms are a match if both:

1. Share the same DUNS number, or

2. Share the same website, or

3. Are in the same postal code, and the name distance is less than 0.1, or

4. Are in the same city, and the name distance is less than 0.08, or

5. Are in the same stat,e and the name distance is less than 0.07, or
49In terms of the implementation, we use the Firm Merge Project (available at https://github.com/
microsoft/firm-merge-project) to implement the JW distance in finite time.
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6. Are in the same count,ry and the name distance is less than 0.065, or

7. Are in the same region (e.g., EU), and the name distance is less than 0.045.

Suppose a firm in the cloud computing data has multiple matches in the Aberdeen data.
In that case, we hierarchize based on the same order as we list our criteria above.50 Note
that we also allow for “looser” string matching when the geographic region in which we
search for a given firm is smaller. These cutoffs were chosen by visually inspecting the
data and balancing the false-positive and false-negative matches.

With this procedure, we are able to match close to 60% of firms in our baseline sample
to Aberdeen firms. We use this matched sample to study the heterogeneity of our result
based on the firm’s employment size. The change of firm employment over time is not
as reliable at Aberdeen as the employment information does not change for a significant
number of firms over time. For this reason, we use the employment information in 2018
to define firm size.

C.3.2 Aberdeen Cross-check with Internal Data

Even though Aberdeen was widely used to measure IT spending in the 2000s, the data
has undergone changes in recent years, broadening its focus from hardware spending
to software adoption. While hardware expenditure predominantly relied on surveys,
the information on technology adoption at a larger scale mainly relies on web scraping,
publicly available information, and extrapolation. This raises the question of how reliable
the Aberdeen data is for technology adoption information. We find ourselves in a unique
position to offer a partial answer to this question because we possess internal data from
one of the largest cloud providers and can cross-check Aberdeen data for this provider.

To implement this, we utilize the matched Aberdeen-internal data sample to investigate
whether Aberdeen accurately reports the adoption of our cloud computing provider. In
particular, we examine the true positive and false negative rates: (i) the proportion of actual
users of our cloud product that are correctly labeled and (ii) the proportion of users who
do not use our cloud product that is correctly labeled. We find that the true positive rate is
64 percent, increasing with firm size, and the true negative rate is 66 percent, decreasing
with firm size. This result suggests that while the Aberdeen data is not 100% accurate, it
still provides a valuable signal about cloud adoption.

50For example, for a firm in the cloud computing data that we match by criteria (1) and (3) to different firms in
the Aberdeen data, we only keep the match in criteria (1), given that DUNS numbers are designed as unique
firm identifiers.
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D Robustness Checks
This Appendix goes through the most critical threats to identification. We study sub-
stitution to other providers in Appendix D.1. We then investigate whether differential
price changes (between the EU and the US) may be driving our results in Appendix D.2.
We study firms with and without website usage (to measure the extent to which cookie
collection drives our results) in Appendix D.3. Finally, we show that our results are robust
to alternative choices of empirical strategies, sample selection procedures, and extensive
margin/attrition in Appendix D.4.

D.1 Substitution to Other Providers

This section documents that substitution (to other cloud providers or to in-house IT ser-
vices) is unlikely to drive our results. We provide a battery of exercises, each of which
shows that substitution is unlikely to generate the patterns we observe in the data.

Substitution to Other Cloud Providers “Multi-cloud” usage—where firms get cloud
services from multiple cloud computing providers—-is common among firms. Industry
surveys suggest that 70 percent of cloud users are multi-cloud. Multi-cloud usage could
be a potential issue because we observe usage from only one cloud computing provider,
leading to incomplete data on cloud usage. If the GDPR changed the relative attractiveness
between our cloud computing provider and other providers, perhaps in terms of how easily
they accommodated GDPR regulations, then there could have been a differential change
in our provider’s market share in Europe and the US around the GDPR. This would pose
an identification challenge for us.

In particular, we might attribute a decline in cloud storage and computing to firms
simply switching their cloud usage to other providers. We note, however, that firms that
conduct both storage and computing are likely to do both with the same provider because
data cannot be stored with one provider but processed with another. For example, there
are essentially no observations where a firm uses cloud computing with our provider
without using cloud storage. Thus, our data intensity results should be less affected by
any changes in the relative attractiveness of cloud providers.

We attempt to address the identification challenge to our storage and computing results
with three additional exercises. First, we bring an external dataset, Aberdeen, that provides
information on firms’ technology adoption and which vendors they get cloud services
from. Using this dataset, we look at our provider’s share of firms that receive services
from each of the top cloud providers in Europe and US before and after GDPR and plot
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them in Figure OA-7. We find that the share of firms that are using our cloud provider has
moderately increased over time, while the share of firms using the other cloud providers
has decreased. Thus, we do not expect the relative attractiveness of the cloud provider
that we observe to have decreased after GDPR.

Figure OA-7: Change in Share of Firms Using Cloud Providers in the EU vs the US
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Notes: Figure presents estimates of the difference in the share of firms who use different cloud providers in
the EU vs the US. The data source is Aberdeen (formerly known as Harte Hanks). The dependent variable
on the left panel is equal to one if a firm uses the cloud provider that we study in this paper. The dependent
variable in the right panel is equal to one if a firm uses any of the other cloud providers. The coefficients
plot the difference in the share of firms who use the given cloud provider in the EU minus the share of firms
using the same provider in the US, normalizing to the differences in 2018.

Second, we identify single cloud firms using Aberdeen again and estimate our empir-
ical specification using only these firms. In Appendix C.3.2, we assess the reliability of
Aberdeen data to identify these single-cloud firms and show that Aberdeen data provides
useful information to detect single-cloud firms. Table OA-2 and Figure OA-8 present our
estimates using this sample, which is quite similar to our baseline estimates across all out-
comes. As discussed in the paper’s main body, it is unlikely that the declines we observe
are simply driven by substitution in usage to other providers.

Finally, as discussed in Appendix B.1, the GDPR is likely to make multi-cloud usage
more difficult. Thus, switching between cloud providers is more likely to occur on the
extensive margin rather than the intensive margin. Thus, any cloud usage declines in a
sample of firms that continuously use our provider are unlikely to be driven by switching
between cloud providers. Table OA-3 presents estimates from a balanced panel of firms,
where positive cloud computing usage is observed two years before and after the GDPR.
These estimated coefficients for the short-run and long-run effects of the GDPR are quite
similar to our baseline estimates. In particular, they are consistent with our findings
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Figure OA-8: Event Study Estimates of the Effect of the GDPR on Cloud Inputs
(Excluding Multi-Cloud Firms)
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Notes: Figure presents estimates of equation (1) of 𝛽𝑞 , the coefficient on the quarter of the move interacted
with our treatment indicator. The coefficient in the quarter before the GDPR’s implementation is normalized
to zero. The outcome in each subpanel is denoted by the subpanel title. Dashed bars represent the 95 percent
confidence intervals, and standard errors are clustered at the firm level. Sample sizes are presented in Table
OA-2. The sample is composed of firms that do not use multiple cloud computing providers.
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Table OA-2: Short- and Long-Run Effects of the GDPR
(Excluding Multi-Cloud Firms)

Data Compute Data Intensity
(1) (2) (3)

Short-Run Effect -0.128 -0.085 -0.061
(0.020) (0.019) (0.023)

Long-Run Effect -0.258 -0.170 -0.121
(0.027) (0.028) (0.034)

Observations 944,982 530,123 328,973
US Firms 13,166 7,891 4,152
EU Firms 14,112 7,415 4,832

Notes: Table presents estimates of equation (2) of the short-run (𝛿1) and long-run (𝛿2) coefficients, which
estimate the impact of the GDPR in the first and second year after the GDPR came into force. Column
(1) estimates the effect on storage. Column (2) estimates the effect on computation. Column (3) presents
estimates of the data intensity. The sample excludes multi-cloud firms as described in Appendix D. Industries
are defined as the ten divisions classified by SIC codes, with the addition of a "software" division, which
we carve out of the services division and define through SIC codes 7370 - 7377. Pre-GDPR size deciles are
measured thirteen months before the GDPR. For data intensity, we define “size decile” as the interaction
between storage and compute terciles when measured in the period. Standard errors are clustered at the
firm level.

of a large decrease in both compute and storage alongside a decrease in data intensity.
Thus, the results from our balanced panel in Table OA-3 and Figure OA-9 suggest that
the declines in computation and storage we observe are not driven by switching between
providers.

Substitution to On-Premises IT Next, we consider that firms might use both on-premises
IT and cloud computing. To the extent that we cannot observe on-premises IT usage,
declines in cloud computing may reflect re-allocations towards on-premises IT rather than
true declines in computing. While increasing cloud computing adoption rates suggest
that this margin may not play an important role, we consider the possibility that after the
GDPR was enacted, European firms might have changed allocation between cloud and
on-premises IT differently from US firms.

This would invalidate our identification arguments for the effects of compute and
storage, although it would not necessarily affect the results on data intensity. To provide a
robustness check for this, we focus on start-ups, which are unlikely to be using on-premises
IT. These are young software firms that are less likely to switch toward on-premise IT than
more established firms due to the sizable upfront costs. In Table OA-4 and Figure OA-10,
we actually find larger effects for these firms rather than smaller effects. This suggests that
the observed declines in computing and storage are unlikely to be driven by substitution
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Figure OA-9: Event Study Estimates of the Effects of the GDPR on Cloud Inputs
(Balanced Panel Estimates)
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Notes: Figure presents estimates of equation (1) of 𝛽𝑞 , the coefficient on the quarter of the move interacted
with our treatment indicator. The coefficient in the quarter before the GDPR’s implementation is normalized
to zero. The outcome in each subpanel is denoted by the subpanel title. Dashed bars represent the 95 percent
confidence intervals, and standard errors are clustered at the firm level. Sample sizes are presented in Table
OA-2. The sample is a balanced panel, and details can be found in Appendix Section D.
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Table OA-3: Short- and Long-Run Effects of the GDPR
(Balanced Panel Estimates)

Data Compute Data Intensity
(1) (2) (3)

Short-Run Effect -0.221 -0.115 -0.046
(0.024) (0.020) (0.027)

Long-Run Effect -0.373 -0.205 -0.104
(0.030) (0.029) (0.037)

Observations 608,562 363,793 227,022
US Firms 7,588 5,126 2,872
EU Firms 7,953 4,112 2,849

Notes: Table presents estimates of equation (2) of the short-run (𝛿1) and long-run (𝛿2) coefficients, which
estimate the impact of the GDPR in the first and second year after the GDPR came into force. Column
(1) estimates the effect on storage. Column (2) estimates the effect on computation. Column (3) presents
estimates of the data intensity. The sample is a balanced panel, which is constructed as described in
Appendix D. Industries are defined as the ten divisions classified by SIC codes, with the addition of a
"software" division, which we carve out of the services division and define through SIC codes 7370 - 7377.
Pre-GDPR size deciles are measured thirteen months before the GDPR. For data intensity, we define “size
decile” as the interaction between storage and compute terciles when measured in the period. Standard
errors are clustered at the firm level.

to on-premises IT.

