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1 Introduction

This study attempts to quantify determinants of female labor—force participation. We
construct a life—cycle model that can jointly analyze a married household’s consumption—
saving choices, female labor force participation at different life stages, and male age of
retirement. We then estimate the model’s key parameters from pseudo panel data from
the Consumer Expenditure Survey (CEX) and (actual) panel data from the Health and
Retirement Study (HRS). Our goal is to utilize the framework and parameter estimates to
investigate (a) whether the rapidity of the increase in U.S. married women’s labor supply
in the last quarter of the twentieth century was due to the speed of exogenous change, or
whether it might have been preordained by the structure of the life—cycle model; (b) what
the present and future impact of increased female earnings might be on male retirement
ages; and, (c) what role decreasing fertility, vis-a-vis higher relative wages for women,
might have played in determining recent patterns of female labor force participation.

This paper’s life—cycle model has a number of familiar components. For example, each
household desires, cet. par., the highest expenditure when it has the most members, and
an adult’s labor in one period raises his/her subsequent earning ability. (We refer to the
latter process as “accumulation of experiential human capital.”) A more novel assumption
of our specification is that a household can produce a greater “service flow,” which is the
ultimate argument of its utility function, from a given expenditure on market goods when
its adult male and/or female have more time at home.

In an environment with constant trend growth in both male and female wages, this
paper’s preference ordering delivers the simple implication that the overall labor supply
is stationary. On the other hand, suppose that changes in fertility and/or relative wages
make female participation more attractive. The model might predict a continuous response
in married women’s participation. Or, the response might be discontinuous. In the second
case, our life—cycle formulation might have multiple local utility maxima, say, one at
low lifetime participation for women, and one at high participation; the economy might
start out with the low—participation critical point being the global maximum for most
households, but following a period of change in the relative wage, the high—participation
critical point might become best; and, as the second critical point supplants the first,
the economy’s labor supply from married women might increase very quickly. This paper
investigates the role of human capital in making the “tipping point” scenario plausible.

If a household has female retirement age RF and male retirement age RM , a common
empirical outcome is RF < RM . Our model implies that when this is true, rising relative
female earnings will tend to lower the optimal age of male retirement. This suggests
that an era of rising relative wages for women and declining fertility would tend to cause
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falling retirement ages for married men. If age differences within couples eventually cause
RF ≥ RM , we show that the trend for RM could disappear (or reverse).

Finally, the model allows us to estimate both the direct cost to a household of raising
children and the indirect cost – through lost female earnings and lost investments in
human capital – and it enables us to assess their relative importance for female labor
force participation.

The organization of this paper is as follows. Section 2 presents CPS evidence on male
and female participation in recent decades. Section 3 presents our model and several char-
acterizations of its solution. Section 3 discusses our data and derives parameter estimates.
Section 4 discusses an important generalization. Section 5 describes preliminary parameter
estimates.

2 CPS Data

This section presents labor—force participation data from the Current Population Sur-
vey (CPS) March 1984 and 2004. For married couples, “age” refers to wife’s age. “Singles”
include adults who never married and those who are divorced or widowed.1 Each graph
categorizes a household’s labor—force participation as (i) zero; (ii) “part—time,” which is
1-20 hrs/week; or, (iii) “full—time,” which is taken to be 21+ hrs/week.

Figures 1 presents cross- sectional data for married males. The patterns for 1984
and 2004 are similar. Full—time labor—force participation is high (90-95 percent) until
household age 45-50. Thereafter it drops, with the drop becoming quite steep by age 55.
The median household age at which the curves for full—time and zero participation cross is
about 60. Part—time work plays little role – though it rises around the age at which the
other curves cross. Profiles for single males (not shown) are quite similar .

Figure 2 presents cross-sectional data for married women. As with men,
part—time work (i.e., 1-20 hrs/week) is an order of magnitude less prevalent than zero
or 21+ hrs/week, although it is roughly twice as prevalent for married women as for
married men. For simplicity, this paper concentrates on zero participation versus positive
participation.

Three observations on the female data are as follows. (i) The labor—force participation
level for married women is noticeably lower than for married men: 50-55 percent in 1984
versus 90-95 percent for ages 25-45; by 2004, 60-70 percent versus 90-95 percent. Single
women’s behavior is much closer to men’s. (ii) In 1984, the full—time and zero participation
curves for married women cross at age 50-52 – versus 60 for married men. However,
by 2004 the curves for women cross at 60. Single women’s crossing age is 60 even in
1984. It seems possible that the trend increase in the level of married women’s labor—force
participation provides at least part of the explanation for the 1984 outcome: the graphs
come from cross—sectional data; older ages correspond, therefore, to earlier birth cohorts
– for which participation was lower. (iii) There is little evidence in 1984 of an increase

1 In 1984, for example, our usable sample had 28,890 couples and, among singles,
6800 widow(er)s, 5173 divorced, 1585 separated, and 5365 never married. In 2004, there
are 26,382 married and 5316 widow(er)s, 7204 divorced, 1287 separated, and 7290 never
married.
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Figure 1. Labor force participation of married males and females, 2004, by wife's age.
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Figure 2. Change in labor force participation of married males and females, 1984-2004, by wife's age.



in full—time participation for married women after their children grow up. This paper's
graphs exclude earlier ages because of worries about selection: women who obtain more
education tend to marry and enter the labor force later; so, data for earlier ages will heavily
manifest changes in educational composition.

This paper’s model assumes discrete labor—supply choices – zero or full time – for
both men and women, and the figures show this may be a reasonable approximation.2

This paper assumes men work at all ages until they retire; it allows heterogeneity of male
retirement age. It allows a woman to enter and leave the labor force numerous times, with
different women not constrained to make identical decisions.

3 Model

Our model studies the behavior of married households, which we take to be the modal
living arrangement. Consider the life cycle of household i. The household includes a
woman, a man (if surviving), and dependent children. The household’s size at age s is Nis
“equivalent adults” (see below). Let the “household’s age” be the wife’s age. The man
retires at s = Ri. We assume that men work full time until retirement, and not at all
afterward. Women also work full time or not at all, though a woman may enter and leave
the labor force several times. Given the evidence in Section 2, we assume, for simplicity,
that married men retire no earlier than their wives. Households take prices and wages as
given. Time is continuous. There is no uncertainty. At inception, household i chooses its
life—cycle expenditure profile for market consumption goods, xis; its male retirement age,
Ri; and, its female labor—force participation profile, pis ∈ {0 , 1}, where pis = 1 means the
wife works.

Households derive utility from a final consumption aggregate, which is, in turn, pro-
duced from a combination of market consumption goods, leisure, and home production.
Let xis denote the age s expenditures of household i on market consumption goods. Let
λis denote the weight the household places on such expenditures. We think of λis as re-
flecting the household’s ability to enjoy market expenditures; thus, λis depends positively
on leisure and home production, and a household, cet. par., “produces” more utility from
the same expenditure during periods when either or both parents can spend more time at
home. A household’s utility flow, u(.), is an isoelastic function of cis ≡ λis · xis. Letting
the intertemporal elasticity of substitution be 1/(1− γ),

u(λ · x) ≡
⎧⎨⎩

1
γ · [λ · x]γ , for γ < 1 and γ = 0 ,

ln(λ · x) , for γ = 0 .
(1)

A simple specification of λis might set

2 See the discussion, for example, in Rust and Phelan [1997, p.786], Hurd [1996].

3



λis =

⎧⎪⎨⎪⎩
1 if both spouses work in the labor market,
λF ≥ 1 if only the husband works in the labor market,
λM ≥ 1 if only the wife works in the labor market,
λM · λF if neither spouse works in the labor market,

(2)

For a more detailed motivation, suppose a household produces service flows from con-
sumption expenditure and time at home – with the latter valued either as leisure or the
opportunity for home production – using a Cobb—Douglas technology

cis = f(xis ,
F
is ,

M
is ) ≡ [xis]α1 · [ Fis]α2 · [ Mis ]α3 , αj ∈ (0 , 1) , αj = 1 , (3)

where F ( M ) denotes female (male) time at home. Auerbach and Kotlikoff [1987] and
Altig et al. [2001], for example, use a similar formulation – assuming f(x , ) is CES;
Nishiyama and Smetters [2005], Cooley and Prescott [1995], and French [2005], on the
other hand, make f(x , ) Cobb—Douglas. Normalize F

is = 1 for ages with labor—force
participation; set F

is =
F̄ > 1 otherwise; and, similarly for M

is . Let “∼” mean “induces
the same preference ordering.” Then the relationship of (2)-(3) is

