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Abstract

Sequential service in the banking sector, as modeled by Diamond
and Dybvig (1983), is a barrier to full insurance and potential source of
financial fragility against which deposit insurance is infeasible (Wal-
lace, 1988). In this paper, we pursue a different perspective, view-
ing the sequence of contacts as opportunities to extract information
through a larger message space with commitment to richer promises.
As we show, if preferences satisfy a separating property then the de-
sired elimination of dominated strategies (Green and Lin, 2003) occurs
even when shocks are correlated. In this manner the sequential service
promotes stability.

1 Introduction

In the influential work of Bryant (1980) and Diamond and Dybvig (1983) the
question of whether bank runs result from opportunistic behavior is critical.
By emphasizing welfare optimality in face of private information, the liter-
ature that evolved appeals to the revelation principle and focuses on direct
mechanisms. In the context analyzed by Wallace (1988), the question has
a trivial answer unless the planner is forced to make irreversible transfers
in sequence as it gathers information about liquidity needs. But then, with
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this kind of sequential service, bank runs, defined as suboptimal equilibria
attained by misrepresentation strategies, have been shown to exist.1 In this
paper, we argue that the dual societal goal of achieving efficiency and unique-
ness is poorly addressed by stringent applications of the revelation principle.2

We show that a larger message space can explore the sequential service in
order to promote bank stability.
In a way, our results generalize the findings in Green and Lin (2003).

Assuming finite population and independent, private shocks to preferences,
they have changed the view that the Diamond-Dybvig environment is intrin-
sically exposed to runs. Under sequential service, they notice, the last trader
is offered a consumption plan defined by what others have done, which is his-
tory, and by what that trader’s type-announcement is. And at this last node
in the event tree there is no future opportunistic behavior to consider. Hence,
the fact that the planner has computed constraints under the assumption of
truthful revelation (by all players) is not an issue for the last traders. Their
constraints still represent individual rationality even if someone has lied in
the past.
Green and Lin (2003) go further to deduce a chain of dominant strategies.

That is, conditional on incoming traders revealing their types, truth-telling
is the best reply to all past actions. As Andolfato et al. (2007) show, the
argument is invalid when shocks are correlated because truth-telling con-
straints are no longer invariant to past lies since the planner is led to the
wrong conditional distribution of incoming types.
In this paper, we argue that runs can actually be ruled out in a large set of

1The main result in this paper does not apply directly to the Peck-Shell (2003) model
(the first run examples with sequential service). We show, however, runs being eliminated
in one related specification. As mentioned in our final section, the propositions do apply
to another cornerstone case of financial fragility identified by Ennis and Keister (2009). In
addition to references therein, a related literature is found in survey papers by Cavalcanti
(2010), and Ennis and Keister (2010).

2We think that progress in this matter, at the heart of implementation theory, is not
likely to benefit from a generic result in the field. As Jackson (2001) asserts in his survey,
existing Bayesian-implementation predictions extend Nash-implementation results, and
the mechanisms used to prove the classic Maskin (1999) theorem rely heavily on comparing
announcements across individuals, something infeasible with sequential service. The reader
may also appreciate that we pursue implementation with a modest-sized message space,
without highly inefficient outcomes standing off the equilibrium path.
Aside from more abstract theory, Basseto and Phelan (2008) provide an equally simple

implementation mechanism in a taxation environment (without sequential service), which
requires the population size to be sufficiently high.
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economies, even if the stochastic process generating types is not restricted. In
order to prevent runs, preferences are required to satisfy certain conditions
and welfare may have to be reduced by an arbitrarily small number. But
with such qualifications we can show that direct-revelation mechanisms are
not sufficiently broad in the case of correlated shocks. In order to make this
point, we ask each trader to send two messages to the planner.
The idea is easily understood with shocks producing impatient traders

