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Abstract4

This chapter discusses identification of common selection models of the labor market. We start with5

the classic Roymodel and showhow it can be identifiedwith exclusion restrictions.We then extend the6

argument to the generalized Roymodel, treatment effectmodels, durationmodels, searchmodels, and7

dynamic discrete choice models. In all cases, key ingredients for identification are exclusion restrictions8

and support conditions.9

JEL classification: C14; C51; J22; J2410

Keywords: Identification; Roy model; Discrete choice; Selection; Treatment effects11

1. INTRODUCTION1213

This chapter discusses identification of common selection models of the labor market.14

We are primarily concerned with nonparametric identification. We view nonparametric15

identification as important for the following reasons.16

First, recent advances in computer power, more widespread use of large data sets, and17

better methods mean that estimation of increasingly flexible functional forms is possible.18

Flexible functional forms should be encouraged. The functional form and distributional19

assumptions used in much applied work rarely come from the theory. Instead, they come20

from convenience. Furthermore, they are often not innocuous.121

Second, the process of thinking about nonparametric identification is useful input22

into applied work. It is helpful to an applied researcher both in informing her about23

which type of data would be ideal and which aspects of the model she might have some24

hope of estimating. If a feature of the model is not nonparametrically identified, then one25

knows it cannot be identified directly from the data. Some additional type of functional26

form assumption must be made. As a result, readers of empirical papers are often skeptical27

of the results in cases in which the model is not nonparametrically identified.28

Third, identification is an important part of a proof of consistency of a nonparametric29

estimator.30

However, we acknowledge the following limitation of focusing on nonparametric31

identification. With any finite data set, an empirical researcher can almost never be32

completely nonparametric. Some aspects of the data that might be formally identified33

could never be estimated with any reasonable level of precision. Instead, estimators are34

usually only nonparametric in the sense that one allows the flexibility of the model to35

1 A classic reference on this is Lalonde (1986) who shows that parametric models cannot replicate the results of an
experiment. Below we present an example on Catholic schools from Altonji et al. (2005a) suggesting that parametric
assumptions drive the empirical estimates.



HESV4A-B06 P: S0169-7218(11)00412-6 I: 978-0-444-53450-7 P: 3 (1–82)

Identification of Models of the Labor Market 3

grow with the sample size. A nice example of this is Sieve estimators in which one 1

estimates finite parameter models but the number of parameters gets large with the data 2

set. An example would be approximating a function by a polynomial and letting the 3

degree of the polynomial get large as the sample size increases. However, in that case 4

one still must verify that the model is nonparametrically identified in order to show that 5

the model is consistent. One must also construct standard errors appropriately. In this 6

chapter we do not consider the purely statistical aspects of nonparametric estimation, 7

such as calculation of standard errors. This is a very large topic within econometrics.2 8

The key issue in identification of most models of the labor market is the selection 9

problem. For example, individuals are typically not randomly assigned to jobs. With this 10

general goal in mind we begin with the simplest and most fundamental selection model 11

in labor economics, the Roy (1951) model. We go into some detail to explain Heckman 12

and Honoré’s (1990) results on identification of this model. A nice aspect of identification 13

of the Roy model is that the basic methodology used in this case can be extended to show 14

identification of other labor models. We spend the rest of the chapter showing how this 15

basic intuition can be used in a wide variety of labor market models. Specifically we cover 16

identification in the generalized Roy model, treatment effect models, the competing risk 17

model, search models, and forward looking dynamic models. While we are clearly not 18

covering all models in labor economics, we hope the ideas are presented in a way that 19

the similarities in the basic models can be seen and can be extended by the reader to 20

alternative frameworks. 21

The plan of this chapter is specifically as follows. Section 2 discusses some 22

econometric preliminaries. We consider the Roy model in Section 3, generalize this 23

to the Generalized Roy model in Section 4, and then use the model to think about 24

identification of treatment effects in Section 5. In Section 6 we consider duration models 25

and search models and then consider estimation of dynamic discrete choice models in 26

Section 7. Finally in Section 8 we offer some concluding thoughts. 27

2. ECONOMETRIC PRELIMINARIES 2829

2.1. Notation 3031

Throughout this chapter we use capital letters with i subscripts to denote random 32

variables and small letters without i subscripts to denote possible outcomes of that 33

random variable. We will also try to be explicit throughout this chapter in denoting 34

conditioning. Thus, for example, we will use the notation 35

E(Yi | X i = x) 36

to denote the expected value of outcome Yi conditional on the regressor variable X i 37

being equal to some realization x . 38

2 See Chen (2007) for discussion of Sieve estimators, including standard error calculation.
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2.2. Identification12

The word “identification” has come to mean different things to different labor3

economists. Here, we use a formal econometrics definition of identification. Consider4

two different models that lead to data generating processes. If the data generated by these5

two models have exactly the same distribution then the two models are not separately6

identified from each other. However, if any two different model specifications lead to7

different data distributions, the two specifications are separately identified. We give a8

more precise definition below. Our definition of identification is based on some of the9

notation and set up of Matzkin’s (2007) following an exposition based on Shaikh (2010).10

Let P denote the true distribution of the observed data X . An econometric model11

defines a data generating process. We assume that the model is specified up to an12

unknown vector θ of parameters, functions and distribution functions. This is known13

to lie in space 2. Within the class of models, the element θ ∈ 2 determines the14

distribution of the data that is observable to the researcher Pθ .Notice that identification15

is fundamentally data dependent. With a richer data set, the distribution Pθ would be a16

different object.17

Let P be the set of all possible distributions that could be generated by the class of18

models we consider (i.e. P ≡ {Pθ : θ ∈ 2}). We assume that the model is correctly19

specified, which means that P ∈ P. The identified set is defined as20

2(P) ≡ {θ ∈ 2 : Pθ = P}.21

This is the set of possible θ that could have generated data that has distribution P . By22

assuming that P ∈ P we have assumed that our model is correctly specified so this set is23

not empty. We say that θ is identified if 2(P) is a singleton for all P ∈ P.24

The question we seek to answer here is under what conditions is it possible to learn25

about θ (or some feature of θ ) from the distribution of the observed data P . Our interest26

is not always to identify the full data generating process. Often we are interested in only27

a subset of the model, or a particular outcome from it. Specifically, our goal may be to28

identify29

ψ = 9(θ),30

where 9 is a known function. For example in a regression model Yi = X ′iβ + ui , the31

feature of interest is typically the regression coefficients. In this case 9 would take the32

trivial form33

9(θ) = β.34

However, this notation allows for more general cases in which we might be interested in35

identifying specific aspects of the model. For example, if our interest is in identifying the36
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covariance between X and Y in the case of the linear regression model, we do not need 1

to know θ per se, but rather a transformation of these parameters. That is we could be 2

interested in 3

9(θ) = cov(X i , Yi ). 4

We could also be interested in a forecast of the model such as 5

9(θ) = x ′β 6

for some specific x . The distinction between identification of features of the model as 7

opposed to the full model is important, as in many cases the full model is not identified 8

but the key feature of interest is identified. 9

To think about identification of ψ we define 10

9(2(P)) = {9(θ) : θ ∈ 2(P)}. 11

That is, it is the set of possible values of ψ that are consistent with the data distribution 12

P.We say that ψ is identified if 9(2(P)) is a singleton. 13

As an example consider the standard regression model with two regressors: 14

Yi = β0 + β1 X1i + β2 X2i + εi (2.1) 15

with E(εi | X i = x) = 0 for any value x (where X i = (X1i , X2i )). In this case θ = 16

(β, FX,ε), where FX,ε is the joint distribution of (X1i , X2i , εi ) and β = (β0, β1, β2). 17

One would write 2 as B × F X,ε, where B is the parameter space for β and F X,ε is the 18

space of joint distributions between X i and εi that satisfy E(εi | X i = x) = 0 for all x . 19

Since the data here is represented by (X1i , X2i , Yi ), Pθ represents the joint distribution 20

of (X1i , X2i , Yi ). Given knowledge of β and FX,ε we know the data generating process 21

and thus we know Pθ . 22

To focus our ideas suppose we are interested in identifying β (i.e. 9(β, FX,ε) = β) 23

in regression model (2.1) above. Let the true value of the data generating process 24

be θ∗ = (β∗, F∗X,ε) so that by definition Pθ∗ = P. In this case 2(P) ≡ 25{
(β, FX.ε) ∈ B × F X,ε : Pβ,Fx,ε = P

}
, that is it is the set of (β, FX.ε) that would lead 26

our data (X i , Yi ) to have distribution P . In this case9(2(P)) is the set of values of β in 27

this set (i.e. 9(2(P)) =
{
β : (β, FX,ε) ∈ 2(P) for some FX,ε ∈ F X,ε

}
. 28

In the case of 2 covariates, we know the model is identified as long as X1i and X2i are 29

not degenerate and not collinear. To see how this definition of identification applies to 30

this model, note that for any β∗ 6= β the lack of perfect multicollinearity means that we 31
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can always find values of (x1, x2) for which1

β0 + β1x1 + β2x2 6= β
∗

0 + β
∗

1 x1 + β
∗

2 x2.2

Since E(Yi | X i = x) is one aspect of the joint distribution of Pθ , it must be the case3

that when β∗ 6= β, Pθ 6= P. Since this is true for any value of β 6= β∗, then 9(2(P))4

must be the singleton β∗.5

However, consider the well known case of perfect multicollinearity in which the6

model is not identified. In particular suppose that7

X1i + X2i = 1.8

For the true value of β∗ = (β∗0 , β
∗

1 , β
∗

2 ) consider some other value β̃ = (β∗0 +9

β∗2 , β
∗

1 − β
∗

2 , 0). Then for any x,10

E(Yi | X i = x) = β∗0 + β
∗

1 x1 + β
∗

2 x211

= β∗0 + β
∗

1 x1 + β
∗

2 (1− x1)12

= β∗0 + β
∗

2 +
(
β∗1 − β

∗

2

)
x113

= β̃0 + β̃1x1.14

If FX,ε is the same for the two models, then the joint distribution of (Yi , X i ) is the15

same in the two cases. Thus the identification condition above is violated because with16

θ̃ = (β̃, F∗X,ε), P̃θ = P and thus β̃ ∈ 9(2(P)). Since the true value β∗ ∈ 9(2(P)) as17

well, 9(2(P)) is not a singleton and thus β is not identified.18

2.3. Support1920

Another important issue is the support of the data. The simplest definition of support21

is just the range of the data. When data are discrete, this is the set of values that occur22

with positive probability. Thus a binary variable that is either zero or one would have23

support {0, 1}. The result of a die roll has support {1, 2, 3, 4, 5, 6}. With continuous24

variables things get somewhat more complicated. One can think of the support of a25

random variable as the set of values for which the density is positive. For example, the26

support of a normal random variable would be the full real line (which we will often27

refer to as “full support”). The support of a uniform variable on [0, 1] is [0, 1]. The28

support of an exponential variable would be the positive real line.29

This can be somewhat trickier in dealing with outcomes that occur with30

measure zero. For example one could think of the support of a uniform variable31

as [0, 1], (0, 1], [0, 1), or (0, 1). The distinction between these objects will not be32

important in what we are doing, but to be formal we will use the Davidson (1994)33

definition of support. He defines the support of a random variable with distribution F34
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as the set of points at which F is (strictly) increasing.3 By this definition, the support 1

of a uniform would be [0, 1]. We will also use the notation supp(Yi ) to denote the 2

unconditional support of random variable Yi and supp(Yi | X i = x) to denote the 3

conditional support. 4

To see the importance of this concept, consider a simple case of the separable 5

regression model 6

Yi = g(X i )+ ui 7

with a single continuous X i variable and E(ui | X i = x) = 0 for x ∈ supp(X i ). In this 8

case we know that 9

E(Yi | X i = x) = g(x). 10

Letting X be the support of X i , it is straightforward to see that g is identified on the set 11

X . But g is not identified outside the set X because the data is completely silent about 12

these values. Thus if X = R, g is globally identified. However, if X only covers a subset 13

of the real line it is not. For example, one interesting counterfactual is the change in the 14

expected value of Yi if X i were increased by δ : E(g(X i + δ)). If X = R this is trivially 15

identified, but if the support of X i were bounded from above, this would no longer be the 16

case. That is, if the supremum of X is x̄ <∞, then for any value of x > x̄ − δ, g(x + δ) 17

is not identified and thus the unconditional expected value of g(X i + δ) is not identified 18

either. This is just a restatement of the well known fact that one cannot project out of 19

the data unless one makes functional form assumptions. Our point here is that support 20

assumptions are very important in nonparametric identification results. One can only 21

identify g over the range of plausible values of X i if X i has full support. For this reason, 22

we will often make strong support condition assumptions. This also helps illuminate the 23

tradeoff between functional form assumptions and flexibility. In order to project off the 24

support of the data in a simple regression model one needs to use some functional form 25

assumption. The same is true for selection models. 26

2.4. Continuity 2728

There is one complication that we need to deal with throughout. It is not a terribly 29

important issue, but will shape some of our assumptions. Consider again the separable 30

regression model 31

Yi = g(X i )+ ui . (2.2) 32

3 He defines F (strictly) increasing at point x to mean that for any ε > 0,F(x + ε) > F(x − ε).
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As mentioned above E(Yi | X i = x) = g(x), so it seems trivial to see that g is identified,1

but that is not quite true. To see the problem, suppose that both X i and ui are standard2

normals. Consider two different models for g,3

Model 1:4

g(x) =

{
0 x < 1.4
1 x ≥ 1.4

5

versus6

Model 2:7

g(x) =

{
0 x ≤ 1.4
1 x > 1.4.