1

γ̄
· [f(xis , F

is ,
M
is )]

γ̄ =
α1

α1 · γ̄ · [xis] · [
F
is]

α2
α1 · [ Mis ]

α3
α1

α1·γ̄ ∼ 1

γ
· λis · xis γ

provided γ = α1 · γ̄ , λF = [ F̄ ]
α2
α1 , and λM = [ M̄ ]

α3
α1 . (4)

Other possible interpretations of (2) include: (i) household utility from market expen-
ditures rises upon retirement because a household no longer incurs wardrobe and trans-
portation costs of going to work (Cogan [1981]); or, (ii) a household’s ability to enjoy
market expenditure rises at retirement because a household can relocate and completely
control its schedule (Hamermesh [2005]). In terms of likely parameter magnitudes, inter-
pretation (i) a priori suggests λM = 1.0 to 1.1. Expressions (3)-(4), on the other hand,
imply a larger value. If time available for market and home production and leisure is, say,
7× 12 = 84 hrs/wk, then M = 84/44 ≈ 1.9; hence, under (4), λM could easily be 2.0 or
more. Our results (see below) tend, on this basis, to point away from interpretation (i).
Interpretation (ii) suggests that a couple may gain most from the retirement of its second
adult, and we return to that possibility below.

To identify the role of family composition in household behavior, our analysis must
include comparisons of singles and couples; in practice, moreover, virtually all couples even-
tually face widowhood. In the spirit of (3)-(4), suppose the technology for an unmarried
man or woman is

csingleis = xis · λsingleis , (5)

λsingleis ≡ 1 , if working in the labor market,
λ∗ > 1 , otherwise.
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Upon marriage, suppose market consumption is a public good, nonmarket time is not, and
household utility depends on the average

cis = (xis · λsingle, maleis ) · (xis · λsingle, femaleis )

= xis · [λsingle, maleis ]1/2 · [λsingle, femaleis ]1/2 .

Then for the couple,

cis = xis · λcoupleis , (6)

λcoupleis ≡
⎧⎨⎩
1 , if both spouses work in labor market,
λ∗ , if only one spouse works in labor market,
[λ∗]2 , if neither spouse works in labor market.

Formulation (5)-(6) has symmetry across households – in the sense that fully working or
fully non-working households have the same λis regardless of marital status – and it has
symmetric treatment of spouses within couples. In the notation of (2), it imposes

λF = λM = λ∗ .

Hamermesh’s argument that a household enjoys extra gains from having both spouses
free of market—work obligations suggests a slight generalization:

λsingleis =
1 , if working,
λ > 1 , if not working,

(7)

λcoupleis =
1 , if both spouses working,
λ∗ ≥ 1 , if only one spouse works,
λ > λ∗ , if neither works.

(8)

If retirement for both spouses together provides a premium, then

[λ∗]2 < λ .

For a second interpretation of the generalization, suppose that a couple “retires” when
both spouses cease market work, but prior to that time the wife might engage in either
market work or home production, with the latter yielding benefits to the whole family. In
Laitner and Silverman [2008], work and home production are taken to be interchangeable
in this circumstance and λ∗ = 1; House, Laitner, and Stolyarov [2008] model a continuous
time—allocation choice for married women between market work and home production with
nonlinear losses from time away from home. With indivisible market workdays, this paper
seeks to capture the home—production tradeoff using (7)-(8) with

λ∗ ≥ 1 , λ > λ∗ , and [λ∗]2 > (<)λ . (9)

In the end, our favored specification is (7)-(9).
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Dynamic Model I. We consider two life—cycle model specifications. This preliminary
draft emphasizes the first, which has perfect capital markets.

When the wife works, she accumulates experiential human capital His:
3

Ḣis = pis with Hi,Si = 0 . (10)

If g is the economy’s rate of labor—augmenting technological progress, Ai registers the
wife’s idiosyncratic earning ability, and the household reached its starting age Si at Bi, we
assume

yFis = Ai · eg·(s−Si+Bi) · y(His) , (11)

where y(.) is a known, nondecreasing function.4

In our first life—cycle specification, household i solves

U(Si , Bi) ≡ max
xis,pis,Ri

Ri

Si

e−ρ·s ·Nis · u(λis · xis
Nis

) ds , (12)

subject to: ȧis = r · ais + yMis + pis · yFis − xis ,

Ḣis = pis ,

λis = λ∗ · pis + (1− pis) for s < Ri ,

λis = λ for s ≥ Ri ,

yFis = Ai · eg·(s−Si+Bi) · y(His) ,

yMis = 0 for s > Ri ,

ai0 = 0 and Hi,Si = 0 .

Actual female earnings are

ȳFis = pis · yFis .

3 We ignore male human capital accumulation since it adds nothing to the analysis.
4 One could, without invalidating the procedure below, also multiply the right—hand

side of (11) by a function of age – perhaps reflecting declining productivity at advanced
age. Such a function might capture the typical concave quadratic shape of most estimated
earning dynamics profiles, and it might provide an additional reason for retirement.
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Dynamic Model II. Our second life—cycle specification assumes no borrowing without
tangible collateral. In other words, we maintain (12) but incorporate into it a liquidity
constraint

ais ≥ 0 all s . (13)

Life—cycle Consumption Expenditure. The first proposition characterizes a house-
hold’s optimal expenditure path given pis and Ri – but absent (13).

Proposition 1: Let (xis , pis , Ri) be the optimal solution to household problem (12). Let
Yis be the present value of lifetime earnings of household i at age s, so that

Yi0 =
T

Si

e−r·s · (yMis + pis · yFis) ds with yMis = 0 for s ≥ Ri .

Then

xis =
Yi0

T

Si
eσ·s ·Nis · [λis]

γ
1−γ ds

·Nis · [λis]
γ

1−γ · e(r+σ)·s , s ∈ (Si , Ri) , (14)

where

σ ≡ −r + r − ρ
1− γ .

Proof: See Appendix I.
Proposition 1 shows that optimal expenditure per adult equivalent is piecewise expo-

nential, with discontinuities occurring at ages when λis or Nis shift due to participation,
retirement, or household—composition changes. The optimal xis will tend to jump at the
latter ages. Let ∆is be the expenditure jump at age s for household i. From (14),

∆is =
ci,s+0/Ni,s+0
ci,s−0/Ni,s−0

=
λi,s+0
λi,s−0

γ
1−γ , (15)

where the notation s + 0 (s − 0) denotes ages arbitrarily after (before) s. When λis
rises (from retirement or non—participation), expenditure per adult equivalent decreases
(increases) when γ < 0 (γ > 0). Most empirical studies point to a value γ < 0. In that
range, the implication of (15) seems consistent with other evidence. For example, provided
γ < 0, the model predicts a decline in household expenditure at retirement, which accords
with some recent observations (e.g., Hurd and Rohwedder [2003], Aguiar and Hurst [2005],
Laitner and Silverman [2005, 2008], Haider and Stephens [2004], and others5). Similarly,
examining household balance sheets at retirement, House et al. [2008] find evidence that
couples with working wives consume more prior to retirement.

5 See also business—cycle frequency analysis in Hall [2008].
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An intuitive explanation for the nature of the relationship between ∆is and λis is as
follows. In a period of life with a higher λ, a household can utilize market goods more
effectively. That tends to make it want to allocate more expenditure to such ages. The
curvature of the utility function, on the other hand, makes the household want to equalize
λ · x at different ages. If γ > 0, the former tendency predominates. If, however, γ < 0, the
severity of curvature is such that the household’s desire to smooth λ · x leads it to desire
to cut x when λ is high.6

Female Labor—Force Participation. Overall, labor force participation increases a
household’s earnings but reduces utility generated per unit of expenditure. The next
proposition derives a necessary condition for optimal female labor—force participation that
captures this tradeoff.

Proposition 2: Let (xis , pis) be the optimal solution to household life—cycle problem (12)
given Ri. Assume a wife changes her labor—force participation a finite number of times.
At each age of change s,

∆pis ≡ |pi,s+0 − pi,s−0| = 1 .

Otherwise, ∆pis = 0. Let

wFis ≡
T

s

e−r·(t−s) · pit · ∂ y
F
it

∂Hit
dt .