with zero marginal utility of “late” consumption, and patient traders that
can substitute “early” and “late” consumption perfectly. Let us examine the
response to typical transfers based on a type announcement. Notice that
lies correspond to patient traders consuming early and receiving no future
transfers. But, after consuming, anyone in such a corner situation would not
mind to reveal their true type in a second message, an information that the
planner can then use to adjust the contract to incoming traders. Allocations
then become functions of a larger history of announcements. But because
the planner is always applying the correct conditional distribution of shocks,
a recursive elimination of run strategies follows.
With more general preferences, requiring all types to consume in all dates,

we find that the planner’s ability to commit can be explored further, in light
of a separation property detailed below.
The rest of the paper is divided as follows. Section 2 presents the envi-

ronment with weak assumptions on preferences and their stochastic process.
Section 3 defines the usual direct mechanisms. Section 4 introduces the
concept of relative optimality and the assumption of separation. Section 5
introduce mechanisms that provide the desired information update. Section
6 discusses alternative assumptions supporting the main results. Section 7
concludes with final remarks. The appendix contains all proofs.

2 The environment

The economy has two dates and is inhabited by a finite population of size
n̄. The first date is divided into n̄ (sub) periods. There is a single resource
constraint for providing consumption across periods and dates. In particu-
lar, the economy is endowed with Y > 0 date-1 goods that can be stored
throughout the first n̄ periods without costs. There is also a linear tech-
nology for transforming date-1 leftovers into date-2 consumption goods at
rate-of-return R > 1.
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Each person is randomly paired with a date-1 period and, in addition, is
hit by a privately observed preference shock that can be either 0 (impatient)
or 1 (patient). ‘Person n’ is someone matched with period n at date 1. If,
for that person, consumption is cn1 at date 1, and cn2 at date 2, then the
derived utility is uωn(cn1, cn2) if the shock realization is ωn. The functions u0
and u1 are assumed increasing, continuous, concave and differentiable.
We shall use letters in bold, without subscripts or superscripts to denote

vectors of size n̄. Hence ω stands for a full history of shocks (ω1, ..., ωn̄)
identified with a queue, that is, it describes the type of the person matched
with each period in date 1. When we want to refer to a history after n we
use ω+n = (ωn+1, ..., ωn̄). For a history before n we use ω

−
n = (ω1, ..., ωn−1).

We let Ω = {0, 1}n̄ and assume that a state ω ∈ Ω occurs with probability
P (ω) > 0. We assume the following sequence of events. After ω is drawn
according to P , people are matched to the date-1 periods and learn their
values of (n, ωn). Then, they are called to sequentially (announce a message
and) consume in date 1, according to the queue order, without knowing
what previous traders (those in periods 1, ..., n − 1) have done. Since types
are private information, any mechanism for transferring resources to person
n at date 1 cannot depend on information provided by person n′ if n′ > n.
Since individuals are identical ex ante, the planner objective is maximization
of expected utility.

3 Direct mechanisms

We consider first the standard application of the revelation principle in the
form of direct mechanisms. We start defining transfer functions. They
map types (or announcements about types) into consumption allocations,
according to constraints imposed by sequentiality. A transfer function is
c = (c1, .., cn̄) where, for each n, cn = (cn1, cn2) maps the set of histories Ω
into R2+. A transfer function c satisfies the sequentiality requirement if cn1
is constant on coordinates n+ 1, ..., n̄. The set of such functions, which also
satisfies the feasibility constraint

∑

n

(
cn1 +R−1cn2

)
≤ Y (1)

at all points of its domain, is the set of direct mechanisms denoted D.
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The ex ante utility attained by c ∈ D is

∑

ω∈Ω

∑

n

P (ω)uωn(cn(ω)). (2)

There is also a definition of truth-telling constraints, associated to c ∈ D,
for position n:

∑

ω∈Ω

pn(ω;ω) (uω(cn(ω))− uω(cn(ω−n, ω
′))) ≥ 0 ∀(ω, ω′) ∈ {0, 1}2, (3)

where pn(ω;ω) is the probability of event ω conditional on person n drawing
ω. The notation ω−n has the standard meaning

