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Modest Means 
 

This study highlights a mistake that is long overdue for correction: credit loss models are not 
protected against Type I error. As such, they can mislead their users. It is shown here that Type I 
error can be controlled, even in a credit loss model.  

Scientific researchers protect against Type I error by using statistical hypothesis tests. Each of 
two models is fit to data. The simpler model is rejected only if it seems inadequate. The 
probability of falsely rejecting the simpler model—that is, the probability of making a Type I 
error—is usually kept at 5% or less. 

To date, credit loss models have not been protected against Type I error because they have not 
been tested. Instead, researchers fit default distributions to default data and LGD distributions 
to LGD data. They stop short of producing a credit loss model, let alone testing one. 
Practitioners assemble their loss models from default models, LGD models, and an assumed 
copula, as if the resulting combination were automatically protected against Type I error.  

This study presents the first effort to control Type I error in a credit loss model. It connects a 
default model to an LGD model and calibrates the resulting credit loss model to credit loss data. 
Then it tests against a suitable null hypothesis. This demonstrates that Type I error can be 
controlled. The analysis is performed twice: first using an extremely simple LGD model, then 
using a more nuanced one.  

Although the main contribution is to introduce hypothesis testing and control of Type I error, 
the results of the tests shed light on the current science of credit loss modeling. Neither credit 
loss model is able to reject the null hypothesis. Since this might suggest a defect in the data, an 
experiment is performed with simulated data from one of the credit models. Most often, 
hundreds of years of simulated data are required to reject the null hypothesis. Various models 
are compared graphically. None appear quite different from the null. All three strands of 
evidence—historical data, simulated data, and graphical comparison—suggest that the null 
hypothesis may be genuinely difficult to improve upon with the short data sets now available.  

Therefore, the null hypothesis developed here is put forward as a standard against which other 
combinations of theory and data might be tested. Outperforming such a null hypothesis is the 
minimum performance needed to protect against Type I error. 

 

Credit loss with fixed LGD 

The first credit loss model assumes that LGD is fixed. Such an assumption, fortunately, is not 
often considered these days. It is now generally acknowledged that LGD varies with the default 
rate. The idea of fixed LGD has been repudiated by work with LGD data and LGD models.  
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The current study has a different subject, credit loss models. Since a credit loss model is 
different from an LGD model (and different from a default model), it is worthwhile to consider 
the hypothesis of fixed LGD in this new context. A more nuanced LGD model is considered later. 

To complete the credit loss model, we choose the most common model of default, the Vasicek 
distribution.1

In most cases a choice must be made of the copula that connects the distribution of default and 
the distribution of LGD. Those three components imply the joint distribution of the default rate 
and the LGD rate. Assuming all exposure amounts are equal, credit loss is the product of default 
and LGD. The distribution of credit loss can then be inferred by conventional techniques.  

 This applies only to a large homogeneous portfolio, which is assumed.  

In the current model, there is a shortcut. The credit loss rate equals the product of the LGD rate 
(which is fixed at the value of expected LGD, ELGD) and the default rate. The default rate 
depends on the probability of default (PD), correlation (ρ), and an unobserved standard normal 
systematic risk factor, Z. Specifically, 
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where Φ[⋅] symbolizes the standard normal cumulative distribution function. This loss function 
is converted to a probability density function (PDF) u sing the change-of-variables technique: 
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where φ[⋅] symbolizes the standard normal PDF. We refer to Expression (2) as PDF3, to signify 
that it contains three parameters. 

PDF3 is called the alternative hypothesis, or H1. Under the rules of hypothesis testing, it must be 
compared to a simpler null hypothesis. Quite often, the null hypothesis is that a parameter 
equals zero. However, this approach is not suitable here. If either PD or ELGD is zero, no credit 
loss is possible. If correlation is zero, credit loss is always observed at exactly its expected level, 
and no credit risk is possible.  