Table OA-4: Short- and Long-Run Effects of the GDPR
(Start-Up Firms)

Data Compute Data Intensity
(1) (2) (3)

Short-Run Effect -0.241 -0.100 -0.069
(0.036) (0.027) (0.034)

Long-Run Effect -0.424 -0.202 -0.165
(0.047) (0.040) (0.049)

Observations 311,128 267,066 157,616
US Firms 4,550 4,101 2,190
EU Firms 3,819 3,179 1,974

Notes: Table presents estimates of equation (2) of the short-run (𝛿1) and long-run (𝛿2) coefficients, which
estimate the impact of the GDPR in the first and second year after the GDPR came into force. Column
(1) estimates the effect on storage. Column (2) estimates the effect on computation. Column (3) presents
estimates of the data intensity. The sample is composed of start-up firms, classified according to a definition
internal to the cloud provider. Industries are defined as the ten divisions classified by SIC codes, with the
addition of a "software" division, which we carve out of the services division and define through SIC codes
7370 - 7377. Pre-GDPR size deciles are measured thirteen months before the GDPR. For data intensity, we
define “size decile” as the interaction between storage and compute terciles when measured in the period.
Standard errors are clustered at the firm level.
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Figure OA-10: Event Study Estimates of the Effects of the GDPR on Cloud Inputs
(Start-Up Firms)
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Notes: Figure presents estimates of equation (1) of 𝛽𝑞 , the coefficient on the quarter of the move interacted
with our treatment indicator. The coefficient in the quarter before the GDPR’s implementation is normalized
to zero. The outcome in each subpanel is denoted by the subpanel title. Dashed bars represent the 95 percent
confidence intervals, and standard errors are clustered at the firm level. Sample sizes are presented in Table
OA-4. The sample is composed of start-up firms, where start-ups are labeled according to a definition
internal to the cloud provider.
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Hybrid Cloud To further consider whether differential hybrid cloud usage after GDPR
could explain our results, we explore its importance across regions and compare it with
the importance of cloud computing using Google Trends data. Google Trends compares
the volume of search topics for a given term (e.g., “hybrid cloud”) after anonymizing and
standardizing data. We downloaded data for “hybrid cloud” and “cloud computing” in
the United States, the United Kingdom, and Germany. Results are in Figure OA-11.

First, we compare the relative importance of hybrid cloud in Europe and in the US
in Figure OA-11(a). If differential take-up of hybrid cloud in the EU were to explain our
results, then one would expect hybrid cloud searches to increase post-GDPR. We do not find
evidence of this. Rather, relative interest in hybrid cloud computing in the EU, if anything,
declines after the GDPR. Furthermore, although we focus on the United Kingdom and
Germany in the EU due to language differences, results are similar if we include searches
from Italy, Spain, or France (both in English and in their own language). Second, Figure
OA-11(b) compares interest in hybrid cloud and cloud computing worldwide from 2013
to 2021. Note that cloud computing is about 8 - 12 times more important as a term than
hybrid cloud both before (March 2018) and after (December 2020) the GDPR. Second,

Figure OA-11: Google Trends Data on Cloud Computing and Hybrid Cloud

(a) Hybrid Cloud in US vs. in Europe
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(b) Cloud Computing vs. Hybrid Cloud
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Notes: This figure compares Google Trends data for cloud computing and the hybrid cloud. Google Trends
normalizes to 100 the topic-month with the most amount of searches. For example, a value of 50 on a given
topic means that the topic is half as popular. Panel (a) plots the relative importance of the term "hybrid
cloud" across the United States, the United Kingdom, and Germany. Panel (b) plots the relative importance
of the terms “cloud computing” and “hybrid cloud” worldwide.
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D.2 Price Changes

One natural channel through which the GDPR may have affected firms is through price
changes in cloud computing. This would suggest our results might capture pricing re-
sponses by cloud providers rather than the GDPR’s direct impact on firms. For example,
if cloud computing providers increase their prices in the European Union relative to the
United States, this could confound our estimates. While conversations with internal em-
ployees suggest that there were no explicit pricing responses to the passage of the GDPR,
we also examine the data for evidence of any differential pricing trends between the EU
and the US, either in listed or paid prices. Figure OA-12 presents our results when we esti-
mate our event study specification using paid prices as the outcome. We find no evidence
of significant differential price changes.

Figure OA-12: Event Study Estimates of the Effect of the GDPR on Cloud Inputs
(Effects on Paid Prices)

(a) Storage Prices
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(b) Compute Prices
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Notes: Figure presents estimates of equation (1) of 𝛽𝑞 , the coefficient on the quarter of the move interacted
with our treatment indicator. The coefficient in the quarter before the GDPR’s implementation is normalized
to zero. The outcome in each subpanel is denoted by the subpanel title. Dashed bars represent the 95 percent
confidence intervals, and standard errors are clustered at the firm level. The dependent variables shown in
blue are our baseline estimates. The dependent variable shown in red is the paid price for each product.

D.3 Websites and Cookie Collection

One of the most salient aspects of the GDPR is the requirement that firms receive consent
for the collection of data. This is particularly important in the case of websites and cookies:
post-GDPR, websites that need to collect personal information must get explicit consent.
As studied by Aridor et al. (2023), there may also be selection in terms of which consumers
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choose to opt out of data collection and how valuable the remaining data is.
We aim to study whether our main effects are driven by the GDPR’s effect on websites

and how important the selection channel might be for our sample. To examine whether
or not web usage is driving our effects, we turn towards Table OA-5, where we proxy
for active website use through the usage of cloud-based web services. These are services
provided by our cloud provider that firms use to host their websites.

Re-estimating our empirical specification using firms with and without websites, we
indeed find that firms using web services seem to have been more affected by the GDPR
regulations: the effects on storage and computing are twice as large as those for non-
active website users. However, the results remain statistically significant for non-active
website users, and we additionally find that the adjustments in data intensity are similar.
These results suggest that our effects are not solely driven by exposure to the GDPR’s
web-based cookie consent requirements. Similarly, restricting our sample to firms with no
listed websites (regardless of whether that website is hosted within our cloud provider)
provides qualitatively similar results. Results for the latter are available upon request.

D.4 Additional Robustness Exercises

Alternative Empirical Specifications The analyses in Section 4 are robust to several
alternative specifications, including running our specification at the monthly level, the
exclusion of various fixed effects, and alternative log-like transformation specification
choices. Table OA-6 presents our event study results when the time periods are defined at
the monthly level rather than at the quarterly level. In our main specification, we estimate
coefficients and fixed effects at the quarterly level to preserve data confidentiality and
increase the precision of our estimates. We find that our estimated coefficients are stable
when we allow time trends to vary flexibly at the monthly level. The magnitudes of the
estimated declines in storage, declines in computation, and decreases in data intensity are
all quite similar to our baseline results.

We also consider the robustness of our analysis to the exclusion of our fixed effects. Our
baseline specification allows for time trends to vary flexibly by industry and pre-GDPR
size deciles. In the paper’s Table 3, we consider alternative fixed effect specifications,
including allowing time trends to vary only by industry and pre-GDPR size deciles and
not allowing them to vary at all. We continue to observe the same features of our baseline
results, including large long-run declines in storage and compute and moderate decreases
in data intensity.

Finally, we consider alternative log-like transformations. Our baseline specification
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Table OA-5: Short- and Long-Run Effects of the GDPR
(Heterogeneous Effects by Usage of Cloud-Based Web Services)

Baseline Web Users Non-Web Users
(1) (2) (3)

Panel A. Dependent variable: Log of Data

Short-Run Effect -0.129 -0.242 -0.080
(0.018) (0.020) (0.010)

Long-Run Effect -0.257 -0.421 -0.174
(0.024) (0.024) (0.015)

Observations 1,143,149 255,057 888,092
US Firms 16,409 3,632 12,777
EU Firms 16,281 3,166 13,115

Panel B. Dependent variable: Log of Compute

Short-Run Effect -0.078 -0.124 -0.026
(0.016) (0.011) (0.010)

Long-Run Effect -0.154 -0.241 -0.060
(0.024) (0.018) (0.019)

Observations 672,942 343,286 329,656
US Firms 10,294 5,243 5,051
EU Firms 8,927 4,297 4,630

Panel C. Dependent variable: Log of Data Intensity

Short-Run Effect -0.072 -0.066 -0.084
(0.020) (0.013) (0.013)

Long-Run Effect -0.131 -0.118 -0.112
(0.029) (0.023) (0.024)

Observations 418,804 198,352 220,452
US Firms 5,487 2,714 2,773
EU Firms 5,872 2,608 3,264

Notes: Table presents estimates of equation (2) of 𝛿1 and 𝛿2, splitting our sample separately into firms that
were observed using cloud-based web services with our provider between 24 and 13 months before the
GDPR and those which were not. For comparison, Column (1) presents our baseline estimates across the
full sample. Standard errors are clustered at the firm level.
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Table OA-6: Short- and Long-Run Effects of the GDPR
(Monthly Specification)

Data Compute Data Intensity
(1) (2) (3)

Short-Run Effect -0.141 -0.085 -0.079
(0.018) (0.017) (0.021)

Long-Run Effect -0.291 -0.174 -0.136
(0.026) (0.027) (0.033)

Observations 1,143,149 672942 418,803
US Firms 16,409 10,294 5,487
EU Firms 16,281 8,927 5,872

Notes: Table presents estimates of equation (2) of 𝛿1 and 𝛿2, but where we allow our time trends to vary at
the monthly level rather than the quarterly-level. Industries are defined as the ten divisions classified by
SIC codes, with the addition of a "software" division, which we carve out of the services division and define
through SIC codes 7370 - 7377. Pre-GDPR size deciles are measured thirteen months before the GDPR.
For data intensity, we define “size decile” as the interaction between storage and compute terciles when
measured in the period. Standard errors are clustered at the firm level.

uses log(𝑥). In Table OA-7 below, we consider using asinh and log(𝑥 + 1). We find
essentially no difference between these transformations, suggesting that our results are
not sensitive to the behavior of our outcome transformations around zero.