ω−n = (ω1, .., ωn−1, ωn+1, ., ωn̄)

while (ω−n, ω
′) denotes the profile where the n-th entry of ω is replaced with

ω′.
The benchmark optimality problem is that of choosing c ∈ D in order

to maximize (2) subject to truth-telling constraints (3) for all positions. A
solution c∗ is said to be optimal.
Every element c of D defines a game of announcements. A (direct)

strategy for person n is a function sn : {0, 1} → {0, 1}, and that for the
whole population is s. The vector s(ω) defines an announcement profile at
point ω. A Bayesian-Nash equilibrium for c is s such that, for all n and all
ω, ∑

ω∈Ω

pn(ω;ω)[uω(cn(s(ω)))− uω(cn(s
′(ω)))] ≥ 0 (4)

for strategies s′ such that s′−n = s−n.

4 Relative optimality

With direct mechanisms, the announcements that determine current trans-
fers are also used to inform the planner about future distributions of tastes.
As we shall see, it is useful to study behavior when the planner uses one an-
nouncement to organize transfers and another to gather information about
the future. Before such a mechanism is defined explicitly in the next section,
we present a refinement of the concept of optimality for abstract games that
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requires person-n to be offered an “efficient” contract, in the perspective of
a subgroup called truncation n.
We define optimality of c ∈ D, relative to arbitrary strategies s and t,

that need not be equilibria, by checking a series of optimization problems.
Truncation n is the subgroup formed by people in positions n, ..., n̄. We
need the definition of interim expected utility for truncation n, conditional
on t−n (ω) = (t1(ω1), ..., tn−1(ωn−1)), which is

∑

ω∈Ω

P (ω|t−n (ω))
n̄∑

i=n

uωi(ci(ω)). (5)

The series of problems correspond to interim-utility maximization subject
to stochastic endowments. The case n = 1 corresponds to the standard
problem that gives rise to optima of the previous section. For n ≥ 2, a
planner maximizes interim utility of truncation n, subject to truth-telling
and resource constraints analogous to those of the original economy, but
with total endowment reduced by commitments made at truncation n − 1
and parametrized by (s, t). More formally, let c1 ∈ D solve the benchmark
optimality problem henceforth called (P1). In recursive terms, problem (Pj+
1) is defined as that of choosing cj+1 ∈D so as to maximize (5) for n = j+1,
subject to truth-telling constraints (3) for n = j+1, ..., n̄, and subject to the
promise-keeping constraint

cj+1n = cjn ◦ s, ∀n ≤ j, (6)

where cj ∈D solves (Pj).
We say that c is optimal relative to (s, t) if there exists {c1, ..., cn̄} solving

(P1-Pn̄) and such that cn = cnn for n = 1, ..., n̄. We let R denote the set of c
that is optimal relative to some pair of strategies. It follows that

Lemma 1 R is a subset of D.

There are two assumptions about preferences that we need. They are
satisfied by the preferences assumed in Green and Lin (2003) and Peck and
Shell (2003), as discussed in Section 6. We shall state them as indirect
requirements that can be satisfied by more general preferences, and provide
later a direct restriction on utility functions. Let D denote the set of direct
mechanisms that satisfy all truth-telling constraints with strict inequality.
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Assumption (interiority) R is a subset of the closure of D.

The relevance of interiority can be appreciated in the following proposi-
tion.

Proposition 2 Truth telling is a best reply to truth-telling strategies in any

c ∈ R, and is the unique best reply in some c̃ ∈ D arbitrarily close to c.

Proposition 2 provides some elements for the construction of a mechanism
inducing truth-telling in a strong sense. If the planner could learn the true
history ω−n and plan truncation-n consumption conditional on future ω

+
n , so

as to satisfy (3), then revelation is a truncation equilibrium regardless of how
much resources are tied up by previous actions. In order to design a way of
learning ω−n for sure, we need more structure.
The next assumption refers to the impact of small changes in contracts

achieved by reallocations across dates. Suppose that c is optimal relative to
(s, t), and that the pair (n, ωn) is given. If a ∈ R and, for a given rate of
return ρ > 0, cn(s(ω)) ≥ (a,−ρa), then we can define

Un(a, ωn) ≡
∑

ω∈Ω

pn(ω;ωn)uωn(cn(s(ω)) + (−a, ρa)).