If ∆pis = 0 and s < Ri, we have

pis = 1 (0)⇐⇒
T

Si

eσ·s ·Nis · [λis]
γ

1−γ ds ≥ (≤)1− γ
γ

·Nis · e(σ+r)·s · Yi0
yFis + w

F
is

· ([λ∗] γ
1−γ − 1) . (16)

When ∆pis = 1 and s < Ri, there is equality in (16).

Proof: See Appendix I.

We can use Proposition 1 to simplify the expressions.

Corollary 2.1: Let (xis , pis) be the optimal solution to household life—cycle problem (12)
given Ri. Assume a wife changes her labor—force participation a finite number of times.
Then

6 Heckman [1974] provides an interesting contrast. He assumes a general temporally
non—separable utility specification. He argues as follows: suppose that time at home and
consumption expenditure are substitutes. Suppose that an individual’s wages peak at ages
40-60. Then work hours will peak at the latter ages, and households may consume more
at the same ages to compensate themselves for less time at home. His reasoning depends
on variable hours of work, whereas we assume discrete work options.
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∆pis = 0 , s < Ri , pis = 1 =⇒ yFis + w
F
is

xis
≥ 1− γ

γ
· ([λ∗] γ

1−γ − 1) , (17)

∆pis = 0 , s < Ri , pis = 0 =⇒ yFis + w
F
is

xis
≤ 1− γ

γ
· [λ
∗]

γ
1−γ − 1

[λ∗]
γ

1−γ
, (18)

∆pis = 1 , s < Ri , pi,s−0 = 1 =⇒ yFis + w
F
is

xi,s−0
=
1− γ
γ

· ([λ∗] γ
1−γ − 1) , (19)

∆pis = 1 , s < Ri , pi,s−0 = 0 =⇒ yFis + w
F
is

xi,s−0
=
1− γ
γ

· [λ
∗]

γ
1−γ − 1

[λ∗]
γ

1−γ
. (20)

Proof: See Propositions 1-2.

To interpret Proposition 2 and Corollary 2.1, notice that wFis is the present value
at age s of the marginal product of experiential human capital. Setting pis = 1 over
[s , s+ ds) shifts up the woman’s earning profile thereafter, raising her human capital by
ds. The woman benefits from this increment to her human capital at every future time
that she works.

Consider (17), for example. Female participation at age s yields a dollar reward at
rate yFis+w

F
is, where the first component measures explicit, current earnings and the second

the shadow value of current investment. Multiplying by marginal utility, [Nis]
1−γ · [λis]γ ·

[xis]
γ−1, values the reward in utility units. Expression (17) compares the value of more

market work against the value of more time at home. If the woman stops working in the
market, her household can produce more utility from a given amount of expenditure on
consumption, and the gain is proportional to current utility – [Nis]

1−γ · [λis]γ · [xis]γ/γ.
Thus, if

(yFis + w
F
is) · [Nis]1−γ · [λis]γ · [xis]γ−1

[Nis]1−γ · [λis]γ · [xis]γ/γ =
yFis + w

F
is

xis/γ

exceeds a threshold (dependent on λ and γ), the woman will want to work in the market.
We can see the key role of λ∗ in determining female labor force participation as follows.

We have

ln([λ]
γ

1−γ ) ≈ ln(1) + 1 · ([λ] γ
1−γ − 1) = [λ] γ

1−γ − 1 .
So,

1− γ
γ

· ([λ] γ
1−γ − 1) ≈ 1− γ

γ
· ln([λ] γ

1−γ ) = ln(λ) .

Thus, condition (i) of Corollary 2.1, for example, implies

yFis + w
F
is

xis
≈ ln(λ∗) ≈ λ∗ − 1 . (21)
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Another potentially important factor is current family size. A higher Nis at a given
age s makes xis higher – according to (14). A high xis makes participation less likely
in each condition of Corollary 2.1. In our life—cycle formulation, household’s allocate the
most resources to ages with the largest family size. Proposition 2 shows the same applies
to allocation of women’s time at home.

In the end, a woman’s participation is more likely, cet par, if her market earnings are
high. And, she is more likely to participate at one age if she anticipates participation in
the future. Her participation is less likely if the family’s total lifetime resources (i.e., Y0)
are high or if the current family size (i.e., Nis) is high. Finally, if r > ρ and γ < 0, a
household’s optimal consumption expenditure rises with age. That makes the marginal
utility of earnings fall with s, reducing women’s incentives to participate in the labor force
at older ages.

Implementing Corollary 2.1 requires computing wFis. Fortunately, the next corollary
shows that we can use integration by parts to derive an expression for wFis that depends
only on observable variables.

Corollary 2.2: Let (xis , pis) be the optimal solution to household life—cycle problem (12)
given Ri. Let J (pis , t) index the ages at which the wife changes her labor—force participa-
tion. Assume the set of changes is finite. Let

J (pis , t) = {j = 0, 1, ..., J | s0 = t; sJ = T , sj+1 > sj ,∆pis = 1⇔ s = sj} ,

so that J (pis , t) provides a partition

[s0 , s1) ∪ [s1 , s2) ∪ ... ∪ [sJ−1 , sJ) = [t , T )
with, for each j, either pis = 1 or pis = 0 for all s ∈ [sj , sj+1). Let J+(pis , t) ⊂ J (pis , t)
be such that j ∈ J+(pis , t) =⇒ pis = 1 all s ∈ [sj , sj+1). Then

wis = e
r·s ·

j∈J+(pis , s)

[e−r·sj+1 · ȳFi,sj+1 − e−r·sj · ȳFi,sj ] + (r− g) ·
T

s

e−r·z · ȳFiz dz . (22)

Proof: See Appendix I.

Male Retirement. The male retirement—decision problem resembles the female partic-
ipation choice, though the male problem is somewhat simpler because the shadow price of
human capital is zero at retirement. We have

Proposition 3. Let Ri be the optimal male retirement age for couple i. For simplicity,
assume that Nis is continuous in s at s = Ri. Let R = Ri.
(i) If ∆piR = 0 and piR = 0, then

T

Si

eσ·s ·Nis · [λis]
γ

1−γ ds =
1− γ
γ

·NiR · e(σ+r)·R · Y0
yMiR

· [λ] γ
1−γ − [λ∗] γ

1−γ . (23)
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Or, using Proposition 1,

yMiR
xi,R−0

=
1− γ
γ

· [ λ
λ∗
]
γ

1−γ − 1 .

(ii) If ∆piR = 1 and pi,R−0 = 1, then

T

Si

eσ·s ·Nis · [λis]
γ

1−γ ds =
1− γ
γ

·NiR · e(σ+r)·R · Y0
yMiR + y

F
iR + w

F
iR

· [λ] γ
1−γ − 1 . (24)

Or, using Proposition 1,

yMiR + y
F
iR + w

F
iR

xi,R−0
=
1− γ
γ

· [λ] γ
1−γ − 1 .

Proof: See Appendix I.

Using the same approximation as in (21), condition (i) of Proposition 3, for example,
implies

yMiR
xi,R−0

≈ ln( λ
λ∗
) ≈ λ

λ∗
− 1 . (25)

Our model of retirement works as follows. Prior to retirement, the left—hand side
of either expression in (25) exceeds the right. With maturity, growth of yMis moderates.
Eventually, male earnings may level off or decline. If r > ρ, it is also true that xis grows
with age. Provided the denominator of the left side above grows faster than the numerator,
eventually a household reaches an optimal retirement age (or dies).

Condition (25) illustrates the homotheticity of our model: raising men and women’s
wage rates at all ages by z, changes the numerator and denominator of (25) by the same
percentage – leaving the optimal R unaffected. Furthermore, a comparison of (21) and
(25) shows why married women tend to retire before their husbands even if λM = λF

(or [λ∗]2 = λ): a lower wage with the same household consumption yields a lower optimal
retirement age. (Parenthetically, (25) also that single men and women will tend to retire at
the same age if their wage profiles are parallel – regardless of the levels of their profiles.)

4 Liquidity Constraints

We can distinguish two broad categories of life—cycle—model specification in the recent
literature.

One resembles (12). Examples include Auerbach and Kotlikoff [1987] and Altig et
al. [2001]. The second adds moment—by—moment liquidity constraints (13). Examples
include Mariger [1986], Zeldes [1989], and Hubbard and Judd [1986]. Many models in the
second vein also incorporate stochastic earnings. See, for example, Deaton [1991], Hubbard
et al. [1995], and Gourinchas and Parker [2002]. The frequency and possible duration of
very low earning samplings, and the nature of fall—back resources – e.g., public transfers
(Hubbard et al. [1995]) or family line inter vivos gifts (Laitner [1992]) – in the event of bad
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luck, become topics of potentially great importance. Additional complications can arise.
At a minimum level, a household with no liquid assets may have to pay check cashing fees,
etc. In the middle class, lack of net worth may preclude access to the mortgage market or
lead to higher interest rates on credit, etc. And, households may face uncertainty about
expenses as well as earnings.

