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ABSTRACT

I analyze the dynamics of a speculative bubble in a simple general equilibrium model in which a
single asset is traded by two types of risk neutral agents facing a short sale constraint. The types have
heterogeneous prior beliefs about the dividend process and they learn from common observations of
the dividend. The speculative bubble is defined as the difference between the equilibrium price and
the maximum buy-and-hold-forever valuation of the asset. I use a novel recursive methodology to
obtain non-generic conditions for the data generating process so that the bubble is persistent with
probability one. I also provide generic conditions under which the bubble can persist arbitrarily
long in expected terms. Even in the cases where the bubble is persistent, I show that it appears
highly infrequently on typical sample paths.
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1 Introduction

In many financial markets we observe periods of price behavior referred to as speculative

bubbles. This term usually means that the price of an asset is significantly different from

what is believed to be the asset’s fundamental value. Furthermore, these events are often not

isolated incidents involving a single asset, but rather entire regions or sectors of the economy.

We observed this during the Japanese asset price bubble in the late 80’s and during the ”dot-

com” bubble in the US in the late 90’s. Other notable examples include the recent behavior

of crude oil or real estate prices.

Harrison and Kreps (1972) provide one way to rationalize these events. In their paper,

risk-neutral investors have heterogeneous prior beliefs about the persistence of the dividend

process and face short-selling constraints. In some periods, the asset is not held by the agents

for whom the expected discounted stream of dividends is higher, but by those who expect a

higher dividend only in the following period and are hence hoping for profitable resale. This

generates speculative trade and a price bubble, where the asset serves not only as a generator

of dividends, but also as a period-to-period betting device. The bubble they obtain is not

time-varying, in the sense that it depends on the history of dividends only through the current

realization. This occurs because agents do not learn from the data. It seems that allowing for

learning in this setting would quickly kill the bubble by removing heterogeneity from agents’

posteriors. The goal of this paper is to address this objection by proposing a model in which

rational traders fail to agree, despite learning from a common signal, resulting in a perpetual

speculative bubble.

I develop a general equilibrium model of speculative bubbles in which agents differ in

their prior beliefs. This model is based on Harrison and Kreps (1978), with an important

addition, that I allow for learning. There is a market for a single asset that pays a stochastic

dividend. The dividend follows a two-state Markov process, and can be either zero or one

each period. There are two types of risk neutral agents, who face a short sale constraint,

and both start with different prior beliefs concerning the transition matrix of the dividend

process. The beliefs of both types are concentrated on two available matrices. This can be

interpreted as a situation in which there are two theories or models being used by market



practitioners with matrices representing the theories.

A bubble is defined as that portion of the equilibrium price over and above the market

fundamental. The market fundamental is the maximum buy-and-hold-forever valuation of

the asset. I define the fundamental value process independently of a given equilibrium. This

statistic reflects how much agents value the asset in the absence of a market. Considering the

fundamental value separately from the market can be justified by the assumed risk neutrality

of the agents. This way the agents do not need the market for insurance purposes. The only

reason for trading is speculation. This model naturally extends to utility functions with risk

aversion, but in that case the fundamental value needs to account for the insurance motive.

I use a recursive methodology borrowed from Slawski (2008) to show that if agents are

sufficiently impatient, there exists a linear lower bound on a current bubble magnitude as a

function of current belief differentials. This result means that as long as belief differentials

stay bounded away from zero so does the bubble, and applies regardless of the true data-

generating process of the dividend. The main theorem provides non-generic conditions for the

true data-generating process so that the differences in the posteriors persist forever on almost

all sample paths. Under these conditions a bubble of high magnitude appears infinitely often

with probability one. I provide the following generic complement to the main theorem: the

data-generating process can be chosen so that, in expected terms, the belief difference and

the high magnitude bubble can persist arbitrarily long.

For these results to apply, it is necessary that agents’ beliefs put zero mass on the true

data-generating process. Here, I take as a given that even though market traders might be

testing for all existing models, it is never the case that one of the available models coincides

exactly with reality.

To get an idea of how the lack of convergence in the posteriors is obtained, consider the

following thought experiment: there are two agents who observe a coin being flipped. The

agents know the experiment produces an iid binomially distributed sequence of outcomes

(d = (d1, d2, . . .)) which are in the set {heads,tails}. However, the agents do not know

the probability of heads, θ ∈ [0, 1]. They assume some prior beliefs about θ, which are

concentrated on the set {0.4, 0.6}. Using Bayes’ rule we get that the posteriors are equal to

the priors each time the number of heads equals the number of tails in a current history. For
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each history, dt, let ht(d
t) and τ t(d

t) denote the number of heads and the number of tails,

respectively. If the true data-generating process has θ = 0.5, then it is clear that the process

h− τ is a standard symmetric random walk and is thus persistent (i.e. Pr(∃t > 0 s.th. dt =

τ t) = 1). Therefore agents’ posterior beliefs fail to converge to each other on almost all

sample paths.

One can see that the lack of convergence is achieved only for the true data-generating

process with θ = 0.5, and it is therefore not generic. However, using the weak law of large

numbers we get the following robustness result: as θ approaches 0.5, the expected time that

the process h − τ spends around the origin tends to infinity. This means that the initial

disagreement can last arbitrarily long if θ is sufficiently close to 0.5. The generic result in

this paper follows the above logic.

This example illustrates the way the model should be interpreted. The fact that

the true probability lies in-between the two existing models reflects the view that people’s

knowledge is not complete. Models simplify reality so much that none of them can be exactly

right. This paper highlights that making such simplifying assumptions can potentially lead

to perpetual disagreement, which is reflected in the existence of speculative bubbles. The

primary reason that I cannot directly use this example is that this sort of disagreement about

an iid process does not lead to speculation. As such, I must extend this technique to the

Markov environment in which bubbles can emerge.

My paper naturally divides into two parts: Section 2 develops a general equilibrium

model of speculative trading and provides a numerical link between the current difference

between agents’ posteriors and the size of the speculative bubble, while Section 3 focuses on

showing how to generate the data so that agents’s posteriors fail to converge, in the spirit of

the coin flip example presented earlier. This section also delivers the main result.

I close the introduction with a brief literature review. I focus on those models in which

bubbles are driven by heterogeneous beliefs and a short sales constraint. This approach

was first taken by Harrison and Kreps (1978). The main objection to this model is that

agents concentrate their priors on separate matrices, so they do not learn over time and

the speculative bubble stays on the same level for every history. Morris (1996) extends the

example of Harrison and Kreps by accounting for learning. He uses an iid dividend process
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and obtains a speculative bubble that vanishes over time at an exponential rate. Allen,

Morris, and Postlewaite (1993) model bubbles by allowing for heterogeneous priors as well as

private signals. Furthermore, there is a finite horizon, with an asset paying the dividend only

once after the sequence of trading. This setup enables them to get a very strong notion of a

bubble in which it is common knowledge that at some point the asset price is higher than the

final dividend. The most recent contribution to this literature is the paper by Scheinkman

and Xiong (2003). Their model can be treated as a fully developed continuous time version

of Harrison and Kreps, in which (cumulative) dividend follows a diffusion process. Agents are

getting two noisy signals and wrongfully interpreting one of them (each agent a different one)

as carrying some information about the innovation part of the dividend process. In reality,

neither of these processes is correlated with the innovation part. The dynamics of speculative

trade are such that whenever the signal of an agent becomes more optimistic, the agent buy

the asset. Even though this model predicts very interesting dynamics (high trading volumes

and price volatility during bubbles), it still does not take into account the process of learning.

It is important to note that in the above models — including mine — having an infinite

time horizon is not crucial to generate a bubble. The infinite time horizon is only used for

analytical simplicity.