The null hypothesis in this case is that credit loss, itself, has a Vasicek distribution. The mean of 
this distribution is expected loss, symbolized as EL: 

                                                        
1 Vasicek. 
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We refer to this expression as H0 (the null hypothesis that the credit loss distribution has this 
two-parameter form) or PDF2 (to signify that Expression (3) has two parameters). Statistically 
speaking, PDF2 represents a restriction on PDF3. When ELGD is set equal to 1.0 it drops out of 
PDF3. The Vasicek distribution then becomes a model of loss rather than a model of default, and 
its mean becomes EL rather than PD. PDF2 has no explicit role for the default rate, the LGD 
rate, or a copula. 

The hypothesis test is conducted using data provided by Dr. Edward Altman.2

Figure 1 

 Dr. Altman has 
computed sub-investment grade default rates and LGD rates and has published these data in his 
papers. Using Altman’s published data makes the statistical test completely transparent. The 
data appear in the Sidebar and are graphed in Figure 1. 
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Under the alternative hypothesis, the log likelihood of the sample equals LnL3 
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2 Altman, Brady, Resti, and Sironi; Altman and Pasternak. 
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Figure 2 shows the result of maximizing this expression. For each value of ELGD, LnL3 is 
maximized in PD and ρ. H1 places no restriction on ELGD. Maximum LnL3 is about 67.3, if 
ELGD is allowed to take the unrealistic and impractical value of 1,000,000. Under H0, ELGD 
equals 1. Then, LnL3 equals 66.575. 

A likelihood ratio test relies on the fact that, under the null hypothesis with many years of data, 
twice the difference of log likelihoods has a χ2

1 distribution. With probability 95% this 
distribution produces values less than 3.84. Therefore, if the difference of log likelihoods 
exceeds 1.92 there is a rejection that a χ2

1 variable has been observed. This implies a rejection of 
the null hypothesis. The decision rule is that H0 is rejected if H1 can produce a pickup of LnL3 
greater than 1.92. 

Figure 2 shows that LnL3 is never much more than 66.575. In the modest parlance of statistical 
hypothesis testing, there is no rejection of the null hypothesis. In more natural language, H0 is 
accepted. Of course, the acceptance of any statistical hypothesis is provisional on the 
development of theories and the testing of new data sets. 

The development and testing of credit loss models is at an early stage. At a later stage, a picture 
might emerge. If there prove to be many cases where PDF3 rejects PDF2 for various sets of data, 
a single failure to reject would not be an important result. On the other hand, if it is found that 
PDF2 is not rejected by PDF3 using several data sets, a single rejection would not overturn the 
idea that PDF2 is sufficient. Under the rules of statistical hypothesis testing, null hypotheses can 
be rejected in 5% of cases for purely random reasons.  

A credit loss distribution has been tested for the first time, using the Altman data. The result of 
the test is conclusive. There is no rejection of the null hypothesis. The null hypothesis states that 
a two-parameter distribution is adequate to describe the data. The two parameters are expected 
loss and correlation. Acceptance of the alternative would fail to protect against Type I error.  
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Intuition and Type I error 

A somewhat dispiriting aspect of the test result is best to confront directly. PDF3 contains a poor 
model of LGD, but at least it contains one. It also contains Vasicek’s model of the default rate, 
which can be rigorously derived from assumptions. PDF2, by contrast, has no concept of default 
or LGD. It is not derived from a theory. It arises by imposing a restriction on PDF3. One might 
expect that the theory-based PDF3 must outperform the impoverished PDF2 using any possible 
data set. Such is not the case.  

A second aspect produces a degree of cognitive dissonance that is also best to confront directly. 
Researchers are familiar with calibrating distributions of default and LGD. They can feel that 
something is left out, or that information is wasted, when a credit loss distribution is calibrated 
to credit loss data. After all, the intuition goes, don’t we know something about LGD rates from 
LGD data, and can’t we use that to refine the estimates in a credit loss model? 