8

These models only differ at the point x = 1.4, but since X i is normal this is a zero9

probability event and we could never distinguish between these models because they10

imply the same joint distribution of (X i , Yi ). For the exact same reason it isn’t really a11

concern (except in very special cases such as if one was evaluating a policy in which we12

would set X i = 1.4 for everyone). Since this will be an issue throughout this chapter we13

explain how to deal with it now and use this convention throughout the chapter.14

We will make the following assumptions.15

Assumption 2.1. X i can be written as (X c
i , Xd

i ), where the elements of X c
i are16

continuously distributed (no point has positive mass), and Xd
i is distributed discretely17

(all support points have positive mass).18

Assumption 2.2. For any xd
∈ supp(Xd

i ), g(xc, xd) is almost surely continuous across19

xc
∈ supp(X c

i | Xd
i = xd).20

The first part says that we can partition our observables into continuous and discrete21

ones. One could easily allow for variables that are partially continuous and partially22

discrete, but this would just make our results more tedious to exposit. The second23

assumption states that choosing a value of X at which g is discontinuous (in the24

continuous variables) is a zero probability event.25

Theorem 2.1. Under Assumptions 2.1 and 2.2 and assuming model (2.2) with E(Ui |26

X i = x) = 0 for x ∈ supp(X i ) g(x) is identified on a set X ∗ that has measure 1.27

(Proof in Appendix.)28

The proof just states that g is identified almost everywhere. More specifically it is29

identified everywhere that it is continuous.30
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3. THE ROYMODEL 12

The classic model of selection in the labor market is the Roy (1951) model. In the 3

Roy model, workers choose one of two possible occupations: hunting and fishing. They 4

cannot pursue both at the same time. The worker’s log wage is Y f i if he fishes and Yhi 5

if he hunts. Workers maximize income so they choose the occupation with the higher 6

wage. Thus a worker chooses to fish if Y f i > Yhi . The occupation is defined as 7

Ji =

{
f if Y f i > Yhi

h if Yhi ≥ Y f i
(3.1) 8

and the wage is defined as 9

Yi = max{Y f i , Yhi }. (3.2) 10

Workers face a simple binary choice: choose the job with the highest wage. This 11

simplicity has led the model to be used in one form or another in a number of important 12

labor market contexts. Many discrete choice models share the Roy model’s structure. 13

Examples in labor economics include the choice of whether to continue schooling, 14

what school to attend, what occupation to pursue, whether to join a union, whether 15

to migrate, whether to work, whether to obtain training, and whether to marry. 16

As mentioned in the introduction, we devote considerable attention to identification 17

of this model. In subsequent sections we generalize these results to other models. 18

The responsiveness of the supply of fishermen to changes in the price of fish depends 19

critically on the joint distribution of
(
Y f i , Yhi

)
. Thus we need to know what a fisherman 20

would have made if he had chosen to hunt. However, we do not observe this but must 21

infer its counterfactual distribution from the data at hand. Our focus is on this selection 22

problem. Specifically, much of this chapter is concerned with the following question: 23

Under what conditions is the joint distribution of
(
Y f i , Yhi

)
identified? We 24

start by considering estimation in a parametric model and then consider nonparametric 25

identification. 26

Roy (1951) is concerned with how occupational choice affects the aggregate 27

distribution of earnings and makes a series of claims about this relationship. These claims 28

turn out to be true when the distribution of skills in the two occupations is lognormal. 29

Heckman and Honoré (1990) consider identification of the Roy model (i.e., the joint 30

distribution of (Y f i , Yhi )). They show that there are two methods for identifying the Roy 31

model. The first is through distributional assumptions. The second is through exclusion 32

restrictions.4 33

4 Heckman and Honoré discuss price variation as separate from exclusion restrictions. However, in our framework price
changes can be modeled as just one type of exclusion restriction so we do not explicitly discuss price variation.
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In order to focus ideas, we use the following case:1

Y f i = g f (X f i , X0i )+ ε f i (3.3)2

Yhi = gh(Xhi , X0i )+ εhi , (3.4)3

where the unobservable error terms (ε f i , εhi ) are independent of the observable variables4

X i = (X f i , Xhi , X0i ) and Y f i and Yhi denote log wages in the fishing and hunting5

sectors respectively. We distinguish between three types of variables. X0i influences6

productivity in both fishing and hunting, X f i influences fishing only, and Xhi influences7

hunting only. The variables X f i and Xhi are “exclusion restrictions,” and play a very8

important role in the identification results below. In the context of the Roy model,9

an exclusion restriction could be a change the price of rabbits which increases income10

from hunting, but not from fishing. We intend for the notation to be general enough to11

incorporate a model without exclusion restrictions (in which case one or more of the12

X j i would be empty).13

Our version of the Roy framework imposes two strong assumptions. First, that14

Y j i is separable in g j (X j i , X0i ) and ε j i for j ∈ { f, h}. Second, we assume that15

g j (X j i , X0i ) and ε j i are independent of one another. Note that independence implies16

homoskedasticity: the variance of ε j i cannot depend on X j i . There is a large literature17

looking at various other more flexible specifications and this is discussed thoroughly in18

Matzkin (2007). It is also trivial to extend this model to allow for a general relationship19

between X0i and (ε f i , εhi ), as we discuss in Section 3.3 below.20

We focus on the separable independent model for two reasons. First, the assumptions21

of separability and independence have bite beyond a completely general nonparametric22

relationship. That is, to the extent that they are true, identification is facilitated by these23

assumptions. Presumably because researchers think these assumptions are approximately24

true, virtually all empirical research uses these assumptions. Second, despite these strong25

assumptions, they are obviously much weaker than the standard assumptions that g is26

linear (i.e. g f (X f i , X0i ) = X ′f iβ f + X ′0iβ0) and that ε f i is normally distributed.27

One approach to writing this chapter would have been to go through all of the28

many specifications and alternative assumptions. We choose to focus on a single base29

specification for expositional simplicity.30

Heckman and Honoré (1990) first discuss identification of the joint distribution31

of
(
Y f i , Yhi

)
using distributional assumptions. They show that when one can observe32

the distribution of wages in both sectors, and assuming
(
Y f i , Yhi

)
is joint normally33

distributed, then the joint distribution of
(
Y f i , Yhi

)
is identified from a single cross34

section even without any exclusion restrictions or regressors. To see why, write equations35

(3.3) and (3.4) without regressors:36

Y f i = µ f + ε f i37
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Yhi = µh + εhi 1

where 2[
ε f i

εhi

]
= N

([
0
0

]
,

[
σ 2

f σ f h

σ f h σ 2
h

])
. 3

Letting 4

λ(·) =
φ(·)

8(·)
5

(with φ and8 the pdf and cdf of a standard normal), 6

c =
µ f − µh√

σ 2
f + σ

2
h − 2σ f h

, 7

and for each j ∈ {h, f }, 8

τ j =
σ 2

j − σ f h√
σ 2

f + σ
2
h − 2σ f h

. 9

One can derive the following conditions from properties of normal random variables 10

found in Heckman and Honoré (1990): 11

Pr(Ji = f ) = 8(c) 12

E(Yi | Ji = f ) = µ f + τ f λ (c) 13

E(Yi | Ji = h) = µh + τhλ (−c) 14

var(Yi | Ji = f ) = σ 2
f + τ

2
f (−λ (c) c − λ2 (c)) 15

var(Yi | Ji = h) = σ 2
h + τ

2
h (λ (−c) c − λ2 (−c)) 16

E([Yi − E(Yi | Ji = f )]3 | Ji = f ) = τ 3
f λ(c)[2λ

2(c)+ 3cλ(c)+ c2
− 1] 17

E([Yi − E(Yi | Ji = h)]3 | Ji = h) = τ 3
hλ(−c)[2λ2(−c)− 3cλ(−c)+ c2

− 1]. 18

This gives us seven equations in the five unknowns µ f , µh, σ
2
f , σ

2
h , and σ f h . It is 19

straightforward to show that the five parameters can be identified from this system of 20

equations. 21

However, Theorems 7 and 8 of Heckman and Honoré (1990) show that when one 22

relaxes the log normality assumption, without exclusion restrictions in the outcome 23
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equation, the model is no longer identified. This is true despite the strong assumption1

of agent income maximization. This result is not particularly surprising in the sense that2

our goal is to estimate a full joint distribution of a two dimensional object (Y f i , Yhi ),3

but all we can observe is two one dimensional distributions (wages conditional on job4

choice). Since there is no information in the data about the wage that a fisherman may5

have received as a hunter, one cannot identify this joint distribution. In fact, Theorem6

7 of Heckman and Honoré (1990) states that we can never distinguish the actual model7

from an alternative model in which skills are independent of each other.8

3.1. Estimation of the normal linear labor supply model910

It is often the case that we only observe wages in one sector. For example, when11

estimating models of participation in the labor force, the wage is observed only if the12

individual works. We can map this into our model by associating working with “fishing”13

and not working with “hunting.” That is, we let Y f i denote income if working and let14

Yhi denote the value of not working.515

But there are other examples in which we observe the wage in only one sector. For16

example, in many data sets we do not observe wages of workers in the black market sector.17

Another example is return immigration in which we know a worker leaves the data to18

return to their home country, but we do not observe that wage.19

In Section 3.2 we discuss identification of the nonparametric version of the model.20

However, it turns out that identification of the more complicated model is quite similar21

to estimation of the model with normally distributed errors. Thus we review this in detail22

before discussing the nonparametric model. We also remark that providing a consistent23

estimator also provides a constructive proof of identification, so one can also interpret24

these results as (informally) showing identification in the normal model. The model is25

similar to Willis and Rosen’s (1979) Roy Model of educational choices or Lee’s (1978)26

model of union status and the empirical approach is analogous. We assume that27

Y f i = X ′f iγ f f + X ′0iγ0 f + ε f i28

Yhi = X ′hiγhh + X ′0iγ0h + εhi29 [
ε f i

εhi

]
= N

([
0
0

]
,

[
σ 2

f σ f h

σ f h σ 2
h

])
.30

In a labor supply model where f represents market work, Y f i is the market wage which31

will be observed for workers only. Yhi , the pecuniary value of not working, is never32

5 There are two common participation models. The first is the home production model in which the individual chooses
between home and market production. The second is the labor supply model in which the individual chooses between
market production and leisure. In practice the two types of models tend to be similar and some might argue the
distinction is semantic. In a model of home production, Yhi is the (unobserved) gain from home production. In a
model of labor supply, Yhi is the leisure value of not working.
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observed in the data. Keane, Todd, and Wolpin’s (this volume) example of the static 1

model of a married woman’s labor force participation is similar. 2

One could simply estimate this model by maximum likelihood. However we discuss 3

a more traditional four step method to illustrate how the parametric model is identified. 4

This four step process will be analogous to the more complicated nonparametric 5

identification below. Step 1 is a “reduced form probit” of occupational choices as a 6

function of all covariates in the model. Step 2 estimates the wage equations by controlling 7

for selection as in the second step of a Heckman Two step (Heckman, 1979). Step 3 uses 8

the coefficients of the wage equations and plugs these back into a probit equation to 9

estimate a “structural probit.” Step 4 shows identification of the remaining elements of 10

the variance-covariance matrix of the residuals. 11

Step 1: Estimation of choicemodel 12

The probability of choosing fishing (i.e., work) is: 13

Pr (Ji = f | X i = x) = Pr
(
Y f i > Yhi | X i = x

)
14

= Pr
(

x ′f γ f f + x ′0γ0 f + ε f i > x ′0γ0h + x ′hγhh + εhi

)
15

= Pr
(

x ′f γ f f − x ′hγhh + x ′0
(
γ0 f − γ0h

)
> εhi − ε f i

)
16

= 8

(
x ′f γ f f − x ′hγhh + x ′0

(
γ0 f − γ0h

)
σ ∗

)
17

= 8
(
x ′γ ∗

)
(3.5) 18

where8 is the cdf of a standard normal, σ ∗ is the standard deviation of
(
εhi − ε f i

)
, and 19

γ ∗ ≡

(
γ f f

σ ∗
,
−γhh

σ ∗
,
γ0 f − γ0h

σ ∗

)
. 20

This is referred to as the “reduced form model” as it is a reduced form in the classical 21

sense: the parameters are a known function of the underlying structural parameters. It can 22

be estimated by maximum likelihood as a probit model. Let γ̂ ∗ represent the estimated 23

parameter vector. This is all that can be learned from the choice data alone. We need 24

further information to identify σ ∗ and to separate γ0 f from γ0h . 25

Step 2: Estimating the wage equation 26

This is essentially the second stage of a Heckman (1979) two step. To review the idea 27

behind that, let 28

ε∗i =
εhi − ε f i

σ ∗
. 29
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Then consider the regression1

ε f i = τε
∗

i + ζi2

where cov
(
ε∗i , ζi

)
= 0 (by definition of regression) and thus:3

τ =
cov

(
ε f i , ε

∗

i

)
var

(
ε∗i

)4

= E

[
ε f i

(
εhi − ε f i

σ ∗

)]
5

=
σ f h − σ

2
f

σ ∗
.6

The wage of those who choose to work is7

E
(
Y f i | Ji = f, X i = x

)
= x ′f γ f f + x ′0γ0 f + E

(
ε f i | Ji = f, X i = x

)
8

= x ′f γ f f + x ′0γ0 f + E
(
τε∗i + ζi | ε

∗

i ≤ x ′γ ∗
)

9

= x ′f γ f f + x ′0γ0 f + τ E
(
ε∗i | ε

∗

i ≤ x ′γ ∗
)

10

= x ′f γ f f + x ′0γ0 f − τλ
(
x ′γ ∗

)
. (3.6)11

Showing that E
(
ε∗i | ε

∗

i ≤ x ′γ ∗
)
= −λ

(
x ′γ ∗

)
is a fairly straightforward integration12

problem and is well known. Because Eq. (3.6) is a conditional expectation function, OLS13

regression of Yi on X0i , X f i , and λ
(
X ′i γ̂
∗
)

gives consistent estimates of γ f f , γ0 f , and14

τ . γ̂ ∗ is the value of γ ∗ estimated in Eq. (3.6).15

Note that we do not require an exclusion restriction. Since λ is a nonlinear function,16

but g f is linear, this model is identified. However, without an exclusion restriction,17

identification is purely through functional form. When we consider a nonparametric18

version of the model below, exclusion restrictions are necessary. We discuss this issue in19

Section 3.2.20

Step 3: The structural probit21

Our next goal is to estimate γ0h and γhh . In Step 1 we obtained consistent estimates of22

γ ∗ ≡
(
γ0 f−γ0h
σ ∗

,
γ f f
σ ∗
,
−γhh
σ ∗

)
and in Step 2 we obtained consistent estimates of γ0 f and23

γ f f .24

When there is only one exclusion restriction (i.e. γ f f is a scalar), identification25

proceeds as follows. Because we identified γ f f in Step 2 and γ f f /σ
∗ in Step 1, we can26

identify σ ∗. Once σ ∗ is identified, it is easy to see how to identify γhh (because −γhh
σ ∗

is27

identified) and γ0h (because
γ0 f−γ0h
σ ∗

and γ0 f are identified).28
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In terms of estimation of these objects, if there is more than one exclusion restriction 1

the model is over-identified. If we have two exclusion restrictions, γ f f and γ f f /σ
∗ are 2

both 2 × 1 vectors, and thus we wind up with 2 consistent estimates of σ ∗. The most 3

standard way of solving this model is by estimating the “structural probit:” 4

Pr(Ji = f | X i = x) = 8

(
1
σ ∗

(
x ′f γ̂ f f + x ′0γ̂0 f

)
− x ′h

γhh

σ ∗
− x ′0

γ0h

σ ∗

)
. (3.7) 5

That is, one just runs a probit of Ji on (X ′f i γ̂ f f + X ′0i γ̂0 f ), X0i , and Xhi where γ̂ f f and 6

