### LIQUIDITY MISMATCH

# MARKUS BRUNNERMEIER, GARY GORTON, and ARVIND KRISHNAMURTHY

PRINCETON and NBER, YALE and NBER, NORTHWESTERN and NBER

### **Objective**

- Measuring and regulating liquidity is widely understood to be an important part of macroprudential policies
  - Liquidity requirements
  - Liquidity stress-testing
- But ... there is no clear consensus on how to best measure liquidity and liquidity risks.
- Many ideas that are around:
  - "Cash is king;" Treasuries have good liquidity risk
  - Basel 3: LCR and NSFR
  - Liquidity and leverage
  - Maturity transformation and liquidity

## Outline

- 1. What is the right target?
  - What are we trying to measure/regulate? LMI
- 2. Why is the LMI a good measure?
  - Examples

#### Liquidity Creation by Financial Sector

| Assets                         | Liabilities          |
|--------------------------------|----------------------|
| \$100 Illiquid Long-term Loans | \$10 Equity          |
|                                | \$90 Demandable Debt |

- Financial sector transforms illiquid assets into liquid assets
  - Liquid asset = promise of cash redemption
  - Profit = "liquidity premium"
- Subject to aggregate liquidity crises
- Central bank as LLR to backstop private liquidity
  - Regulation: Control quantity of private liquidity creation
  - Regulation: Align private (profit) incentives with social

#### Measurement

- Date 0: measurement date
- Date 1: Possible crisis. State  $\omega \in \Omega$
- Firm i
  - (A)ssets: Securities/loans, derivatives, repo loans, cash
  - o (L)iabilities: short-term debt, long-term debt, equity
- Measure liquidity mismatch index of each firm in each possible state

#### Liquidity Mismatch Index (LMI)

 $\mathbf{A}$ 

#### **Market liquidity**

 Can only sell assets at fire-sale prices

Ease with which one can raise money by selling the asset

#### **Funding liquidity**

- Can't roll over short term debt
- Margin-funding is recalled

Ease with which one can raise money by borrowing using the asset as collateral



#### Liquidity Mismatch Index (LMI)

 $\mathbf{A}$ 

#### **Market liquidity**

 Can only sell assets at fire-sale prices

Ease with which one can raise money by selling the asset

#### **Funding liquidity**

- Can't roll over short term debt
- Margin-funding is recalled

Ease with which one can raise money by borrowing using the asset as collateral



Liquidity Mismatch Index = liquidity of assets minus liquidity promised through liabilities

#### Liquidity Mismatch Index (LMI)

A

**Market liquidity** 

#### **Funding liquidity**

- Treasuries/cash:  $\lambda = 1$
- Overnight repo:  $\lambda = .99$
- Agency MBS:  $\lambda = .95$
- Private-label MBS:  $\lambda = .90$

- Overnight debt:  $\lambda = 1$
- Long-term debt:  $\lambda = .50$
- Equity:  $\lambda = .10$

Liquidity Mismatch Index = liquidity of assets minus liquidity promised through liabilities

Basel 3: Net Stable Funding Ratio, Liquidity Coverage Ratios implicitly assign some  $\lambda$  weights

### How to choose $\{\lambda\}$

- 1. Interest rate spreads on bonds
  - Krishnamurthy-Vissing Jorgenson: Measure the "liquidity convenience" of the asset
- 2. Repo haircuts
- 3. Micro-structure measures:
  - Bid-ask spreads
  - Price impact
  - Trading volume or turnover
- Large empirical finance literature can be used.

## Liquidity: $\{\lambda\}$ & Liquidity Risk: $\{\lambda^{\omega}\}$

- Example for setting  $\{\lambda^{\omega}\}$ 
  - O Take a baseline set of  $\{\lambda\}$
  - o Consider an  $\omega$  macro state; We know covariance with aggregate liquidity measure
  - Occupied Consider percentage deviations in  $\{\lambda^{\omega}\}$  based on moves of aggregate liquidity measure
- Empirical finance work has documented timeseries variation in aggregate liquidity measures
  - Bond market liquidity spreads
  - Stock market measures of liquidity
  - Covariances with aggregate risk factors

#### Liquidity Risk

- $\{\lambda^{\omega}\}$  for different macro states  $\omega$
- Firm (or sector) liquidity risk:
  - $\circ$  the vector {LMI $^{\omega}$ } LMI for each state  $\omega$
- {LMIω} is the liquidity risk taken by the firm
  - Portfolio decision at date 0 is over assets/liabilities
  - $\circ$  Asset/liability choices + realization of uncertainty result in  $\{LMI^{\omega}\}$
- $\Delta^{LMI}$  along different risk factors

- Bank with \$20 of equity and \$80 of debt
- Debt: \$50 of overnight repo financing; rest is 5-year debt.
- The bank buys one <u>Agency mortgage-backed</u> <u>security</u> for \$50 (which is financed via repo at a 0% haircut)
- Loans \$50 to a firm for one year.