There are two ways that this intuition can mislead. The first way is direct and easy to see. Any 
value of ELGD, other than its MLE, reduces the value of the likelihood function. For example, if 
ELGD is set equal to the average LGD rate (which is 57.3%), the maximum value of LnL is 
considerably less than under the null hypothesis, as can be seen in Figure 2. Although intuition 
may say that the parameter named ELGD should take the value 57.3% in any model, that value 
produces a credit loss distribution that is not as good as it can be. 

Different likelihood functions have maxima at different parameter values; for example, the same 
explanatory variable can have different coefficients in different regression equations. In the 
current case, perhaps some model produces a maximum likelihood estimate of ELGD equaling 
57.3%. This does not mean that each and every credit loss model will achieve its maximum when 
its ELGD parameter is set equal to 57.3%. Nothing is gained—and something is lost—if one 
overrides the data and the model with a preconception of the parameter values. 

Besides compromising the fit, there is a second way that setting ELGD = 57.3% misleads: it 
asserts something that has no grounding in fact. Specifically, it asserts that three parameters are 
needed to describe the data. This is not supported by facts; it is an assumption. Generalizing this 
assumption can distort future decisions. Instead, decisions should be based on evidence. It has 
been shown that the Altman data do not reflect fixed LGD. To assert otherwise is too likely to 
commit a Type I error.  

Hypothesis testing proceeds very deliberately. Theories are chosen. The theories are reduced to 
a PDF. The PDF contains everything that is theorized. Data are then chosen. Finally, the 
likelihood is maximized. Nothing is left out if these steps are followed. If they are not followed, 
something can be left out—namely, the control of Type I error.  

The only real choices are the theory and the data. The fact that H0 was accepted, when 
challenged by one theory and one set of data, does not mean that it will survive challenge by any 
theory and any data. However, rejecting a null hypothesis is a minimum criterion to assert that 
an alternative hypothesis has controlled for Type I error.  
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A good statistician would not assert that PDF3 is valid unless it proves useful. In general, 
statistical decision making refrains from accepting extra parameters unless they help make 
sense of the world. Statistical procedures manifest the modest principle of Occam’s razor. 

Statistical studies assume that what has been learned from the past can be applied today. This is 
an extrapolation, which is always a dangerous undertaking. The danger is greatest when the 
extrapolation does not even reflect learning, but instead reflects assumptions that are not 
grounded in fact. Control of Type I error is a most important tenet of statistical research.  

 

Simulation experiment 

The data of Altman and Pasternak (2005) reflect sub-investment grade borrowers. It is natural 
to enquire whether data on investment grade borrowers might not produce a different result. 
Perhaps there would be rejection of H0 using data that are collected by other means, or that 
reflect other products, other times, or other places. These possibilities might all be investigated, 
even though any set of real-world data has shortcomings that can be criticized such as 
inconsistent definitions, noisy observation, limited quantity, and so forth.  

It is more efficient in this case to simulate data that are free of real-world problems. This section 
performs the simulation experiment. To summarize the results, over 100 years of data are 
usually required to reject H0, even though PDF3 generates the data. This suggests that the result 
using Altman’s data is not solely attributable to defects that might exist in that particular data 
set. On the contrary, the null hypothesis might be truly difficult to reject using the data sets 
available at present.  