γ̂0 f our estimates of γ f f and γ0 f . 7

Step 3 is essential if our goal is to estimate the labor supply equation. If we are only 8

interested in controlling for selection to obtain consistent estimates of the wage equation, 9

we do not need to worry about the structural probit. However, notice that 10

∂ Pr(Ji = f | X i = x)

∂Y f i
=

1
σ ∗
φ
(
x ′γ ∗

)
. 11

and thus the labor supply elasticity is: 12

∂ log[Pr(Ji = f | X i = x)]

∂Y f i
=
∂ Pr(Ji = f | X i = x)

∂Y f i

1
Pr(Ji = f | X i = x)

13

=
1
σ ∗

φ
(
x ′γ ∗

)
8(x ′γ ∗)

, 14

where, as before, Y f i is the log of income if working. Thus knowledge of σ ∗ is essential 15

for identifying the effects of wages on participation. 16

One could not estimate the structural probit without the exclusion restriction X f i as 17

the first two components of the probit in Eq. (3.7) would be perfectly collinear. For any 18

σ ∗ > 0 we could find a value of γ0h and γhh that delivers the same choice probabilities. 19

Furthermore, if these parameters were not identified, the elasticity of labor supply with 20

respect to wages would not be identified either. 21

Step 4: Estimation of the variancematrix of the residuals 22

Lastly, we identify all the components of 6, (σ 2
f , σ

2
h , σ f h) as follows. We have described 23

how to obtain consistent estimates of σ ∗ =
√
σ 2

f + σ
2
h − σ

2
f h and τ =

σ 2
f−σ f h

σ ∗
. This 24

gives us two equations in three parameters. We can obtain the final equation by using the 25

variance of the residual in the selection model since 26

var(ε f i | Ji = f, X i = x) = σ 2
f + τ

2
[
−λ(x ′γ ∗)x ′γ ∗ − λ2(x ′γ ∗)

]
. 27
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Using “hats” to denote estimators we can estimate the model as1

σ̂ 2
f =

1
N

N∑
i=1

[
ε̂ f i

2
− τ̂ 2

(
−λ(X ′i γ̂

∗)X ′i γ̂
∗ − λ2(X ′i γ̂

∗)
)]

2

σ̂ f h = σ̂
2
f − τ̂ σ̂

∗
3

σ̂h
2
= σ̂ ∗

2
− σ̂ f

2
+ 2σ̂ f h .4

3.2. Identification of the Roy model: the non-parametric approach56

Although the parametric case with exclusion restrictions is more commonly known, the7

model in the previous section is still identified non-parametrically if the researcher is8

willing to impose stronger support conditions on the observable variables. Heckman and9

Honoré (1990, Theorem 12) provide conditions under which one can identify the model10

nonparametrically using exclusion restrictions. We present this case below.11

Assumption 3.1. (ε f i , εhi ) is continuously distributed with distribution function G,12

support R2, and is independent of X i . The marginal distributions of ε f i and ε f i − εhi13

have medians equal to zero.14

Assumption 3.2. supp(g f (X f i , x0), gh(Xhi , x0)) = R2 for all x0 ∈ supp(X0i ).15

Assumption 3.2 is crucial for identification. It states that for any value of gh(xh, x0),16

g f (X f i , x0) varies across the full real line and for any value of g f (x f , x0), gh(Xhi , x0)17

varies across the full real line. This means that we can condition on a set of variables for18

which the probability of being a hunter (i.e. Pr(Ji = h|X i = x)) is arbitrarily close to 1.19

This is clearly a very strong assumption that we will discuss further.20

We need the following two assumptions for the reasons discussed in Section 2.4.21

Assumption 3.3. X i = (X f i , Xhi , X0i ) can be written as (X c
f i , Xd

f i , X c
hi , Xd

hi , X c
ci ,22

Xd
ci ) where the elements of (X c

f i , X c
hi , X c

0i ) are continuously distributed (no point23

has positive mass), and (Xd
f i , Xd

hi , Xd
0i ) is distributed discretely (all support points have24

positive mass).25

Assumption 3.4. For any (xd
f , xd

h , xd
0 ) ∈ supp(Xd

f i , Xd
hi , Xd

0i ), g f (xc
f , xd

f , xc
0, xd

0 )26

and gh(xc
h, xd

h , xc
0, xd

0 ) are almost surely continuous across xc
∈ supp(X c

i | Xd
i = xd).27

Under these assumptions we can prove the theorem following Heckman and Honoré28

(1990).29

Theorem 3.1. If ( Ji ∈ { f, h}, Y f i if Ji = f , X i ) are all observed and generated under30

model (3.1)–(3.4), under Assumptions 3.1–3.4, g f , gh, and G are identified on a set X ∗ that31

has measure 1.32

(Proof in Appendix.)33
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A key theme of this chapter is that the basic structure of identification in this model 1

is similar to identification of more general selection models, so we explain this result in 2

much detail. The basic structure of the proof we present below is similar to Heckman 3

and Honoré’s proof of their Theorems 10 and 12. We modify the proof to allow for the 4

case where Yhi is not observed. 5

The proof in the Appendix is more precise, but in the text we present the basic ideas. 6

We follow a structure analogous to the parametric empirical approach when the residuals 7

are normally distributed as presented in Section 3.1. First we consider identification of 8

the occupational choice given only observable covariates and the choice model. This is 9

the nonparametric analogue of the reduced form probit. Second we estimate g f given 10

the data on Y f i , which is the analogue of the second stage of the Heckman two step, and 11

is more broadly the nonparametric version of the classical selection model. In the third 12

step we consider the nonparametric analogue of identification of the structural probit. 13

Since we will have already established identification of g f , identification of this part of 14

the model boils down to identification of gh . Finally in the fourth step we consider 15

identification of G (the joint distribution of (ε f i , εhi )). We discuss each of these steps 16

in order. 17

To map the Roy model into our formal definition of identification presented in 18

Section 2.2, the model is determined by θ = (g f , gh,G, Fx ), where Fx is the joint 19

distribution of (X f i , Xhi , X0i ). The observable data here is (X f i , Xhi , X0i , Ji , 1(Ji = 20

f )Y f i ). Thus P is the joint distribution of this observable data and 2(P) represents the 21

possible data generating processes consistent with P . 22

Step 1: Identification of choicemodel 23

The nonparametric identification of this model is established in Matzkin (1992). We can 24

write the model as 25

Pr(Ji = f | X i = x) = Pr(εhi − ε f i < g f (x f , x0)− gh(xh, x0)) 26

= Gh− f (g f (x f , x0)− gh(xh, x0)), 27

where Gh− f is the distribution function of εhi − ε f i . 28

Using data only on choices, this model is only identified up to a monotonic 29

transformation. To see why, note that we can write Ji = f when 30

g f (x f , x0)− gh(xh, x0) > εhi − ε f i (3.8) 31

but this is equivalent to the condition 32

M(g f (x f , x0)− gh(xh, x0)) > M(εhi − ε f i ) (3.9) 33

where M(.) is any strictly increasing function. Clearly the model in Eq. (3.8) cannot be
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distinguished from an alternative model in Eq. (3.9). This is the nonparametric analog of1

the problem that the scale (i.e., the variance of εhi−ε f i ) and location (only the difference2

between g f (x f , x0) and gh(xh, x0) but not the level of either) of the choice model are3

not identified. Without loss of generality we can normalize the model up to a monotonic4

transformation. There are many ways to do this. A very convenient normalization is to5

choose the transformation M(·) = Gh− f (·) because Gh− f
(
εhi − ε f i

)
has a uniform6

distribution.6 So we define7

εi ≡ Gh− f (εhi − ε f i )8

g(x) ≡ Gh− f (g f (x f , x0)− gh(xh, x0)).9

Then10

Pr(Ji = f | X i = x) = Pr(g f (x f , x0)− gh(xh, x0) > εhi − ε f i )11

= Pr(Gh− f (g f (x f , x0)− gh(xh, x0)) > Gh− f (εhi − ε f i ))12

= Pr(εi < g(x))13

= g(x).14

Thus we have established that we can write the model as Ji = f if and only if15

g(X i ) > εi , where εi is uniform [0, 1] and that g is identified.16

This argument can be mapped into our formal definition of identification from17

Section 2.2 above. The goal here is identification of g, so we define 9(θ) = g. Note18

that even though g is not part of θ , it is a known function of the components of θ .19

The key set now is 9(2(P)), which is now defined as the set of possible values g that20

could have generated the joint distribution of (X f i , Xhi , X0i , Ji , 1(Ji = f )Y f i ). Since21

Pr(Ji = f | X i = x) = g(x), no other possible value of g could generate the data. Thus22

9(2(P)) only contains the true value and is thus a singleton.23

Step 2: Identification of the wage equation g f24

Next consider identification of g f. Median regression identifies25

Med(Yi | X i = x, Ji = f ) = g f (x f , x0)+Med(ε f i | X i = x, εi < g(x)).26

The goal is to identify g f (x f , x0). The problem is that when we vary (x f , x0) we27

also typically vary Med(ε f i | X i = x, g(x) > εi ). This is the standard selection28

problem. Because we can add any constant to g f and subtract it from ε f i without29

changing the model, a normalization that allows us to pin down the location of g f is30

that Med(ε f i ) = 0. The problem is that this is the unconditional median rather than

6 To see why note that for any x,Pr(Gh− f
(
εhi − ε f i

)
< x) = Pr(εhi − ε f i ≤ G−1

h− f (x)) = Gh− f (G
−1
h− f (x)) = x .



HESV4A-B06 P: S0169-7218(11)00412-6 I: 978-0-444-53450-7 P: 19 (1–82)

Identification of Models of the Labor Market 19

the conditional one. The solution here is what is often referred to as identification at 1

infinity (e.g. Chamberlain, 1986, or Heckman, 1990). For some value
(
x f , x0

)
suppose 2

we can find a value of xh to send Pr(εi < g(x)) arbitrarily close to one. It is referred to 3

as identification at infinity because if gh were linear in the exclusion restriction xh this 4

could be achieved by sending xh → −∞. In our fishing/hunting example, this could 5

be sending the price of rabbits to zero which in turn sends log income from hunting to 6

−∞. Then notice that7 7

lim
g(x)→1

Med(Yi | X i = x, Ji = f ) = g f (x f , x0)+ lim
g(x)→∞

Med(ε f i | εi ≤ g(x)) 8

= g f (x f , x0)+Med(ε f i | εi ≤ 1) 9

= g f (x f , x0)+Med(ε f i ) 10

= g f (x f , x0). 11

Thus g f is identified. 12

Conditioning on x so that Pr(Ji = 1 | X i = x) is arbitrarily close to one is essentially 13

conditioning on a group of individuals for whom there is no selection, and thus there is 14

no selection problem. Thus we are essentially saying that if we can on a group of people 15

for whom there is no selection we can solve the selection bias problem.Q1 16

While this may seem like cheating, without strong functional form assumptions 17

it is necessary for identification. To see why, suppose there is some upper bound of 18

supp[g(X i )] equal to gu < 1 which would prevent us from using this type of argument. 19

Consider any potential worker with a value of εi > gu . For those individuals it must be 20

the case that 21

εi > g(X i ) 22

so they must always be a hunter. As a result, the data is completely uninformative about 23

the distribution of ε f i for these individuals. For this reason the unconditional median 24

of ε f i would not be identified. We will discuss approaches to dealing with this potential 25

problem in the Treatment Effect section below. 26

To relate this to the framework from Section 2.2 above now we define 9(θ) = g f , 27

so 9(2(P)) contains the values of g f consistent with P . However since 28

lim
g(x)→∞

Med(Y f | X i = x, Ji = f ) = g f (x f , x0), 29

g f is the only element of 9(2(P)), thus it is identified. 30

7 We are using loose notation here. What we mean by limg(x)→1 is to hold (x f , x0) fixed, but take a sequence of values
of xh so that g(x)→ 1.
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Identification of the slope only without ‘‘identification at infinity’’1

If one is only interested in identifying the “slope” of g f and not the intercept, one can2

avoid using an identification at infinity argument. That is, for any two points (x f , x0)3

and (x̃ f , x̃0) and consider identifying the difference g f (x f , x0) − g f (x̃ f , x̃0). The key4

to identification is the existence of the exclusion restriction Xhi . For these two points,5

suppose we can find values xh and x̃h so that6

g(x f , xh, x0) = g(x̃ f , x̃h, x̃0).7

There may be many pairs of (xh, x̃h) that satisfy this equality and we could choose any of8

them. Define x̃ ≡ (x̃ f , x̃h, x̃0). The key aspect of this is that since g(x) = g(x̃) and thus9

the probability of being a fisherman is the same given the two sets of points, then the bias10

terms are also the same: Med(ε f i | εi < g(x)) = Med(ε f i | εi < g(x̃)).11

This allows us to write12

Med(Yi | X i = x, Ji = f )−Med(Yi | X i = x̃, Ji = f )13

= g f (x f , x0)+Med(ε f i | εi < g(x))14

− [g f (x̃ f , x̃0)+Med(ε f i | εi < g(x̃))]15

= g f (x f , x0)− g f (x̃ f , x̃0).16

As long as we have sufficient variation in Xhi we can do this everywhere and identify g f17

up to location.18

Step 3: Identification of gh19

In terms of identifying gh , the exclusion restriction that influences wages as a fisherman20

but not as a hunter (i.e. X f i ) will be crucial. Consider identifying gh(xh, x0) for any21

particular value (xh, x0). The key here is finding a value of x f so that22

Pr(Ji = f | X i = (x f , xh, x0)) = 0.5. (3.10)23

Assumption 3.2 guarantees that we can do this. To see why Eq. (3.10) is useful, note that24

it must be that for this value of (x f , xh, x0)25

0.5 = Pr
(
εhi − ε f i ≤ g f (x f , x0)− gh(xh, x0)

)
. (3.11)26

But the fact that εhi − ε f i has median zero implies that27

gh(xh, x0) = g f (x f , x0).28
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Since g f is identified, gh is identified from this expression.8 1

Again to relate this to the framework in Section 2.2 above, now 9(θ) = gh and 2

9(2(p)) is the set of functions gh that are consistent with P . Above we showed that if 3

Pr(Ji = f | X i = x) = 0.5, then gh(x0, xh) = g f (x0, x f ). Thus since we already 4

showed that g f is identified, gh is the only element of 9(2(p)). 5

Step 4: Identification of G 6

Next consider identification of G given g f and gh . We will show how to identify the 7

joint distribution of (ε f i , εhi ) closely following the exposition of Heckman and Taber 8