Table OA-7: Short- and Long-Run Effects of the GDPR
(Alternative Transformations)

Baseline Asinh Log(x + 1)
(1) (2) (3)

Storage:

Short-Run Effect -0.129 -0.129 -0.126
(0.018) (0.018) (0.019)

Long-Run Effect -0.257 -0.257 -0.253
(0.024) (0.025) (0.026)

Compute:

Short-Run Effect -0.078 -0.077 -0.076
(0.016) (0.016) (0.016)

Long-Run Effect -0.154 -0.153 -0.153
(0.024) (0.024) (0.025)

Notes: Table presents estimates of equation (2) of the short-run (𝛿1) and long-run (𝛿2) coefficients, which
estimate the impact of the GDPR in the first and second year after the GDPR came into force. Column (1)
shows our baseline specification with the natural logarithm of 𝑥. Column (2) transforms outcomes using the
inverse hyperbolic sine. Column (3) transforms outcomes by taking the logarithm (base 10) of 𝑥 + 1.

OA - 28



Alternative Sample Definitions We also discuss the robustness of our analyses in Section
4 to alternative sample definitions. In particular, we show that our estimated coefficients
are relatively stable when estimated when conditioning on a different window of pre-
GPDR usage, and when using a larger and more inclusive definition of “firms" where we
don’t require any internal or external industry or operating information.

First, we consider alternative windows of pre-GDPR usage. In our baseline sample,
we use firms for whom we observe cloud usage continuously for a whole year exactly two
years before the GDPR. Table OA-8 presents estimates from the samples constructed by
instead conditioning on continuous observation one year before the GDPR (column 2) and
both years before the GDPR (column 3).

Table OA-8: Short- and Long-Run Effects of the GDPR
(Alternative Pre-GDPR Usage Windows)

(1) (2) (3)

Data:

Short-Run Effect -0.129 -0.101 -0.144
(0.018) (0.029) (0.024)

Long-Run Effect -0.257 -0.283 -0.299
(0.024) (0.039) (0.034)

Compute:

Short-Run Effect -0.078 -0.078 -0.083
(0.016) (0.021) (0.021)

Long-Run Effect -0.154 -0.178 -0.178
(0.024) (0.033) (0.033)

Data Intensity:

Short-Run Effect -0.072 -0.066 -0.063
(0.020) (0.023) (0.023)

Long-Run Effect -0.131 -0.128 -0.121
(0.029) (0.035) (0.035)

Usage Observed During Year:
Two Years Before GDPR ✓ ✓
One Year Before GDPR ✓ ✓

Notes: Table presents estimates of equation (2) of the short-run (𝛿1) and long-run (𝛿2) coefficients, which
estimate the impact of the GDPR in the first and second year after the GDPR came into force. Column
(1) shows our baseline specification. Column (2) conditions on observing firms for the year before GDPR
(instead of two years before). Column (3) restricts the sample to firms continuously observed for the full two
years before GDPR. Industries are defined as the ten divisions classified by SIC codes, with the addition of
a "software" division, which we carve out of the services division and define through SIC codes 7370 - 7377.
Pre-GDPR size deciles are measured thirteen months before the GDPR. For data intensity, we define “size
decile” as the interaction between storage and compute terciles when measured in the period. Standard
errors are clustered at the firm level.
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Finally, we consider using a larger and more inclusive definition of “firms". Per Ap-
pendix C, we define firms in our baseline sample by requiring that there be either internal
or external information on the firm’s industry and country. In this larger sample, we drop
the restriction that we must observe the firm’s industry. Because there is no industry
information, we amend the specification in equation (2) so that fixed effects do not vary by
industry. Table OA-9 below presents our estimates using this alternative sample.

Table OA-9: Short- and Long-Run Effects of the GDPR
(More Inclusive Definition of Firms)

Data Compute Data Intensity
(1) (2) (3)

Short-Run Effect -0.073 -0.059 -0.063
(0.013) (0.013) (0.015)

Long-Run Effect -0.151 -0.113 -0.117
(0.018) (0.020) (0.022)

Observations 2,224,810 1,097,922 756,996
US Firms 34,876 18,037 10,807
EU Firms 31,622 15,004 10,299

Notes: Table presents estimates of equation (2) of the short-run (𝛿1) and long-run (𝛿2) coefficients, which
estimate the impact of the GDPR in the first and second year after the GDPR came into force. However, we
do not allow the fixed effects to vary across industries (not all firms have industry information). Column
(1) estimates the effect on storage. Column (2) estimates the effect on computation. Column (3) presents
estimates of the data intensity. The sample incorporates firms for which we do not observe industry
information, as described in Appendix D. Pre-GDPR size deciles are measured thirteen months before the
GDPR. For data intensity, we define “size decile” as the interaction between storage and compute terciles
when measured in the period. Standard errors are clustered at the firm level.

Extensive Margin Although Table OA-3 suggests that our baseline estimates are similar
when we use a balanced panel of firms, we also directly examine whether the GDPR
caused differential attrition between firms in the European Union and the United States.
We study this using the following same specification but replacing the outcome variable
with an indicator for whether the firm has exited our sample. We present these results in
Figure OA-13.
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Figure OA-13: Event Study Estimates of the Effects of the GDPR on Cloud Inputs
(Differential Attrition)

(a) Data Sample
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(b) Compute Sample
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Notes: Figure presents estimates of equation (1) of 𝛽𝑞 , the coefficient on the quarter of the move interacted
with our treatment indicator. The coefficient in the quarter before the GDPR’s implementation is normalized
to zero. The outcome in each subpanel is denoted by the subpanel title. Dashed bars represent the 95 percent
confidence intervals, and standard errors are clustered at the firm level. In contrast to the main figures, the
dependent variable is an indicator of whether the firm has exited our sample.
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E Technical Appendix
This section provides the derivation of the results in Section 5.

E.1 First-Order Conditions of Cost Minimization

Assume that firms produce according to the following production function:

𝐹(𝑋𝑖𝑡 , 𝐼𝑖𝑡(𝐶𝑖𝑡 , 𝐷𝑖𝑡), 𝜔𝑖𝑡),

where 𝐼𝑖𝑡 represents information,𝑋𝑖𝑡 is a vector of other observed inputs, and𝜔𝑖𝑡 represents
unobserved productivity. We assume that the information is produced according to the
following technology:

𝐼𝑖𝑡 =
(
𝜔𝑐
𝑖𝑡(𝐶𝑖𝑡)

𝜌 + 𝛼𝐷
𝜌
𝑖𝑡

)1/𝜌
.

We assume that firms choose variable inputs to minimize the cost of production by taking
prices as given, which is a necessary condition for profit maximization. We also assume
that firms take productivity 𝜔𝑐

𝑖𝑡
as given in the static cost minimization problem. This cost

minimization problem can be written as:

min
𝐶𝑖𝑡 ,𝐷𝑖𝑡 ,𝑋

𝑣
𝑖𝑡

𝑝𝑐
𝑖𝑡
𝐶𝑖𝑡 + 𝑝𝑑𝑖𝑡𝐷𝑖𝑡 + 𝑝𝑥𝑖𝑡𝑋

𝑣
𝑖𝑡

s.t. 𝐹(𝑋𝑖𝑡 , 𝐼𝑖𝑡 , 𝜔𝑖𝑡) ≥ �̄�𝑖𝑡 ,

where �̄�𝑖𝑡 is the target level of production,𝑋𝑣
𝑖𝑡

denotes variable inputs in𝑋𝑖𝑡 , and 𝑝𝑥
𝑖𝑡

denotes
the input price vector of 𝑋𝑣

𝑖𝑡
. The FOCs with respect to 𝐶𝑖𝑡 and 𝐷𝑖𝑡 can be written as:

𝜇𝑖𝑡𝐹2(𝑋𝑖𝑡 , 𝐼𝑖𝑡 , 𝜔𝑖𝑡)
(
𝜔𝑐
𝑖𝑡(𝐶𝑖𝑡)

𝜌 + 𝛼𝐷
𝜌
𝑖𝑡

)1/𝜌−1
𝐶

𝜌−1
𝑖𝑡

𝑤𝑐
𝑖𝑡 = 𝑝𝑐𝑖𝑡

𝜇𝑖𝑡𝐹2(𝑋𝑖𝑡 , 𝐼𝑖𝑡 , 𝜔𝑖𝑡)
(
𝜔𝑐
𝑖𝑡(𝐶𝑖𝑡)

𝜌 + 𝛼𝐷
𝜌
𝑖𝑡

)1/𝜌−1
𝐷

𝜌−1
𝑖𝑡

𝛼 = 𝑝𝑑𝑖𝑡

where 𝜇𝑖𝑡 is the Lagrange multiplier and 𝐹2 denotes the derivative of 𝐹 with respect to its
second argument. Taking the ratio of the two FOCs, we obtain:

𝛼
𝜔𝑐
𝑖𝑡

(𝐶𝑖𝑡
𝐷𝑖𝑡

)1−𝜌
=
𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡
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Taking the logarithm and rearranging the terms yields:

(1 − 𝜌) log
(𝐶𝑖𝑡
𝐷𝑖𝑡

)
− log(𝜔𝑐

𝑖𝑡) + log(𝛼) = log
( 𝑝𝑑

𝑖𝑡

𝑝𝑐
𝑖𝑡

)
.

By using 𝜎 = 1/(1−𝜌) and defining 𝛾 ≡ −𝜎 log(𝛼), we can obtain Equation (4) as presented
in the main text:

log
(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝛾 + log

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ 𝜎 log(𝜔𝑐

𝑖𝑡).