In the assumption below, the notation N0 stands for an open neighborhood
of 0.

Assumption (separation) There exists ρ > 0 such that for any given
(c, n,N0), with c ∈ R and n < n̄, one can find a, b ∈ N0 satisfying

sn(1) = 0 implies Un(a, 0) < Un(0, 0) and Un(a, 1) > Un(0, 1);

sn(0) = 1 implies Un(b, 0) > Un(0, 0) and Un(b, 1) < Un(0, 1).

5 Twofold mechanisms

One motivation for categorizing transfers according to truncations is the pos-
sibility that the planner is able to infer the true history with richer message
spaces. In this section, we seek that in what we call twofold mechanisms.
The augmented set of histories is Γ = {(h1, ..., hn̄) : hn ∈ {0, 1}

2} and has
typical element h. A twofold transfer function is x = (x1, .., xn̄) where, for
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each n = 1, ..., n̄, xn = (xn1, xn2) maps Γ into R
2
+. At each period n, a person

is called to make an announcement hn ∈ {0, 1}
2. These transfer functions

are also restricted by sequentiality: xn1 must be constant on h
+
n . The set X

of such functions which also satisfies the feasibility constraint
∑

n

(
xn1 +R−1xn2

)
≤ Y (7)

at all points of its domain is the set of twofold mechanisms. In a similar
fashion as with direct mechanisms, twofold mechanisms define a two-part
revelation game where a strategy for person n is a pair of functions (sn, tn) :
{0, 1} → {0, 1}2. Thus a strategy for the economy is a pair of direct strategies
(s, t). A Bayesian-Nash equilibrium is defined in the obvious way.
We now construct a particular x recursively, starting with an optimal

direct c∗. We then pursue the following separation scheme for some ρ > 0
and small ε > 0. For n = 1, we fix c11(ω) = c∗1(ω). If hn1 = 0, the
individual is offered a perturbation (−an, ρan) with |an| < ε that only a
type-1 would accept. Alternatively, if hn1 = 1, the individual is offered
a perturbation (−bn, ρbn) with |bn| < ε that only a type-0 would accept.
Otherwise, no adjustment is offered. The responses are captured as a second
type announcement hn2. This gives, for n = 1,

xn(h) =






cnn(h11, ..., hn̄1) + (−an, ρan), if hn1 = 0 and hn2 = 1;
cnn(h11, ..., hn̄1) + (−bn, ρbn), if hn1 = 1 and hn2 = 0;
cnn(h11, ..., hn̄1), otherwise.

(8)

The induction proceeds with the definition of xn+1 given xn. Let e : Ω→
Ω denote the identity function. The mechanism plans consumption for person
n+ 1 as in the maximization problem (Pn+ 1) of the previous section with
s = e but using t = (h−n+1,2, e

+
n ). Notice that the way that t

+
n is chosen has

no consequence for the solution cn+1n+1 of such maximization problem. Next,
we set xn+1(h) = cn+1n+1(h11, ..., hn̄1) and apply (8) for suitably chosen (an, bn)
with max{|an|, |bn|} < ε.
Finally, for n = n̄, having computed cn̄n̄ as above, we set

k0(h) = (1−
ρ

R
)
n̄−1∑

n=1

[hn2(1− hn1)an + hn1(1− hn2)bn], k1(h) = Rk0(h)

and

xn̄(h) =






cn̄n̄(h11, ..., hn̄1) + k0(h), if hn̄1 = hn̄2 = 0;
cn̄n̄(h11, ..., hn̄1) + k1(h), if hn̄1 = hn̄2 = 1;
(0, 0), otherwise.

(9)
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That is, make the person n̄ choose sn̄ = tn̄ and pay for the social cost of
extracting information.