(2008). Note that from the data one can observe 9

Pr(Ji = f, Y f i < s | X i = x) 10

= Pr(gh(xh, x0)+ εhi ≤ g f (x f , x0)+ ε f i , g f (x f , x0)+ ε f i ≤ s) 11

= Pr(εhi − ε f i ≤ g f (x f , x0)− gh(xh, x0), ε f i ≤ s − g f (x f , x0)) (3.12) 12

which is the cumulative distribution function of (εhi − ε f i , ε f i ) evaluated at the point 13

(g f (x f , x0) − gh(xh, x0), s − g f (x f , x0)). By varying the point of evaluation one can 14

identify the joint distribution of (εhi − ε f i , ε f i ) from which one can derive the joint 15

distribution of (ε f i , εhi ). 16

Finally in terms of the identification conditions in Section 2.2 above, now9(θ) = G 17

and9(2(P)) is the set of distributions G consistent with P . Since G is uniquely defined 18

by the expression (3.12) and since everything else in this expression is identified, G is the 19

only element of 9(2(P)). 20

3.3. Relaxing independence between observables and unobservables 2122

For expositional purposes we focus on the case in which the observables are independent 23

of the unobservables, but relaxing these assumptions is easy to do. The simplest case 24

is to allow for a general relationship between X0i and (ε f i , εhi ). To see how easy 25

this is, consider a case in which X0i is just binary, for example denoting men and 26

women. Independence seems like a very strong assumption in this case. For example, the 27

distribution of unobserved preferences might be different for women and men, leading 28

to different selection patterns. In order to allow for this, we could identify and estimate 29

the Roy model separately for men and for women. Expanding from binary X0i to finite 30

support X0i is trivial, and going beyond that to continuous X0i is straightforward. Thus

8 Note that Heckman and Honoré (1990) choose a different normalization. Rather than normalizing the median of
εhi − ε f i to zero (which is convenient in the case in which Yhi is not observed) they normalize the median of εhi to
zero (which is more convenient in their case). Since this is just a normalization, it is innocuous. After identifying the
model under our normalization we could go back to redefine the model in terms of theirs.
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one can relax the independence assumption easily. But for expositional purposes we1

prefer our specification.2

The distinction between X f i and X0i was not important in steps 1 and 2 of3

our discussion above. When one is only interested in the outcome equation Y f i =4

g f (X f i , X0i )+ ε f i , relaxing the independence assumption between X f i and (ε f i , εhi )5

can be done as well. However, in step 3 this distinction is important in identifying gh and6

the independence assumption is not easy to relax.7

If we allow for general dependence between X0i and (ε f i , εhi ), the “identification8

at infinity” argument becomes more important as the argument about “Identification9

of the Slope Only without Identification at Infinity” no longer goes through. In that10

case the crucial feature of the model was that Med(ε f i | εi < g(x)) = Med(ε f i |11

εi < g(x̃)). However, without independence this is no longer generally true because12

Med(ε f i | X i = x, Ji = f ) = Med(ε f i | X0i = x0, εi < g(x)). Thus even if13

g(x) = g(x̃), when x0 6= x̃0, in general Med(ε f i | X0i = x0, εi < g(x)) 6= Med(ε f i |14

X0i = x̃0, εi < g(x̃)).15

3.4. The importance of exclusion restrictions1617

We now show that the model is not identified in general without an exclusion18

restriction.9 Consider a simplified version of the model,19

Ji =

{
f if g(X i )− εi ≥ 0
h otherwise

20

Y f i = g f (X i )+ ε f i21

where εi is uniform (0,1) and (εi , ε f i ) is independent of X i with distribution G and we22

use the location normalization Med(ε f i | X i ) = 0. As in Section 3.2, we observe X i ,23

whether Ji = f or h, and if Ji = f then we observe Y f i .24

We can think about estimating the model from the median regression25

Med[Y f i |X i = x] = g f (X i )+Med[ε f i |X i = x]26

= g f (X i )+Med[ε f i |g(X i ) > εi ]27

= g f (X i )+ h(g(X i )). (3.13)28

Under the assumption that Med(ε f i | X i ) = 0 it must be the case that h(1) = 0, but29

this is our only restriction on h and g. Thus the model above has the same conditional30

9 An exception is Buera (2006), who allows for general functional forms and does not need an exclusion restriction.

Assuming wages are observed in both sectors, and making stronger use of the independence assumption between the
observables and the unobservables, he shows that the model can be identified without exclusion restrictions.



HESV4A-B06 P: S0169-7218(11)00412-6 I: 978-0-444-53450-7 P: 23 (1–82)

Identification of Models of the Labor Market 23

median as an alternative model 1

Med[Y f i |X i = x] = g̃ f (X i )+ h̃(g(X i )) (3.14) 2

where g̃ f (X i ) = g f (X i )+ k(g(X i )) and h̃(g(X i )) = h(g(X i ))− k(g(X i )). Equations 3

(3.13) and (3.14) are observationally equivalent. Without an exclusion restriction, it is 4

impossible to tell if observed income from working varies with X i because it varies 5

with g f or because it varies with the labor force participation rate and thus the extent 6

of selection. Thus the models in Eqs (3.13) and (3.14) are not distinguishable using 7

conditional medians. 8

To show the two models are indistinguishable using the full joint distribution of the 9

data, consider an alternative data generating model with the same first stage, but now Y f i 10

is determined by 11

Y f i = g̃ f (X i )+ ε̃ f i 12

where ε̃ f i is independent of X i with Med(̃ε f i | X i ) = 0. Let G̃(εi , ε̃ f i ) be the joint 13

distribution of (εi , ε̃ f i ) in the alternative model. We will continue to assume that in the 14

alternative model g̃ f (X i ) = g f (X i )+k(g(X i )).The question is whether the alternative 15

model is able to generate the same data distribution. 16

In the true model 17

Pr(εi ≤ g(x), Y f i < y) = Pr(εi ≤ g(x), g f (x)+ ε f i ≤ y) 18

= G(g(x), y − g f (x)). 19

In the alternative model 20

Pr(εi ≤ g(x), Y f i < y) = Pr(εi ≤ g(x), g̃ f (x)+ ε̃ f i ≤ y) 21

= G̃(g(x), y − g̃ f (x)). 22

Thus these two models generate exactly the same joint distribution of data and cannot be 23

separately identified as long as we define G̃ so that10
24

G̃(g(x), y − g̃ f (x)) = G(g(x), y − g f (x)) 25

= G(g(x), y − g̃ f (x)+ k(g(x))). 26

10 One cannot do this with complete freedom as one needs G̃ to be a legitimate cdf. That is, it must be nondecreasing in
both of its arguments. However, there will typically be many examples of k for which G̃ is a cdf and the model is not
identified. For example, if k is a nondecreasing function, G̃ will be a legitimate cdf.
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4. THE GENERALIZED ROYMODEL12

We next consider the “Generalized Roy Model” (as defined in e.g. (Heckman and3

Vytlacil, 2007a). The basic Roy model assumes that workers only care about their4

income. The Generalized Roy Model allows workers to care about non-pecuniary5

aspects of the job as well. Let U f i and Uhi be the utility that individual i would receive6

from being a fisherman or a hunter respectively, where for j ∈ { f, h},7

U j i = Y j i + ϕ j (Zi , X0i )+ ν j i . (4.1)8

where ϕ j (Zi , X0i ) represents the non-pecuniary utility gain from observables Zi and9

X0i . The variable Zi allows for the fact that there may be other variables that affect10

the taste for hunting versus fishing directly, but do not affect wages in either sector.11
11

Note that we are imposing separability between Y j i and ϕ j . In general we can provide12

conditions in which the results presented here will go through if we relax this assumption,13

but we impose it for expositional simplicity. The occupation is now defined as14

Ji =

{
f if U f i > Uhi

h if U f i ≤ Uhi .
(4.2)15

We continue to assume that16

Y f i = g f (X f i , X0i )+ ε f i17

Yhi = gh(Xhi , X0i )+ εhi (4.3)18

Yi =

{
Y f i if Ji = f
Yhi if Ji = h.

(4.4)19

It will be useful to define a reduced form version of this model. Note that people fish20

when21

0 ≤ U f i −Uhi22

= (Y f i + ϕ f (Zi , X0i )+ ν f i )− (Yhi + ϕh(Zi , X0i )+ νhi )23

= g f (X f i , X0i )+ ϕ f (Zi , X0i )− gh(Xhi , X0i )− ϕh(Zi , X0i )24

+ ε f i + ν f i − εhi − νhi .25

In the previous section we described how the choice model can only be identified up26

to a monotonic transform and that assuming the error term is uniform is a convenient27

11 In principle some of the elements of Zi may affect ϕ f and others may affect ϕh , but this distinction will not be
important here, so we use the most general notation.
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normalization. We do the same thing here. Let F∗ be the distribution function of 1

εhi + νhi − ε f i − ν f i . Then we define 2

νi ≡ F∗
(
εhi + νhi − ε f i − ν f i

)
(4.5) 3

ϕ(Zi , X i ) ≡ F∗(g f (X f i , X0i )+ ϕ f (Zi , X0i )− gh(Xhi , X0i )− ϕh(Zi , X0i )). (4.6) 4

As above, this normalization is convenient because it is straightforward to show that 5

Ji = f when ϕ(Zi , X i ) > νi 6

and that νi is uniformly distributed on the unit interval. 7

We assume that the econometrician can observe the occupations of the workers and 8

the wages that they receive in their chosen occupations as well as (X i , Zi ). 9

4.1. Identification 1011

It turns out that the basic assumptions that allow us to identify the Roy model also allow 12

us to identify the generalized Roy model. 13

We start with the reduced form model in which we need two more assumptions. 14

Assumption 4.1. (νi , ε f i , εhi ) is continuously distributed and is independent of 15

(Zi , X i ). Furthermore, νi is distributed uniform on the unit interval and the medians 16

of both ε f i and εhi are zero. 17

Assumption 4.2. The support of ϕ(Zi , x) is [0, 1] for all x ∈ supp(X i ). 18

We also slightly extend the restrictions on the functions to include ϕ f and ϕh . 19

Assumption 4.3. (Zi , X i ) = (Zi , X f i , Xhi , X0i ) can be written as (Z c
i , Zd

i , X c
f i , 20

Xd
f i , X c

hi , Xd
hi , X c

0i , Xd
0i ) where the elements of (Z c

i , X c
f i , X c

hi , X c
0i ) are continuously 21

distributed (no point has positive mass), and (Zd
i , Xd

f i , Xd
hi , Xd

0i ) are distributed 22

discretely (all support points have positive mass). 23

Assumption 4.4. For any (zd , xd
f , xd

h , xd
0 ) ∈ supp(Zd

i , Xd
f i , Xd

hi , Xd
0i ), g f (xc

f , xd
f , 24

xc
0, xd

0 ), gh(xc
h, xd

h , xc
0, xd

0 ), ϕ f (zc, zd , xc
0, xd

0 ) and ϕh(zc, zd , xc
0, xd

0 ) are almost surely 25

continuous across 26

(zc, xc) ∈ supp(Z c
i , X c

i | (Z
d
i , Xd

i ) = (z
d , xd)). 27

Theorem 4.1. Under Assumptions 4.1–4.4, ϕ, g f , gh and the joint distribution of (νi , ε f i ) 28

and of (νi , εhi ) are identified from the joint distribution of (Ji , Yi ) on a set X ∗ that has 29

measure 1 where (Ji , Yi ) are generated by model (4.1)–(4.4). 30

(Proof in Appendix.) 31
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The intuition for identification follows directly from the intuition given for the basic1

Roy model. We show this in 3 steps:2

1. Identification of ϕ is like the “Step 1: identification of choice model” section. We can3

only identify ϕ up to a monotonic transformation for exactly the same reason given4

in that section. We impose the normalization that νi is uniform in Assumption 4.2.5

Given that assumption6

Pr(Ji = f | Zi = z, X i = x) = ϕ(z, x)7

so identification of ϕ from Pr(Ji = f | Zi = z, X i = x) comes directly.8

2. Identification of g f and gh are completely analogous to “Step 2: identification of9

g f ” and “Step 3: identification of gh” in Section 3.2. That is10

lim
ϕ(z,x)→1

Med(Yi | Zi = z, X i = x, Ji = f )11

= g f (x f , x0)+ lim
ϕ(z,x)→1

Med(ε f i | Zi = z, X i = x, Ji = f )12

= g f (x f , x0)+ lim
ϕ(z,x)→1

Med(ε f i | νi ≤ ϕ(z, x))13

= g f (x f , x0)+Med(ε f i )14

= g f (x f , x0).15

The analogous argument works for gh when we send ϕ(z, x)→ 0.16

3. Identification of the joint distribution of (νi , ε f i ) and of (νi , εhi ) are analogous to17

the “Step 4: identification of G” discussion in the Roy model. That is if we let Gν,ε f18

represent the joint distribution of (νi , ε f i ) then19

Pr(Ji = f, Y f i ≤ y | (Zi , X i ) = (z, x))20

= Pr(νi ≤ ϕ(z, x), g f (x f , x0)+ ε f i ≤ y)21

= Gν,ε f (ϕ(z, x), y − g f (x f , x0)).22

The analogous argument works for the joint distribution of (νi , εhi ).23

Note that not all parameters are identified such as the non-pecuniary gain from fishing24

ϕ f − ϕh . To identify the “structural” generalized Roy model we make two additional25

assumptions:26

Assumption 4.5. The median of εhi + νhi − ε f i − ν f i is zero.27

Assumption 4.6. For any value of (z, x0) ∈ supp(Zi , X0i ), g f (X f i , x0)−gh(Xhi , x0)28

has full support (i.e. the whole real line).29
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Theorem 4.2. Under Assumptions 4.1–4.6, ϕ f −ϕh, the distribution of (εhi+νhi−ε f i− 1

ν f i , ε f i ), and the distribution of (εhi + νhi − ε f i − ν f i , εhi ) are identified. 2

(Proof in Appendix.) 3

Note that Theorem 4.1 gives the joint distribution of (νi , ε f i ) while Theorem 4.2 4

gives the joint distribution of (εhi + νhi − ε f i − ν f i , ε f i ). Since νi = F∗(εhi + νhi − 5

ε f i − ν f i ), this really just amounts to saying that F∗ is identified. 6

Furthermore, whereas g f and gh are identified in Theorem 4.1, ϕ f −ϕh is identified 7

in Theorem 4.2. Recall ϕ f − ϕh is the added utility (measured in money) of being a 8

fisherman relative to a hunter. The exclusion restrictions X f i and Xhi help us identify 9

this. These exclusion restrictions allow us to vary the pecuniary gains of the two 10

sectors, holding preferences ϕ f − ϕh constant. Identification is analogous to the “Step 11

3: identification of gh” in the standard Roy model. To see where identification comes 12

from, for every (z, x0) think about the following conditional median 13

0.5 = Pr(Ji = f | Zi = z, X i = x) 14

= Pr(εhi + νhi − ε f i − ν f i ≤ g f (x f , x0)+ ϕ f (z, x0)− gh(xh, x0)− ϕh(z, x0)). 15