2 Speculative Equilibria

The main goal of this section is to provide a direct link between the current posteriors’ asym-

metry and the magnitude of the equilibrium bubble. I start with a detailed description of

the market setup and the definition of sequential market equilibria. In Subsection 2.2, I in-

troduce the notion of recursive equilibrium, which is a crucial tool in analyzing equilibria. I

show that a recursive equilibrium generates a sequential market equilibrium with the lowest

possible prices. I also introduce a functional operator, T , which characterizes the bounded

recursive equilibria as its fixed point and serves as the main tool for analyzing them. Subsec-

tion 2.3 contains an illustrative benchmark case of no-learning, which can be explicitly solved.

Subsection 2.4 contains the main result of this section, which is the linear lower bound for

the speculative bubble.
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2.1 Sequential Market Equilibria and Bubbles

I consider a market for a single stock with trading taking place at discrete time periods

(t = 0, 1, 2, . . .). The stock is in unit supply and the dividends are paid to the current

holder at each period immediately prior to trading. Agents face a short sale constraint. I

denote the random dividend process by d = (d0, d1, d2, . . .). The dividends take values in

the set D ≡ {0, 1}, and are observed up to the current period by all traders. The current

owner has no control over the operation of the firm and the dividend process is the only

(exogenous) source of uncertainty. The dividend process follows a two-state Markov chain

with the transition matrix Q = (qij)0≤i,j≤1, which is not known to the traders.

There are two classes of investors, i ∈ {1, 2}. Each class is of measure one and is

characterized by the initial beliefs about Q, πi
0 ∈ ∆ ({Q|Q is 2× 2 probabilistic matrix}).

Each πi
0 determines the probability distribution over the realizations of process d. This

probability distribution is denoted by Prπi
0 ∈ ∆(D∞). The expected value operator with

respect to that measure is denoted by Eπi
0 .

For the purpose of this paper, I consider beliefs of a particular form. Specifically, I

assume that the beliefs of both agents are concentrated on two transition matrices, Q1 =

(q1
dd′)0≤d,d′≤1 and Q2 = (q2

dd′)0≤d,d′≤1 (i.e., πi
0 ∈ ∆ ({Q1, Q2})). Belief πi

0 can be represented

by one number, say πi
0({Q1}) ∈ [0, 1]. In what follows I abuse the notation by writing πi

0

instead of πi
0({Q1}).

One can think of Q1 and Q2 as the conceivable theories or models of the market. If

both agents put positive probabilities on both, Q1 and Q2, then they have common support

and I will refer to this situation as “learning.” Agents may differ in the initial probabilities

they assign to different theories, but they agree on what they consider possible.

The instances in which agents’ beliefs are concentrated on single but different matrices

(i.e., πi
0 = δQi) are equivalent to the example of Harrison and Kreps, and I will refer to this

situation as “no learning.” In this case, none of the agents consider the theory used by the

other type as possible, and therefore they do not update.

Both types’ consumption sets are C = `∞(
⋃

t D
t) ≡

⋃
c̄{(ci

t)
∞
t=0|ci

t : Dt → [−c̄, c̄]}.
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They are risk neutral with utility functions U i : C → R, given by

U i(ci) = Eπi
0

∞∑
t=0

βtci
t,

for each ci ∈ C. The assumed boundedness of the set C ensures the limit always exists.

A sequential market equilibrium consists of the following components:

c ∈ C2

γ = ((γi
t)

2
i=1)

∞
t=1, γ

i
t : Dt−1 → R+

p = (pt)
∞
t=0, pt : Dt → R.

The first component is the consumption allocation, the second one is the allocation of the

asset across agents, and the third one is the contingent price.

A triplet (c, γ, p) constitutes an equilibrium if for each i = 1, 2, ci, and γi solves:

max
(ci,γi)

U(ci) (1)

s.t. ci
t(d

t) + pt(d
t)γi

t+1(d
t) ≤ pt(d

t)γi
t(d

t−1) + γi
t(d

t−1)dt

s.t. γi
0 = 0, γi

t+1(d
t) ≥ 0

for each t and dt

and the market-clearing conditions hold:

c1
t (d

t) + c2
t (d

t) = dt, for each t and dt

γ1
t (d

t) + γ2
t (d

t) = 1, for each t and dt.

I will now define the speculative bubble process for a given equilibrium. As mentioned

before, the bubble process will relate the equilibrium price to the market fundamental. For

each i = 1, 2 and for any t and dt, define the process vi by vi
t(d

t) ≡ Eπi
0

{∑
τ>t β

tdt|dt
}
. This

will be called the fundamental value of the asset for agent i, at time t, given the history dt.

It is the highest price agent i would be willing to pay for the asset if no future re-trade was

possible. The market fundamental value of the asset at time t, given the history dt, is the
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process v, defined by vt(d
t) ≡ maxi=1,2 vi

t(d
t). This gives the market price of the asset if the

current period was the last day of trade. Now, for a given equilibrium price process p, I define

the speculative bubble process s as st ≡ pt − vt. This statistic measures how much agents

value the possibility of future asset trading, purely as a betting device.

2.2 Recursive Equilibrium

In this subsection I will introduce an auxiliary concept of recursive equilibrium. The concept,

which is a helpful tool in solving for equilibria, will also be used to see directly how the current

difference in posterior beliefs translates into the size of the speculative bubble. Having the

link between posteriors and the bubble is possible because in the stationary equilibrium, the

price is a function of the current posterior belief profile.

To simplify the notation for the law-of-motion of the posterior beliefs, I need an

additional piece of notation. Each history of length 2, (d, d′) ∈ D2, defines the function

λdd′ : [0, 1] → [0, 1] by

λdd′(πi) ≡
πiq1

dt−1d′

πiq1
dt−1d′ + (1− πi)q2

dd′
. (2)

The above takes as an argument the previous beliefs and the type of transition that occurred

in the last period, (d, d′). It gives as its value the new beliefs, updated using Bayes’ rule. For

notational convenience I denote the whole belief profile as π = (π1, π2), and in what follows

I will abuse notation by writing λdd′(π), rather than
(
λdd′(π1), λdd′(π2)

)
.

A recursive equilibrium consists of:

W : R+ ×D × [0, 1]2 → R2

γ∗ : R+ ×D × [0, 1]2 → R2
+

p∗ : D × [0, 1]2 → R.

The first component represents agents’ value functions, and the second one their decision

functions specifying agents’ new asset holdings — as functions of the current asset holdings,

the current dividend, and the current belief profile. The last component represents the price,
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which is assumed not to depend on the current asset holdings but only on the state variables.

A triplet (W, γ∗, p∗) is a recursive equilibrium if for each i =, 1, 2, γ = (γ1, γ2) ∈ R2
+,

d ∈ D, and π ∈ [0, 1]2, the following three conditions are satisfied.

1. Agent i’s Bellman Equation holds

W i(γi, d, π) = max
γ′i≥0

{[
(γi − γ′

i
)p(d) + γid

]
+
∑
d′

[
πiq1

dd′ + (1− πi)q2
dd′

]
W
(
(γ′

i
, γ∗−i), d′, λdd′(π)

)}
. (3)

2. γ∗i(γi, d, π) is a solution to agent i’s problem above.

3. Market clearing for the asset holds: if γ1 + γ2 = 1, then

γ∗1(γ1, d, π) + γ∗2(γ2, d, π) = 1.

The definitions of the fundamental values and the speculative bubble naturally extend to the

recursive setup. The fundamental value of the asset for agent i, with beliefs πi in state d, is

V i(d, πi) ≡ Eπi ∑
βtdt. The market fundamental value is V (d, π1, π2) ≡ maxi=1,2 V i(d, πi),

and for a given recursive equilibrium price p∗, the speculative bubble is S(d, π) ≡ p∗(d, π)−

V (d, π).