E.2 Including Labor in Information Production Function

In this section, we demonstrate that the derivation of the FOCs remains valid even if the
information production function includes labor input in the CES form. We consider labor
in the information production function because firms might require software engineers to
process data. To illustrate this scenario, we consider a nested CES form where data and
computation are nested:

𝐼𝑖𝑡 =
( (
𝜔𝑐
𝑖𝑡(𝐶𝑖𝑡)

𝜌 + 𝛼𝐷𝐷
𝜌
𝑖𝑡

)𝑣/𝜌 + 𝛼𝐿𝐿
𝑣
𝑖𝑡

)1/𝑣

where 𝑣 is the substitution parameter between information and labor. Taking the FOCs
with respect to 𝐶𝑖𝑡 and 𝐷𝑖𝑡 , we obtain:

𝜇𝑖𝑡𝐹2(𝑋𝑖𝑡 , 𝐼𝑖𝑡 , 𝜔𝑖𝑡)
( (
𝜔𝑐
𝑖𝑡(𝐶𝑖𝑡)

𝜌 + 𝛼𝐷𝐷
𝜌
𝑖𝑡

)𝑣/𝜌 + 𝛼𝐿𝐿
𝑣
𝑖𝑡

)1/𝑣−1 (
𝜔𝑐
𝑖𝑡(𝐶𝑖𝑡)

𝜌 + 𝛼𝐷𝐷
𝜌
𝑖𝑡

)𝑣/𝜌−1
𝐶

𝜌−1
𝑖𝑡

𝑤𝑐
𝑖𝑡 = 𝑝𝑐𝑖𝑡

𝜇𝑖𝑡𝐹2(𝑋𝑖𝑡 , 𝐼𝑖𝑡 , 𝜔𝑖𝑡)
( (
𝜔𝑐
𝑖𝑡(𝐶𝑖𝑡)

𝜌 + 𝛼𝐷𝐷
𝜌
𝑖𝑡

)𝑣/𝜌 + 𝛼𝐿𝐿
𝑣
𝑖𝑡

)1/𝑣−1 (
𝜔𝑐
𝑖𝑡(𝐶𝑖𝑡)

𝜌 + 𝛼𝐷𝐷
𝜌
𝑖𝑡

)𝑣/𝜌−1
𝐷

𝜌−1
𝑖𝑡

𝛼𝐷 = 𝑝𝑑𝑖𝑡

Taking the ratio of these FOCs yields the same equation as above:

𝛼𝐷
𝜔𝑐
𝑖𝑡

(𝐶𝑖𝑡
𝐷𝑖𝑡

)1−𝜌
=
𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

Therefore, the information production function can accommodate labor. It is important to
note that this result relies on the specific nested CES functional form used in this analysis.
For instance, if data and labor were in the same nest with computation in a different one,
the ratio of FOCs would involve labor, and our equivalence result would break down.
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E.3 Extensions to the GDPR as a Cost Shock to Data

In this section, we show how our estimates of the wedge induced by the GDPR (𝜆) would
change under alternative assumptions about how the GDPR impacts firms’ information
production functions. This section builds on details of our identification and estimation
procedure described in Section 5.3.

E.3.1 Existing Pre-GDPR Wedges

First, we consider the case in which there are other unobserved variable costs to using
data that generate wedges even before the GDPR. In this case, our estimates capture the
additional wedges driven by the GDPR between the marginal product of data and its price.
In particular, consider the following model of data costs faced by each firm 𝑖:

Pre-GDPR: �̃�𝑑𝑖𝑡 = (1 + 𝜆0
𝑖 )𝑝

𝑑
𝑖𝑡 , Post-GDPR: �̃�𝑑𝑖𝑡 = (1 + 𝜆1

𝑖 )𝑝
𝑑
𝑖𝑡 .

Under this assumption, our pre-GDPR equation–from which we estimate the firm-
specific compute augmenting productivity–becomes:

log
(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝛾 + 𝜎1 log

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ 𝜎1

(
log(𝜔𝑐

𝑖 ) + log(1 + 𝜆0
𝑖 )
)
+ 𝜎1 log(𝜙𝑐𝑡 ) + 𝜎1 log(𝜂𝑖𝑡),

so our first-step estimation cannot separately identify 𝜔𝑐
𝑖

from 𝜆0
𝑖

(our estimating equation
recovers log(𝜔𝑐

𝑖
) + log(1 + 𝜆0

𝑖
) instead of log(𝜔𝑐

𝑖
) under the paper main assumptions).

In the post-GDPR period, the FOCs will be given by:

log
(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝛾2 + 𝜎2

(
log

(𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ log(𝜙𝑐𝑡 )

)
+ 𝜎2

(
log(1 + 𝜆1

𝑖 ) + log(𝜔𝑐
𝑖 )

)
+ 𝜎2 log(𝜂𝑖𝑡),

So in the second step, our estimation procedure recovers log(1 + 𝜆1
𝑖
) + log(𝜔𝑐

𝑖
) as the

fixed effects. In order to identify the wedges, we subtracted the first-step firm-fixed effect
estimates (which estimates log(𝜔𝑐

𝑖
) under our assumptions) from the second-step fixed

effects. However, in the model described in this section, the first step recovers an estimate
of log(𝜔𝑐

𝑖
)+log(1+𝜆0

𝑖
) as firm fixed effects. Therefore, subtracting the second-step estimate

log(𝜔𝑐
𝑖
) + log(1 + 𝜆0

𝑖
) from the second step estimate log(1 + 𝜆1

𝑖
) + log(𝜔𝑐

𝑖
) will yield:

log(1 + 𝜆1) − log(1 + 𝜆0)

Therefore, our procedure recovers (1 + 𝜆1)/(1 + 𝜆0) − 1 as the wedge under the model
described in this section, which is the additional multiplicative wedge due to the GDPR.
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E.3.2 Negative Productivity Shock to Data-Augmenting Productivity

Our main text assumes that the production function has compute-augmenting productiv-
ity. Here, we consider an alternative assumption that productivity is data-augmenting:

𝐼𝑖𝑡(𝐶𝑖𝑡 , 𝐷𝑖𝑡) =
(
𝛼(𝐶𝑖𝑡)𝜌 + �̃�𝑑

𝑖𝑡𝐷
𝜌
𝑖𝑡

)1/𝜌
,

where �̃�𝑑
𝑖𝑡

denotes data-augmenting productivity, which can potentially be affected by the
GDPR. In particular, we specify �̃�𝑑

𝑖𝑡
as:

Pre-GDPR: �̃�𝑑
𝑖𝑡 = 𝜔𝑑

𝑖𝑡 , Post-GDPR: �̃�𝑑
𝑖𝑡 = (1 + 𝜆𝑑𝑖 )𝜔

𝑑
𝑖𝑡 .

where 𝜔𝑑
𝑖𝑡

is the counterfactual data-augmenting productivity in the absence of the GDPR.
Here, 𝜆𝑑 ≤ 0 corresponds to a negative productivity shock to data-augmenting productiv-
ity. Under these assumptions, the FOC in the pre-GDPR period becomes:

log
(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝛾 + 𝜎 log

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
− 𝜎 log(𝜔𝑑

𝑖𝑡).

Therefore, our first stage procedure recovers firm-specific data-augmenting productivity
(formally − log 𝜔𝑑

𝑖𝑡
) instead of compute-augmenting productivity (log 𝜔𝑐

𝑖𝑡
). Under the

assumption that the GDPR affects the productivity of data, the production function in the
post-GDPR period becomes

𝐼𝑖𝑡(𝐶𝑖𝑡 , 𝐷𝑖𝑡) =
(
𝛼(𝐶𝑖𝑡)𝜌 + 𝜔𝑑

𝑖𝑡(1 + 𝜆𝑑𝑖 )𝐷
𝜌
𝑖𝑡

)1/𝜌
, (14)

Taking the FOCs after the GDPR, we obtain

log
(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝛾 + 𝜎 log

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
− 𝜎 log(𝜔𝑑

𝑖𝑡) − 𝜎 log(1 + 𝜆𝑑𝑖 ). (15)

Compare Equation (15) with our post-GDPR FOC in the main text (Equation (9) reproduced
below without the changes in the elasticity of substitution for simplicity):

log
(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝛾 + 𝜎 log

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ 𝜎 log(1 + 𝜆𝑖) + 𝜎 log(𝜔𝑐

𝑖𝑡).

Since we recovered −𝜎 log(𝜔𝑑
𝑖𝑡
) in the first step, our estimation procedure recovers

𝜎 log(1 + 𝜆𝑖) as −𝜎 log(1 + 𝜆𝑑
𝑖
) from Equation (15). Now we can solve for 𝜆𝑖 as a function
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of 𝜆𝑑
𝑖

from the relationship 1 + 𝜆𝑖 = 1/(1 + 𝜆𝑑
𝑖
) which yields:

𝜆𝑖 =
−𝜆𝑑

𝑖

1 + 𝜆𝑑
𝑖

,

and for small𝜆𝑑
𝑖
, we obtain𝜆𝑖 ≈ −𝜆𝑑

𝑖
so our procedure recovers the magnitude of the shock

to data productivity due to GDPR. For larger values of 𝜆𝑖 , we can use the exact formula
to estimate changes. For example, in the paper, we estimate 𝜆𝑖 ≈ 1/5 on average, which
implies that 𝜆𝑑

𝑖
≈ −1/6 under this alternative assumption.

E.3.3 Wedges in Both Data and Computation

In our main text, we assume that GDPR only affects data costs. Here, we consider the case
in which the GDPR affects both computation and data so that:

Pre-GDPR: �̃�𝑑𝑖𝑡 = 𝑝𝑑𝑖𝑡 , �̃�𝑐𝑖𝑡 = 𝑝𝑐𝑖𝑡 , Post-GDPR: �̃�𝑑𝑖𝑡 = (1 + 𝜆𝑑𝑖 )𝑝
𝑑
𝑖𝑡 , �̃�𝑐𝑖𝑡 = (1 + 𝜆𝑐𝑖 )𝑝

𝑐
𝑖𝑡 .