Since the median of εhi + νhi − ε f i − ν f i is zero, this means that 16

g f (x f , x0)+ ϕ f (z, x0)− gh(xh, x0)− ϕh(z, x0) = 0, 17

and thus 18

ϕ f (z, x0)− ϕh(z, x0) = gh(xh, x0)− g f (x f , x0). 19

Because g f and gh is identified, ϕ f − ϕh is identified also. The argument above shows 20

that we do not need both X f i and Xhi , we only need X f i or Xhi . 21

Suppose it there is no variable that affects earnings in one sector but not preferences 22

(X f i or Xhi ). An alternative way to identify ϕ f − ϕh is to use a cost measured in dollars. 23

Consider the linear version of the model with normal errors and without exclusion 24

restrictions (Xhi , X f i ) so that 25

gh(x0) = x ′0iγh 26

g f (x0) = x ′0iγ f 27

ϕ f (z, x0)− ϕh(z, x0) = x ′0β0 + z′βz. 28

The reduced form probit is: 29

Pr(Ji = f | Zi = z, X i = x) = 8

(
x ′0i
γ f − γh + β0

σ
+ z′i

βz

σ

)
30
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where σ is the standard deviation of εhi+νhi−ε f i−ν f i . Theorem 4.1 above establishes1

that the functions g f and gh (i.e., γ f and γh) as well as the variance of εhi and ε f i are2

identified. We still need to identify β0, βz and σ . Thus we are able to identify3

γ f − γh + β0

σ
and

βz

σ
.4

If β0 and βz are scalars we still have three parameters (β0, βz, σ ) and two restrictions5

(
γ f−γh+β0

σ
,
βz
σ
). If they are not scalars, we still have one more parameter than restriction.6

However suppose that one of the exclusion restrictions represents a cost variable that is7

measured in the same units as Y f i−Yhi . For example in a schooling case suppose that Y f i8

represents the present value of earnings as a college graduate, Yhi represents the present9

value of high school graduate as a college graduate, and the exclusion restriction, Zi ,10

represents the present value of college tuition. In this case βz = −1 the coefficient on Zi11

is−1/σ, so σ is identified. Given σ it is very easy to show that the rest of the parameters12

are identified as well. Heckman et al. (1998) provide an example of this argument using13

tuition as in the style above. In Section 7.3 we discuss Heckman and Navarro (2007) who14

use this approach as well.15

4.2. Lack of identification of the joint distribution of (ε f i, εhi )1617

In pointing out what is identified in the model it is also important to point out what is18

not identified. Most importantly in the generalized Roy model we were able to identify19

the joint distribution between the error terms in the selection equation and each of the20

outcomes, but not the joint distribution of the variables in the outcome equation. In21

particular the joint distribution between the error terms (ε f i , εhi ) is not identified. Even22

strong functional form assumptions will not solve this problem. Fir example, it is easy to23

show that in the joint normal model the covariance of (ε f i , εhi ) is not identified.24

4.3. Are functional forms innocuous? Evidence from Catholic schools2526

As the theorems above make clear, nonparametric identification requires exclusion27

restrictions. However, completely parametric models typically do not require exclusion28

restrictions. In specific empirical examples, identification could primarily be coming29

from the exclusion restriction or identification could be coming primarily from the30

functional form assumptions (or some combination between the two). When researchers31

use exclusion restrictions in data, it is important to be careful about which assumptions32

are important.33

We describe one example from Altonji et al. (2005b). Based on Evans and Schwab34

(1995), Neal (1997), and Neal and Grogger (2000) they consider a bivariate probit model35

of Catholic schooling and college attendance.36

C Hi = 1(X ′iβ + λZi + ui > 0) (4.7)37
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Yi = 1(αC Hi + X ′iγ + εi > 0), (4.8) 1

where 1(·) is the indicator function taking the value one if its argument is true and zero 2

otherwise, C Hi is a dummy variable indicating attendance at a Catholic school, and Yi is 3

a dummy variable indicating college attendance. Identification of the effect of Catholic 4

schooling on college attendance (or high school graduation) is the primary focus of these 5

studies. The question at hand is in practice whether the assumed functional forms for 6

ui and εi are important for identifying the α coefficient and thus the effect of Catholic 7

schools on college attendance. 8

The model in Eq. (4.7)-(4.7) is a minor extension of the generalized Roy model. The Q29

first key difference is that the outcome variable in Eq. (4.8) is binary (attend college or 10

not), whereas in the case of the Generalized Roy model the outcomes were continuous 11

(earnings in either sector). The second key difference is that the outcome equation for 12

Catholic versus Non-Catholic school only differs in the intercept (α). The error term (εi ) 13

and the slope coefficients (γ ) are restricted to be the same. Nevertheless, the machinery 14

to prove non-parametric identification of the Generalized Roy model can be applied to 15

this framework.12
16

Using data from the National Longitudinal Survey of 1972, Altonji et al. (2005b) 17

consider an array of instruments and different specifications for Eqs (4.7) and (4.8). In Q318

Table 1 we present a subset of their results. We show four different models. The “Single 19

Equation Model” gives results in which selection into Catholic school is not accounted 20

for. The first column gives results from a probit model (with point estimates, standard 21

errors, and marginal effects). The second column give results from a Linear Probability 22

model. Next we present the estimates of α from a Bivariate Probit models with alternative 23

exclusion restrictions. The final row presents the results with no exclusion restrictions. 24

Finally we also present results from an instrumental variable linear probability model with 25

the same set of exclusion restrictions. 26

One can see that the marginal effect from the single equation probit is very similar 27

to the OLS estimate. It indicates that college attendance rates are approximately 23.9 28

percentage points higher for Catholic high school graduates than for public high school 29

graduates. The rest of the table presents results from three bivariate probit models 30

and two instrumental variables models using alternative exclusion restrictions. The 31

problem is clearest when the interaction between the student coming from a Catholic 32

school and distance to the nearest Catholic school is used as an instrument. The 2SLS 33

gives nonsensical results: a coefficient of 2.572 with an enormous standard error. This 34

indicates that the instrument has little power. However, the bivariate probit result is more 35

reasonable. It suggests that the true marginal causal effect is around 0.478 and the point 36

12 Following Matzkin (1992), we need a monotonic normalization on the outcome model (such as assuming the error
term is uniform). Once we have done this, proving identification of this model is almost identical to the generalized
Roy model and is easily done with an exclusion restriction with sufficient support.
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Table 1 Estimated effect of Catholic schools on college attendance: From linear and nonlinear
specifications.

Single equation models

Probit OLS

0.239 0.239
[0.640]
(0.198) (0.070)

Two equation models

Excluded variable Bivariate probit 2SLS

Catholic 0.285 −0.093
[0.761]
(0.543) (0.324)

Catholic× Distance 0.478 2.572
[1.333]
(0.516) (2.442)

None 0.446
[1.224]
(0.542)

Urban Non-Whites from NLS-72.
The first set of results come from simple probits and from OLS.
The further results come from Bivariate Probits and from two stage least squares.
We present the marginal effect of Catholic high school attendance on college attendance.
[Point Estimate from Probit in Brackets.]
(Standard Errors in Parentheses.)
Source: Altonji et al. (2005b).

estimate is statistically significant. This seems inconsistent with the 2SLS results which1

indicated that this exclusion restriction had very little power. However it is clear what is2

going on when we compare this result to the model at the bottom of the table without3

an exclusion restriction. The estimate is very similar with a similar standard error. The4

linearity and normality assumptions drive the results.5

The case in which Catholic religion by itself is used as an instrument is less6

problematic. The IV result suggests a strong amount of positive selection but still yields7

a large standard error. The bivariate probit model suggests a marginal effect that is a8

bit larger than the OLS effect. However, note that the standard errors for the model9

with and without an exclusion restriction are quite similar, which seems inconsistent10

with the idea that the exclusion restriction is providing a lot of identifying information.11

Further note that the IV result suggests a strong positive selection bias while the bivariate12

probit without exclusion restrictions suggests a strong negative bias. The bivariate probit13

in which Catholic is excluded is somewhere between the two. This suggests that14

both functional form and exclusion restrictions are important in this case. We should15

emphasize the “suggests” part of this sentence as none of this is a formal test. It does,16
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however, make one wonder how much trust to put in the bivariate probit results by 1

themselves. 2

Another paper documenting the importance of functional form assumptions is Das 3

et al. (2003), who estimate the return to education for young Australian women. They 4

estimate equations for years of education, the probability of working, and wages. When 5

estimating the wage equation they address both the endogeneity of years of education 6

and also selection caused because we only observe wages for workers. They allow for 7

flexibility in the returns to education (where the return depends on years of education) 8

and also in the distribution of the residuals. They find that when they assume normality 9

of the error terms, the return to education is approximately 12%, regardless of years of 10

education. However, once they allow for more flexible functional forms for the error 11

terms, they find that the returns to education decline sharply with years of education. 12

For example, they find that at 10 years of education, the return to education is over 15%. 13

However, at 14 years, the return to education is only about 5%. 14

5. TREATMENT EFFECTS 1516

There is a very large literature on the estimation of treatment effects. For more 17

complete summaries see Heckman and Robb (1986), Heckman et al. (1999), Heckman Q418

and Vytlacil (2007a,b), Abbring and Heckman (2007), or Imbens and Wooldridge 19

(2009).13 DiNardo and Lee (2010) provide a discussion that is complementary to ours. 20

Our goal in this section is not to survey the whole literature but provide a brief summary 21

and to put it into the context of identification of the Generalized Roy Model. 22

The goal of this literature is to estimate the value of receiving a treatment defined as: 23

πi = Y f i − Yhi . (5.1) 24

In the context of the Roy model, πi is the income gain from moving from hunting to 25

fishing. This income gain potentially varies across individuals in the population. Thus 26

for people who choose to be fishermen, πi is positive and for people who choose to be Q527

fishermen, πi is negative. 28

Estimation of treatment effects is of great interest in many literatures. The term 29

“treatment effect”makes the most sense in the context of the medical literature. Choice 30

f could represent taking a medical treatment (such as an experimental drug) while h 31

could represent no treatment. In that case Y f i and Yhi would represent some measure of 32

health status for individual i with and without the treatment. Thus the treatment effect 33

πi is the effect of the drug on the health outcome for individual i . 34

13 There is also a substantial literature on the tradeoffs between different empirical approaches. Key papers include Leamer
(1983), Heckman (1979, 1999, 2000), Angrist and Imbens (1999), Rosenzweig and Wolpin (2000), Deaton (2009),
Heckman and Urzua (forthcoming), Imbens (2009), Angrist and Pischke (2010) and Sims (2010).
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The classic example in labor economics is job training. In that case, Y f i would1

represent a labor market outcome for individuals who received training and Yhi would2

represents the outcome in the absence of training.3

In both the case of drug treatment and job training, empirical researchers have4

exploited randomized trials. Medical patients are often randomly assigned either a5

treatment or a placebo (i.e., a sugar pill that should have no effect on health). Likewise,6

many job training programs are randomly assigned. For example, in the case of the Job7

Training Partnership Act, a large number of unemployed individuals applied for job8

training (see e.g. Bloom et al., 1997). Of those who applied for training, some were9

assigned training and some were assigned no training.10

Because assignment is random and affects the level of treatment, one can treat11

assignment as an exclusion restriction that is correlated with treatment (i.e., the12

probability that Ji = f ) but is uncorrelated with preferences or ability because it is13

random. In this sense, random assignment solves the selection problem that is the focus14

of the Roy model. As we show below, exogenous variation provided by experiments15

allows the researcher to cleanly identify some properties of the distribution of Y f i and16

Yhi under relatively weak assumptions. Furthermore, the methods for estimating these17

objects are simple, which adds to their appeal.18

The treatment effect framework is also widely used for evaluating quasi-experimental19

data as well. By quasi-experimental data, we mean data that are not experimental, but20

exploit variation that is “almost as good as” random assignment.21

5.1. Treatment effects and the generalized Roy model2223

Within the context of the generalized Roy model note that in general24

πi = g f (X f i , X0i )− gh(Xhi , X0i )+ ε f i − εhi .25

An important special case of the treatment effect defined in Eq. (5.1) is when26

g f (X f i , X0i ) = gh(Xhi , X0i )+ π0 (5.2)27

ε f i = εhi . (5.3)28

In this case, the treatment effect πi = Y f i − Yhi = π0 is a constant across individuals.29

Identification of the parameter is relatively straightforward. However, there is a substantial30

literature that studies identification of heterogeneous treatment effects. As we pointed31

out above, treatment effects are positive for some people and negative for others in the32

context of the Roy model. Furthermore, there is ample empirical evidence that the33

returns to job training are not constant, but instead vary across the population (Heckman34

et al., 1999).35

In Section 4.2 we explain why the joint distribution of (ε f i , εhi ) is not identified.36

This means that the distribution of πi is not identified and even relatively simple summary37
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statistics like the median of this distribution is not identified in general. The key problem 1

is that even when assignment is random, we do not observe the same people in both 2

occupations. 3

Since the full generalized Roy model is complicated, hard to describe, and very 4

demanding in terms of data, researchers often focus on a summary statistic to summarize 5

the result. The most common in this literature is the Average Treatment Effect (ATE) 6

defined as 7

ATE ≡ E(πi ) 8

= E(Y f i )− E(Yhi ). 9

From Theorem 4.1 we know that (under the assumptions of that theorem) the 10

distribution of Y f i and Yhi are identified. Thus, their expected values are also identified 11

under the one additional assumption that these expected values exist. 12

Assumption 5.1. The expected values of Y f i and Yhi are finite. 13

Theorem 5.1. Under the assumptions of Theorem 4.1 and Assumption 5.1, the Average 14

Treatment effect is identified. 15

(Proof in Appendix.) 16

To see where identification of this object comes from, abstract from X i so that 17

the only observable is Zi , which affects the non-pecuniary gain in utility from 18

occupation across occupations. With experimental data, Zi could be randomly generated 19

assignments to occupation. Notice that 20

lim
ϕ(z)→1

E(Y f i | Zi = z, Ji = f )− lim
ϕ(z)→0

(Yhi | Zi = z, Ji = h) 21

= lim
ϕ(z)→1

E(Y f i | νi ≤ ϕ(z))− lim
ϕ(z)→0

E(Yhi | νi < ϕ(z)) 22

= E(Y f i )− E(Yhi ). 23

Thus the exclusion restriction is the key to identification. Note also that we need groups 24

of individuals where ϕ(Zi ) ≈ 1 (who are always fishermen) and ϕ(Zi ) ≈ 0 (who 25

are always hunters); thus “identification at infinity” is essential as well. For the reasons 26

discussed in the nonparametric Roy model above, if ϕ(Zi ) were never higher than some 27