Before introducing the tools to solve for a recursive equilibrium, I will provide a link

between recursive equilibria and sequential market equilibria. If I specify the initial belief

profile π0 = (π1
0, π

2
0) ∈ [0, 1]2, then any recursive equilibrium induces a sequential form price

and allocation in a natural way. Namely, given a recursive equilibrium (W, γ∗, p∗), define

a sequential allocation and price (c, γ, p) together with the implied process of the posterior
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belief profiles π, recursively by:

πt+1(d
t+1) = λdtdt+1(πt(d

t))

pt(d
t) = p∗(dt, πt(d

t))

γt+2(d
t+1) = γ∗(γt+1(d

t), dt+1, πt+1)

ct(d
t) = (γt − γt+1)pt + γtdt.

In order to use recursive equilibrium techniques, we need to know that these sequences con-

stitute a sequential market equilibrium. From Slawski (2008), we have the following:

Proposition 2.1. Assume (W, γ∗, p∗) is a recursive equilibrium satisfying W 1, W 2 ≥ 0. For

some given π0 = (π1
0, π

2
0) ∈ [0, 1]2 let (c, γ, p) be the sequential allocation induced by it. If the

following (transversality) condition is satisfied:

lim
t→∞

βtEπi
0W i(γ∗it+1, dt, πt) = 0.

then (c, γ, p) is an equilibrium.

In particular, this means that any bounded recursive equilibrium naturally generates a se-

quential market equilibrium for any initial belief profile.

Another important property of bounded recursive equilibria is that they generate

sequential market equilibria with the lowest possible prices in the class of all sequential

market equilibria.

Proposition 2.2. For any initial beliefs π0, if p is a sequential equilibrium price system,

and p∗ is the bounded recursive equilibrium price, then for every history, dt, we have p(dt) ≥

p∗(dt, πt(d
t)).

Note that this implies that the same equality holds for the bubble: st(d
t) ≥ S(dt, πt(d

t)).

Proof. If (pt(d
t)) is an equilibrium price system, then it has to satisfy the first order conditions

of (1), which, taking into account the fact that the market clearing condition must hold (i.e.,

γi
t > 0 for at least one agent), leads to:
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pt(d
t) = max

i=1,2
βEπi

0
[
pt+1(d

t+1) + dt+1|dt
]
. (4)

Define inductively a sequence of functions, pn : {0, 1} × [0, 1]2 → R, by

p0(d, π) ≡ 0

pn+1(d, π) ≡ max
i=1,2

β
∑
d′

[
πiq1

dd′ + (1− πi)q2
dd′

][
d′ + pn(d′, λdd′(π))

]
.

Then by Proposition 2.5, we have p∗ = limn→∞ pn. I will show by induction that pt(dt) ≥

pn(dt, π
1
t (dt), π

2
t (d

t)), for each n, dt.

For n = 0 this is obvious. Suppose that pt(d
t) ≥ pn(dt, πt(d

t)) for some n and all dt.

Then, using (2) and (4),

pt(d
t) = max

i=1,2
βEπi

0
[
dt+1 + pt+1

(
dt+1

)
|dt
]

≥ max
i=1,2

βEπi
0
[
dt+1 + pn

(
dt+1, πt+1(d

t+1)
)
|dt
]

= max
i=1,2

β
∑

dt+1∈{0,1}

[
πiq1

dtdt+1
+ (1− πi)q2

dtdt+1

][
dt+1 + pn

(
dt+1, λ

dtdt+1(πt(d
t))
) ]

= pn+1(dt, πt(d
t)).

In light of the last proposition, the significance of analyzing bounded recursive equi-

libria is that they provide the (highest) lower bound for the speculative bubble in sequential

market equilibria. From now on I will focus solely on bounded recursive equilibria.

Next, I provide tools that allow me to solve for the bounded recursive equilibrium

prices. These are then used to obtain the main results of this section. Consider the functional
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operator T : B(D × [0, 1]2) → B(D × [0, 1]2) defined by1

Tp(d, π) ≡ max
i=1,2

β
∑
d′

[
πiq1

dd′ + (1− πi)q2
dd′

][
d′ + p∗(d′, λd0(π))

]
. (5)

Proposition 2.3. p∗ : D × [0, 1]2 → R is the price of some bounded recursive equilibrium if

and only if p∗ is a fixed point of T .

Proof. To show necessity take the first order conditions for (3) and use the envelope theorem

to get p∗ = Tp∗. For sufficiency, consider W i(γ, d, π) = γi(p∗(d, π) + d) and

γ∗i(γ, d, π) =


0 if max in (5) is not achieved by i

1 if max in (5) is not achieved by (−i)

1/2 otherwise

It is straightforward to verify this is a stationary equilibrium.

Now I will briefly go over the properties of T .

Lemma 2.4. T has the following properties:

1. It is a β-contraction with respect to the sup-norm on B(D × [0, 1]2)

2. T
(
C0(D × [0, 1]2)

)
⊆ C0(D × [0, 1]2)

3. It is monotone, i.e. for any p, p′ ∈ B
(
D × [0, 1]

)
, if p ≥ p′ then Tp ≥ p′

Proof. To get 1. apply Blackwell’s sufficient conditions. 2. and 3. are obtained by a direct

check.

This lemma implies the following.

Proposition 2.5. There exists a unique p∗ ∈ B(D × [0, 1]2), such that p∗ = Tp∗. Moreover,

p∗ ∈ C0(D × [0, 1]2) and for any p0 ∈ B(D × [0, 1]2), we have p∗ = limn→∞ T np0.

1For a given topological space X, B(X) denotes the Banach space of real-valued bounded functions defined
on X, and C0(X) denotes the Banach space of all real-valued bounded continuous functions defined on X
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The immediate consequence of monotonicity is a very useful lower/upper bound for prices,

which will be the primary tool for proving the main result of this section.

Proposition 2.6. If for some p : D × [0, 1]2 → R we have Tp ≥ p (Tp ≤ p), then p∗ ≥ Tp

(p∗ ≥ Tp).

2.3 No-Learning Benchmark

It is useful to go over the special case of no learning (i.e., π1 = 1, π2 = 0) in which I can

explicitly solve for the fixed point of T . This is also an important benchmark for the general

setup.

As there is no learning, the belief profile π stays the same for any history and the only

relevant state variable is the dividend d. This allows me to omit beliefs from the argument

of the recursive equilibrium objects throughout this subsection. For instance, p(d) will stand

for p(d, 1, 0), and so on. First, I compute the fundamental values. I will use the notation V Qi

d

to denote the fundamental value corresponding to the transition matrix Qi and the current

dividend state, d. Standard recursive considerations lead to:

V Qi ≡

 V Qi

0

V Qi

1

 =
β

(1− β)(1 + β(1− qi
00 − qi

11))

 qi
01

qi
11 + β(1− qi

00 − qi
11)

 . (6)

The operator T can be redefined as T : R2 → R2 with:

Tp = T

 p(0)

p(1)

 ≡
 maxi=1,2 β (qi

00p(0) + qi
01(1 + p(1)))

maxi=1,2 β (qi
10p(0) + qi

11(1 + p(1)))

 ,

where p : D → R is a recursive price system, depending only on the dividend state, d. In this

2-dimensional case, the fixed point of T can be easily computed.

Proposition 2.7. If q1
00 < q2

00 and q1
11 < q2

11, then the recursive equilibrium price system is

given by

p∗ ≡

 p∗(0)

p∗(1)

 =
β

(1− β)(1 + β(1− q1
00 − q2

11))

 q1
01

q2
11 + β(1− q1

00 − q2
11)

 ,
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and in those circumstances the speculative bubble is strictly positive. Analogous result holds

for the symmetric case (i.e., q2
00 < q1

00 and q2
11 < q1

11). Otherwise, the recursive equilibrium

price is equal to the market fundamental.