Taking first-order conditions post-GDPR under this assumption, we obtain:

log
(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝛾 + 𝜎2 log

(𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ 𝜎2 log

(
1 + 𝜆𝑑

𝑖

1 + 𝜆𝑐
𝑖

)
+ 𝜎2 log(𝜔𝑐

𝑖 ) + 𝜎2 log(𝜙𝑐𝑡 ) + 𝜎2 log(𝜂𝑖𝑡),

which differs from the main text (Equation 9) only through having the ratio of wedges
instead of data wedge. Therefore, in this case, our estimation procedure identifies
(1 + 𝜆𝑑

𝑖
)/(1 + 𝜆𝑐

𝑖
) instead of only (1+𝜆𝑑

𝑖
), which introduces downward bias for 𝜆𝑑

𝑖
if 𝜆𝑐

𝑖
> 0.

Since 𝜆𝑑
𝑖

would be underestimated while we assume 𝜆𝑐
𝑖
= 0, we would underestimate the

total cost of GDPR.

E.4 Derivation for Cost of Information

In this subsection, we derive the formula for the cost of information given by Equation (11)
in the paper. Next, we generalize the cost of information for any monotonic transformation
of the information production function (e.g., assuming increasing/decreasing returns to
scale in the information production function). We then conclude by showing how the
percentage changes in the cost of information, as computed in the paper, are invariant to
monotonic transformations. To ease notation, we drop the subscripts and use 𝑝𝑐 , 𝑝𝑑 and
𝜔 in the place of 𝑝𝑐 , 𝑝𝑑 and 𝜔𝑐 .
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Consider the optimal isocline as given by the FOC from data and computation:

𝛼
𝜔

(𝐶
𝐷

)1−𝜌
=
𝑝𝑑

𝑝𝑐
⇐⇒ 𝐷 =

(
𝜔
𝑝𝑐

𝑝𝑑

𝛼

) 1
𝜌−1

𝐶, (16)

which relates the optimal data input usage 𝐷 to the optimal computation usage 𝐶.
To obtain the information production as a function of parameters, we substitute Equa-

tion (16) into the information production function:

𝐼 =

(
𝜔𝐶𝜌 + 𝛼

(
𝜔
𝑝𝑐

𝑝𝑑

𝛼

) 𝜌
𝜌−1

𝐶𝜌

)1/𝜌

=

(
𝜔
𝑝𝑐

) 1
𝜌−1

(
𝑝𝑐

( 𝑝𝑐
𝜔

) 1
𝜌−1 + 𝑝𝑑

( 𝑝𝑑
𝛼

) 1
𝜌−1

)1/𝜌
𝐶 (17)

and defining Φ as:

Φ =

(
𝑝𝑐

( 𝑝𝑐
𝜔

) 1
𝜌−1 + 𝑝𝑑

( 𝑝𝑑
𝛼

) 1
𝜌−1

)
,

we can simplify Equation (17) as:

𝐼 = Φ1/𝜌
(
𝜔
𝑝𝑐

) 1
𝜌−1

𝐶 =⇒ 𝐶∗(𝐼 , 𝑝) = 𝐼

Φ1/𝜌

( 𝑝𝑐
𝜔

) 1
𝜌−1 and 𝐷∗(𝐼 , 𝑝) = 𝐼

Φ1/𝜌

( 𝑝𝑑
𝛼

) 1
𝜌−1

so we obtain the optimal input demands as a function of prices and parameters. Now,
substituting them into the cost of information:

𝐶𝐼∗(𝐼 , 𝑝) = 𝑝𝑐𝐶
∗ + 𝑝𝑑𝐷∗ =

𝐼

Φ1/𝜌

(
𝑝𝑐

( 𝑝𝑐
𝜔

) 1
𝜌−1 + 𝑝𝑑

( 𝑝𝑑
𝛼

) 1
𝜌−1

)
𝜙

= 𝐼Φ
𝜌−1
𝜌 .

To get to the final result, note that (𝜌 − 1)/𝜌 = 1/(1 − 𝜎), and 1/(𝜌 − 1) = −𝜎. Therefore,
we can express the cost of information as a function of 𝐼, prices, and parameters:

𝐶𝐼∗(𝐼 , 𝑝) = 𝐼
(
𝜔𝜎𝑝1−𝜎

𝑐 + 𝛼𝜎𝑝1−𝜎
𝑑

)1/(1−𝜎)
,

which is the main equation in the paper.
Next, we derive the cost of information for any monotonic transformation of the pro-

duction function of 𝐼. As we argued in Section 5.1, 𝐼 does not have a natural scale and can
be defined only up to a monotonic transformation. For any monotonic transformation of

OA - 37



𝐼, ℎ(𝐼), the cost function can be obtained as:

𝐶𝐼∗(𝐼𝑖𝑡 , 𝑝𝑖𝑡) = ℎ−1(𝐼)
(
𝜔𝜎𝑝1−𝜎

𝑐 + 𝛼𝜎𝑝1−𝜎
𝑑

)1/(1−𝜎)
. (18)

To see this, note that when substituting Equation (16) into the production function we
get Equation (17)’ as given by:

ℎ−1(𝐼) =
(
𝜔
𝑝𝑐

) 1
𝜌−1

(
𝑝𝑐

( 𝑝𝑐
𝜔

) 1
𝜌−1 + 𝑝𝑑

( 𝑝𝑑
𝛼

) 1
𝜌−1

)1/𝜌
𝐶,

while the rest of the algebra stays the same but replacing 𝐼 for ℎ−1(𝐼).
Finally, to show that the percentage change in the cost of information is invariant to

monotonic transformations, notice that at any information level I, we can take the ratio of
Equation (18) with and without the GDPR wedge and subtract one to obtain the percentage
change in the cost of information:

1 + Δ𝐶𝐼∗(𝐼𝑖𝑡 , 𝑝𝑖𝑡) =
[
𝜔𝜎𝑝1−𝜎

𝑐 + 𝛼𝜎(1 + 𝜆𝑖)𝑝1−𝜎
𝑑

𝜔𝜎𝑝1−𝜎
𝑐 + 𝛼𝜎𝑝1−𝜎

𝑑

]1/(1−𝜎)

, (19)

which is the main formula we use in the paper.

E.5 Cost of Information Decomposition

In this section, we derive the formula for the decomposition of the cost of information.
We drop all subscripts to ease notation and start by substituting the values for the cost-
minimizing information cost, 𝐶𝐼∗, as:

𝐶𝐼∗(𝐼 , 𝑝,𝜆) = 𝑝𝑐𝐶
∗(𝐼 , 𝑝,𝜆) + 𝑝𝑑𝐷∗(𝐼 , 𝑝,𝜆),

where 𝐶∗(𝐼 , 𝑝,𝜆) and 𝐷∗(𝐼 , 𝑝,𝜆) are the optimal compute and data choices as a function
of information level, input prices, and wedges. We will remove the function arguments
to ease out notation even more. The total derivative with respect to 𝜆 is obtaining by
differentiating both sides with respect to 𝜆:

d𝐶𝐼∗

d𝜆 = 𝑝𝑐
dC∗

d𝜆 + 𝑝𝑑𝐷∗ + 𝑝𝑑(1 + 𝜆)dD∗

d𝜆 .
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Multiplying both sides by 𝜆/𝐶𝐼∗ we obtain:

d𝐶𝐼∗

d𝜆
𝜆
𝐶𝐼∗

= 𝑝𝑐
dC∗

d𝜆
𝜆
𝐶∗ + 𝜆

(
𝑝𝑑𝐷

∗

𝐶𝐼∗

)
+ 𝑝𝑑(1 + 𝜆)dD∗

d𝜆
𝜆
𝐶∗ .

Rearranging terms and multiplying the first term by 𝐶∗/𝐶∗, and the third by 𝐷∗/𝐷∗ we get

d𝐶𝐼∗

d𝜆
𝜆
𝐶𝐼∗

= 𝜆

(
𝑝𝑑𝐷

∗

𝐶𝐼∗

)
+

(
𝑝𝑐𝐶

∗

𝐶𝐼∗

) [
dC∗

d𝜆
𝜆
𝐶∗

]
+

(
𝑝𝑑(1 + 𝜆)𝐷∗

𝐶𝐼∗

) [
dD∗

d𝜆
𝜆
𝐷∗

]
,

and finally, recognizing that the terms in parenthesis are the expenditure shares 𝑠𝑑 and 𝑠𝑐 ,
and the terms in squared parenthesis are the elasticities, we get to the following equation:

𝜀(𝐶𝐼∗𝑖𝑡 ,𝜆𝑖) = 𝑠𝑑𝑖𝑡 · 𝜆𝑖 +
[
𝑠𝑑𝑖𝑡 · 𝜀(𝐷

∗
𝑖𝑡 ,𝜆𝑖) + 𝑠

𝑐
𝑖𝑡 · 𝜀(𝐶

∗
𝑖𝑡 ,𝜆𝑖)

]
.
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F Model Estimation Details
This section provides details on cloud computing pricing, the instrumental variable strat-
egy, our estimation procedure, and intuition for our identification.

F.1 Cloud Computing Pricing

Our estimation of the elasticity of substitution is identified by how firms adjust their input
demand to price changes. To provide context for the main sources of price variation, this
section presents an overview of pricing in cloud computing.

Cloud computing providers typically consider various factors when choosing cloud
prices in different locations. Some of these factors may include the cost of electricity, the
availability of skilled labor, the cost of real estate, tax incentives, regulatory requirements,
and the availability and cost of network connectivity. Additionally, firms may consider the
level of competition in each location and the pricing strategies of different cloud providers.

The pricing of cloud services in the last decade has been characterized by a steady
decline across all providers. As cloud providers have achieved economies of scale and
improved their technological infrastructure, they have been able to offer lower prices
to customers. In addition, increased competition among cloud providers in attracting
customers has also contributed to lower prices. Byrne et al. (2018) constructs a price index
for AWS over the last decade and investigates how prices have evolved. They found that
AWS computation prices fell at an average annual rate of about 7%, database prices fell at
an average annual rate of more than 11%, and storage disk prices fell at an annual rate of
more than 17%. Part of this price decline is driven by competition. Byrne et al. (2018) finds
that AWS prices dropped more significantly when Microsoft Azure entered the market, at
10.5%, 22%, and about 25% for computation, database, and storage, respectively, between
2014 and 2016.

Overall, the last decade has seen a notable trend of declining cloud prices despite
increasing demand. This suggests that factors such as competition and technological
advances have been the major drivers of cloud pricing in the last decade.

F.2 Price Index Construction

Our instrumental variable strategy relies on constructing firm- and location-specific price
indices. This section describes how we construct those price indices.