Lemma 3 There exists a twofold mechanism featuring satisfaction of truth-

telling constraints with strict inequality and welfare close to optimal.

Since ε and hence the costs ki are arbitrarily small then consumption of
person n̄ is nonnegative in all histories. In addition, due to the interiority as-
sumption, there is a mechanism close to c∗ satisfying truth-telling constraints
with strict inequality. Consequently, one can construct a twofold mechanism
arbitrarily close to x and such that truth-telling constraints in the problems
defining cnn never bind. These are the elements of the proof of the following
proposition.

Proposition 4 Let a twofold mechanism satisfying Lemma 3 be fixed. Then

all of its Bayesian-Nash equilibria feature truth-telling in the second an-

nouncements.

We conclude this section with our main result.

Proposition 5 Truth-telling in all announcements is the only Bayesian-

Nash equilibrium for a Proposition-4 twofold mechanism.

6 Alternative assumptions and extensions

In this section, we provide direct restrictions on utility functions that imply
interiority and separation. We also present a numerical example, in the spirit
of Peck and Shell (2003), for an alternative environment where strategies
cannot depend on positions.

6.1 Restricting utility functions

Consider the following preference structure.

Condition (primitive) The utility functions u0 and u1 are such that

inf
(a,b)≥0

∂u0
∂c1
(a, b)

∂u0
∂c2
(a, b)

> sup
(a,b)≥0

∂u1
∂c1
(a, b)

∂u1
∂c2
(a, b)

.
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Proposition 6 If preferences satisfy the primitive condition then separation

holds.

Example Consider the utility function uω, where u0(c1, c2) = Av(c1) and
u1(c1, c2) = v(c1+c2), for A > 0, and v increasing, continuous, concave,
differentiable and satisfying Inada conditions.

It follows that uω as in the above example satisfies the interiority and
separation assumptions.

6.2 Restricting the strategy space

Consider now that traders commit to announcement strategies before learn-
ing their assigned positions. We allow for mixed strategies of the form
π : {0, 1} → [0, 1] with the understanding that π defines the probability
of announcement m ∈ Ω as

Qπ(m|ω) =
∏

n

[mnπ(ωn) + (1−mn)(1− π(ωn))].

Likewise, that probability with deviation τ in position n is

Qπτ
−n(m|ω) = (mnτ (ωn)+(1−mn)(1−τ (ωn))

∏

i�=n

[miπ(ωi)+(1−mi)(1−π(ωi))].

If c ∈ D then a Bayesian-Nash equilibrium for c is π such that for all ω
and all alternative strategy τ ,

∑

ω,n,m

1

n̄
p(ω;ω)[Qπ(m|ω)−Qπτ

−n(m|ω)]uω(cn(m)) ≥ 0,

where p(ω;ω) is the probability of event ω conditional on ωn = ω for some
n. The truth-telling strategy is π such that π(0) = 0 and π(1) = 1. The
definition is easily extended to twofold mechanisms by changing the support
of π to {0, 1}2.
We now construct a basic twofold mechanism z, starting again with an

optimal direct c∗. We let h·i for i ∈ {1, 2} stand for (h1i, ..., hn̄i). Likewise,
h
+
ni and h

−
ni denote (hn+1,i, ..., hn̄i) and (h1i, ..., hn−1,i), respectively. We then

set

zn(h) =






c∗n(h·1) , if h·1 = h·2 ;
c∗n(h

−
j+1,1,h

+
j2) + (0, fnj(h)), if n < j, h−j1 = h

−
j2, hj1 �= hj2;

c∗n(h
−
n+1,1,h

+
n2), if h−n1 = h

−
n2, hn1 �= hn2;

(0, 0), otherwise;
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where

fnj(h) =

{ ∑n̄

i=j+1

Rc∗
i1
(h−
j+1,1

,h+
j2
)+c∗

i2
(h−
j+1,1

,h+
j2
)

∑j−1

n′=1
hn′1

, if hn1 = 1;

0, otherwise.