One should note that the pricing above is equal to the fundamental valuation of a

hypothetical “hybrid agent” with beliefs concentrated on the transition matrix the first row

of which is taken from Q1 and the second from Q2.

Proof. First consider the case q1
00 < q2

00 and q1
11 < q2

11. p∗, above, is the solution to

p∗(0) = q1
00p

∗(0) + q1
01(1 + p∗(1))

p∗(1) = q2
10p

∗(0) + q2
11(1 + p∗(1)).

The only thing which has to be shown is that the RHSs above constitute the operator T for

p∗. This is equivalent to p∗(0) ≤ p∗(1) + 1. Indeed, this can be easily verified. To check

that S(d) > 0 is a straightforward matter. The proof for the symmetric case q2
00 < q1

00 and

q2
11 < q1

11 is the same.

If neither q1
00 < q2

00 and q1
11 < q2

11 nor q2
00 < q1

00 and q2
11 < q1

11, I apply the operator T

to the market fundamental V to get TV = V . Consequently, p∗ = V .

I will now illustrate how this technique works on a specific numerical example. These

numbers are taken from Harrison and Kreps (1978). Agents of respective groups have the

following transition matrices:

Q1 =

 1/2 1/2

2/3 1/3

 Q2 =

 2/3 1/3

1/4 3/4

 ,

with the discount factor β = 0.75. An agent of type one considers the dividend process more

volatile than an agent of type two. Therefore, by Proposition 2.7 there must be a speculative

bubble in the equilibrium. First, compute the fundamental value for each pair of beliefs and
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each state. Using (6), I obtain:

V Q1

0 = 4/3 = 1.33 V Q1

1 = 11/9 = 1.22

V Q2

0 = 16/11 = 1.45 V Q2

1 = 21/11 = 1.91

This reveals that in both states the asset is valued more by agent 2. The market fundamental

is therefore V = V Q2
.

Using Proposition 2.7, the recursive equilibrium price is p∗0 = 24/13 = 1.85, p∗1 =

27/13 = 2.08 with the bubble

S(0) = 1.85− 1.45 = 0.40

S(1) = 2.08− 1.91 = 0.17

Note that for any history the speculative bubble is on the same level (depending only on the

current dividend).

In order to intuitively see why there is a positive speculative bubble, let us apply the

operator T to the fundamental value V :

T (V ) = T

 1.45

1.91

 = 0.75

 1
2
1.45 + 1

2
(1 + 1.91)

1
4
1.45 + 3

4
(1 + 1.91)

 =

 1.64

1.91

 .

This means that if the price next period was known to be the fundamental value then, in

state d = 0, an agent of type one would find the asset worth 1.64, which is strictly more

than the fundamental value of 1.45. This occurs because he would subjectively perceive a

higher probability of transition to state 1 next period (than type 2), wherein not only is

the fundamental price much higher but he also gains the dividend. Consequently, because

of risk neutrality and infinite financial resources, he would show an infinite demand, which

is not possible in equilibrium. Attempting to set 1.64 as the price in state d = 0, would

also not work because now agents of type two in state d = 1 would show infinite demand.

This corresponds to the second iteration of the operator T . Those considerations not only

show why the market fundamental is not an equilibrium price but also illustrate why the
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equilibrium price has to be the limit of iterating the operator T .

2.4 Lower Bound for the Speculative Bubble

This subsection investigates under which conditions the recursive equilibrium bubble, S, is

strictly positive for each π1 6= π2. Additionally, it will be important to know if the magnitude

of the bubble remains significant for a small belief asymmetry (i.e., π1 ≈ π2).

In the previous subsection I characterized the situations in which there is a strictly

positive bubble under the extreme belief differential (i.e., π1 = 1, π2 = 0). Specifically, by

Proposition 2.7, if β > 0, qi
00 < q−i

00 and qi
11 < q−i

11 for some i = 1, 2, then S(d, 1, 0) > 0.

By Proposition 2.5, p∗ is continuous in beliefs and so is the bubble, S. This means that the

speculative bubble is strictly positive in some neighborhood of π = (0, 1). This, however,

does not say how big the speculative bubble is when the beliefs are getting close to each

other. It is not even clear if the bubble is strictly positive for all π1 6= π2.

The following proposition provides conditions for the parameters of the model, ensuring

that the bubble is not only strictly positive for any asymmetric beliefs (π1 6= π2), but it is

also bounded below by a strictly increasing linear function of |π1 − π2|. This means that

any posterior belief asymmetry results in a speculative bubble of a significant magnitude and

allows me to focus on the dynamics of the posteriors rather than the bubble dynamics, which

I do in the next section.

Proposition 2.8. If q1
00 < q2

00, q1
11 < q2

11 and one of the following holds:

1. V Q1
< V Q2

and β ≤ q1
00

q2
00

2. V Q1
> V Q2

and β ≤ q1
11

q2
11

3. V Q1

0 ≥ V Q2

0 and V Q2

1 ≥ V Q1

1 ,

then there exist constants B0 > 0 and B1 > 0 such that for each d ∈ {0, 1},

S(d, π1, π2) ≥ Bd|π1 − π2|.
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The proposition comes as a direct corollary to the more general Lemma A1, which

provides much bigger range of β for which the conclusion still holds. However, due to a

complex statement, Lemma A1 is presented in the Appendix. The idea of the proof is to

consider a pricing function, which is linear in beliefs in the following form:

pA(d, π1, π2) ≡ (1− π1)V Q2

d + π2V Q1

d + (π1 − π2)Ad,

where A = (A0, A1). Using the identity

 V i(0, πi)

V i(1, πi)

 =πiV Q1

+ (1− πi)V Q2

,

it can be seen that for Ad = max{V Q1

d , V Q2

d }, the function pA is equal to the market funda-

mental, and any higher values of Ad will generate a proportional bubble. For each value of

the parameters, one can explicitly compute the highest values of the constants A0 and A1 so

that TpA(d, π1, π2) ≥ pA(d, π1, π2) for any π ∈ [0, 1]2 and d ∈ D. Using the monotonicity of

T (Proposition 2.6), for such constants the equilibrium price p∗ satisfies p∗ ≥ pA. In order to

obtain Proposition 2.8, I need to make sure the constants Ad, obtained in this way, satisfy

Ad = max{V Q1

d , V Q2

d }. Then I just put Bd ≡ Ad−max{V Q1

d , V Q2

d }. The following proposition

specifies the highest values of Bs this technique allows us to achieve.

Proposition 2.9. B0 and B1 in Proposition 2.8 can be taken as follows:

In case 1: B0/R2 = B1 =
V Q2

1 − V Q1

1 −R1(V
Q2

0 − V Q2

0 )

R1R2 − 1

In case 2: B0 = B1/R1 =
V Q1

0 − V Q2

0 −R2(V
Q1

1 − V Q2

1 )

R1R2 − 1

In case 3: B0 =
V Q1

0 − V Q2

0 −R2(V
Q1

1 − V Q2

1 )

R1R2 − 1
and B1 =

V Q2

1 − V Q1

1 −R1(V
Q2

0 − V Q2

0 )

R1R2 − 1
,
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where the constants R1, R2 are given by

R1 =


(
1−
√

βq1
00q2

00

)2

βq1
01q2

01
if q1

00 ≤ βq2
00

1−βq2
00

βq2
01

otherwise

R2 =


(
1−
√

βq1
11q2

11

)2

βq1
10q2

10
if q1

11 ≤ βq2
11

1−βq2
11

βq2
10

otherwise

This proposition also follows directly from Lemma A1.