To obtain firm-specific price indices, we simply calculate the unit price paid by the
firm by dividing the monthly total spending on compute and storage by the total quantity
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of compute and storage, respectively. This gives us firm-specific compute and storage
price indices, which can vary either because of discounts due to long-term commitments
or variations in location-specific prices. We divide the price of storage by the price of
computation to obtain a firm-specific storage-to-compute price ratio. Since this ratio
involves some outliers due to small values in the dominator, we winsorize these variables
by the top and bottom two percentiles. We also construct the storage-to-compute usage
ratio for each firm and apply the same winsorization procedure.

We also calculate location-specific price indices for computation and storage for our
sample period. An important issue to account for when calculating these price indices is
the entry and exit of products. All cloud providers have introduced a variety of products
in the last decade. We construct the price index in the following manner: for any given
data location, we first identify products that are available in two adjacent periods, 𝑡 and
𝑡 + 1. We then use the following formula to calculate the price change in location 𝑙:

𝑟
𝑗

𝑙𝑡
=

∑
𝑖 𝑝

𝑗

𝑖𝑙(𝑡+1)𝑞
𝑗

𝑖𝑙𝑡∑
𝑖 𝑝

𝑗

𝑖𝑙𝑡
𝑞
𝑗

𝑖𝑙𝑡

,

where 𝑗 ∈ {𝑐, 𝑑} denoting computation and storage, 𝑞 𝑗
𝑖𝑙𝑡

is the total quantity of product 𝑖 in
location 𝑙 at time 𝑡. We calculate this price change for every location-month combination
in our sample and construct a price index by cumulatively multiplying the changes in the
price index, that is 𝑝 𝑗

𝑙𝑡
=

∏
1≤ 𝑗≤𝑡 𝑟

𝑗

𝑙 𝑗
, where 𝑗 ∈ {𝑐, 𝑑} denoting computation and storage.

F.3 Instrumental Variable Strategy

Our instrumental variable strategy relies on the assumption that firms’ choice of data
center location is persistent. This assumption is based on the fact that the cost of moving
large datasets from one data center to another is typically high. The cost of moving data
to another data center in cloud computing can depend on several factors, including the
amount of data being transferred, the distance between the source and destination data
centers, and the pricing policies of the cloud service provider (García-Dorado and Rao,
2015). Some cloud service providers may charge a fee for data transfer, and there may
be additional costs associated with data migration, such as network bandwidth charges,
storage costs, and downtime or disruption to services during the migration process.51 Even
though the specific costs and risks of data migration will depend on the migration plan
and the cloud service provider, it is typically considered too costly by industry experts.

51See detailed information on data transfer costs for top cloud computing providers at AWS Data Transfer
Costs, Azure Bandwidth Pricing, and Google Cloud Storage Transfer Pricing.

OA - 41

https://aws.amazon.com/blogs/architecture/overview-of-data-transfer-costs-for-common-architectures/
https://aws.amazon.com/blogs/architecture/overview-of-data-transfer-costs-for-common-architectures/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://cloud.google.com/storage-transfer/pricing


We use the persistence in data center location that comes from switching costs to design
a shift-share instrumental variable strategy. Formally, each firm has exposure to different
locations and pays different prices in each location due to variations in list prices and
firm-specific discounts. We denote firm-specific price indices by 𝑝𝑑

𝑖𝑡
and 𝑝𝑐

𝑖𝑡
for data and

computation, respectively. This price could be endogenous because the firm may receive
discounts due to long-term commitments or change its exposure to different locations
based on productivity. To instrument for these prices, we use the list prices of storage in
location 𝑙, given by 𝑝𝑙𝑡 . This price is plausibly exogenous to changes in firm productivity
because, after controlling for industry-specific trends, no firm is likely to affect list prices in
a specific location. Additionally, we attempt to purge these shares of endogeneity further
by taking lags, as contemporary shares may be susceptible to reverse causality. Hence,
our instrument for data is given by 𝑧𝑑

𝑖𝑡
=

∑
𝑠𝑑
𝑖𝑙(𝑡−12)𝑝

𝑑
𝑙𝑡

for storage and 𝑧𝑐
𝑖𝑡

for computation
calculated similarly. Finally, we use 𝑧𝑐

𝑖𝑡
/𝑧𝑑

𝑖𝑡
to instrument for 𝑝𝑐

𝑖𝑡
/𝑝𝑑

𝑖𝑡
in the production

function estimation. Since we need the 12 months of lagged exposure of each firm, we lose
the first 12 months of observations when implementing this instrumental variable strategy.

F.4 Estimation Details

Our identification strategy relies on the assumption that the industry-specific cloud pro-
ductivity trend in the EU would have followed that of US firms in the absence of the GDPR
and that firm-specific compute technology does not change post-GDPR. To operationalize
these assumptions, we follow a two-step estimation strategy.

In the first step, we estimate the following equation for US firms using the entire sample
period with our IV strategy:

log
(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝛾 + 𝜎𝑈𝑆1 log

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ 𝜎𝑈𝑆1 log(𝜔𝑐

𝑖 ) + 𝜎𝑈𝑆1 log(𝜙𝑐𝑡 ) + 𝜎𝑈𝑆1 log(𝜂𝑖𝑡), (20)

When estimating this equation, we normalize 𝛾 to zero because it is not separately iden-
tified from the mean of 𝜔𝑐

𝑖
. We also normalize 𝜙𝑐1 to 1 so that the productivity trend is

relative to the initial period. Since, by assumption, the US firms have not been exposed to
the GDPR, this equation identifies the industry-specific compute-augmenting productiv-
ity trends, or �̂�𝑐𝑡 in Equation (10). By Assumption (2), the EU industries follow the same
trend and we use the estimated �̂�𝑐𝑡 for EU firms.52 Next, we estimate the same equation
using EU firms only with pre-GDPR data. This estimation identifies �̂�𝑐

𝑖
in Equation (10)

because there is no distortion before the GDPR to estimate 𝜎𝐸𝑈1 . We report the associated

52We also estimate Equation (20) using pre- and post-GDPR data for US firms to separately identify the
elasticity of substitution before and after the implementation of GDPR.
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elasticity estimates in Figure 4 as the pre-GDPR elasticity of substitution estimates.
These first-step estimations identify provide us with �̂�𝑐

𝑖
and �̂�𝑡 . Using those we finally

estimate Equation (10):

log
(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝛾2 + 𝜎𝐸𝑈2

(
log

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ log(�̂�𝑡)

)
+ 𝜎𝐸𝑈2

(
log(1 + 𝜆𝑖) + log(�̂�𝑐

𝑖 )
)
+ log(𝜂𝑖𝑡).

by constructing the right-hand side variable. We report 𝜎𝐸𝑈2 as the post-GDPR elasticity of
substitution estimates in Figure 4. To estimate the wedge, 𝜆𝑖 , we subtract log(�̂�𝑐

𝑖
) from the

estimated fixed effects in Equation (10) (after accounting for 𝜎𝐸𝑈2 ). We report the estimates
of 𝜆𝑖 in Figure 5. To account for uncertainty in first-step estimates in standard errors, we
follow a bootstrap procedure with 100 repetitions. We resample firms with replacements
in each industry-continent group and apply the entire estimation procedure.

We use Equation (11) to estimate the changes in the cost of information, with results re-
ported in Section 6.3. For each estimated 𝜔𝑐

𝑖
, we calculate the cost of information by setting

𝜆𝑖 to its estimated value and 0, which gives us the change in the cost of information due to
the GDPR. Since prices and compute-augmenting productivity may change over time, we
calculate this change in information cost at every period and report the distribution at the
month-firm level in Figure 7(b).

To do the decomposition presented in Equation 6.3, we calculate the cost share of data
each period using firms’ data input demands and prices. The direct effect is obtained by
multiplying data shares with firm-specific wedges. The second term (firm re-adjustment)
is obtained by subtracting the direct effect from the change in the cost of information.
Similar to the above, we calculate this change in information cost for every period and
report the distribution at the month-firm level.

F.5 Identification Intuition for the Firm-Specific Wedges

Having outlined our estimation strategy in the previous subsection, we now explain how
our assumptions help us identify the per-firm wedge in the cost of storing data, 𝜆𝑖 . The
main goal is to provide intuition on the variation 𝜆𝑖 is intended to capture. We provide
intuition for the case where the elasticity of substitution is the same in the EU and in the
US (but may vary pre and post-GDPR), as the more general case provides no additional
intuition but involves more cumbersome notation. We consciously abuse notation in this
section as its main goal is to provide simple equations.

Consider two firms in the same industry, one in the EU (𝑘) and one in the US (𝑗), with
the same levels of firm-level compute-augmenting productivity 𝜔𝑐

𝑘
= 𝜔𝑐

𝑗
. For simplicity
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(to not carry terms around), assume both firms have the same time-varying shocks (i.e.,
log𝜂𝑘𝑡 = log𝜂 𝑗𝑡 for all 𝑡).53 Subtracting the pre-GDPR first-order condition (Equation 7) of
the US firm from the EU firm equation in a period 𝑡 before GDPR implies that:

Δ𝑖

(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝜎1Δ𝑖

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
(21)

where we define Δ𝑖(𝑋𝑖𝑡) as the across-firm (EU vs. US) difference in the logarithm of 𝑋𝑖𝑡 at
time 𝑡 (i.e., Δ𝑖(𝑋𝑖𝑡) ≡ log𝑋𝑘𝑡 − log𝑋𝑗𝑡). Note that Assumption 2 (i.e., EU and US industries
follow the same compute augmenting productivity time trend) allows us to get rid of 𝜙𝑐𝑡 if
we look at two firms within the same period 𝑡. Similarly, by focusing on comparable firms
(𝑘 and 𝑗), we get rid of 𝜔𝑐

𝑘
and 𝜔𝑐

𝑗
.