Coincidentally, parameter values in the first two literatures tend to differ rather sub-
stantially. Laitner and Silverman [2008] provides estimates for a formulation of the first
type. Proposition 1 shows that consumption expenditure in the absence of family composi-
tion or work—status changes tends to grow at rate (r−ρ)/(1−γ). Laitner and Silverman’s
estimate is (r − ρ)/(1− γ) ≈ 0.025. This is roughly in line with calibrations in Auerbach
and Kotlikoff [1987], Altig et al. [2001], and Nishiyama and Smetters [2005]. Gourinchas
and Parker [2002], in contrast, estimate a formulation with (13) and earnings uncertainty,
and they find (r− ρ)/(1− γ) < 0. This is similar to many calibrations in the second liter-
ature. Empirical evidence seems to point to an average consumption expenditure profile
that rises with age until mid adulthood and then falls. Laitner and Silverman’s estimates
track the rise with (r− ρ)/(1− γ) > 0, and the fall with children leaving home and declin-
ing expenditure due to retirement. Gourinchas and Parker attribute the rise in youth to
liquidity constraints, which cause expenditure to mimic rising (with age) earning profiles.
Thereafter (r − ρ)/(1− γ) < 0 dominates.

The model of this paper potentially has a bearing on the importance of liquidity
constraints. (i) Our specification of λis can, if γ < 0, explain a general drop in household
consumption at retirement. Otherwise, (r − ρ)/(1 − γ) < 0 may be necessary – see
the discussion above. With our specification, one cannot dismiss the unconstrained model
simply on the basis of the general shape of the aggregative consumption expenditure profile
with respect to age. (ii) If married women typically participate in the labor market for
only a fraction of their lives, they may adjust their dates of participation to alleviate (13).7

Discussion. The discussion of parameter values here has a potentially important bearing
on the reason people retire. Consider (25). If (r − ρ)/(1 − γ) < 0, the denominator on
the left—hand side is falling with age. In that case, the impetus for retirement must be
an even faster decline in yMis . Presumably the idea would be that aging eventually causes
productivity to fall, which impels retirement. On the other hand, if (r − ρ)/(1 − γ) > 0,
the left—hand side denominator rises with age. Even if male productivity only levels off,
rather than declines, with age, a rising xis can then impel retirement. Put differently,
it seems that a specification with (r − ρ)/(1 − γ) < 0 almost forces declining health to
govern retirement, whereas under the alternative, older households may choose retirement
to make optimal use of their high consumption late in life.

In historical perspective, the second case in the preceding sentence suggests that
retirement is a threshold phenomenon. Suppose that male earnings tend to rise to a peak

7 Unfortunately, this does not necessarily mean that low participation women optimally
must participate early in life if they participate at all – if they do not participate when
they have young children, for instance, but participate heavily after their children have
matured, the shadow price wFis in Corollary 2.1 may make participation attractive only
late in life.
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and then level off. With short lifespans, almost no one may reach the trigger for retirement
in (25). Increasing longevity, however, eventually allows many men to reach a high xis
relative to yMis . Then “retirement” should become a common occurrence.

5 Estimation

We propose to estimate our model’s parameters from two data sources. The first
is consumption expenditure data from the annual Consumer Expenditure Survey (CEX).
The second is data on year—by—year household earnings, family composition, and labor
supply from the Health and Retirement Study (HRS).

Block-1 Estimation Procedure. Proposition 1 yields one set of estimation conditions
as follows.

Consider household i at age s and time t, where s is the age of the adult female or
the single adult male. Let its consumption expenditure be xist. Define

χfemale(i, s, t) ≡ 1 if adult female works 0 hrs/week at age s,
0 otherwise,

χmale(i, s, t) ≡ 1 if adult male is retired at household age s,
0 otherwise.

Condition (14) implies

ln(xist)− ln(xi,s−1,t−1) = r − ρ
1− γ + ln(nist)− ln(ni,s−1,t−s)+

γ

1− γ · ln(λ
F ) · [χfemale(i, s, t)− χfemale(i, s− 1, t− 1)]+

γ

1− γ · ln(λ
M ) · [χmale(i, s, t)− χmale(i, s− 1, t− 1)] .

Treating the influence of family composition as in Tobin [1967], let

Nist = 1 + χspouse(i, s, t) · ξspouse + χkids(i, s, t) · ξkids , (26)

where

χspouse(i, s, t) ≡ 1 , if the household includes a spouse when it is age s,
0 , otherwise,

χkids(i, s, t) ≡ number of “kids” ages 0-25 present.
To be more precise, with our CPS data below we include kids up to age 25 who are listed
as members of their parents’ household; with our HRS data, we assume kids leave home
at age max {18, yrs education + 6}, though not later than 25. We also follow the Social
Security system in only counting kids currently present up to a maximum of 2. And, χkids
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“weights” kids 0-5 with 1/3, kids 6-17 with 2/3, and kids 18+ with 1 – see, for example,
Attanaio et al. [2008]. Approximate (26) with

ln(nist) ≈ χspouse(i, s, t) · ξspouse + χkids(i, s, t) · ξkids . (27)

Define

βCEX ≡ (βCEX1 , βCEX2 , βCEX3 , βCEX4 , βCEX5 ) ≡
r − ρ
1− γ , ξ

spouse , ξkids ,
γ

1− γ · ln(λ
F ) ,

γ

1− γ · ln(λ
M ) .

Employing (26)-(27), the equation that we estimate is

ln(xist)− ln(xi,s−1,t−1) =
βCEX1 + βCEX2 · [χspouse(i, s, t)− χspouse(i, s− 1, t− 1)]+
βCEX3 · [χkids(i, s, t)− χkids(i, s− 1, t− 1)]+
βCEX4 · [χfemale(i, s, t)− χfemale(i, s− 1, t− 1)]+
βCEX5 · [χmale(i, s, t)− χmale(i, s− 1, t− 1)] . (28)

We use combined diary and survey CEX cross—sectional data.8 Although this does
not provide observations on individual households (since the diaries and surveys apply to
different respondents), the sample size is large enough to provide means x̄st for different
(age , year) cells. Letting χ̄spouse(s , t), etc., be corresponding averages, we estimate (28)
using

ln(x̄ist)− ln(x̄i,s−1,t−1) = βCEX1 + βCEX2 · [χ̄spouse(i, s, t)− χ̄spouse(i, s− 1, t− 1)]+
βCEX3 · [χ̄kids(i, s, t)− χ̄kids(i, s− 1, t− 1)]+
βCEX4 · [χ̄female(i, s, t)− χ̄female(i, s− 1, t− 1)]+
βCEX5 · [χ̄male(i, s, t)− χ̄male(i, s− 1, t− 1)] + 1

st − 1
s−1,t−1 , (29)

where we will think of 1
st as measurement error in ln(x̄st).

Block-1 Estimation Results. As described above, the CEX data yields a pseudo
panel. It is difficult to eliminate non—married households because of selection issues and be-
cause we have no way of determining past and future marital status for a given household.
Fortunately, Proposition 1 should hold regardless of marital status. See the discussion of
preferences above.

Tables 1-4 present preliminary estimates from (29) alone. The dependent variable
comes from CEX data for ages 25-69 and years 1984-2001. We use CEX data on spouse
present. The remaining independent variables come from Section 2’s CPS data – the

8 See Laitner and Silverman [2005].
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fraction of households with children present, of adult females each year with zero labor—
force participation, and of adult males retired.9 As above, “age” is wife’s age in the case
of couples. As stated, although our theoretical analysis focuses exclusively on married
couples, the CEX data is a random sample of all households. As in Section 2, we avoid
ages under 25 because of selection problems.10

The tables consider ages 25-69, 30-69, ... , and 50-69, and 25-64, ... , 50-64. Older
starting ages lessen the chance of inconsistent estimates due to liquidity constrained be-
havior; younger starting ages yield a larger sample. It is also the case that children’s birth
ages tend to be easily observable whereas children’s age of separation from their parent
household may well be ambiguous; therefore, there is a possible quality advantage for
youthful households in this respect. In both the CPS and HRS (see below) we drop ob-
servations above age 69 because a disconcerting fraction of males remain unretired, calling
into question the meaning of “retirement.” Since we have classified our Block-1 data by
female age, a top age of 64 eliminates many 66-69 year old men.