ϕ(zu) < 1 then E(Y f i ) would not be identified. Similarly if ϕ(Zi ) were never lower 28

than some ϕ(z`) > 0, then E(Yhi ) would not be identified. 29

While one could directly estimate the ATE using “identification at infinity”, as 30

described above, this is not the common practice and not something we would advocate. 31

The standard approach would be to estimate the full Generalized Roy Model and then 32

use it to simulate the various treatment effects. This is often done using a completely 33
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parametric approach as in, for example, the classic paper by Willis and Rosen (1979). Q61

However, there are quite a few nonparametric alternatives as well, including construction2

of the Marginal Treatment effects as discussed in Sections 5.3 and 5.4 below.3

As it turns out, even with experimental data, it is rarely the case that ϕ(Zi ) is4

identically one or zero with positive probability. In the case of medicine, some people5

assigned the treatment do not take the treatment. In the training example, many people6

who are given subsidized training decide not to undergo the training. Thus, when7

compliance with assignment is less than 100%, we cannot recover the ATE. In Section 5.28

we discuss more precisely what we do recover when there is less than 100% compliance.9

It is also instructive to relate the ATE to instrumental variables estimation. Let Yi be10

the outcome of interest11

Yi =

{
Y f i if Ji = f
Yhi if Ji = h,

12

and let D f i be a dummy variable indicating whether Ji = f. Consider estimating the13

model14

Yi = β0 + β1 D f i + ui (5.4)15

using instrumental variables with Zi as an instrument for D f i . Assume that Zi is16

correlated with D f i but not with Y f i or Yhi . Consider first the constant treatment effect17

model described in Eqs (5.2) and (5.3) so that πi = π0 for everyone in the population.18

In that case19

Yi = Y f i D f i + Yhi (1− D f i )20

= Yhi + D f i (Y f i − Yhi )21

= Yhi + D f iπ0.22

Then two stage least squares on the model above yields23

plim β̂1 =
cov(Zi , Yi )

cov(Zi , D f i )
24

=
cov(Zi , Yhi + D f iπ0)

cov(Zi , D f i )
25

=
cov(Zi , Yhi )

cov(Zi , D f i )
+

cov(Zi , π0 D f i )

cov(Zi , D f i )
26

= π0.27
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Thus in the constant treatment effect model, instrumental variables provide a consistent 1

estimate of the treatment effect. However, this result does not carry over to 2

heterogeneous treatment effects or the average treatment effects as Heckman (1997) 3

shows. Following the expression above we get 4

plim β̂1 =
cov(Zi , Yhi + D f iπi )

cov(Zi , D f i )
5

=
cov(Zi , D f iπi )

cov(Zi , D f i )
6

6= ATE (5.5) 7

in general. In Sections 5.2 and 5.3 below, we describe what instrumental variables 8

identify. 9

In practice there are two potential problems with the assumptions behind 10

Theorem 5.1 above 11

• The researcher may not have a valid exclusion restriction. We discuss some of the 12

options for this case in Sections 5.5–5.7. 13

• Even if they do, the variable may not have full support. By this we mean that the 14

instrumental variable Zi may not vary enough, so that for some observed values of Zi 15

everyone is always a fisherman and for other observed values of Zi everyone is always 16

a hunter. We discuss what can be identified using exclusion restrictions with limited 17

support in Sections 5.2–5.4 and 5.6. 18

We discuss a number of different approaches, some of which assume an exclusion 19

restriction but relax the support conditions and others that do not require exclusion 20

restrictions. 21

5.2. Local average treatment effects 2223

Imbens and Angrist (1994) and Angrist et al. (1996) consider identification when the 24

support of Zi takes on a finite number of points. They show that when varying the 25

instrument over this range, they can identify what they call a Local Average Treatment 26

Effect. Furthermore, they show how instrumental variables can be used to estimate it. It is 27

again easiest to think about this problem after abstracting from X i , as it is straightforward 28

to condition on these variables (see Imbens and Angrist, 1994, for details). For simplicity’s 29

sake, consider the case in which the instrument Zi is binary and takes on the values (0, 1). 30

In many cases not only is the instrument discrete, but it is also binary. For example, in 31

randomized medical trials, Zi = 1 represents assignment to treatment, whereas Zi = 0 32

represents assignment to the placebo. In job training programs, Zi = 1 represents 33

assignment to the training program, whereas Zi = 0 represents no assigned training. 34
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It is important to point out that not all patients assigned treatment actually receive1

the treatment. Thus Ji = f if the patient actually takes the drug and Ji = h if the2

individual does not take the drug. Likewise, not all individuals who are assigned training3

actually receive the training, so Ji = f if the individual goes to training and Ji = h if4

she does not. The literature on Local Average Treatment Effects handles this case as well5

as many others. However, we do require that the instrument of assignment has power:6

Pr(Ji = f | Zi = 1) 6= Pr(Ji = f | Zi = 0).Without loss of generality we will assumeQ7 7

that Pr(Ji = f | Zi = 1) > Pr(Ji = f | Zi = 0).8

Using the reduced form version of the generalized Roy model the choice problem is9

Ji = f if ϕ(Zi ) > νi (5.6)10

where νi is uniformly distributed.11

The following six objects can be learned directly from the data:12

Pr(Ji = f |Zi = 0) = Pr(νi ≤ ϕ(0))13

Pr(Ji = f |Zi = 1) = Pr(νi ≤ ϕ(1))14

E(Y f i | Zi = 0, Ji = f ) = E(Y f i | νi ≤ ϕ(0))15

E(Yhi | Zi = 0, Ji = h) = E(Yhi | νi > ϕ(0))16

E(Y f i | Zi = 1, Ji = f ) = E(Y f i | νi ≤ ϕ(1))17

E(Yhi | Zi = 1, Ji = h) = E(Yhi | νi > ϕ(1)).18

The above equations show that our earlier assumption that Pr(Ji = f |Zi = 1) >19

Pr(Ji = f |Zi = 0) implies Pr(νi ≤ ϕ(1)) > Pr(νi ≤ ϕ(0)). This, combined with the20

structure embedded in Eq. (5.6) means that21

Pr(νi ≤ ϕ(1)|νi ≤ ϕ(0)) = 1, (5.7)22

so than an individual who is a fisherman when Zi = 0 is also a fisherman when Zi = 1.23

Similar reasoning implies Pr(νi ≤ ϕ(1)|ϕ(0) < νi ≤ ϕ(1)) = 1. Using this and Bayes24

rule yields25

Pr(νi ≤ ϕ(0) | νi ≤ ϕ(1)) =
Pr(νi ≤ ϕ(1) | νi ≤ ϕ(0))Pr(νi ≤ ϕ(0))

Pr(νi ≤ ϕ(1))

=
Pr(νi ≤ ϕ(0))
Pr(νi ≤ ϕ(1))

, (5.8)26
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Pr(ϕ(0) < νi ≤ ϕ(1) | νi ≤ ϕ(1))

=
Pr(νi ≤ ϕ(1) | ϕ(0) < νi ≤ ϕ(1))Pr(ϕ(0) < νi ≤ ϕ(1))

Pr(νi ≤ ϕ(1))

=
Pr(ϕ(0) < νi ≤ ϕ(1))

Pr(νi ≤ ϕ(1))
. (5.9) 1

Using the fact that Pr(νi ≤ ϕ(1)) = Pr(νi ≤ ϕ(0)) + Pr(ϕ(0) < νi ≤ ϕ(1)), one can 2

show that 3

E(Y f i | νi ≤ ϕ(1)) = E(Y f i | νi ≤ ϕ(0))Pr(νi ≤ ϕ(0) | νi ≤ ϕ(1)) 4

+ E(Y f i | ϕ(0) < νi ≤ ϕ(1))Pr(ϕ(0) < νi ≤ ϕ(1) | νi ≤ ϕ(1)). (5.10) 5

Combining Eq. (5.10) with Eqs (5.8) and (5.9) yields 6

E(Y f i | νi ≤ ϕ(1)) =
E(Y f i | νi ≤ ϕ(0))Pr(νi ≤ ϕ(0))

Pr(νi ≤ ϕ(1))
7

+
E(Y f i | ϕ(0) < νi ≤ ϕ(1))Pr(ϕ(0) < νi ≤ ϕ(1))

Pr(νi ≤ ϕ(1))
. (5.11) 8

Rearranging Eq. (5.11) shows that we can identify 9

E(Y f i | ϕ (0) ≤ νi < ϕ(1)) 10

=
E(Y f i | Zi = 1, Ji = f )Pr(Ji = f | Zi = 1)− E(Y f i | Zi = 0, Ji = f )Pr(Ji = f | Zi = 0)

Pr(Ji = f | Zi = 1)− Pr(Ji = f | Zi = 0)
11

(5.12) 12

since everything on the right hand side is directly identified from the data. 13

Using the analogous argument one can show that 14

E(Yhi | ϕ (0) ≤ νi < ϕ(1)) 15

=
E(Yhi | Zi = 0, Ji = h)Pr(Ji = h | Zi = 0)− E(Yhi | Zi = 1, Ji = h)Pr(Ji = h | Zi = 1)

Pr(Ji = f | Zi = 1)− Pr(Ji = f | Zi = 0)
16

is identified. But this means that we can identify 17

E(πi | ϕ (0) ≤ νi < ϕ(1)) = E(Y f i − Yhi | ϕ (0) ≤ νi < ϕ(1)) (5.13) 18

which Imbens and Angrist (1994) define as the Local Average Treatment Effect. This is 19

the average treatment effect for that group of individuals who would alter their treatment 20

status if their value of Zi changed. Given the variation in Zi , this is the only group for 21

whom we can identify a treatment effect. Any individual in the data with νi > ϕ(1) 22
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would never choose Ji = f, so the data are silent about E(Y f i | νi > ϕ(1)). Similarly1

the data is silent about E(Yhi | νi ≤ ϕ(0)).2

Imbens and Angrist (1994) also show that the standard linear Instrumental Variables3

estimator yield consistent estimates of Local Average Treatment Effects. Consider the4

instrumental variables estimator of Eq. (5.4)5

Yi = β0 + β1 D f i + ui .6

In Eq. (5.5) we showed that7

β̂1
p
→

cov(Zi , D f iπi )

cov(Zi , D f i )
8

=
E(πi D f i Zi )− E

(
πi D f i

)
E (Zi )

E(D f i Zi )− E
(
D f i

)
E (Zi )

.9

Let Pz denote the probability that Zi = 1. The numerator of the above expression is10

E(πi D f i Zi )− E(πi D f i )E (Zi )11

= Pz E(πi D f i | Zi = 1)− E
(
πi D f i

)
Pz12

= Pz E(πi D f i | Zi = 1)13

−
[
Pz E(πi D f i | Zi = 1)+ (1− Pz) E(πi , D f i | Zi = 0)

]
Pz14

= Pz(1− Pz)
[
E(πi D f i | Zi = 1)− E(πi D f i | Zi = 0)

]
15

= Pz(1− Pz)E(πi | ϕ(0) < νi ≤ ϕ (1))Pr(ϕ (0) < νi ≤ ϕ (1))16

where the key simplification comes from the fact that17

E(πi D f i | Zi = 1) = E (πi 1 (νi ≤ ϕ(1)))18

= E (πi [1 (νi ≤ ϕ(0))+ 1 (ϕ(0) < νi ≤ ϕ(1))])19

= E(πi D f i | Zi = 0)20

+ E(πi | ϕ(0) < νi ≤ ϕ (1))Pr(ϕ (0) < νi ≤ ϕ (0)).21

Next consider the denominator22

E(D f i Zi )− E(D f i )E (Zi )23

= Pz E(D f i | Zi = 1)− E(D f i )Pz24

= Pz E(D f i | Zi = 1)−
[
Pz E(D f i | Zi = 1)+ (1− Pz) E(D f i | Zi = 0)

]
Pz25
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= Pz(1− Pz)
[
E(D f i | Zi = 1)− E(D f i | Zi = 0)

]
1

= Pz(1− Pz)Pr(ϕ (0) < νi ≤ ϕ (1)). 2

Thus 3

β̂1
p
→

E(πi D f i Zi )− E(πi D f i )E (Zi )

E(D f i Zi )− E(D f i )E (Zi )
4

=
Pz(1− Pz)E(πi | ϕ(0) < νi ≤ ϕ (1))Pr(ϕ (0) < νi ≤ ϕ (1))

Pz(1− Pz)Pr(ϕ (0) < νi ≤ ϕ (1))
5

= E(πi | ϕ(0) < νi ≤ ϕ (1)). 6

Imbens and Angrist never explicitly use the generalized Roy model or the latent 7

index framework. Instead, they write their problem only in terms of the choice 8

probabilities. However, in order to do this they must make one additional assumption. 9

Specifically, they assume that if Ji = f when Zi = 0 then Ji = f when Zi = 1. 10

Thus changing Zi = 0 to Zi = 1 never causes some people to switch from fishing to 11

hunting. It only causes people to switch from hunting to fishing. They refer to this as 12

a monotonicity assumption. Vytlacil (2002) points out that this is implied by the latent 13

index model when the index ϕ(Zi ) is separable from νi , as we assumed in Eq. (5.6). As is 14

implied by Eq. (5.7), increasing the index ϕ(Zi ) will cause some people to switch from 15

hunting to fishing, but not the reverse.14
16

Throughout, we use the latent index framework that is embedded in the Generalized 17

Roy model, for three reasons. First, we can appeal to the identification results of the 18

Generalized Roy model. Second, the latent index can be interpreted as the added utility 19

from making a decision. Thus we can use the estimated model for welfare analysis. Third, 20

placing the choice in an optimizing framework allows us to test the restrictions on choice 21

that come from the theory of optimization. 22

As we have pointed out, not everyone offered training actually takes the training. For 23

example, in the case of the JTPA, only 60% of those offered the training actually received 24

it (Bloom et al., 1997). Presumably, those who took the training are those who stood 25

the most to gain from the training. For example, the reason that many people do not 26

take training is that they receive a job offer before training begins. For these people, the 27

training may have been of relatively little value. Furthermore, 2% of those who applied 28

for and were not assigned training program wind up receiving the training (Bloom et al., 29

1997). Angrist et al. (1996) refer to those who were assigned training, but did not take the

14 However, he points out that the non-separable model D f i = 1( f (Zi , νi ) > 0) does not necessarily give rise to
monotonicity. All other differences between the latent variable framework and the LATE framework are extremely
technical and minor.
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training as never-takers. Those who receive the training whether or not they are assigned1

are always-takers. Those who receive the training only when assigned the training are2

compliers. In terms of the latent index framework, the never-takers are those for whom3