Now I will show how the values for Bs compare with the exact solution of the numerical

example from the previous subsection. Since I allow for learning, the matrices Q1 and Q2

constitute the support of agents’ beliefs. Without loss of generality I can assume their prior

beliefs satisfy π1
0 > π2

0. In particular this assumption implies that π1
t (d

t) > π2
t (d

t) for any t

and any history dt.

Since V Q2
> V Q1

and β = 3/4 = 1/2
2/3

=
q1
00

q2
00

, the assumption of Proposition 2.8 is

satisfied. Using the formulas from Proposiiton 2.9, I get B0 = .28 and B1 = 0.11. The linear

lower bound for the equilibrium price bubble is then

S(0, π1, π2) ≥ 0.28 · |π1 − π2|

S(0, π1, π2) ≥ 0.11 · |π1 − π2|.

This compares to the exact values computed in the previous section for the no-learning

environment (i.e., π1 = 1, π2 = 0). We had S(0, 1, 0) = 0.40 and S(1, 1, 0) = 0.17, suggesting

that the linear lower bound captures a decent amount of speculation.

I close this section with a brief comment on high values of β, for which the assumption

of Proposition 2.8 is not satisfied. Lemma A1 provides a much bigger range of βs but still

does not work for β ≈ 1. The question is: what is happening if β is high? Is it that the bubble

cannot be bounded away from zero by a linear function of beliefs, or is it just a deficiency of

the specific technique? Furthermore, is it true that for high values of β the bubble becomes

insignificant for some small or intermediate values of |π1 − π2|? These questions are not

addressed in this paper but some numerical experiments suggest that for 0 � π1 ≈ π2 � 1,
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and high values of β the bubble becomes very small, relative to its highest value under no

learning. Moreover, these numerical results do not even elucidate that for some small values

of |π1 − π2|, the bubble is strictly positive.

3 The Dynamics of the Speculative Bubble under the

True Transition Matrix

In this section I analyze the dynamics of posterior beliefs for a given true data-generating

process. According to Proposition 2.8, this translates into the dynamics of the speculative

bubble in the circumstances specified therein. In Section 3.1, I state the main result of the

paper, which gives the condition for the true data-generating process to achieve a perpetual

disagreement with probability one. I then discuss the idea of the proof. Subsection 3.2

provides some further results concerning the posterior dynamics, most notably the generic

supplement to the main theorem.

3.1 The Main Result

I will now apply the technique associated with the coin flip example from the introduction

into the Markov environment of my model.

Let Q = (qdd′)0≤d,d′≤1 be the transition matrix of the true data generating process.

Proposition 3.1. If Q = (qij) satisfies

q00

q01

log

(
q2
00

q1
00

)
+ log

(
q2
01

q1
01

)
+ log

(
q2
10

q1
10

)
+

q11

q10

log

(
q2
11

q1
11

)
= 0, (7)

then for any α < 1 the process of the posterior belief profile π satisfies |π1
t − π2

t | > α|π1
0 − π2

0|

infinitely often with Q-probability one.

This proposition, together with Propositions 2.2 and 2.8, leads to the following theorem

as an immediate corollary:

Theorem 1 (Main Theorem). Suppose the assumptions of Proposition 2.8 are satisfied and

B0 and B1 are as in Proposition 2.9. Let s be a sequential market equilibrium bubble process
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and α < 1. If the true data-generating process transition matrix Q satisfies (7), then st >

α ·max{B0, B1} · |π1
0 − π2

0| infinitely often with Q-probability one:

PrQ(st > α ·max{B0, B1} · |π1
0 − π2

0| infinitely often) = 1.

This theorem says that if Q1, Q2, and β satisfy the assumptions of Proposition 2.8,

then the condition for the true data generating matrix Q to generate the bubble of high

magnitude infinitely often with probability one is given by (7). This condition is not generic.

It defines a 1-dimensional manifold in the set of 2 × 2 probabilistic matrices, which is of

dimension 2. Hence, the Lebesgue measure of the set of Q’s satisfying (7) is zero. In the next

subsection I will provide a generic complement for the main theorem.

Throughout the rest of this subsection I discuss the derivation of Proposition 3.1,

leaving some technical details for the Appendix. I also introduce notation that is needed

later.

Using Bayes’ rule, upon observing the history dt, the current beliefs at time t are

given by πi
t(d

t) =
(
1 +

1−πi
0

πi
0

Lt(d
t)
)−1

, where Lt(d
t) denotes the current likelihood ratio of

the history dt for matrices Q2 vs Q1 (i.e., Lt(d
t) ≡ PrQ2

{dt}
PrQ1{dt}

). The current belief difference

becomes:

π1
t − π2

t = (π1
0 − π2

0) · (L−1
t π1

0 + 1− π1
0)
−1 · (Lt(1− π2

0) + π2
0)
−1,

and can be fully analyzed in terms of the process L = (Lt)t. Note that the original beliefs are

re-achieved whenever Lt = 1. The reason for this is that in those periods the current history

does not favor Q1 or Q2. Similarly, each time, Lt > 1 it means that the current history favors

the theory Q2 vs. the theory Q1 and both agents move towards theory Q2 in their current

posteriors. If Lt < 1, the situation is reversed.

Without loss of generality, I assume that the initial beliefs satisfy 1 − π1
0 = π2

0 = ε <

1/2. This assumption is purely for convenience. Otherwise, it could happen that for some

future histories the belief difference is bigger than the original one. In that situation, the

initial difference would not be a natural benchmark and the conclusion of Lemma 3.1 would
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be true even for some α > 1.2 We have the following:

|π1
t − π2

t | = π1
t − π2

t = (1− 2ε) · (L−1
t (1− ε) + ε)−1 · (Lt(1− ε) + ε)−1

We can algebraically verify that for any 0 < α < 1, π1
t − π2

t > α · (π1
0 − π2

0) if and only if

Lt ∈ Iα ≡

1− 2√
1 + 4αε(1−ε)

1−α
+ 1

, 1 +
2√

1 + 4αε(1−ε)
1−α

− 1

 .

Clearly, π1
t −π2

t = π1
0−π2

0 if and only if Lt = 1. It is therefore consistent to define L0 ≡ 1. In

order to analyze the dynamics of speculation for some given Q, it is enough to see how much

time the process Lt spends in the interval Iα, for α > 0 under that particular Q.

I will now analyze the dynamics of the process L. It is easy to see that for a given

history dt, Lt(d
t) is given by

Lt(d
t) =

t−1∏
τ=0

(
q1
dτ dτ+1

q2
dτ dτ+1

)
.

For algebraic convenience, I will consider the process L in log terms:

lt ≡ log Lt =
t−1∑
τ=0

log

(
q1
dτ dτ+1

q2
dτ dτ+1

)
. (8)

Defining a process ∆ by ∆t ≡ (dt−1, dt) ∈ D2, l = (lt)t can be expressed as lt =
∑t−1

τ=0 f(∆τ ),

where function f : D2 → R is defined via (8).

2If 1− π1
0 6= π2

0, then for any δ > 0 π1
0, π

2
0 can be shown to be posterior beliefs of some priors π̃1

0, π̃
2
0 such

that |1− π̃1
0 − π̃2

0| < δ.
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The process ∆ is a 4-state Markov chain with the transition matrix

Q̄ ≡


q00 q01 0 0

0 0 q10 q11

q00 q01 0 0

0 0 q10 q11

 ,

Q̄ is ergodic if and only if Q is ergodic, which occurs if and only if 0 < q01q10 < 1. Hence,

in such situations, Q̄ has the unique ergodic distribution νQ. Simple algebra reveals the

following:

νQ =
1

q00

q01
+ 2 + q11

q10

[
q00

q01

, 1, 1,
q11

q10

]
.