Table 1 estimates βCEX1 to βCEX5 ; Table 2 imposes λ = [λ]2. A likelihood ratio
test never rejects the second specification. In general, βCEX4 and βCEX5 are imprecisely
estimated. Table 2 often finds βCEX5 ≈ 0, which is consistent with λ > 1 only when γ = 0.
Tables 3-4 are similar, though they generally suggest βCEX5 is -0.10 to -0.15. A Chow test
never rejects maintaining the five youngest ages in columns 2-6; thus, the test does not
provide reason to think that liquidity constraint (13) binds at youthful ages. Likewise, the
point estimates of βCEX1 are as likely to increase with exclusion of the youngest ages as to
decrease. If (13) binds at first and then becomes slack, one might expect βCEX1 to fall as
we move to the right.

Looking at the first three columns of Table 4, we find estimates (r−ρ)/(1−γ) ≈ 0.023
to 0.031. This yields optimal expenditure profiles that rise with age – as is characteristic
of the Auerbach—Kotlikoff strand of literature reviewed in Section 4. The spousal weight is
about 0.35, which implies more increasing returns from household size than the treatment
of widows in the Social Security system. The parameter estimates imply optimal household
expenditure rises when men and women have less time at home. Propositions 2-3 show
this is consistent with (7)-(9) provided γ < 0.

For comparison, Laitner and Silverman [2008,Tab.4] estimates βCEX1 = 0.0262,
βCEX2 = 0.3632, βCEX3 = 0.1345, and (γ/(1 − γ)) · ln(λ) = −0.2562 – with (γ/(1 −
γ)) · ln(λ∗) constrained to equal 0.

To attempt to obtain more precise estimates, we turn to Blocks 2-3. They will also
allow us to recover the underlying structural parameters ρ, γ, λ∗, and λ.

Block-3 Estimation Procedure. Propositions 2-3 yield two other sets of estimation
conditions. Begin with Proposition 3.

Let

9 Laitner and Silverman [2005, 2008] discuss problems with CEXmeasures of retirement.
We use CPS female participation data out of the same concern with accuracy.
10 In practice, college educated men and women may typically form their households in
their mid 20s or beyond. At earlier ages, household heads have less education and hence
earn and consume less on average.
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Table 1A. “Kids” Regressor Covers Child Ages 0-25
GLS Coefficients Equation (29); CEX Data 1984-2001;
Specification Estimating λ∗ and λ; No Time Dummies

[Estimated Parameter (Std. Error/T Stat.)]

Parameter Ages 25-69 Ages 30-69 Ages 35-69

βCEX1 = r−ρ
1−γ

0.0232 ∗∗∗ 0.0232 ∗∗∗ 0.0276 ∗∗∗

[ 0.0009/ 26.4221] [ 0.0012/ 19.4395] [ 0.0017/ 15.7730]

βCEX2 =ξspouse 0.3338 ∗∗∗ 0.3304 ∗∗∗ 0.3816 ∗∗∗

[ 0.0539/ 6.1934] [ 0.0597/ 5.5385] [ 0.0641/ 5.9486]

βCEX3 =ξkids 0.3227 ∗∗∗ 0.3335 ∗∗∗ 0.4010 ∗∗∗

[ 0.0174/ 18.5083] [ 0.0219/ 15.2485] [ 0.0293/ 13.6656]

βCEX4 = γ
1−γ ·ln(λ∗) -0.0443 -0.1256 -0.1049

[ 0.1238/ -0.3580] [ 0.1434/ -0.8756] [ 0.1585/ -0.6616]

βCEX5 = γ
1−γ ·ln(λ) -0.0372 -0.0475 -0.0757

[ 0.0444/ -0.8387] [ 0.0475/ -0.9981] [ 0.0508/ -1.4913]

Summary Statistics [transformed data]

SSR 6.0568 5.5997 5.0348
Observations 765.0000 680.0000 595.0000

MSE 0.0080 0.0083 0.0085

Addendum: 40-Year Growth Factor Implied by Estimated βCEX1

Growth Factor 2.53 2.53 3.01

Chow Test: current column (col J) vs preceding column
F (N1 , N2) = [(SSR(J − 1)− SSR(J))/N1]/MSE(J)
where N1 = OBS(J − 1)−OBS(J) , N2 = OBS(J)− 5

F-Stat NA 0.6482 0.7789
P-Value NA 0.9933 0.9242

Source: see text. Significance: * 10 percent, ** 5 percent, *** 1 percent.
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Table 1B. “Kids” Regressor Covers Child Ages 0-25
GLS Coefficients Equation (29); CEX Data 1984-2001;
Specification Estimating λ∗ and λ; No Time Dummies

[Estimated Parameter (Std. Error/T Stat.)]

Parameter Ages 40-69 Ages 45-69 Ages 50-69

βCEX1 = r−ρ
1−γ

0.0307 ∗∗∗ 0.0253 ∗∗∗ 0.0186 ∗∗∗

[ 0.0030/ 10.1971] [ 0.0044/ 5.7126] [ 0.0048/ 3.8410]

βCEX2 =ξspouse 0.3929 ∗∗∗ 0.3450 ∗∗∗ 0.3474 ∗∗∗

[ 0.0715/ 5.4989] [ 0.0802/ 4.3020] [ 0.0850/ 4.0893]

βCEX3 =ξkids 0.4397 ∗∗∗ 0.4080 ∗∗∗ 0.4486 ∗∗∗

[ 0.0404/ 10.8814] [ 0.0467/ 8.7337] [ 0.0634/ 7.0799]

βCEX4 = γ
1−γ ·ln(λ∗) -0.1143 -0.0355 0.1506

[ 0.1813/ -0.6304] [ 0.2084/ -0.1705] [ 0.2376/ 0.6340]

βCEX5 = γ
1−γ ·ln(λ) -0.1200 ∗ -0.0003 0.2565 ∗∗

[ 0.0695/ -1.7265] [ 0.1079/ -0.0030] [ 0.1291/ 1.9863]

Summary Statistics [transformed data]

SSR 4.6735 4.0919 3.3093
Observations 510.0000 425.0000 340.0000

MSE 0.0093 0.0097 0.0099

Addendum: 40-Year Growth Factor Implied by Estimated βCEX1

Growth Factor 3.41 2.76 2.11

Chow Test: current column (col J) vs preceding column
F (N1 , N2) = [(SSR(J − 1)− SSR(J))/N1]/MSE(J)
where N1 = OBS(J − 1)−OBS(J) , N2 = OBS(J)− 5

F-Stat 0.4592 0.7024 0.9319
P-Value 1.0000 0.9761 0.6454

Source: see text. Significance: * 10 percent, ** 5 percent, *** 1 percent.
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Table 2A. “Kids” Regressor Covers Child Ages 0-25
GLS Coefficients Equation (29); CEX Data 1984-2001;

Specification Constraining λ∗ =
√
λ; No Time Dummies

[Estimated Parameter (Std. Error/T Stat.)]

Parameter Ages 25-69 Ages 30-69 Ages 35-69

βCEX1 = r−ρ
1−γ

0.0233 ∗∗∗ 0.0239 ∗∗∗ 0.0281 ∗∗∗

[ 0.0007/ 35.8760] [ 0.0008/ 28.5945] [ 0.0014/ 20.2103]

βCEX2 =ξspouse 0.3313 ∗∗∗ 0.3269 ∗∗∗ 0.3806 ∗∗∗

[ 0.0527/ 6.2817] [ 0.0595/ 5.4974] [ 0.0641/ 5.9402]

βCEX3 =ξkids 0.3234 ∗∗∗ 0.3392 ∗∗∗ 0.4060 ∗∗∗

[ 0.0172/ 18.8503] [ 0.0206/ 16.4935] [ 0.0273/ 14.8864]

βCEX5 = γ
1−γ ·ln(λ) -0.0332 -0.0303 -0.0643

[ 0.0407/ -0.8157] [ 0.0421/ -0.7198] [ 0.0443/ -1.4501]

Summary Statistics [transformed data]

SSR 6.0572 5.6047 5.0366
Observations 765.0000 680.0000 595.0000

MSE 0.0080 0.0083 0.0085

Addendum: 40-Year Growth Factor Implied by Estimated βCEX1

Growth Factor 2.54 2.60 3.07

Chow Test: current column (col J) vs preceding column
F (N1 , N2) = [(SSR(J − 1)− SSR(J))/N1]/MSE(J)
where N1 = OBS(J − 1)−OBS(J) , N2 = OBS(J)− 5

F-Stat NA 0.6420 0.7843
P-Value NA 0.9942 0.9184

Likelihood Ratio Test: F = [SSR(Tab 2)− SSR(Tab 1)]/MSE(Tab 1)

F-Stat 0.0515 0.6063 0.2145
P-Value 0.8206 0.4364 0.6435

Source: see text. Test significance: * 10 percent, ** 5 percent, *** 1 percent.
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Table 2B. “Kids” Regressor Covers Child Ages 0-25
GLS Coefficients Equation (29); CEX Data 1984-2001;

Specification Constraining λ∗ =
√
λ; No Time Dummies

[Estimated Parameter (Std. Error/T Stat.)]