| Assets           | Liabilities      |
|------------------|------------------|
| \$50 1-Year Loan | \$20 Equity      |
| \$50 Agency-MBS  | \$50 Repo debt   |
|                  | \$30 5-Year debt |

- LMI places a larger weight on repo debt than Agency MBS
- This bank's LMI<0

| Assets           | Liabilities      |
|------------------|------------------|
| \$50 1-Year Loan | \$20 Equity      |
| \$50 Agency-MBS  | \$50 Repo debt   |
|                  | \$30 5-Year debt |

- Liquidity risk: What if the firm cannot renew financing?
- Leverage is a crude measure...

| Assets                 | Liabilities      |
|------------------------|------------------|
| \$50 1-Year Loan       | \$20 Equity      |
| \$50 Agency-MBS        | \$50 Repo debt   |
| \$50 Private-Label-MBS | \$30 5-Year debt |

- The asset-side is less liquid
- More <u>liquidity mismatch</u> in this example

#### **Example 2: Rehypothecation**

- Dealer starts with \$10 of equity, invested in \$10 of Treasuries
  - Initially no leverage
- Dealer lends \$90 to a hedge fund against \$90 of MBS collateral in an overnight repo
- Dealer posts \$90 of MBS collateral to money market fund and borrows \$90 in an overnight repo

| Assets                  | Liabilities       |
|-------------------------|-------------------|
| \$10 Treasuries         | \$10 Equity       |
| \$90 Loan to Hedge Fund | \$90 of Repo Debt |

#### Example 2: Leverage Error

- Dealer lends \$90 to a hedge fund against \$90 of MBS collateral in an overnight repo
- Dealer posts \$90 of MBS collateral to money market fund and borrows \$90 in an overnight repo

| Assets                  | Liabilities       |
|-------------------------|-------------------|
| \$10 Treasuries         | \$10 Equity       |
| \$90 Loan to Hedge Fund | \$90 of Repo Debt |

- Leverage = 9X, but little liquidity risk
- LMI nets asset liquidity against liability liquidity
- What if hedge fund loan was 10 days? Liquidity falls...

#### Example 3: Credit Lines

- Bank with \$20 of equity and \$80 of debt
- The bank buys \$100 of U.S. Treasuries
- Offers a credit line to a firm to access up to \$100.
- Bank has made a contingent commitment of liquidity.
- Liquidity risk: LMI < 0 in state(s)  $\omega \in \Omega$  where credit line is accessed.
  - Note: We are most interested in aggregate states ω

#### How can you use the LMI?

- 1. Liquidity aggregation
  - Map, pockets, chains
- 2. Scenario analysis and liquidity risks
  - $\circ$   $\Delta^{\mathrm{LMI}}$  along certain (liquidity) factors
- 3. Gauging feedbacks and spillovers
  - Liquidity is a general equilibrium phenomenon

### Liquidity Map

- Liquidity measures aggregate
  - If bank A holds overnight repo on Bank B
    - **▼** Bank A is long liquidity, Bank B is short liquidity
    - ▼ More generally, there is netting of asset and liability liquidity
  - If bank A holds \$100 of Treasuries and Bank B holds \$100 of Treasuries
    - **▼** Total liquidity reflects total holding of \$200
- Aggregate LMI equals a "liquidity aggregate"
  - Analogy to (old days) monetary aggregates
  - O Monetary aggregation with weights  $\{\lambda\}$  along the lines of Barnett
- Note: Measures designed to allow for some crosschecking, like Flow of Funds.

#### **Liquidity Pockets**

#### Sectorial LMI

- Guess: Banking sector is net short liquidity
  - **▼** But, to whom, how much, etc.
- Guess: Corporate, household sectors are long liquidity
- 2000 to 2008 build up
  - Guess: Aggregate liquidity rises (good), but LMI for financial sector is more negative (bad)
- Identify systemically important institutions
  - LMI<0 identifies "financial intermediary"</li>
  - Lowest LMIs are the systemically important ones

#### **Liquidity Chains**

- Baseline case: Symmetric weights  $\{\lambda\}$ 
  - $\circ$  i.e. Asset weights  $\{\lambda\}$  match liability weights  $\{\lambda\}$
- Consider asymmetric case:
  - Bank A owns \$100 short-term repo issued by bank B:
    - $\times$  Asset weight = 0.95
  - Bank B issues \$100 short-term repo:
    - **▼ Liability weight** = 1
- Measurement: liquidity chains (A owes to B owes to C...) causes a contraction in aggregate liquidity

### Summary

- Target well defined
  - Liquidity Mismatch Index
  - Captures relevant exposures
  - Useful to diagnose systemic liquidity risk
- Relative to Basel III Liquidity Coverage Ratio
  - Measure liquidity in \$s rather than LCR ratio
  - More explicitly capture liquidity risk as a macrostress event