Analogously, focusing on a period 𝑡 after GDPR was enacted, we can use the post-
GDPR identifying equation (Equation 9) in a similar fashion as before (focusing on the
same two firms) to obtain:

Δ𝑖

(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝜎2Δ𝑖

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ 𝜎2 log(1 + 𝜆𝑖) (22)

where the extra term is the increase in the cost (𝜆𝑖) incurred by the firm in the EU but not
by the firm in the US. Subtracting both equations, rearranging terms, and some algebra,
we get:

ΔΔ𝑖𝑡

(𝐶𝑖𝑡
𝐷𝑖𝑡

)
= 𝜎2ΔΔ𝑖𝑡

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ (𝜎2 − 𝜎1)Δ𝑖

( 𝑝𝑑
𝑖𝑡

𝑝𝑐
𝑖𝑡

)
+ 𝜎2 log(1 + 𝜆𝑖) (23)

where ΔΔ𝑖𝑡(𝑋𝑖𝑡) is the double difference across the EU and US firms and before and after
GDPR (i.e., ΔΔ𝑖𝑡(𝑋𝑖𝑡) ≡ Δ𝑖(𝑋𝑖𝑡) − Δ𝑖(𝑋𝑖𝑡) in our case). These double differences are akin to
the ones one would need to generate a difference in difference estimate (e.g., to those in
Section 4 of the paper).

Equation (23) provides useful intuition about what 𝜆𝑖 , the post-GDPR wedge, is in-
tended to capture. Loosely speaking, the wedge captures the variation in the shift in
the compute intensity (across EU and US firms, before and after GDPR) that is not ex-
plained by changes in the shift in the relative prices or by pre-and post-GDPR differences
in the elasticity of substitution between compute and storage across comparable EU and
US firms.54 Given the above equation, one would intuitively expect firms that face larger

53Otherwise, we can work with expectations and use precise (but somewhat cumbersome) notation.
54The more general case that we estimate, where the elasticity of substitution differs between EU and US firms,

has a similar intuition but also involves the difference in the changes in 𝜎 between the US and the EU, before
and after GDPR. We estimate that these differences are not economically important in our context.
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changes in the compute intensity (the negative of the data intensity) to be those that have
larger wedges.

Reassuringly, the intuition we explain above is also consistent with our estimated
wedges. Recall that we show in the paper that firms became less data-intensive (equiva-
lently, more compute-intensive) after the GDPR. Importantly, we show that industries with
larger changes in data intensity are those with larger wedges. Panel C of Table 4 shows
that the changes in the data intensity are smaller (in absolute value) for manufacturing
firms, followed by firms in the services industry, and then by software firms. Similarly,
our average wedge estimates (shown in Figure 5) have the same ordering: manufacturing
firms face smaller wedges, followed by services, and finally by software.

Interestingly, Equations (23) and (22) also show that level changes in 𝐶𝑖𝑡 and 𝐷𝑖𝑡 are
not enough to identify 𝜆𝑖 . Note that we cannot infer that firms with larger responses in
levels would have larger (or smaller) wedges. In fact, to rationalize the level of responses to
computing and storage, one would need additional assumptions about the full production
function. To explain the responses in levels, we would need to construct a model that
incorporates the elasticity of substitution between information and other traditional inputs
(e.g., capital and labor).
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G Effects on Production Costs

G.1 The Effect of Changes in Information Costs on Production Costs

In this section, we consider how changes in information costs translate into changes in
production costs under various benchmark production function specifications. Per Section
6.4, this exercise aims to derive simple sufficient statistics under various functional form
assumptions for the total increase in the cost of producing goods and services arising from
the change in the cost of data storage. As such, we leverage the assumption that firms face
linear prices (𝑝) for all inputs. Thus, the resulting cost function is given by:

𝐶
(
�̄�, 𝑝,Δ𝐶𝐼

)
= 𝑝𝐿𝐿

∗ (�̄�, 𝑝,Δ𝐶𝐼) + 𝑝𝐾𝐾∗ (�̄�, 𝑝,Δ𝐶𝐼) + 𝑝𝐼 𝐼∗ (�̄�, 𝑝,Δ𝐶𝐼) .
where we use �̄� throughout the section to denote the quantity of production, and where
Δ𝐶𝐼 is the percentage increase in the information cost.

We first consider two edge cases—Leontief and linear production functions—where
information is a perfect complement and a substitute for other inputs. These provide us
with intuitive bounds for how changes in the costs of information might translate into
production costs. Next, we consider an intermediate case with Cobb-Douglas production
technology and derive a simple equation for how changes in information costs translate
into production costs after firms re-optimize between inputs. Finally, we analyze a nested
CES with information and non-information inputs.

Leontief Production Function

We first consider the simple case of a Leontief production function, where inputs must be
combined in fixed proportions:

𝑌 = min
(
𝐿

𝛼
,
𝐾

𝛽
,
𝐼

𝛾

)
.

Cost minimization immediately implies that for any given level of production, the input
demand functions are given by:

𝐿∗ = 𝛼�̄�, 𝐾∗ = 𝛽�̄�, 𝐼∗ = 𝛾�̄�.

In this case, the cost function is therefore linear in prices, and a Δ𝐶𝐼 percentage increase
in the cost of information causes an Δ𝐶𝐼 · 𝑠 𝐼

𝑖𝑡
percentage increase in the cost of production.
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Linear Production Function

The case of a linear production function is straightforward, as firms simply choose the
most cost-effective input or mix between them if they are equally cost-effective.

𝑌 = 𝛼𝐿 + 𝛽𝐾 + 𝛾𝐼.

In the interior case where firms were previously producing with non-zero capital or non-
zero labor, cost minimization immediately implies that a Δ𝐶𝐼 percentage increase in the
cost of information translates into a zero percentage increase in the cost of production.

Cobb-Douglas Production Function

Next, we consider the effects of a Δ𝐶𝐼 percentage increase in the cost of information for a
Cobb-Douglas production function given by

𝑌 = 𝐿𝛼𝐾𝛽𝐼𝛾

First-order conditions imply the following information demand function:

𝐼∗ = �̄�
1

𝛾+𝛼+𝛽 ·
(
𝑝𝐼

𝛾

) −𝛼−𝛽
𝛾+𝛼+𝛽

·
(
𝛽

𝑝𝐾

) −𝛽
𝛾+𝛼+𝛽

·
(
𝛼

𝑝𝐿

) −𝛼
𝛾+𝛼+𝛽

This immediately implies that aΔ𝐶𝐼 percentage increase in 𝑝𝐼 induces a 𝛿 =

[
(1 + Δ𝐶𝐼)−

𝛼+𝛽
𝛾+𝛼+𝛽 − 1

]
percentage decrease in 𝐼∗.55 Next, we note that first-order conditions imply that a 𝛾 share
of total firm costs will be spent on information:

𝛾 =
𝑝𝐼 · 𝐼∗

(
�̄�, 𝑝,Δ𝐶𝐼

)
𝐸

(
�̄�, 𝑝,Δ𝐶𝐼

) .

Using the change in information expenditure resulting from the Δ𝐶𝐼 increase in informa-
tion prices and the 𝛿 decrease in 𝐼∗ derived above, we have that a Δ𝐶𝐼 percentage increase
in 𝑝𝐼 will lead to aΔ𝐶 percentage increase in production costs, whereΔ𝐶 = (1+Δ𝐶𝐼)𝛾−1.56

55For marginal changes, using log transformations and taking derivatives yields 𝜕 log 𝐼
𝜕 log 𝑝𝐼 =

𝛼+𝛽
𝛾+𝛼+𝛽 .

56Once again using log transformations and taking derivatives yields the intuitive expression 𝜕 log(𝐸)
𝜕 log(𝑝𝐼 ) = 1 −

𝛼+𝛽
𝛾+𝛼+𝛽 for marginal changes from Δ𝐶𝐼 = 0.
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CES Production Function

Finally, we consider a simple nested constant elasticity of substitution production tech-
nology, where information 𝐼 is combined with constant returns to scale aggregator of all
non-information inputs 𝑀(𝐿, 𝐾). We denote the outer nest by

𝑌𝑖 = 𝜈𝑖
(
𝛽𝐼

�̄�
𝑖
+ (1 − 𝛽)𝑀 �̄�

𝑖
)
)1/�̄�

.

where 𝜈𝑖 represents firm-specific productivity, 𝑎𝑖 represents firm-specific information in-
tensity in production, and �̄� = 1/(1 − �̄�) denotes the elasticity of substitution between
information and non-information inputs. Moving forward, we will drop the firm-specific
subscripts for notational simplicity.

Next, we note that because 𝑀(𝐿, 𝐾) exhibits constant returns to scale, the linear prices
of labor and capital – 𝑝𝐿 and 𝑝𝐾 – imply a linear unit cost for the intermediate non-
information aggregate 𝑀. We denote that unit cost by 𝑝𝑀 .57 This, therefore, yields the
unit cost function

𝑐(𝑝𝐼 , 𝑝𝑀) = 1
𝜈

(
𝛽�̄�(𝑝𝐼)1−�̄� + (1 − 𝛽)�̄�(𝑝𝑀)1−�̄�

) 1
1−�̄�
.

Now, denote the equilibrium information expenditure share as 𝑠∗
𝐼
≡ 𝑝𝐼 ·𝐼

𝑝𝑀 ·𝑀+𝑝𝐼 ·𝐼 . Combining
this with first-order conditions allows us to express this term as

𝑠∗
𝐼

1 − 𝑠∗
𝐼

=

(
𝑝𝐼

𝑝𝑀

)1−�̄� (
𝛽

1 − 𝛽

) �̄�
.

Finally, we can use this equivalence to express the effects of a Δ𝐶𝐼 percentage increase in
𝑝𝐼 on production costs using only model parameters and 𝑠∗

𝐼
:

57Deriving the formula for the unit cost of 𝑀 yields 𝑝𝑀 = 1
𝛾

(
𝛽𝜎
𝑘𝑙
𝑝
(1−𝜎𝑘𝑙 )
𝐿

+ (1 − 𝛽)𝜎
𝑘𝑙
𝑝
(1−𝜎𝑘𝑙 )
𝐾

)1/(1−𝜎𝑘𝑙
where 𝜎𝑘𝑙

denotes the elasticity of substitution between capital and labor.
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𝑐
(
(1 + Δ𝐶𝐼)𝑝𝐼 , 𝑝𝑀

)
𝑐 (𝑝𝐼 , 𝑝𝑀) =

(
(1 + Δ𝐶𝐼)1−�̄�𝛽�̄�𝑝1−�̄�

𝐼
+ (1 − 𝛽)�̄�𝑝1−�̄�

𝑀

𝛽�̄�𝑝1−�̄�
𝐼

+ (1 − 𝛽)�̄�𝑝1−�̄�
𝑀

) 1
1−�̄�

=

( (1 + Δ𝐶𝐼)1−�̄�
(

𝛽
1−𝛽

) �̄� (
𝑝𝐼
𝑝𝑀

)1−�̄�
+ 1(

𝛽
1−𝛽

) �̄� (
𝑝𝐼
𝑝𝑀

)1−�̄�
+ 1

) 1
1−�̄�

=

(
(1 + Δ𝐶𝐼)1−�̄�𝑠∗𝐼 + 1 − 𝑠∗𝐼

) 1
1−�̄�

.