In words, this benchmark mechanism follows the optimal transfers until a
lie is detected at position j. In this case, person n, for n = j, gets paid
c∗n(h

−
n+1,1,h

+
n2) and triggers a change in transfers to incoming traders. In

particular, traders after j receive zero transfers at both dates. Then, accord-
ing to the definition of the function f , the resources not spent with traders
after j are rebated back, at date 2, to traders before j that announced the
patient type.
The idea is that the planner is informed as soon as a lie occurs. In

order to induce incoming traders to reveal their types it suffices to promise
a small ε of consumption after a lie and to run the separation scheme of
the previous section. For simplicity we have constructed z with a transfer
of zero to incoming traders. The function f was designed to give an extra
incentive for patient individuals to tell the truth, and other functions could
be considered. For example, some transfers could be made to those that
declare to be impatient in positions 1, ..., j − 1 if their marginal utility for
consumption at date 2 is positive.
We present a numerical example with a run equilibrium with c∗ that

does not have a run equilibrium with z. The utility has a functional form
as in the Example above, with a small modification: u0(c1, c2) = max{λ,
Av(c1)} and u1(c1, c2) = max{λ, v(c1 + c2)}, where v(c) = −1

c
and λ is a

lower bound so that the utility is finite at (0, 0), but always greater than λ at
the optimum. The conclusions would be the same if λ = −∞, except that,
with z, the planner would have to transfer an arbitrarily small quantity of
resources after a lie is detected.
Setting A = 10, R = 1.05 , and P (·) constant on Ω, a consequence of

assuming that shocks are iid and that the probability of being patient is
the same as that of being impatient, we mimic one economy in Peck and
Shell (2003, Appendix B), except for one key difference. We set n̄ = 3 and
Y = 9 (instead of n̄ = 2 and total endowment of 6), so as to obtain the same
endowment per capita. The importance of a larger n̄ is that a deviation from
running strategies, with z, may generate a rebate with positive probability
for the first trader (when the next trader announces a lie).3

3We did run simulations with N = 2 to test the code by reproducing findings in Peck
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Figure 1: Direct and twofold mechanisms for a Peck-Shell example.

We use discrete approximations of the functions in D and compute the
optimum c

∗. It features active truth-telling constraints. In the graph on the
left in Figure 1 we plot the expected utility for a patient trader associated
to choosing truth-telling (τ(1) = 1) and misrepresentation (τ (1) = 0), in
response to a mixed strategy π(1) ∈ [0, 1]. The plot shows that misrepre-
sentation is indeed the best reply to the run strategy π(1) = 0 because the
expected utility of lying is above that of truth-telling at that point. In other
words, there is a run equilibrium with c∗. In the graph on the right, we plot
the difference of the counterparts of the two curves with mechanism z. We
find that truth-telling is always the unique best response among all mixed
strategies, although the plot refers to alternative pure strategies. Hence, for
this particular economy, there are no run-equilibria for mechanisms close to
z.
We cannot show, however, that for general specifications the twofold

mechanism of this subsection implements the optimum uniquely. The diffi-
culty is illustrated with the following reasoning. Suppose that π is a candidate

and Shell (2003). As expected, the twofold mechanism does not eliminate bank runs in
this case.
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equilibrium such that (π(0), π(1)) �= (0, 1). Then, conditional on drawing a
position after a lie has occurred, truth-telling is the best response for a small
perturbation of the zero-transfer. Now, conditional on previous announce-
ments being truthful, then truth-telling is the best response in two scenarios.
First, if no lie becomes detected, implying that transfers follow the optimum
and, consequently, that truth-telling constraints are satisfied. Second, if a lie
is detected, but the planner saves resources so as to lift date-2 consumption
of previous traders beyond optimal levels. But a third scenario cannot be
ruled out, when there are no resources left to assure that previous traders
receive the optimal allocation or better. This can happen, for instance, when
a lie is detected at the last position.4

The preceding discussion is nevertheless useful for understanding the role
of the “clock” assumption, that is, the assumption that strategies depend
on positions which gives rise to the elimination of dominated strategies in
the previous section. Our point is to illustrate that twofold mechanisms can
reduce the set of equilibria relative to direct ones.