Parameter Ages 40-69 Ages 45-69 Ages 50-69

βCEX1 = r−ρ
1−γ

0.0311 ∗∗∗ 0.0255 ∗∗∗ 0.0185 ∗∗∗

[ 0.0028/ 11.0781] [ 0.0043/ 5.8840] [ 0.0047/ 3.9219]

βCEX2 =ξspouse 0.3918 ∗∗∗ 0.3438 ∗∗∗ 0.3482 ∗∗∗

[ 0.0713/ 5.4941] [ 0.0799/ 4.3046] [ 0.0846/ 4.1172]

βCEX3 =ξkids 0.4438 ∗∗∗ 0.4104 ∗∗∗ 0.4478 ∗∗∗

[ 0.0385/ 11.5335] [ 0.0451/ 9.1059] [ 0.0629/ 7.1247]

βCEX5 = γ
1−γ ·ln(λ) -0.1096 ∗ 0.0078 0.2520 ∗∗

[ 0.0620/ -1.7660] [ 0.0994/ 0.0786] [ 0.1218/ 2.0684]

Summary Statistics [transformed data]

SSR 4.6746 4.0922 3.3094
Observations 510.0000 425.0000 340.0000

MSE 0.0092 0.0097 0.0098

Addendum: 40-Year Growth Factor Implied by Estimated βCEX1

Growth Factor 3.46 2.78 2.10

Chow Test: current column (col J) vs preceding column
F (N1 , N2) = [(SSR(J − 1)− SSR(J))/N1]/MSE(J)
where N1 = OBS(J − 1)−OBS(J) , N2 = OBS(J)− 5

F-Stat 0.4611 0.7048 0.9350
P-Value 1.0000 0.9750 0.6384

Likelihood Ratio Test: F = [SSR(Tab 2)− SSR(Tab 1)]/MSE(Tab 1)

F-Stat 0.1102 0.0380 0.0111
P-Value 0.7400 0.8456 0.9161

Source: see text. Test significance: * 10 percent, ** 5 percent, *** 1 percent.
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Table 3A. “Kids” Regressor Child Ages 0-25, Half Weight Ages 0-5
GLS Coefficients Equation (29); CEX Data 1984-2001;
Specification Estimating λ∗ and λ; No Time Dummies

[Estimated Parameter (Std. Error/T Stat.)]

Parameter Ages 25-64 Ages 30-64 Ages 35-64

βCEX1 = r−ρ
1−γ

0.0235 ∗∗∗ 0.0233 ∗∗∗ 0.0276 ∗∗∗

[ 0.0009/ 26.8911] [ 0.0012/ 19.4881] [ 0.0018/ 15.3091]

βCEX2 =ξspouse 0.3506 ∗∗∗ 0.3329 ∗∗∗ 0.3625 ∗∗∗

[ 0.0610/ 5.7465] [ 0.0683/ 4.8739] [ 0.0734/ 4.9370]

βCEX3 =ξkids 0.2987 ∗∗∗ 0.3083 ∗∗∗ 0.3839 ∗∗∗

[ 0.0187/ 15.9642] [ 0.0233/ 13.2095] [ 0.0327/ 11.7411]

βCEX4 = γ
1−γ ·ln(λ∗) -0.0702 -0.1700 -0.1527

[ 0.1241/ -0.5652] [ 0.1448/ -1.1737] [ 0.1613/ -0.9461]

βCEX5 = γ
1−γ ·ln(λ) -0.1222 ∗∗∗ -0.1302 ∗∗ -0.1430 ∗∗∗

[ 0.0471/ -2.5956] [ 0.0506/ -2.5714] [ 0.0536/ -2.6695]

Summary Statistics [transformed data]

SSR 5.1511 4.7086 4.1577
Observations 680.0000 595.0000 510.0000

MSE 0.0076 0.0080 0.0082

Addendum: 40-Year Growth Factor Implied by Estimated βCEX1

Growth Factor 2.56 2.54 3.02

Chow Test: current column (col J) vs preceding column
F (N1 , N2) = [(SSR(J − 1)− SSR(J))/N1]/MSE(J)
where N1 = OBS(J − 1)−OBS(J) , N2 = OBS(J)− 5

F-Stat NA 0.6522 0.7873
P-Value NA 0.9924 0.9133

Source: see text. Significance: * 10 percent, ** 5 percent, *** 1 percent.
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Table 3B. “Kids” Regressor Child Ages 0-25, Half Weight Ages 0-5
GLS Coefficients Equation (29); CEX Data 1984-2001;
Specification Estimating λ∗ and λ; No Time Dummies

[Estimated Parameter (Std. Error/T Stat.)]

Parameter Ages 40-64 Ages 45-64 Ages 50-64

βCEX1 = r−ρ
1−γ

0.0344 ∗∗∗ 0.0368 ∗∗∗ 0.0240 ∗∗

[ 0.0037/ 9.3038] [ 0.0077/ 4.7839] [ 0.0093/ 2.5814]

βCEX2 =ξspouse 0.3536 ∗∗∗ 0.3054 ∗∗∗ 0.3166 ∗∗∗

[ 0.0816/ 4.3312] [ 0.0933/ 3.2718] [ 0.1026/ 3.0871]

βCEX3 =ξkids 0.4757 ∗∗∗ 0.4921 ∗∗∗ 0.4488 ∗∗∗

[ 0.0534/ 8.9134] [ 0.0813/ 6.0515] [ 0.1043/ 4.3020]

βCEX4 = γ
1−γ ·ln(λ∗) -0.1885 -0.2322 0.0012

[ 0.1861/ -1.0127] [ 0.2249/ -1.0326] [ 0.2684/ 0.0046]

βCEX5 = γ
1−γ ·ln(λ) -0.2239 ∗∗∗ -0.2820 ∗ 0.0521

[ 0.0721/ -3.1047] [ 0.1473/ -1.9148] [ 0.1882/ 0.2767]

Summary Statistics [transformed data]

SSR 3.7728 3.2096 2.4980
Observations 425.0000 340.0000 255.0000

MSE 0.0090 0.0096 0.0100

Addendum: 40-Year Growth Factor Implied by Estimated βCEX1

Growth Factor 3.97 4.36 2.61

Chow Test: current column (col J) vs preceding column
F (N1 , N2) = [(SSR(J − 1)− SSR(J))/N1]/MSE(J)
where N1 = OBS(J − 1)−OBS(J) , N2 = OBS(J)− 5

F-Stat 0.5041 0.6916 0.8379
P-Value 0.9999 0.9789 0.8291

Source: see text. Significance: * 10 percent, ** 5 percent, *** 1 percent.
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Table 4A. “Kids” Regressor Child Ages 0-25, Half Weight Ages 0-5
GLS Coefficients Equation (29); CEX Data 1984-2001;

Specification Constraining λ∗ =
√
λ; No Time Dummies

[Estimated Parameter (Std. Error/T Stat.)]