Now, the intuition associated with the ergodic theorem would be as follows: The process l

should be recurrent if the increment f(∆t) has the expected value of zero on the stationary

(long run) distribution νQ. In other words, Q should be such that

EνQ

f(dt, dt+1) ≡ νQ
00f(0, 0) + νQ

01f(0, 1) + νQ
10f(1, 0) + νQ

11f(1, 1) = 0.

This intuition is confirmed by the following lemma:

Lemma 3.2. Let I ⊆ R be an interval that can be reached by the process l with positive

probability, then PrQ(lt ∈ I infinitely often) = 1 if and only if Q satisfies (7).

This result, together with all the previous considerations, completes the proof of Propo-

sition 3.1 and subsequently the main theorem: since the process l visits any interval infinitely

often, so it does the interval log(Iα). Therefore, the process L visits Iα infinitely often with

probability one.

The idea with regard to the proof of Lemma 3.2 is to transform the process l to a

standard independent random walk l̄, with mean zero using the appropriate stopping times.

The detailed proof can be found in the Appendix. In what follows I briefly explain the way

the process l is transformed into the iid increments process l̄. This will be of use in the final

subsection, wherein I discuss some dynamic properties of the process of the posterior beliefs,
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and I will do it in terms of the process l̄.

Define a sequence of optional stopping times τ = (τn)n∈N:

τ 1 ≡ min{t > 0|∆t = (0, 0)}

τn+1 ≡ min{t > τn|∆t = (0, 0)},

The realization of this random sequence gives us the number of periods in which the process

∆ hits the state (0, 0). Now, I define the process l̄ by

l̄t = lτ t .

The process l̄ shows the values of the process l only in periods in which ∆ = (0, 0). The

strong Markov property for the process ∆ roughly says that at any given random period,

the future and the past of the process are independent, and also that the distribution of the

future is solely determined by the current state. Now, since for all periods τ t, the current

state is (0, 0), it necessarily follows that the distribution of the future is the same for all

periods τ t. This means the increments of the process l̄ are iid. It can also be argued that

under the condition (7) they have zero expected value, so the process l̄ has no drift and by

standard properties of iid random walks it is recurrent. In other words, any interval that can

be visited is visited infinitely often with probability one.

3.2 Further Insight into Bubble Dynamics

In this subsection I present several further results concerning bubble dynamics. The first

result is a generic complement of the main theorem, and the second is that bubbles of high

magnitude must appear very infrequently on typical sample paths. Finally, I present the so-

called arc-sine law, which leads to a rather surprising conclusion. Even if none of the agents’

models is a priori favored by the data generating process, on a typical sample path one of

the models will be doing better most of the time. The results in this section are expressed in

terms of the process l̄ defined in the end of the last subsection. These results automatically

translate into the log-likelihood process l and hence the bubble process s, but this transition
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requires some notational complications caused by the fact that the process l̄ samples the

process l at random times.

The problem with the main result is that it is not generic. In order to have persistent

speculation we need to assume that the data generating matrix, Q, satisfies condition (7).

As mentioned before, the set of Qs, satisfying (7) is a 1-dimensional manifold in the set of

2× 2-probabilistic matrices. I will now show that if Q is approaching this manifold, then the

persistency of the speculative bubble is going to infinity.

Lemma 3.3. Let

µ =
q00

q01

log

(
q2
00

q1
00

)
+ log

(
q2
01

q1
01

)
+ log

(
q2
10

q1
10

)
+

q11

q10

log

(
q2
11

q1
11

)
,

then for any interval I we have EQ
∑∞

t=1 1{l̄t∈I} ∼ 1
µ
. In particular, EQ

∑∞
t=1 1{l̄t∈I} →∞ as

µ → 0.

The proof, being an easy application of the weak law of large numbers, can be found in the

Appendix. Taking α < 1 and I = Iα in Lemma 3.3, we get the generic complement to the

main result.

Theorem 2. If 0 < α < 1 and µ as in Lemma 3.3, then EQ
∑∞

t=1 1{st>α·|π1
0−π2

0|} → ∞ as

µ → 0.

As stated above, the expected total number of future periods in which the bubble exceeds

the level α · |π1
0 − π2

0| goes to infinity as µ goes to zero.

I will now examine the question of how often, on average, high bubbles should arise in

this model. Since the process l̄ is a standard random walk, we have the following result (cf.

Theorem 2 in XII.2 of Feller, 1966):

Proposition 3.4. For any data generating process Q and any interval I ⊆ R, such that

l̄0 6∈ I

EQ inf{t > 0|l̄t ∈ I} = ∞,

This means that the expected waiting time for the process l̄ to reach any given level

different than the initial one is infinity. After translating the above to the process st, one can
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conclude that the expected waiting time for the bubble to reach any given magnitude higher

than the current one is infinity. This suggests that even though under the conditions of the

main theorem the bubbles are infinitely persistent, on average the periods of high magnitude

rarely prevails. In practice, this infinite expected waiting time shows up in simulations in the

form of having many runs with almost no bubbles. On some runs, however, we still observe

a relatively high frequency of bubbles of a significant magnitude.

Another interesting property of the dynamics of l̄ is provided by the arc sine law,

which is a standard result in the theory of the iid random walk, and it extends naturally

to my setup. For this to hold, it is required that E∆2
0 < ∞, which can be easily verified.

Necessarily, Theorems 1a and 2 in XII.8 of Feller (1966) imply the following:

Proposition 3.5. Let Πn ≡ #{t > 0|l̄t > 0}, then

Πn

n
→d Beta(1/2, 1/2),

This means that the distribution of the fraction of strictly positive terms in l̄, which

can be thought of as an approximation of the fraction of time when the theory Q2 has

higher likelihood than theory Q1, is asymptotically the Beta(1/2,1/2)-distribution with den-

sity 1

π
√

α(1−α)
.3 It is unbounded at the endpoints 0 and 1 and has its minimum at 1

2
. This

means that for long samples we are more likely to see either theory Q1 or Q2 explaining

the data better rather than seeing close to equal lengths of one theory dominating. Since

the speculative bubble is at its highest whenever the data is not conclusive, this suggests

that, even though the periods of high bubble magnitude appear infinitely often, they will

be observed relatively rarely and will typically be surrounded by much longer periods of low

bubble magnitude. What we should generally see is a long period where theory Q1 for ex-

ample, dominates and both agents assign most of the beliefs to that theory. Indeed, during

this time the speculative bubble is very small. At some point, the data will start to favor

theory Q2 which is associated with the beliefs being moved towards Q2. During that time of

transition the bubble explodes because one agent is more reluctant than the other to accept

the new theory. Once both types settle their beliefs close to Q2, speculative bubble vanishes

3The cdf of this distribution is given by the scaled arc-sine function, which justifies the name of the law.
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again. This pattern is continued forever with probability one.
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Appendix

Lemma A1. Suppose q1
00 < q2

00 and q1
11 < q2

11. Define the following constants:

R1 =


(
1−
√

βq1
00q2

00

)2

βq1
01q2

01
if q1

00 ≤ βq2
00

1−βq2
00

βq2
01

otherwise

R2 =


(
1−
√

βq1
11q2

11

)2

βq1
10q2

10
if q1

11 ≤ βq2
11

1−βq2
11

βq2
10

otherwise

If one of the following conditions hold:

1. V Q1
> V Q2

and V Q1

0 − V Q2

0 > R2

(
V Q1

1 − V Q2

1

)
2. V Q1

> V Q2
and V Q2

1 − V Q1

1 > R1

(
V Q2

0 − V Q1

0

)
3. V Q1

0 ≥ V Q2

0 and V Q1

1 ≤ V Q2

1

then the recursive equilibrium price bubble, S, satisfies:

S(d, π1, π2) ≥ (Ad −max
i
{V Qi

d })|π1 − π2| (9)

where the constants A0, A1 are given by

A0 =
R1R2V

Q1

0 −R2(V
Q1

1 − V Q2

1 )− V Q2

0

R1R2 − 1

A1 =
R1R2V

Q2

1 −R1(V
Q2

0 − V Q1

0 )− V Q1

1

R1R2 − 1
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and satisfy

A0 > max
i
{V Qi

0 } and A1 > max
i
{V Qi

1 } (10)

Proof. First I prove (10). Using the formula for A0 and A1 we get:

A0 − V 1
0 =

A1−V 1
1

R1
=

R2(V Q2

1 −V Q1

1 )−(V Q2

0 −V Q1

0 )

R1R2−1

A0−V Q2

0

R2
= A1 − V Q2

1 =
R1(V Q1

0 −V Q2

0 )−(V Q1

1 −V Q2

1 )

R1R2−1

(11)

Simple algebra reveals R1, R2 > 1. Using (11) it is easy to verify, that any of the assumptions,

1 or 2, imply (10). To get that assumption 3 also implies (10) use the formula (6) to get

V 1
0 − V 2

0 =
β(q2

0 − q1
0 − β(q2

1 − q1
1) + β(q1

0q
2
1 − q2

0q
1
1))

(1− β)(1 + β(1− q1
0 − q1

1))(1 + β(1− q2
0 − q2

1))

V 1
1 − V 2

1 =
β(−(q2

1 − q1
1) + β(q2

0 − q1
0) + β(q1

0q
2
1 − q2

0q
1
1))

(1− β)(1 + β(1− q1
0 − q1

1))(1 + β(1− q2
0 − q2

1))

which implies that we always have: V Q1

0 − V Q2

0 ≥ V Q1

1 − V Q2

1 . This means (11) implies (10)

also under assumption 3.

Now I move on to prove (9). I will also need the following identities, which are easy

to verify,

R1 =
A1−V Q1

1

A0−V Q1

0

R2 =
A0−V Q2

0

A1−V Q2

1

(12)

Without loss of generality we may assume π1 ≥ π2 and in that case for any d, d′ we

have λdd′(π1) ≥ λdd′(π2). This means by induction, that whenever agents start with beliefs

satisfying π1 > pi2 than no matter what history of dividends they observe, their updated

beliefs will also satisfy this inequality, π1
t (d

t) ≥ π2
t (d

t).

Let

pA(d, π1, π2) ≡ (1− π1)V Q2

d + π2V Q1

d + (π1 − π2)Ad
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Note that

pA(d, π1, π2)− V (d, π1, π2) = (Ad −max
i
{V Qi

(0)})|π1 − π2|

Hence by Proposition 2.6 in order to get (9) it is enough to show TpA ≥ pA. We will do it

for each state, d, separately.

First take d = 0. We have

TpA(0, π1, π2) ≥ T 1pA(0, π1, π2) (13)

≡ β(π1q1
00 + (1− π1)q2

00)
[
(1− λ00(π1))V Q2

0 + λ00(π2)V Q1

0 + (λ00(π1)− λ00(π2))A0

]
+ β(π1q1

01 + (1− π1)q2
01)
[
1 + (1− λ01(π1))V Q2

1 + λ01(π2)V Q1

1 + (λ01(π1)− λ01(π2))A1

]
Using

λ00(π) =
πq1

00

πq1
00 + (1− π)q2

00

= 1− (1− π)q2
00

πq1
00 + (1− π)q2

00

λ01(π) =
πq1

01

πq1
01 + (1− π)q2

01

= 1− (1− π)q2
01

πq1
01 + (1− π)q2

01

we can see that both pA and T 1pA are linear in π1. Also note that T 1pA = pA for π1 = π2.

In order to conclude TpA(0, π1, π2) ≥ pA(0, π1, π2) it is enough then to prove that T 1pA ≥ pA

for pi1 = 1. Incidentally, note that we made use of the notation T 1pA which was introduced

when we defined operator T in (5).

We have:

T 1pA(0, 1, π2)− pA(0, 1, π2) =

=βq1
00

[(
1− (1− π2)q2

00

π2q1
00 + (1− π2)q2

00

)
V Q1

0 +
(1− π2)q2

00

π2q1
00 + (1− π2)q2

00

· A0

]
+ βq1

01

[
1 + (1− (1− π2)q2

01

π2q1
01 + (1− π2)q2

01

)V Q1

1 +
(1− π2)q2

01

π2q1
01 + (1− π2)q2

01

· A1

]
− (1− π2)(A0 − V Q1

0 )− V Q1

0

=β(1− π2)

[
q1
00q

2
00

π2q1
00 + (1− π2)q2

00

(A0 − V Q1

0 ) +
q1
01q

2
01

π2q1
01 + (1− π2)q2

01

(A1 − V Q1

1 )− β−1(A0 − V Q1

0 )

]
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To show T 1pA(0, 1, π2) ≥ pA(0, 1, π2) for all π2 ∈ [0, 1] it is enough to prove:

q1
00q

2
00

π2q1
00 + (1− π2)q2

00

(A0 − V Q1

0 ) +
q1
01q

2
01

π2q1
01 + (1− π2)q2

01

(A1 − V Q1

1 )− β−1(A0 − V Q1

0 ) ≥ 0

for all π2 ∈ [0, 1]. Thanks to (10), which I already proved, I can divide both sides by A0−V Q1

0 .

By (12), this gives

q1
00q

2
00

π2q1
00 + (1− π2)q2

00

+
q1
01q

2
01

π2q1
01 + (1− π2)q2

01

R1 − β−1 ≥ 0

Denoting π̃ ≡ (1− π2), and qi ≡ qi
00 = 1− qi

01 this is equivalent to

π̃2 · β−1(q2 − q1)2 + π̃(q2 − q1)[R1(1− q1)(1− q2)− q1q2 + β−1q1 − β−1(1− q1)]

+ q1(1− q1)[q2 + (1− q2)R1 − β−1] ≥ 0 (14)

for all π̃ ∈ [0, 1]. We have to consider two cases, which determine R1 in the proposition.

The first is q1 > βq2, then R1 =
1−βq2

00

βq2
01

. Plugging this back into (14) we can see that the

constant term becomes zero. It is also easy to see that the linear term must me positive

under our assumptions (remember we assumed q1
00 < q2

00). This, together with the fact

that the quadratic term coefficient is positive means that the quadratic expression must be

nonnegative for π̃ ≥ 0. Hence we are done in this case.

Now assume q1 > βq2. Then R1 =
(1−
√

βq1
00q2

00)2

βq1
01q2

01
. In this case it is a matter of doing a

simple algebra to check that the determinant of the quadratic is zero, which, together with

the fact that the quadratic term coefficient is zero implies that (14) holds for all π̃. So we

are done with the case d = 0.

Now consider d = 1. We have

TpA(1, π1, π2) ≥ T 2pA(1, π1, π2) (15)

≡ β(π2q1
10 + (1− π2)q2

10)
[
(1− λ10(π1))V Q2

0 + λ10(π2)V Q1

0 + (λ10(π1)− λ10(π2))A0

]
+ β(π2q1

11 + (1− π2)q2
11)
[
1 + (1− λ11(π1))V Q2

1 + λ11(π2)V Q1

1 + (λ11(π1)− λ11(π2))A1

]
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Using

λ10(π) =
πq1

10

πq1
10 + (1− π)q2

10

= 1− (1− π)q2
10

πq1
10 + (1− π)q2

10

λ11(π) =
πq1

11

πq1
11 + (1− π)q2

11

= 1− (1− π)q2
11

πq1
11 + (1− π)q2

11

we can see that both pA(1, π1, π2) and T 2pA(1, π1, π2) are linear in π2. Also note that T 2pA =

pA for π1 = π2. In order to conclude TpA(0, π1, π2) ≥ pA(0, π1, π2) it is enough then to prove

that T 1pA(1, π1, π2) ≥ pA(1, π1, π2) for π2 = 0. Note that I introduced auxiliary notation T 2

(”2” refers to agent 2 not to iterating T twice).