(νi ≥ ϕ(1)), the compliers are those for whom (ϕ (0) ≤ νi < ϕ(1)), and the always-4

takers are those for whom (νi < ϕ(0)).5

The monotonicity assumption embedded in the latent index framework rules out6

the existence of a final group: the defiers. In the context of training, this would be7

an individual who receives training when not assigned training but would not receive8

training when assigned. At least in the context of training programs (and many other9

contexts) it seems safe to assume that there are no defiers.10

5.3. Marginal treatment effects1112

Heckman and Vytlacil (1999, 2001, 2005, 2007b) develop a framework that is useful for13

constructing many types of treatment effects. They focus on the marginal treatment effect14

(MTE) defined in our context as15

1MTE(x, ν) ≡ E(πi | X i = x, νi = ν).16

They show formally how to identify this object. We present their methodology using our17

notation.18

Note that if we allow for regressors X i , let the exclusion restriction Zi to take on19

values beyond zero and one, then if (z`, x) and (zh, x) are in the support of the data,20

then Eq. (5.12) can be rewritten as21

E(Y f i | ϕ(z
`, x) ≤ νi < ϕ(zh, x), X i = x)22

=
E(Y f i | (Zi , X i ) = (zh, x), Ji = f )Pr(Ji = f | (Zi , X i ) = (zh,x))

Pr(Ji = f | (Zi , X i ) = (zh, x))− Pr(Ji = f | (Zi , X i ) = (z`, x))
23

−
E(Y f i | (Zi , X i ) = (z`, x), Ji = f )Pr(Ji = f | (Zi , X i ) = (z`, x))

Pr(Ji = f | (Zi , X i ) = (zh, x))− Pr(Ji = f | (Zi , X i ) = (z`, x))
(5.14)24

for ϕ
(
z`, x

)
< ϕ(zh, x). Now notice that for any ν,25

lim
ϕ(z`,x)↑ν,ϕ(zh ,x)↓ν

E(Y f i | ϕ(z
`, x) ≤ νi < ϕ(zh, x), X i = x)26

= E(Y f i | νi = ν, X i = x).27

Thus if (x, ν) is in the support of (X i , ϕ(Zi , X i )), then E(Y f i | νi = ν, X i = x)28

is identified. Since the model is symmetric, under similar conditions E(Yhi | νi = ν,29
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X i = x) is identified as well. Finally since 1

1MTE(x, ν) = E(πi | X i = x, νi = ν) 2

= E(Y f i | νi = ν, X i = x)− E(Yhi | νi = ν, X i = x), (5.15) 3

the marginal treatment effect is identified. 4

The marginal treatment effect is interesting in its own right. It is the value of the 5

treatment for any individual with X i = x and νi = ν. In addition, it is also useful 6

because the different types of treatment effects can be defined in terms of the marginal 7

treatment effect. For example 8

ATE =
∫ ∫ 1

0
1MTE(x, ν)dνdG(x). 9

One can see from this expression that without full support this will not be identified 10

because1MTE(x, ν) will not be identified everywhere. 11

Heckman and Vytlacil (2005) also show that the instrumental variables estimator 12

defined in Eq. (5.5) (conditional on x) is 13

∫ 1

0
1MTE(x, ν)h I V (x, ν)dν 14

where they give an explicit functional form for h I V . It is complicated enough that we do 15

not repeat it here but it can be found in Heckman and Vytlacil (2005). 16

This framework is also useful for seeing what is not identified. In particular if ϕ(Zi , x) 17

does not have full support so that it is bounded above or below, the average treatment 18

effect will not be identified. However, many other interesting treatment effects can 19

be identified. For example, the Local Average Treatment Effect in a model with no 20

regressors (x) is 21

LATE =

∫ ϕ(1)
ϕ(0) 1

MTE(ν)dν

ϕ(1)− ϕ(0)
. (5.16) 22

More generally, in this series of papers, Heckman and Vytlacil show that the marginal 23

treatment effect can also be used to organize many ideas in the literature. One interesting 24

case is policy effects. They define the policy relevant treatment effect as the treatment 25

resulting from a particular policy. They show that if the relationship between the policy 26

and the observable covariates is known, the policy relevant treatment effect can be 27

identified from the marginal treatment effects. 28
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5.4. Applications of the marginal treatment effects approach12

Heckman and Vytlacil (1999, 2001, 2005) suggest procedures to estimate the marginal3

treatment effect. They suggest what they call “local instrumental variables.” Using our4

notation for the generalized Roy model in which Ji = f when ϕ(X i , Zi ) − νi > 0,5

where νi is uniformly distributed, they show that6

1MTE(x, ν) =
∂E(Y | X i = x, ϕ(X i , Zi ) = ν)

∂ν
.7

To see why this is the same definition of MTE as in Eq. (5.15)), note that8

∂E(Yi | X i = x, ϕ(X i , Zi ) = ν)

∂ν
9

=
∂
[
E(Y f i | X i = x, νi ≤ ν)Pr(νi ≤ ν)+ E(Yhi | X i = x, νi > ν)Pr(νi > ν)

]
∂ν

10

=

∂
[∫ ν

0 E(Y f i | νi = ω, X i = x)dω +
∫ 1
ν

E(Yhi | νi = ω, X i = x)dω
]

∂ν
11

= E(Y f i | νi = ν, X i = x)− E(Yhi | νi = ν, X i = x)12

= 1MTE(x, ν).13

Thus one can estimate the marginal treatment effect in three steps. First estimate ϕ,14

second estimate E(Y | X i = x, ϕ(X i , Zi ) = ν) using some type of nonparametric15

regression approach, and third take the derivative.16

Because as a normalization νi is uniformly distributed17

ϕ(x, z) = Pr(νi ≤ ϕ(X i , Zi ) | X i = x, Zi = z)18

= Pr(Ji = f | X i = x, Zi = z)19

= E(D f i | X i = x, Zi = z).20

Thus we can estimate ϕ(x, z) from a nonparametric regression of D f i on (X i , Zi ).21

A very simple way to do this is to use a linear probability model of D f i regressed on a22

polynomial of Zi . By letting the terms in the polynomial get large with the sample size,23

this can be considered a nonparametric estimator. For the second stage we regress the24

outcome Yi on a polynomial of our estimate of ϕ(Zi ). To see how this works consider25

the case in which both polynomials are quadratics. We would use the following two stage26

least squares procedure:27

D f i = γ0 + γ1 Zi + γ2 Z2
i + γx X i + ei , (5.17)28
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Yi = β0 + β1 D̂ f i + β2 D̂ f i
2
+ βx X i + ui , (5.18) 1

where D̂ f i = γ̂0 + γ̂1 Zi + γ̂2 Z2
i + γ̂x X i is the predicted value from the first stage. The 2

β2 coefficient may not be 0 because as we change D̂ f i the instrument affects different 3

groups of people. The MTE is the effect of changing D̂ f i on Yi . For the case above the 4

MTE is: 5

∂Yi

∂ D̂ f i
= β1 + 2β2 D̂ f i . (5.19) 6

Although the polynomial procedure above is transparent, the most common technique 7

used to estimate the MTE is local linear regression. 8

French and Song (2010) estimate the labor supply response to Disability Insurance 9

(DI) receipt for DI applicants. Individuals are deemed eligible for DI benefits if they 10

are “unable to engage in substantial gainful activity”—i.e., if they are unable to work. 11

Beneficiaries receive, on average $12,000 per year, plus Medicare health insurance. Thus, 12

there are strong incentives to apply for benefits. They continue to receive these benefits 13

only if they earn less than a certain amount per year ($10,800 in 2007). For this reason, the 14

DI system likely has strong labor supply disincentives. A healthy DI recipient is unlikely 15

to work if that causes the loss of DI and health insurance benefits. 16

The DI system attempts to allow benefits only to those who are truly disabled. Many 17

DI applicants have their case heard by a judge who determines those who are truly 18

disabled. Some applicants appear more disabled than others. The most disabled applicants 19

are unable to work, and thus will not work whether or not they get the benefit. For less 20

serious cases, the applicant will work, but only if she is denied benefits. The question, 21

then, is what is the optimal threshold level for the amount of observed disability before 22

the individual is allowed benefits? Given the definition of disability, this threshold should 23

depend on the probability that an individual does not work, even when denied the 24

benefit. Furthermore, optimal taxation arguments suggest that benefits should be given 25

to groups whose labor supply is insensitive to benefit allowance. Thus the effect of DI 26

allowance on labor supply is of great interest to policy makers. 27

OLS is likely to be inconsistent because those who are allowed benefits are likely to 28

be less healthy than those who are denied. Those allowed benefits would have had low 29

earnings even if they did not receive benefits. French and Song propose an IV estimator 30

using the process of assignment of cases to judges. Cases are assigned to judges on a 31

rotational basis within each hearing office, which means that for all practical purposes, 32

judges are randomly assigned to cases conditional on the hearing office and the day. Some 33

judges are much more lenient than others. For example, the least lenient 5% of all judges 34

allow benefits to less than 45% of the cases they hear, whereas the most lenient 5% of all 35

judges allow benefits to 80% of all the cases they hear. Although some of those who are 36
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Figure 1 Marginal treatment effect.

denied benefits appeal and get benefits later, most do not. If assignment of cases to judges1

is random then the instrument of judge assignment is a plausibly exogenous instrument.2

Furthermore, and as long as judges vary in terms of leniency and not ability to detect3

individuals who are disabled,15 the instrument can identify a MTE.4

French and Song use a two stage procedure. In the first stage they estimate the5

probability that an individual is allowed benefits, conditional on the average judge specific6

allowance rate. They estimate a version of Eq. (5.17) where D f i is an indicator equal to7

1 if case i was allowed benefits and Zi is the average allowance rate of the judge who8

heard case i . In the second stage they estimate earnings conditional on whether the9

individual was allowed benefits (as predicted by the judge specific allowance rate). They10

estimate a version of Eq. (5.18) where Yi is annual earnings 5 years after assignment to a11

judge. Figure 1 shows the estimated MTE (using the formula in Eq. (5.19)) using several12

different specifications of polynomial in the first and second stage equations. Assuming13

that the treatment effect is constant (i.e., β2 = 0), they find that annual earnings 5 years14

after assignment to a judge are $1500 for those allowed benefits and $3900 for those15

denied benefits, so the estimated treatment effect is $2400. This is the MTE-linear case in16

Fig. 1. However, this masks considerable heterogeneity in the treatment effects. They find17

that when allowance rates rise, the labor supply response of the marginal case also rises.18

When allowing for the quadratic term β2 to be non-zero, they find that less lenient judges19

15 If judges vary in terms of ability to detect disability, then a case that is allowed by a low allowance judge might be
denied by a high allowance judge. This would violate the monotonicity assumption shown in Eq. (5.7).
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(who allow 45% of all cases) have a MTE of a $1800 decline in earnings. More lenient 1

judges (who allow 80% of all cases) have a MTE of $3200 decline in earnings. Figure 1 2

also shows results when allowing for cubic and quartic terms in the polynomials in the 3

first and second stage equations. This result is consistent with the notion that as allowance 4

rates rise, more healthy individuals are allowed benefits. These healthier individuals are 5

more likely to work when not receiving DI benefits, and thus their labor supply response 6

to DI receipt is greater. 7

One problem with an instrument such as this is that the instrument lacks full support. 8

Even the most lenient judge does not allow everyone benefits. Even the strictest judge 9

does not deny everyone. However, the current policy debate is whether the thresholds 10

should be changed by only a modest amount. For this reason, the MTE on the support 11

of the data is the effect of interest, whereas the ATE is not. 12

Doyle (2007) estimates the Marginal Treatment Effect of foster care on future earnings 13

and other outcomes. Foster care likely increases earnings of some children but decreases it 14

for others. For the most serious child abuse cases, foster care will likely help the child. For 15

less serious cases, the child is probably best left at home. The question, then, is at what 16

point should the child abuse investigator remove the child from the household? What is 17

the optimal threshold level for the amount of observed abuse before which the child is 18

removed from the household and placed into foster care? 19

Only children from the most disadvantaged backgrounds are placed in foster care. 20

They would have had low earnings even if they were not placed in foster care. Thus, 21

OLS estimates are likely inconsistent. To overcome this problem, Doyle uses IV. Case 22

investigators are assigned to cases on a rotational basis, conditional on time and the 23

location of the case. Case investigators are assigned to possible child abuse cases after 24

a complaint of possible child abuse is made (by the child’s teacher, for example). 25

Investigators have a great deal of latitude about whether the child should be sent into 26

foster care. Furthermore, some investigators are much more lenient than others. For 27

example, one standard deviation in the case manager removal differential (the difference 28

between his average removal rate and the removal rate of other investigators who handle 29

cases at the same time and place) is 10%. Whether the child is removed from the home 30

is a good predictor of whether the child is sent to foster care. So long as assignment of 31

cases to investigators is random and investigators only vary in terms of leniency (and not 32

ability to detect child abuse) then the instrument of investigator assignment is a useful and 33

plausibly exogenous instrument. 34

Doyle uses a two stage procedure where in the first stage he estimates the probability 35

that a child is placed in foster care as a function of the investigator removal rate. In the 36

second stage he estimates adult earnings as a function of whether the child was placed 37

in foster care (as predicted by the instrument). He finds that children placed into foster 38

care earn less than those not placed into foster care over most of the range of the data. 39

Two stage least squares estimates reveal that foster care reduces adult quarterly earnings 40
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by about $1000, which is very close to average earnings. Interestingly, he finds that when1

child foster care placement rates rise, earnings of the marginal case fall. For example,2

earnings of the marginal child handled by a lenient investigator (who places only 20%3

of the children in foster care) are unaffected by placement. For less lenient investigators,4

who place 25% of the cases in foster care, earnings of the marginal case decline by over5

$1500.6

Carneiro and Lee (2009) estimate the counterfactual marginal distributions of wagesQ8 7

for college and high school graduates, and examine who enters college. They find that8

those with the highest returns are the most likely to attend college. Thus, increases9

in college cause changes in the distribution of ability among college and high school10

graduates. For fixed skill prices, they find that a 14% increase in college participation11

(analogous to the increase observed in the 1980s) reduces the college premium by 12%.12

Likewise, Carneiro et al. (2010) find that while the conventional IV estimate of the13

return to schooling (using distance to a college and local labor market conditions as14

the instruments) is 0.095, the estimated marginal return to a policy that expands each15

individual’s probability of attending college by the same proportion is only 0.015.16

5.5. Selection on observables1718

Perhaps the simplest and most common assumption is that assignment of the19

treatment is random conditional on observable covariates (sometimes referred to as20

unconfoundedness). The easiest way to think about this is that the selection error term is21

independent of the other error terms:22

Assumption 5.2.23

Ji = f when ϕ(X i ) > νi24

where νi is independent of (ε f i , εhi ).25

We continue to assume that Y f i = g f (X f i , X0i )+ε f i and Yhi = gh(Xhi , X0i )+εhi .26