Parameter Ages 25-64 Ages 30-64 Ages 35-64

βCEX1 = r−ρ
1−γ

0.0235 ∗∗∗ 0.0239 ∗∗∗ 0.0282 ∗∗∗

[ 0.0006/ 36.7049] [ 0.0008/ 28.8897] [ 0.0014/ 19.5547]

βCEX2 =ξspouse 0.3496 ∗∗∗ 0.3288 ∗∗∗ 0.3606 ∗∗∗

[ 0.0598/ 5.8464] [ 0.0681/ 4.8294] [ 0.0733/ 4.9193]

βCEX3 =ξkids 0.2989 ∗∗∗ 0.3141 ∗∗∗ 0.3901 ∗∗∗

[ 0.0185/ 16.1750] [ 0.0222/ 14.1717] [ 0.0307/ 12.7041]

βCEX5 = γ
1−γ ·ln(λ) -0.1209 ∗∗∗ -0.1130 ∗∗ -0.1291 ∗∗∗

[ 0.0441/ -2.7418] [ 0.0458/ -2.4699] [ 0.0472/ -2.7335]

Summary Statistics [transformed data]

SSR 5.1511 4.7137 4.1602
Observations 680.0000 595.0000 510.0000

MSE 0.0076 0.0080 0.0082

Addendum: 40-Year Growth Factor Implied by Estimated βCEX1

Growth Factor 2.56 2.61 3.09

Chow Test: current column (col J) vs preceding column
F (N1 , N2) = [(SSR(J − 1)− SSR(J))/N1]/MSE(J)
where N1 = OBS(J − 1)−OBS(J) , N2 = OBS(J)− 5

F-Stat NA 0.6453 0.7919
P-Value NA 0.9935 0.9078

Likelihood Ratio Test: F = [SSR(Tab 2)− SSR(Tab 1)]/MSE(Tab 1)

F-Stat 0.0052 0.6290 0.3049
P-Value 0.9423 0.4281 0.5811

Source: see text. Test significance: * 10 percent, ** 5 percent, *** 1 percent.

22



Table 4B. “Kids” Regressor Child Ages 0-25, Half Weight Ages 0-5
GLS Coefficients Equation (29); CEX Data 1984-2001;

Specification Constraining λ∗ =
√
λ; No Time Dummies

[Estimated Parameter (Std. Error/T Stat.)]

Parameter Ages 40-64 Ages 45-64 Ages 50-64

βCEX1 = r−ρ
1−γ

0.0350 ∗∗∗ 0.0371 ∗∗∗ 0.0240 ∗∗∗

[ 0.0035/ 9.9464] [ 0.0077/ 4.8435] [ 0.0093/ 2.5961]

βCEX2 =ξspouse 0.3511 ∗∗∗ 0.3012 ∗∗∗ 0.3156 ∗∗∗

[ 0.0814/ 4.3140] [ 0.0928/ 3.2446] [ 0.1019/ 3.0969]

βCEX3 =ξkids 0.4818 ∗∗∗ 0.4967 ∗∗∗ 0.4490 ∗∗∗

[ 0.0517/ 9.3275] [ 0.0807/ 6.1571] [ 0.1041/ 4.3125]

βCEX5 = γ
1−γ ·ln(λ) -0.2093 ∗∗∗ -0.2585 ∗ 0.0583

[ 0.0646/ -3.2393] [ 0.1388/ -1.8627] [ 0.1792/ 0.3256]

Summary Statistics [transformed data]

SSR 3.7747 3.2118 2.4981
Observations 425.0000 340.0000 255.0000

MSE 0.0090 0.0096 0.0100

Addendum: 40-Year Growth Factor Implied by Estimated βCEX1

Growth Factor 4.05 4.41 2.61

Chow Test: current column (col J) vs preceding column
F (N1 , N2) = [(SSR(J − 1)− SSR(J))/N1]/MSE(J)
where N1 = OBS(J − 1)−OBS(J) , N2 = OBS(J)− 5

F-Stat 0.5058 0.6927 0.8437
P-Value 0.9999 0.9784 0.8194

Likelihood Ratio Test: F = [SSR(Tab 2)− SSR(Tab 1)]/MSE(Tab 1)

F-Stat 0.2093 0.2317 0.0120
P-Value 0.6476 0.6306 0.9129

Source: see text. Test significance: * 10 percent, ** 5 percent, *** 1 percent.
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Λ ≡ [λ] γ
1−γ , Λ∗ ≡ [λ∗] γ

1−γ , Γ ≡ 1− γ
γ

.

Looing at (23), for example, define

fi ≡ yMiR
xi,R−0

− Γ · [ Λ
Λ∗
− 1] . (30)

We can construct a value for fi for each household i in our HRS data. In theory, since
the male retires at age R = Ri, we should have fi = 0 – if fi > 0, the male should have
stayed at work; if fi < 0, he should have retired earlier. Suppose that in practice, however,
the male’s action depends upon Fi where

Fi = fi + νi , νi ∼ N(0 , σ2ν) . (31)

Possible interpretations: (i) employer wishes (including proffered buyout), conditions in
the male’s occupation and industry, etc., imply the trigger for change in participation
status is fi + νi = 0 rather than fi = 0, where νi may be positive or negative; (ii) we have

ln(λi) = ln(λ) + νi ,

where λ is the population average, on which fi is based, but λi is the actual parameter for
household i; or, (iii) we have

yM,actual
is = yM,measured

is + yM,measured
is · νis

with yM,measured
is · νis = measurement error and νis uncorrelated with yM,measured

is . Under
any of these interpretations, νi is orthogonal to fi.

In the case of voluntary retirement,

Fi = 0⇐⇒ νi = −fi .
Disability or death may cause “involuntary retirement.” Or, a male may not attain his
optimal retirement age in sample, in which case let R correspond to the last observable
age. With either involuntary retirement or no retirement in sample, optimization implies
Fi ≥ 0. We have

Fi ≥ 0⇐⇒ fi + νi ≥ 0⇐⇒ νi ≥ −fi .
Letting φ(.,σ2) be the normal density (as above), define

m3
i ≡ 1{ voluntary

retirement} · [−fi] + 1{ involuntary retirement or
never retires in sample } ·

∞
−fi e · φ(e , σ2ν) de
∞
−fi φ(e , σ

2
ν) de

,

m3∗
i ≡ 1{ voluntary

retirement} · [−fi]
2 + 1{ involuntary retirement or

never retires in sample } ·
∞
−fi e

2 · φ(e , σ2ν) de
∞
−fi φ(e , σ

2
ν) de

− σ2ν .
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Then

Ei[m
3
i ] = E[ν] = 0 and Ei[m

3∗
i ] = E [ν]2 − σ2ν = 0 . (32)

Digression. Although Proposition 3 considers cases in which males and females adjust
their participation together, our specification can always break simultaneous actions into
separate components. In Proposition 3, case (ii), for instance,

yMiR + y
F
iR + w

F
iR

xi,R−0
= Γ · [Λ− 1]⇐⇒

yMiR
xi,R−0

+
yFiR + w

F
iR

xi,R−0
= Γ · [ Λ

Λ∗
− 1] · Λ∗ + Γ · [Λ∗ − 1]⇐⇒

{ yMiR
x̃i,R−0

− Γ · [ Λ
Λ∗
− 1]} · Λ∗ + {y

F
iR + w

F
iR

xi,R−0
− Γ · [Λ∗ − 1]} = 0 ,

where x̃ is household expenditure after the woman retires, i.e.,

x̃i,R−0 ≡ xi,R−0 · Λ∗ .
When FOC’s hold with equality for each spouse, then Proposition 3 is satisfied.

Block-2 Estimation Procedure. Continuing as above, define

gis ≡

⎧⎪⎨⎪⎩
yFis+w

F
is

xi,s−0
− Γ · [Λ∗ − 1] if pi,s−0 = 1 ,

yFis+w
F
is

xi,s−0
− Γ · Λ∗−1Λ∗ if pi,s−0 = 0 .

Let female decisions be based upon

Gis = gis + ηis , ηis ∼ N(0 , σ2η) . (33)

As above, assume gis and ηis are orthogonal.
Define

m2
is ≡ 1{∆pis=0,

pis=1
} ·

∞
−gis e · φ(e , σ2ν) de
∞
−gis φ(e , σ

2
ν) de

+ 1{∆pis=0,
pis=0

} ·
−gis
−∞ e · φ(e , σ2ν) de
−gis
−∞ φ(e , σ2ν) de

+ 1{∆pis=1} · [−gis] ,

m2∗
is ≡ 1{∆pis=0,

pis=1
} ·

∞
−gis [e]

2 · φ(e , σ2ν) de
∞
−gis φ(e , σ

2
ν) de

+ 1{∆pis=0,
pis=0

} ·
−gis
−∞ [e]2 · φ(e , σ2ν) de
−gis
−∞ φ(e , σ2ν) de

+

1{∆pis=1} · [−gis]2 − σ2η .
Then

Eis[m
2
is] = E[η] = 0 and Eis[m

2∗
is ] = E [η]2 − σ2η = 0 . (34)
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Appendix I

Proof of Proposition 1: For notational simplicity, suppress i. Set up a Hamiltonian

Hs = e−ρ·s ·Ns · u(λs · xs
Ns
) + μs · [r · as + yMs + ps · yFs − xs] + νs · ps ,

with yFs obeying (11). Proposition 1 optimizes with respect to xs, treating ps and R as
fixed.