We have:

T 2pA(1, π1, 0)− pA(1, π1, 0) =

=βq2
10

[(
1− π1q1

10

π1q1
10 + (1− π1)q2

10

)
V Q2

0 +
π1q1

10

π1q1
10 + (1− π1)q2

10

· A0

]
+ βq2

11

[
1 + (1− π1q1

11

π1q1
11 + (1− π1)q2

11

)V Q2

1 +
π1q1

11

π1q1
11 + (1− π1)q2

11

· A1

]
− π1(A1 − V Q2

1 )− V Q2

1

=βπ1

[
q1
10q

2
10

π1q1
10 + (1− π1)q2

10

(A0 − V Q2

0 ) +
q1
11q

2
11

π1q1
11 + (1− π1)q2

11

(A1 − V Q2

1 )− β−1(A1 − V Q2

1 )

]

To show T 2pA(1, π1, 0) ≥ pA(1, π1, 0) for all π1 ∈ [0, 1] it is enough to prove:

q1
10q

2
10

π1q1
10 + (1− π1)q2

10

(A0 − V Q2

0 ) +
q1
11q

2
11

π1q1
11 + (1− π1)q2

11

(A1 − V Q2

1 )− β−1(A1 − V Q2

1 ) ≥ 0

for all π1 ∈ [0, 1]. The already proved inequality (10) allows me to divide both sides by

A1 − V Q2

1 . I get (using (12)) that it is enough to prove:

q1
10q

2
10

π1q1
10 + (1− π1)q2

10

R2 +
q1
11q

2
11

π1q1
11 + (1− π1)q2

11

− β−1 ≥ 0
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Denoting π̄ ≡ 1− π1, and qi ≡ qi
11 = 1− qi

10 this is equivalent to

π̄2 · β−1(q2 − q1)2 + π̄(q2 − q1)[R2(1− q1)(1− q2)− q1q2 + β−1q1 − β−1(1− q1)]

+ q1(1− q1)[q2 + (1− q2)R2 − β−1] ≥ 0 (16)

for all π̄ ∈ [0, 1].

This looks the same as (14) and the proof goes exactly the same. We have to consider

two cases, which determine R2 in the proposition. The first is q1 > βq2, then R2 =
1−βq2

11

βq2
10

.

Plugging this back into (16) we can see that the constant term becomes zero. It is also easy

to see that the linear term must me positive under our assumptions (remember we assumed

q1
11 < q2

11). This, together with the fact that the quadratic term coefficient is positive means

that the quadratic expression must be nonnegative for π̄ ≥ 0. Hence we are done in this case.

Now assume q1 ≥ βq2. Then R2 =
(1−
√

βq1
11q2

11)2

βq1
10q2

10
. In this case it is an easy calculation

to check that the determinant of the quadratic is zero, which, together with the fact that the

quadratic term coefficient is zero implies that (16) holds for all π̄. So we are done with the

case d = 1.

Proof of Lemma 3.2. Consider the Markov family of distributions associated with Q̄, with

P Q̄

∆̄
denoting the probability distribution associated with the Markov chain ∆ starting from

∆0 = ∆̄. Obviously the distribution of interest is the one with ∆̄ = (0, d0) but we need the

whole Markov family to use recursive techniques.

Define a sequence of optional stopping times:

τ 1 ≡ min{t > 0|∆t = ∆0}

τn+1 ≡ min{t > τn|∆t = ∆0}

Ergodicity of the process ∆t implies that each state is recurrent (cf. Billingsley (1986) Sec.

8). This mean the stopping times defined above are finite. Using Lemma 8.3 from Bilingsley

(1986) we get that also their first moments are finite:

Eτn =
1

νQ
1

,
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for each n ∈ N. Now we consider a selection of process l, given by stopping times τn i.e.

process l̄n ≡ lτn . Now we will show that this process has iid increments. It is known that

any time-homogeneous Markov chain has the strong Markov property (cf. Paragraph 8.6.3

in Wentzel (1980)), which in the case of process ∆ can be expressed as:

PQ
¯Delta

(θ−1
τ B|Fτ ) = PQ

∆τ
(B) Ps-almost surely on {τ < ∞}

for any ∆̄ ∈ D2, stopping time τ and event B measurable w.r.t the process ∆. θτ : {D2}∞ →

{D2}∞ denotes the shift operator, i.e. θτ (∆)t ≡ ∆t−τ .

For any m < n, consider nth and mth increments of l̄, ∆l̄
n ≡

∑τn+1−1
t=τn

f(∆t) and ∆l̄
m ≡∑τm+1−1

t=τm
f(∆t), respectively. For any Borel set A ⊆ R we have: {∆l̄

n ∈ A} = θ−1
τn
{∆l̄

0 ∈ A},

and {∆l̄
m ∈ A} = θ−1

τm
{∆l̄

0 ∈ A}, hence the strong Markov property implies:

PQ
(0,d0)({

τn+1−1∑
t=τn

f(∆t) ∈ A}|Fτn) = PQ
(0,d0)({

τm+1−1∑
t=τm

f(∆t) ∈ A}|Fτm) = PQ
(0,d0)({

τ1−1∑
t=0

f(∆t) ∈ A})

The rightmost probability is unconditional hence it is a constant then also two other proba-

bilities are constant. This implies that the nth increment is independent of Fτn hence of all

previous increments. Also the distribution is exactly the same as all the previous increments.

By induction this lets us conclude that all the increments are iid.

This proves, that the process l̄, which is some strictly increasing random selection

from the process l is a random walk with iid increments. In order to prove it is recurrent we

will use some standard results from the random walk theory. In order to apply those results

we need to know that the increments have zero expected value. Let for each ¯Delta ∈ D2,

e∆̄ = EQ

∆̄
(∆l̄

0). The strong Markov property implies that e must satisfy the following recursive

equation:

e =


f(0, 0)

f(0, 1)

f(1, 0)

f(1, 1)

+ Q̄


0

e(0,1)

e(1,0)

e(1,1)
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Pre-multiplying both sides by the stationary distribution νQ we get:

νQe = νQ


f(0, 0)

f(0, 1)

f(1, 0)

f(1, 1)

+ νQ


0

e(0,1)

e(1,0)

e(1,1)

 = νQ


0

e(0,1)

e(1,0)

e(1,1)


so e(0,0)=0.

Now we can apply Theorem 3 and Theorem 4 from VI.10 of Feller (1966) to conclude

that for any interval I the process l̄ visits this interval infinitely often with probability 1, i.e.

PQ(l̄n ∈ I infinitely often) = 1.

Proof of Theorem 3.3. Let F denote the distribution of ∆0. For any interval I ⊆ R denote

U(I) = EQ

∞∑
t=1

1I(l̄t) =
∞∑

k=0

F kF({I})

Using the weak law of large numbers we have P (|l̄n − µn| < εn) > 1
2

for n > nε. It follows

that F kF([−a, a]) > 1/2 for nε < k < a
ε+µ

so a−1U([−a, a]) > 1
2
( 1

ε+µ
−nεa

−1). It is a standard

fact from the renewal theory (cf. Theorem 1 in VI.10 of Feller (1966)) that for any a > 1,

U([−a, a]) ≤ (2a + 1)U [−1, 1]). Using this we get

U([−1, 1]) ≥ 1

2a + 1
U([−a, a]) ≥ 1

3
a−1U([−a, a]) >

1

6
(

1

ε + µ
− nεa

−1)

for any a > 1 and any ε > 0, hence taking the limit a →∞, and ε → 0 we get

U([−1, 1]) >
1

6µ
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