The simulation experiment assumes that PDF3 generates annual credit loss data. By making 
random draws from this distribution we obtain 20 years of simulated loss data. These data are 
employed in a hypothesis test with the customary 5% size. Both PDF2 and PDF3 are fit to the 
data using MLE. If the null hypothesis is not rejected, the data sample is augmented by 20 more 
years and the test is performed again. If there are continued failures to reject, the simulated 
sample expands in steps up to a maximum of 200 years. If a rejection does occur, a record is 
made of the number of years that give rise to the rejection. The whole procedure is repeated 100 
times to obtain a distribution of the sample sizes that are sufficient to reject the null hypothesis. 
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Figure 3 shows the results with PD = 10%. The six sets of bars reflect six combinations of ELGD 
and ρ. For example, combination “F” reflects ELGD = 40% and ρ = 9%. If this combination of 
parameters generates the data, over 200 years of data are required to reject H0 in 73% of cases. 
At the other extreme, combination “A” has the least value of ELGD (10%) and the greatest value 
of correlation (26.5%). Data from this variant of PDF3 are able to reject H0 more often. Still, the 
median time to rejection exceeds 100 years.   

Similar sets of experiments were conducted assuming PD = 2% or PD = 0.40%. For each 
combination of ELGD and ρ, lower values of PD require more years of data to reject H0; 
rejections of the null are even less likely when borrowers are investment grade.  

These simulations show that even if PDF3 were true, a short data set is unlikely to lead to a 
rejection of PDF2. Therefore, a test result accepting the null is not solely due to defects in real-
world data, other than the short duration of the data set. With the short data sets now available, 
the null hypothesis might be truly difficult to improve. 

 

Credit loss with variable LGD 

An early criticism of the fixed LGD hypothesis was that LGD rates are apt to vary in concert with 
default rates.3  Several LGD models have been published to address this. Perhaps the most 
rigorously developed is that of Michael Pykhtin.4

                                                        
3 Frye 2000 

  Pykhtin’s model provides a distribution of the 
LGD rate that Pykhtin and others have calibrated to LGD data. To say the least that can be said, 
this is a marked improvement over the idea that LGD is fixed. But it is another question whether 
it brings forth an improvement in a credit loss distribution.   

4 Pykhtin. 
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To derive the distribution we choose the comonotonic copula: greater values of the LGD rate 
accompany greater values of the default rate. This requires no additional parameters and can be 
modeled using a single standard normal risk factor symbolized as Z. The default rate is assumed 
to have the Vasicek distribution.  

Pykhtin allows three parameters in the relation between Z and the LGD rate. We symbolize the 
parameters as µ, σ, and ρLGD, to distinguish the last from ρ. Roughly stated, these parameters 
measure the log of the initial value of collateral, the dispersion of its ending value, and the 
correlation between its return and the risk factor Z. Pykhtin states the relation between Z and 
the conditionally expected LGD rate: 

(5)
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Expression (5) is bounded on [0, 1] and is strictly decreasing in the risk factor Z. Its graph would 
be described as an “S” curve; Z ranges over the real line but LGD is bounded. If Z takes a large 
value, both the LGD rate and the default are low. Credit loss is the product. We refer to the loss 
function as g(Z): 
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As before, the loss function is transformed to a PDF, referred to as PDF5, which contains five 
parameters and constitutes the alternative hypothesis: 
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The required derivative can be stated in closed form (it is messy), but the inverse function must 
be computed numerically. The expected value of the distribution—expected loss—is provided by 
Pykhtin: 
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where Φ2[x, y, ρ] refers to the bivariate standard normal CDF with correlation equal to ρ.  

The null hypothesis is the same as before. We estimate its parameters as if ELGD equals 1.0. To 
produce this in Pykhtin’s model requires a low value of µ. Lower µ  implies lower collateral and 
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greater LGD. This happens quickly because it is an exponential relationship, but limiting 
behavior is involved. As a practical matter, µ = -10 implies LGD ≅ 1.0. The alternative 
hypothesis, H1, is that all five parameters of PDF5 are required to give nuance to the loss 
distribution.  

Again the Altman data is employed to perform the statistical test. Figure 4 shows the maximized 
value of LnL5 for a range of µ.  