Thus, a Δ𝐶𝐼 percentage increase in 𝑝𝐼 yields a
(
(1+Δ𝐶𝐼)1−�̄� · 𝑠∗

𝐼
+ 1 − 𝑠∗

𝐼

) 1
1−�̄� − 1 percentage

increase in production costs.

G.2 Estimating Key Parameters of Production Cost Increases

We show in the section above that the information share of expenditure is crucial to
calculating how an increase in the cost of information translates to production costs. In
the nested CES production technology we analyze above, the vector with the elasticity of
substitution between information and non-information inputs and the information cost
share is a sufficient statistic for this effect. We discuss estimates of both parameters below.

First, we combine various data sources to suggest a reasonable range for the information
cost share. We provide these estimates in Table OA-10. Next, we discuss each of those
data sources separately. Finally, we discuss mapping estimates from Lashkari et al. (2024)
of the elasticity of substitution between IT and non-IT inputs into our setting.

Aberdeen

We begin by turning to the Aberdeen data set, which we discuss in Section 3.2 and
in Appendix C.3. The Aberdeen data provides estimates of site-level IT spending and
revenue, which we collapse to the firm level. Unfortunately, we are unable to directly
observe total firm expenditures, so we proxy instead with firm revenue. We construct the
average share of IT revenue spent for European and US firms in 2017 and 2018. We further
use the four-digit SIC codes from the data to identify and partition firms that belong to
our three primary industries of interest: software, services, and manufacturing. We find
that, somewhat unsurprisingly, software firms spend the highest share of their revenue on
IT, followed by services and then manufacturing.
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Table OA-10: Estimates for the Information Share of Expenditure by Industry

Software Services Manufacturing
(1) (2) (3)

Aberdeen Estimates
Aberdeen (EU 2017) 16.7% 3.7% 3.3%
Aberdeen (EU 2018) 14.9% 2.9% 2.9%
Aberdeen (US 2017) 8.7% 4.9% 3.0%
Aberdeen (US 2018) 8.7% 5.0% 3.2%

Survey Estimates
Flexera (2020) 24.7% 6.7% 4.1%
Gartner (2022) 7.1% 5.4% 2.3%
Computer Economics (2019) – – 1.4% - 3.2%

Notes: Table presents estimates for the information share of expenditure by industry. All estimates are
formed by calculating or observing the average share of firm revenue spent on IT. Column (1) presents these
estimates for software firms, which are defined in the Aberdeen data through SIC codes 7370 - 7377. Column
(2) presents estimates for firms in services. Column (3) presents estimates for manufacturing firms. Further
details on the Aberdeen data and the survey estimates are provided in Appendix G.2.

Industry Surveys

Next, we use industry surveys as supportive evidence that the ranges suggested by Ab-
erdeen data are reasonable. These surveys include Flexera, Gartner, and Computer Eco-
nomics. These are specifically Flexera’s 2020 State of Technology Spending Report, Gartner’s
IT Key Metrics Data 2023: Industry Measures — Insights for Midsize Enterprises, and Computer
Economics’s 2019 IT Spending & Staffing Benchmarks – Executive Summary. For the Flexera
survey, we use the “industrial products" industry estimate as the manufacturing estimate,
and for the Gartner survey, we take the “professional services" industry estimate as our
estimate for non-software service firms. While the samples and industry definitions vary
widely across these surveys, the numbers cited are generally consistent with the ranges
suggested by Aberdeen.

Estimates of the Elasticity of Substitution between IT and Non-IT Inputs

We use point estimates of the elasticity of substitution between IT and non-IT inputs from
Lashkari et al. (2024) to proxy for the elasticity of substitution between information and
non-information inputs. We focus on the micro-elasticities provided in the text rather than
the macro-elasticities, which reflect general equilibrium forces and reallocation between
firms. We use their industry-level elasticities from a non-homothetic CES specification.
Estimates for the manufacturing industry are provided directly. We map the “information
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and communication technology" industry to software, and we construct an estimate for
the elasticity in services by taking a weighted average of the relevant industries for which
estimates were provided in the online appendix.

Estimates of the Contribution to GDP by Industry and GDP in the EU Area

To measure each industry’s contribution to GDP, we use the information provided by
OECD (2020) for the Euro Area using their output approach outlined on page 189. We
measure the manufacturing contribution to GDP as the manufacturing output at basic
prices (line 4), divided by the total gross value added at basic prices (line 1), and get
16.88%. To measure software and non-services, we use a two-step approach. We first
compute the service contribution to GDP by summing all of the service industries in the
OECD table (lines 6 to 12) and dividing it by the total gross value added (line 1) to get
73.39%. We then separate into "software" and "non-software" by estimating the share of
the software industry as a proportion of the service industry.

To separate these industries, we leverage data from the US census to compute the
software industry share of the service sector, as we could not find any reliable estimates
for the EU. To compute this, we use the 2019 SUSB Annual Data Tables by Establishment
Industry provided by the US Census Office. We compute the software industry share
by dividing employment in the software industry by the total employment in the service
industry and get 7.53%.58 We use this number to proxy for the EU size of the software
industry.

Finally, we return to OECD (2020) to measure total GDP in the EU area, and we use
their estimate for 2018 (line 64 of p. 189), which is €11.5 trillion.

58To do this, we map from SIC to NAICS codes using Orbis data and assign each service industry code as
“software” or “non-software” to match the definitions used in the paper.

OA - 51


	Jimenez_Demirer_et_al2024_Privacy.pdf
	Introduction
	Institutional Setting
	The European General Data Protection Regulation
	Our Setting: Cloud Technology

	Data
	Cloud Computing Data (2015-2021)
	Cloud Computing Usage from Other Providers (2016-2021)
	Other Datasets: Firm Characteristics
	Sample Construction and Summary Statistics

	Event Study Evidence
	Empirical Strategy
	Results
	Heterogeneity
	Discussion

	A Model of Production with Data
	Production Function with Data
	The GDPR as a Cost Shock to Data
	Identification of Parameters
	First Step: Identification of Compute Productivity and Elasticity of Substitution
	Second Step: Identification of the Cost of the GDPR


	Production Function Estimation Results
	The Elasticity of Substitution Between Data and Computation
	The Regulatory Wedge Induced by the GDPR
	The Effect of the GDPR on the Cost of Information
	The Effect of the GDPR on Firm Production Costs

	Conclusions
	Additional Exhibits
	The Impact of the GDPR on Firms
	GDPR Summary
	The Compliance Cost of the GDPR
	Fixed and Sunk Costs
	Variable Costs

	Publicly Available GDPR Fine Data

	Data Appendix
	Cloud Computing Details
	Computation
	Storage

	Sample Selection and Cleaning
	Aberdeen Sample
	Match Procedure Between Aberdeen and Cloud Data
	Aberdeen Cross-check with Internal Data


	Robustness Checks
	Substitution to Other Providers
	Price Changes
	Websites and Cookie Collection
	Additional Robustness Exercises

	Technical Appendix
	First-Order Conditions
	Including Labor in Information Production Function
	Derivation for Cost of Information
	Cost of Information Decomposition

	Model Estimation Details
	Cloud Computing Pricing
	Price Index Construction
	Instrumental Variable Strategy
	Estimation Details
	Identification Intuition for the Firm-Specific Wedges

	Effects on Production Costs
	The Effect of Changes in Information Costs on Production Costs
	Estimating Key Calibration Parameters


	wp2024-02-revised-Demirer_et_al2024_Privacy.pdf
	Introduction
	Institutional Setting
	The European General Data Protection Regulation
	Our Setting: Cloud Technology

	Data and Summary Statistics
	Cloud Computing Data (2015-2021)
	Cloud Computing Usage from Other Providers (2016-2021)
	Other Datasets: Firm Characteristics
	Sample Construction and Summary Statistics

	Event Study Evidence
	Empirical Strategy
	Results
	Heterogeneity
	Discussion

	A Model of Production with Data
	Production Function with Data
	The GDPR as a Cost Shock to Data
	Identification of Parameters
	First Step: Identification of Compute Productivity and Elasticity of Substitution
	Second Step: Identification of the Cost of the GDPR


	Production Function Estimation Results
	The Elasticity of Substitution Between Data and Computation
	The Regulatory Wedge Induced by the GDPR
	The Effect of the GDPR on the Cost of Information
	The Effect of the GDPR on Firm Production Costs

	Conclusions
	Additional Exhibits
	The Impact of the GDPR on Firms
	GDPR Summary
	The Compliance Cost of the GDPR
	Fixed and Sunk Costs
	Variable Costs

	Publicly Available GDPR Fine Data

	Data Appendix
	Cloud Computing Details
	Computation
	Storage

	Sample Selection and Cleaning
	Aberdeen Sample
	Match Procedure Between Aberdeen and Cloud Data
	Aberdeen Cross-check with Internal Data


	Robustness Checks
	Substitution to Other Providers
	Price Changes
	Websites and Cookie Collection
	Additional Robustness Exercises

	Technical Appendix
	First-Order Conditions of Cost Minimization
	Including Labor in Information Production Function
	Extensions to the GDPR as a Cost Shock to Data
	Existing Pre-GDPR Wedges
	Negative Productivity Shock to Data-Augmenting Productivity
	Wedges in Both Data and Computation

	Derivation for Cost of Information
	Cost of Information Decomposition

	Model Estimation Details
	Cloud Computing Pricing
	Price Index Construction
	Instrumental Variable Strategy
	Estimation Details
	Identification Intuition for the Firm-Specific Wedges

	Effects on Production Costs
	The Effect of Changes in Information Costs on Production Costs
	Estimating Key Parameters of Production Cost Increases