First—order conditions imply

μ̇s = −∂Hs
∂as

⇐⇒ μ̇s = −r · μs ⇐⇒ μs = μ0 · e−r·s ,

e−ρ·s · λs · u (λs · xs
Ns
) = μs ⇐⇒ e−ρ·s · λs · [λs · xs

Ns
]γ−1 = μ0 · e−r·s ⇐⇒

xs
Ns

= e
r−ρ
1−γ ·s · [λ] γ

1−γ · [μ0]
−1
1−γ . (A1)

Integrating the budget constraint,

Y0 =
T

S

e−r·s · xs ds .

The last two expressions yield

[μ0]
−1
1−γ =

Y0
T

S
Ns · [λs]

γ
1−γ · eσ·s ds

. (A2)

(A1)-(A2) yield (14).

Proof of Proposition 2: For simplicity, suppress i. Write the Hamiltonian for prob-
lem (12), with Ri fixed, as

Hs = e−ρ·s ·Ns · u(λs · xs
Ns
) + μs · [r · as + yMs + ps · yFs − xs] + νs · ps .

The co-state equations are

μ̇s = −∂Hs
∂a
⇐⇒ μs = μ0 · e−r·s , (A3)

ν̇s = −∂Hs

∂H
= −μs · ps · ∂y

F
s

∂Hs
. (A4)

The first—order condition for control variable xs is

e−ρ·s · λs · [λs · xs
Ns
]γ−1 = μs ⇐⇒ xs = x

∗(s , λs) ≡ Ns · μs · eρ·s · [λs]−γ
1

γ−1 . (A5)

28



Step 1. For any s < R, we compare Hs|ps=0 and Hs|ps=1.
For ps = 0, we have λs = λF , xs = x

∗(s , λF ), and

Hs|ps=0 =
e−ρ·s ·Ns

γ
· [λF · xs

Ns
]γ + μs · [r · as + yMs − xs]

=
e−ρ·s · [Ns]1−γ

γ
· [λF ]γ · [Ns]γ · μs · eρ·s · [λF ]−γ

γ
γ−1 + μs · [r · as + yMs ]

− μs ·Ns · μs · eρ·s · [λF ]−γ
1

γ−1 (see A5)

=
1− γ
γ

· e−ρ·s1−γ ·Ns · [λF ]
γ

1−γ · [μs]
−γ
1−γ + μs · [r · as + yMs ] .

Similarly, if ps = 1, then λs = 1, xs = x
∗(s , 1), and

Hs|ps=1 =
1− γ
γ

· e−ρ·s1−γ ·Ns · [μs]
−γ
1−γ + μs · [r · as + yMs ] + μs · yFs + νs .

So,

Hs|ps=1 ≥ Hs|ps=0
⇐⇒ μs · yFs + νs ≥ 1− γ

γ
· e−ρ·s1−γ ·Ns · [μs]

−γ
1−γ · [λF ] γ

1−γ − 1

⇐⇒ yFs +
νs
μs
≥ 1− γ

γ
· e− ρ·s

1−γ ·Ns · [μs]− 1
1−γ · [λF ] γ

1−γ − 1

⇐⇒ yFs +
νs
μs
≥ 1− γ

γ
· e− ρ·s

1−γ ·Ns · e r·s
1−γ · [μ0]− 1

1−γ · [λF ] γ
1−γ − 1 (see A3)

⇐⇒ yFs +
νs
μs
≥

1− γ
γ

· e (r−ρ)·s1−γ ·Ns · Y0
T

S
Ns · [λs]

γ
1−γ · eσ·s ds

· [λF ] γ
1−γ − 1 . (see A2)

Step 2. For an optimum, νT = 0. Thus, (A4) implies

νT − ν0 = −
T

t

μs · ps · ∂y
F
s

∂Hs
ds

⇐⇒ νt = μ0 ·
T

t

e−r·s · ps · ∂y
F
s

∂Hs
ds . (see A3)

Step 3. Steps 1-2 establish (16).
If s > Ri, we revise Step 1. We drop y

M
s . When ps = 0, λs = λF · λM . When ps = 1,

λs = λM . Step 2 remains the same. This establishes (17).

29



Proof of Corollary 2.2: Recalling the definition of yFs in (12), we have

wFs =
j∈J+(pit , s)

sj+1

sj

e−r·(t−s) · ∂y
F
t

∂Ht
dt

=
j∈J+(pit , s)

sj+1

sj

e−r·(t−s) ·A · eg·(t−S+B) · y (Ht) dt .

Integrating by parts,

sj+1

sj

e−(r−g)·t · y (Ht) dt = e−(r−g)·t · y(Ht)|sj+1sj + (r − g) ·
sj+1

sj

e−(r−g)·t · y(Ht) dt .

Combining the last two expressions, we have (22).

Proof of Proposition 3: For simplicity, suppress i. Let pMs = 1 for ages s when the
male works in the market, and pMs = 0 at other ages. If the male works, his earnings are
yMs . His actual age-s earnings are p

M
s · yMs . Write the Hamiltonian for problem (12)

Hs = e
−ρ·s ·Ns · u(λs · xs

Ns
) + μs · [r · as + pMs · yMs + ps · yFs − xs] + νs · ps .

(A3)-(A5) are as in the proof of Proposition 2.

Step 1. Suppose R = Ri, ∆piR = 0, and piR = 0. Then letting xs = x
∗(x , λs) as in the

proof of Proposition 2, we have

Hs|pMs =1 =
e−ρ·s ·Ns

γ
· [λF · xs

Ns
]γ + μs · [r · as + yMs − xs]

=
e−ρ·s · [Ns]1−γ

γ
· [λF ]γ · [Ns]γ · μs · eρ·s · [λF ]−γ

γ
γ−1+

μs · [r · as + yMs ]− μs ·Ns · μs · eρ·s · [λF ]−γ
1

γ−1 (see A5)

=
1− γ
γ

· e−ρ·s1−γ ·Ns · [λF ]
γ

1−γ · [μs]
−γ
1−γ + μs · [r · as + yMs ] . (A6)

Similarly,

Hs|pMs =0 =
1− γ
γ

· e−ρ·s1−γ ·Ns · [λF · λM ]
γ

1−γ · [μs]
−γ
1−γ + μs · [r · as] . (A7)

The following are necessary conditions:
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HR−0|pM
R−0=1

≥ HR−0|pM
R−0=0

, (A8)

HR+0|pM
R+0

=1 ≤ HR+0|pM
R+0

=0 . (A9)

(A6)-(A7) and (A3) and our assumption about Ns imply that the right and left—hand
sides, respectively, of (A8)-(A9) are continuous in s; hence,

HR−0|pM
R−0=1

= HR+0|pM
R+0

=0 (A10)

is necessary. Using (A6)-(A7), and noting that Ns and μs are continuous at R,

HR−0|pM
R−0=1

= HR+0|pM
R+0

=0 ⇐⇒

μR · yMR−0 +NR · [μR]−
γ

1−γ · e− ρ·R
1−γ · [λF ] γ

1−γ · 1− γ
γ

=

NR · [μR]−
γ

1−γ · e− ρ·R
1−γ · [λF · λM ] γ

1−γ · 1− γ
γ
⇐⇒

μR · yMR−0 =
1− γ
γ

·NR · [μR]−
γ

1−γ · e− ρ·R
1−γ · [λF · λM ] γ

1−γ − [λF ] γ
1−γ ⇐⇒

[μR]
1

1−γ · yMR−0 =
1− γ
γ

·NR · e−
ρ·R
1−γ · [λF · λM ] γ

1−γ − [λF ] γ
1−γ ⇐⇒

yMR−0
Y0/

T

S
Ns · [λs]

γ
1−γ · eσ·s ds

=

1− γ
γ

·NR · e
r−ρ
1−γ ·R · [λF · λM ] γ

1−γ − [λF ] γ
1−γ . (see A2−A3)

Steps 2-4. Cases (ii)-(iv) are analogous.
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