66.54

66.55

66.56

66.57

66.58

-15 -13 -11 -9 -7 -5 -3 -1 1
Value of µ

Figure 4. Maximized values of LnL5

 

H1 permits any value of µ, so the maximum is 66.575. H0 restricts µ to something less than -10. 
Obviously, this produces the same value of LnL5. The pickup is zero, which is as low as it can be. 
The null hypothesis is accepted.  

To summarize this section, a second credit loss distribution has been tested. H1 allows LGD to 
vary in concert with the default rate. H0 is the same as in the previous test. Using the Altman 
data, the null hypothesis is again accepted.  

This result, perhaps even more than the first, has a dispiriting aspect. Although the LGD model 
is clearly superior to what has gone before, it is apparently the case that a good LGD model does 
not guarantee a good credit loss model. Improvements to credit loss models, LGD models, and 
the default/LGD copula are to be encouraged, but the associated credit loss models must be 
tested if they are to be trusted.  

 

Graphical comparison 

Well-regarded theories of default and LGD have been unable to reject a hypothesis that has no 
theoretic content. To make this result more understandable, this section compares the PDFs 
graphically. Of course, a graphical comparison is only suggestive and its suggestions would be 
overturned by a definitive rejection of H0 using data. 
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Figure 5 compares variants of PDF5, PDF3, and PDF2. PDF5 has the following parameter 
values: PD = 10%, ρ = 9.7%, µ = .0492, σ = 30%, ρLGD = 30%. To make PDF3 most closely 
comparable, it has the same value of PD (10%), the same value of EL (1%, using Expression (8)), 
and the same variance (0.01%). These constraints imply that the value of ρ in PDF3 is equal to 
26.5%. Thus, PDF3 is nothing other than the parameter combination “A” that is simulated in 
Figure 3. PDF2 shares the same EL and the same variance, which implies ρ equal 10.6%. 

The three PDFs have different values of ρ, and this can produce cognitive dissonance that traces 
back to an assumption. The assumption is that the value of correlation in a credit model need 
not reflect the distribution of credit data; it can be calibrated to asset returns. This assumption is 
testable.5

The point of Figure 5 is that PDF2 is closer to PDF5 than to PDF3. This suggests that H0 is even 
more difficult to reject if PDF5 generates the data than if PDF3 generates the data. But the 
simulation experiment has already shown that over 100 years of data from PDF3 are usually 
required to reject H0. This suggests that it might be extremely difficult for a real-world data set 
to reject H0 if it exhibits some systematic LGD risk.  

 The current demonstration compares loss distributions. To achieve a common 
variance, the values of the respective correlation parameters must differ from each other. 

One can imagine a sequence of variants of PDF5 for a sequence of values of ρLGD, beginning with 
ρLGD = 0, that is, beginning with PDF3. As the value of ρLGD increases from zero, PDF5 moves 

closer to PDF2. This continues until some moderate value of ρLGD is reached; for the constraints 
used here, the value is approximately 30%. Beyond this value of ρLGD, progress is reversed and 
PDF5 moves back toward PDF3. At high-enough values of ρLGD (about 60% for these 

                                                        
5 Frye 2008 
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constraints), PDF5 again resembles PDF3. With extreme values of ρLGD, PDF5 becomes a highly 
skewed distribution with mode near 0%. This sequence of PDFs suggests that, if H0 is to be 
rejected by a statistical test, the data would probably exhibit systematic LGD risk that is either 
very high or very low. 

Together with the simulation experiment, this graphical comparison suggests that H0 might be 
most difficult to reject when systematic LGD risk is moderate, when PD is less than 10%, when 
ELGD is greater than 10%, and when correlation is less than 26.5%. This set of characteristics is 
believed to be common in real-world data sets. Therefore, the null hypothesis employed appears 
to be a worthy challenge to researchers’ model-making abilities. It is put forward as a standard 
of comparison for future tests of credit loss models.  

 

Conclusion 

The last five years of Risk Magazine’s Cutting Edge section contains six articles that address 
modeling the LGD rate and twelve articles that address modeling the default rate. Presumably, 
each of these is meant to contribute to the understanding of the key variable, credit loss. 
However, the key variable has remained unanalyzed until now.  