7 Final remarks

On a broader perspective, it is natural to assume that information is revealed
sequentially in many economic contexts. But in models of banking, as we
find out, there are particular implications of sequential services. On one
hand, the sequential service is a barrier to full insurance and seems to be a
source of fragility. On the other hand, it provides a series of opportunities
for the planner to obtain information by exploring the ability to commit
to future transfers. The latter helps to build a sound banking system and
can be related to partial suspension schemes and historical episodes of bank
holidays.5

Figuring out the dominant effect on bank stability is not straightforward,
however, since the availability and usefulness of information devices depend
on details of the model. For instance, in the modification of the Diamond-
Dybvig model pursued by Peck and Shell (2003), with strategies that do not
depend on positions, the results are mixed. Direct mechanisms have runs in

4The difference in expected utilities falls in Figure 1, with the twofold mechanism,
because the average rebate generated by misrepresentation falls as truth-telling increases.

5Partial suspension schemes have been studied formally in model specifications without
aggregate uncertainty.
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one of their examples with two individuals, as well as in one of our examples
with three individuals. Twofold mechanisms eliminate runs in the latter but
not in the former case. Although our recursive elimination of dominated
strategies does not apply in the Peck-Shell setting, future research can assess
the performance of new mechanisms in a broader set of environments. Using
elements of our approach, these mechanisms let the planner know when a
run is taking place. Because the planner can shift transfers to a pattern less
exposed to runs, this can eliminate the impulse to run fueled by panic that
others are running.
Another sharp example of equilibrium runs, without the Peck and Shell

(2003) modification, is due to Ennis and Keister (2009). Their specification
has correlated shocks and preferences satisfying our separation and interiority
assumptions. But because our larger mechanism eliminates runs in this case
with relative ease, future research could address more systematically issues
related to societal cost of identifying a run with more general preferences. It
can also explore information devices not covered in our analysis. For instance,
the planner could ask each trader to take a bet on the type of the last person
in the queue. Since types are correlated and the last person always tells the
truth, this device may offer yet another way to extract information at an
arbitrarily low cost of setting up suitable lotteries.
The device that we did study formally has the planner opening borrowing

and lending opportunities that depend on announcements.6 The mechanism
extracts information at zero cost in equilibrium because the opportunities are
not taken under truth telling. But because they can distort incentives, the
consequent effort to relax truth-telling constraints can spend resources, albeit
in arbitrarily small quantities. If, however, the relevant off-equilibrium trans-
fers in the Ennis-Keister specification satisfy truth-telling constraints strictly
then our large mechanism would attain the exact optimal welfare. This
possibility raises an awareness about limitations of the standard revelation-
principle approach.

6The idea that depositors send two messages to their banks may seem “unpalatable”
empirically. Of course, depending on the context being studied, the prices of speculative
assets such as gold could work as proxies for additional messages.
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APPENDIX

Lemma 1 R is a subset of D.

(The proof is straightforward and left to the reader).

Proposition 2 Truth telling is a best reply to truth-telling strategies in any
c ∈ R, and is the unique best reply in some c̃ ∈ D arbitrarily close to
c.

Proof. Consider the games {c1, ..., cn̄} associated to (c, t, s) when c is opti-
mal relative to (t, s). By assumption, {c1, ..., cn̄} solves (P1-Pn̄) with c1 = c.
With n fixed, consider the best-reply correspondence for person n in the
truncation-n mechanism c

n. If the strategy of traders n + 1, ..., n̄ in the
truncation-n game is truth-telling then the person-n reply problem is that
of choosing s′ ∈ {0, 1} so as to maximize the expectation of uω(c

n
n(ω−n, s

′))
with respect to ω, conditional on ωn = ω. Since cn solves (Pn), then cnn, the
n-coordinate of cn, satisfies the truth-telling constraint (3) at (n, ω),

∑

ω∈Ω

pn(ω;ω) (uω(c
n
n(ω−n, ω))− uω(c

n
n(ω−n, ω

′))) ≥ 0

for all ω′ ∈ {0, 1}. This assures that s′ = ω is a best reply for person n in
mechanism c

n. Now, since c ∈ R then, under the assumption of interiority,
there exists {c̃1, ..., c̃n̄} ⊂ D arbitrarily close to {c1, ..., cn̄} but satisfying
truth-telling constraints with strict inequality. Thus repeating the previous
argument for the associated truncation-n transfer function c̃nn concludes the
proof.