If a credit loss model is assembled from pieces, it contains a default rate, an LGD rate, and a 
copula to connect them. The default model must contain at least two parameters, usually, PD 
and ρ. The LGD model must also contain at least two parameters, unless LGD is imagined to be 
a single fixed number. The copula might contain additional parameters that need to be 
estimated. At the minimum, the resulting credit loss distribution has four parameters: two from 
the default side and two from the LGD side. These four parameters must be calibrated with a 
data set spanning a limited historical period. 

A hypothesis test challenges a credit loss distribution to reject a suitable null hypothesis. The 
null hypothesis employed here has two parameters. It is not rejected using real-world data. 
Rejection is not frequent using simulated data. Graphical comparisons suggest a reason: credit 
loss distributions do not look much different from the null hypothesis. It is far from certain that 
this null hypothesis can be improved with the short data sets that are now available.  

To fill the practical need for credit loss models, practitioners have made assumptions. 
Assumptions cause little harm if the consequence is limited to understanding the past. 
Unfortunately, assumptions propagate to the present and future. This danger is great enough to 
warrant the name “Type I error,” and control of Type I error is a precept of statistical research. 
This study shows that Type I error can be controlled in a credit loss model. Until credit loss 
models routinely protect against Type I error, risk managers are wise to calibrate not only their 
models, but also the credence they give to the results. 

This study is the first to derive, calibrate, and test distributions of the credit loss rate. Neither 
distribution significantly improves upon an extremely simple null hypothesis. Simulation 
experiments and graphical evidence suggest that the null hypothesis might be truly difficult to 
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reject with the short data sets that are now available. The null hypothesis is therefore put 
forward as a standard of comparison for future research. Though the null hypothesis might be 
rejected by a more nuanced alternative, it is dangerous to assume that particular nuances are 
true if they are not supported by facts. A more modest approach, based on standard statistical 
decision making, is less likely to mislead.  
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Sidebar  
 
Default, LGD, and credit loss data 

Annual rates
Default LGD Loss

1982 3.19% 61.40% 1.96%
1983 1.09% 44.30% 0.48%
1984 0.84% 51.40% 0.43%
1985 1.71% 54.10% 0.93%
1986 3.50% 65.50% 2.29%
1987 1.34% 38.00% 0.51%
1988 2.66% 56.40% 1.50%
1989 4.29% 61.70% 2.65%
1990 10.14% 76.60% 7.77%
1991 10.27% 64.00% 6.57%
1992 3.40% 49.90% 1.70%
1993 1.11% 43.40% 0.48%
1994 1.45% 60.60% 0.88%
1995 1.90% 59.40% 1.13%
1996 1.23% 48.10% 0.59%
1997 1.25% 45.80% 0.57%
1998 1.60% 64.10% 1.03%
1999 4.15% 72.10% 2.99%
2000 5.07% 73.60% 3.73%
2001 9.80% 74.50% 7.30%
2002 12.79% 74.70% 9.55%
2003 4.66% 54.50% 2.54%
2004 1.25% 42.30% 0.53%
2005 2.26% 39.60% 0.89%

Annual averages: 3.79% 57.33% 2.46%  

 
Source: Edward I. Altman with Brent Pasternack 
High Yield and Distressed Debt Default and Return Report: Third-Quarter 2005 Update 
November 2005 
Figure 7. Default rates and Losses. "Default Rate %" and "Weighted Average Price after Default" 
 
Source for data 1987 (correction for strategic default): 
The Link between Default and Recovery Rates: Theory, Empirical Evidence, and Implications 
Edward I. Altman, Brooks Brady, Andrea Resti, and Andrea Sironi 
Journal of Business, 2005, vol. 78, no. 6, Table 1, page 2210 
 