Lemma 3 There exists a twofold mechanism featuring satisfaction of truth-
telling constraints with strict inequality and welfare close to optimal.

Proof. Consider the construction of the above twofold mechanism x. Since
the sequence of cnn is derived from small perturbations of relatively optimal
mechanisms c ∈ R, then the interiority assumption implies that the con-
struction can be redone by using instead c̃ ∈ D arbitrarily close to c.

Proposition 4 Let a twofold mechanism satisfying Lemma 3 be fixed. Then
all of its Bayesian-Nash equilibria feature truth-telling in the second
announcements.
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Proof. Let x be constructed as above and let us consider the best reply to
arbitrary equilibrium strategy (s, t). Let (s′1, t

′
1) be a best response by person

1. Then t′1 must be the identity function, otherwise the separation assump-
tion would be violated since, by construction, the underlying (c11, ..., c

n̄
n̄) is

optimal relative to (s, t). Since (s, t) is an equilibrium, t1 is also the iden-
tity function. By induction, assuming that t−n is the identity function, the
participation constraints used in the derivation of cnn for all n < n̄ become
written with the correct conditional distribution of future shocks. Thus the
separation assumption implies the result also for all n < n̄. That tn̄ is also
the identity function follows from the fact that, for the last person, truth-
telling is a dominant strategy with any relatively optimal mechanism and,
by force of (9), there is no gain in choosing t′n̄ �= s′n̄ .

Proposition 5 Truth-telling in all announcements is the only Bayesian-
Nash equilibrium for a Proposition-4 twofold mechanism.

Proof. Let x be a Proposition-4 twofold mechanism. For such a mech-
anism it suffices to examine the best response to (s, e), that is, when the
candidate equilibrium features the identity function e as the list of second
announcements. Also, as argued in the proof of Proposition 1, in any equi-
librium sn̄ must be the identity function. As a result, by construction of x,
the underlying (c11, ..., c

n̄
n̄) is optimal relative to (s, e) and built with slacking

truth-telling constraints. Because the conditional distribution used to con-
struct cn̄−1n̄−1 is the correct one, then sn̄ = en̄ and the fact that truth-telling
constrains slack imply that sn̄−1 = en̄−1 is the best response for person n̄−1.
Repeating the argument in a backward fashion demonstrates that (e, e) is
the only Bayesian-Nash equilibrium of x.

Proposition 6 If preferences satisfy the primitive condition then separation
holds.

Proof. Take ρ such that

inf
(a,b)≥0

∂u0
∂c1
(a, b)

∂u0
∂c2
(a, b)

> ρ > sup
(a,b)≥0

∂u1
∂c1
(a, b)

∂u1
∂c2
(a, b)

.

Now note that for ε > 0 sufficiently small,

u0 ((a, b) + (−ε, ρε)) ≈ u0 (a, b) + ε

(
−
∂u0

∂c1
(a, b) + ρ

∂u0

∂c2
(a, b)

)
< u0 (a, b) .
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And

u1 ((a, b) + (−ε, ρε)) ≈ u1 (a, b) + ε

(
−
∂u1

∂c1
(a, b) + ρ

∂u1

∂c2
(a, b)

)
> u1 (a, b) .

Therefore the patient person will never choose (a, b) if he can choose (a, b)+
(−ε, ρε). Reciprocally, the impatient prefer (a, b). Now if ε is instead negative
and small we reverse the conclusion.
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