Note that we have explicitly dropped Zi from the model as we consider cases in27

which we do not have exclusion restrictions. The implication of this assumption is that28

unobservable factors that determine one’s income as a fisherman do not affect the choice29

to become a fisherman. That is while it allows for selection on observables in a very30

general way, it does not allow for selection on unobservables.31

Interestingly, this is still not enough for us to identify the Average Treatment Effect.32

If there are values of observable covariates X i for which Pr(Ji = f | X i = x) = 1 or33

Pr(Ji = f | X i = x) = 0 the model is not identified. If Pr(Ji = f | X i = x) = 1 then34

it is straightforward to identify E(Y f i | X i = x), but E(Yhi | X i = x) is not identified.35

Thus we need the additional assumption36
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Assumption 5.3. For almost all x in the support of X i , 1

0 < Pr(Ji = f | X i = x) < 1. 2

Theorem 5.2. Under Assumptions 5.2 and 5.3 the Average Treatment Effect is identified. 3

(Proof in Appendix.) 4

Estimation in this case is relatively straightforward. One can use matching16 or 5

regression analysis to estimate the average treatment effect. 6

5.6. Set identification of treatment effects 78

In our original discussion of identification we defined9(2(P)) as “the set of values ofψ 9

that are consistent with the data distribution P .” We said that ψ was identified if this set 10

was a singleton. However, there is another concept of identification we have not discussed 11

at this point; this is set identification. Sometimes we may be interested in a parameter 12

that is not point identified, but this does not mean we cannot say anything about it. In 13

this subsection we consider the case of set identification (i.e. trying to characterize the set 14

9(2(P))) focusing on the case in whichψ is the Average Treatment Effect. Suppose that 15

we have some prior knowledge (possibly an exclusion restriction that gives us a LATE). 16

What can we learn about the ATE without making any functional form assumptions? In 17

a series of papers Manski (1989, 1990, 1995, 1997) and Manski and Pepper (2000, 2009) 18

develop procedures to derive set estimators of the Average Treatment Effect and other Q919

parameters given weak assumptions. By “set identification” we mean the set of possible 20

Average Treatment Effects given the assumptions placed on the data. Throughout this 21

section we will continue to assume that the structure of the Generalized Roy model holds 22

and we derive results under these assumptions. In many cases the papers we mentioned 23

do not impose this structure and get more general results. 24

Following Manski (1990) or Manski (1995), notice that 25

E
(
Y f i

)
= E(Y f i | Ji = f )Pr(Ji = f )+ E(Y f i | Ji = h)Pr(Ji = h) (5.20) 26

E (Yhi ) = E(Yhi | Ji = h)Pr(Ji = h)+ E(Yhi | Ji = f )Pr(Ji = f ). (5.21) 27

We observe all of the objects in Eqs (5.20) and (5.21) except E(Y f i | Ji = h) and E(Yhi | 28

Ji = f ). The data are completely uninformative about these two objects. However, 29

suppose we have some prior knowledge about the support of Y f i and Yhi . In particular, 30

suppose that the support of Y f i and Yhi are bounded above by yu and from below by y`. 31

Thus, by assumption yu
≥ E(Y f i | Ji = h) ≥ y` and yu

≥ E(Yhi | Ji = f ) ≥ y`. 32

16 Our focus is on identification rather than estimation. Thus we avoid a discussion of matching estimators. See Heckman
et al. (1999), Imbens and Wooldridge (2009), or DiNardo and Lee (2010) for discussion.
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Using these assumptions and Eqs (5.20) and (5.21) we can establish that1

E(Y f i | Ji = f )Pr(Ji = f )+ y` Pr(Ji = h)2

≤ E
(
Y f i

)
≤ E(Y f i | Ji = f )Pr(Ji = f )+ yu Pr(Ji = h) (5.22)3

E(Yhi | Ji = h)Pr(Ji = h)+ y` Pr(Ji = f )4

≤ E (Yhi ) ≤ E(Yhi | Ji = h)Pr(Ji = h)+ yu Pr(Ji = f ). (5.23)5

Using these bounds and the definition of the ATE6

ATE = E
(
Y f i

)
− E (Yhi ) (5.24)7

yields8

(E(Y f i | Ji = f )Pr(Ji = f )+ y` Pr(Ji = h))9

− (E(Yhi | Ji = h)Pr(Ji = h)+ yu Pr(Ji = f ))10

≤ ATE ≤ (E(Y f i | Ji = f )Pr(Ji = f )+ yu Pr(Ji = h))11

− (E(Yhi | Ji = h)Pr(Ji = h)+ y` Pr(Ji = f )).12

In practice the bounds above can yield wide ranges and are often not particularly13

informative. A number of other assumptions can be used to decrease the size of the14

identified set.15

Manski (1990, 1995) shows that one method of tightening the bounds is with an16

instrumental variable. We can write the expressions (5.20) and (5.21) conditional on17

Zi = z for any z ∈ supp(Zi ) as for each j ∈ { f, h} ,18

E
(
Y j i |Zi = z

)
= E(Y j i | Ji = f, Zi = z)Pr(Ji = f | Zi = z)19

+ E(Y j i | Ji = h, Zi = z)Pr(Ji = h | Zi = z). (5.25)20

Since Zi is, by assumption, mean independent of Y f i and Yhi (it only affects the21

probability of choosing one occupation versus the other), then E
(
Y f i |Zi = z

)
=22

E
(
Y f i

)
and E (Yhi |Zi = z) = E(Yhi ). Assume there is a binary instrumental variable,23

Zi , which equals either 0 or 1. We can then follow exactly the same argument as in Eqs24

(5.22) and (5.23), but conditioning on Zi and using Eq. (5.25) yields25

E(Y f i | Ji = f, Zi = 1)Pr(Ji = f | Zi = 1)+ y` Pr(Ji = h | Zi = 1)26

≤ E
(
Y f i

)
27

≤ E(Y f i | Ji = f, Zi = 1)Pr(Ji = f | Zi = 1)+ yu Pr(Ji = h | Zi = 1) (5.26)28
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E(Yhi | Ji = h, Zi = 0)Pr(Ji = h | Zi = 0)+ y` Pr(Ji = f | Zi = 0) 1

≤ E (Yhi ) 2

≤ E(Yhi | Ji = h, Zi = 0)Pr(Ji = h | Zi = 0)+ yu Pr(Ji = f | Zi = 0). (5.27) 3

Thus we can bound ATE = E(Y f i ) − E(Yhi ) from below by subtracting (5.27) from 4

(5.26): 5

E(Y f i | Ji = f, Zi = 1)Pr(Ji = f | Zi = 1)+ y` Pr(Ji = h | Zi = 1) 6

− E(Yhi | Ji = h, Zi = 0)Pr(Ji = h | Zi = 0)+ yu Pr(Ji = f | Zi = 0) 7

≤ ATE ≤ E(Y f i | Ji = f, Zi = 1)Pr(Ji = f | Zi = 1) 8

+ yu Pr(Ji = h | Zi = 1)− E(Yhi | Ji = h, Z = 0) 9

× Pr(Ji = h | Zi = 0)+ y` Pr(Ji = f | Zi = 0). (5.28) 10

Our choice of a binary value of Zi can be trivially relaxed. In the cases in which 11

Zi takes on many values one could choose any two values in the support of Zi to get 12

upper and lower bounds. If our goal is to minimize the size of the set we would choose 13

the values z` and zh to minimize the difference between the upper and lower bounds in 14

(5.28): 15

(yu
− y`)[Pr(Ji = h | Zi = zh)+ Pr(Ji = f | Zi = z`)]. 16

The importance of support conditions once again becomes apparent from this 17

expression. If we could find values z` and zhsuch that 18

Pr(Ji = h | Zi = zh) = 0 19

Pr(Ji = f | Zi = z`) = 0 20

then this expression is zero and we obtain point identification of the ATE. When 21

Pr(Ji = h | Zi = z) or Pr(Ji = f | Zi = z) are bounded from below we are only 22

able to obtain set estimates. A nice aspect of this is that it represents a nice middle point 23

between identifying LATE versus claiming the ATE is not identified. If the identification 24

at infinity effect is not exactly true, but approximately true so that one can find values of 25

z` and zh so that Pr(Ji = h | Zi = zh) and Pr(Ji = f | Zi = z`) are small, then the 26

bounds will be tight. If one cannot find such values, the bounds will be far apart. 27

In many cases these bounds may be wide. Wide bounds can be viewed in two 28

ways. One interpretation is that the bounding procedure is not particularly helpful in 29

learning about the true ATE. However, a different interpretation is that it shows that the 30

data, without additional assumptions, is not particularly helpful for learning about the 31

ATE. Below we discuss additional assumptions for tightening the bounds on the ATE, 32
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such as Monotone treatment response, Monotone treatment selection, and Monotone1

instruments. In order to keep matters simple, below we assume that there is no exclusion2

restriction that gives rise to an exclusion restriction. However, if a exclusion restriction is3

known, this allows us to tighten the bounds.4

Next we consider the assumption of Monotone Treatment Response introduced in5

Manski (1997), which we write as6

Assumption 5.4. Monotone Treatment Response7

Y f i ≥ Yhi8

with probability one.9

In the fishing/hunting example this is not a particularly natural assumption, but for10

many applications in labor economics it is. Suppose we are interested in knowing the11

returns to a college degree, and Y f i is income for individual i if a college graduate12

whereas Yhi is income if a high school graduate. It is reasonable to believe that the causal13

effect of school or training cannot be negative. That is, one could reasonably assume that14

receiving more education can’t causally lower your wage. Thus, Monotone Treatment15

Response seems like a reasonable assumption in this case. This can lower the bounds16

above quite a bit because now we know that17

E(Y f i | Ji = h) ≥ E(Yhi | Ji = h) (5.29)18

E(Yhi | Ji = f ) ≤ E(Y f i | Ji = f ). (5.30)19

From this Manski (1997) shows that20

0 ≤ ATE.21

Another interesting assumption that can also help tighten the bounds is the Monotone22

Treatment Selection assumption introduced in Manski and Pepper (2000). In our23

framework this can be written as24

Assumption 5.5. Monotone Treatment Selection: for j = f or h,25

E(Y j i | Ji = f ) ≥ E(Y j i | Ji = h).26

Again this might not be completely natural for the fishing/hunting example, but may27

be plausible in many other cases. For example it seems like a reasonable assumption28

in schooling if we believe that there is positive sorting into schooling. Put differently,29

suppose the average college graduate is a more able person than the average high school30

graduate and would earn higher income, even if she did not have the college degree.31
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If this is true, then the average difference in earnings between college and high school 1

graduates overstates the true causal effect of college on earnings. This also helps to further 2

tighten the bounds as this implies that 3

ATE ≤ E(Y f i | Ji = f )− E(Yhi | Ji = h). 4

Note that by combining the MTR and MTS assumption, one can get the tighter bounds: 5

0 ≤ ATE ≤ E(Y f i | Ji = f )− E(Yhi | J = h). 6

Manski and Pepper (2000) also develop the idea of a monotone instrumental variable. 7

An instrumental variable is defined as one for which for any two values of the instrument 8

za and zb, 9

E(Y j i | Zi = za) = E(Y j i | Zi = zb). 10

In words, the assumption is that the instrument does not directly affect the outcome 11

variable Y j i . It only affects one’s choices. Using somewhat different notation, but their 12

exact wording, they define a monotone instrumental variable in the following way 13

Assumption 5.6. Let Z be an ordered set. Covariate Zi is a monotone instrumental 14

variable in the sense of mean-monotonicity if, for j ∈ { f, h},each value of x, and all 15

(zb, za) ∈ (Z × Z) such that zb ≥ za, 16

E(Y j i | X i = x, Zi = zb) ≥ E(Y j i | X i = x, Zi = za). 17

This is a straight generalization of the instrumental variable assumption, but imposes 18

much weaker requirements for an instrument. It does not require that the instrument be 19

uncorrelated with the outcome, but simply that the outcome monotonically increase 20

with the instrument. An example is that parental income has often been used as an 21

instrument for education. Richer parents are better able to afford a college degree for 22

their child. However, it seems likely that the children of rich parents would have had 23

high earnings, even in the absence of a college degree. 24

They show that this implies that 25

∑
z∈Z

Pr(Zi = z)

{
sup
za≤z

[
E (Yi | Zi = za, Ji = f )Pr (Ji = f | Zi = za) 26

+ y` Pr (Ji = h | Zi = za)
] }

27
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−

∑
z∈Z

Pr(Zi = z)

{
inf

zb≥z

[
E (Yi | Zi = zb, Ji = h)Pr (Ji = h | Zi = zb)1

+ yu Pr (Ji = f | Zi = zb)
] }

2

≤ ATE3

≤

∑
z∈Z

Pr(Zi = z)

{
inf

zb≥z

[
E (Yi | Zi = zb, Ji = f )Pr (Ji = f | Zi = zb)4

+ yu Pr (Ji = h | Zi = zb)
] }

5

−

∑
z∈Z

Pr(Zi = z)

{
sup
za≤z

[
E (Yi | Zi = za, Ji = h)Pr (Ji = h | Zi = za)6

+ y` Pr (Ji = f | Zi = za)
] }

.7

One can obtain tighter bounds by combining the Monotone Instrumental Variable8

assumption with the Monotone Treatment Response assumption but we do not9

explicitly present this result.10

Blundell et al. (2007) estimate changes in the distribution of wages in the United11

Kingdom using bounds to allow for the impact of non-random selection into work. They12

first document the growth in wage inequality among workers over the 1980s and 1990s.13

However, they point out that rates of non-participation in the labor force have grown in14

the UK over the same time period. Nevertheless, they show that selection effects alone15

cannot explain the rise in inequality observed among workers: the worst case bounds16

establish that inequality has increased. However, worst case bounds are not sufficiently17

informative to understand such questions as whether most of the rise in wage inequality18

is due to increases in wage inequality within education groups versus across education19

groups. Next, they add in additional assumptions to tighten the bounds. First, they20

assume the probability of work is higher for those with higher wages, which is essentially21

the Monotone Treatment Selection assumption shown in Assumption 5.5. Second, they22

make the Monotone Instrumental Variables assumption shown in Assumption 5.6. They23

assume that higher values of out of work benefit income are positively associated with24

wages. They show that both of these assumptions tighten the bounds considerably. They25

find that when these additional restrictions are made, then they can show that both within26

group and between group inequality has increased.27

5.7. Using selection on observables to infer selection on unobservables2829

Altonji et al. (2005a) suggest another approach which is to use the amount of selection on30

observable covariates as a guide to the potential amount of selection on unobservables.31
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To motivate this approach, consider an experiment in which treatment status is randomly 1

assigned. The key to random assignment is that it imposes that treatment status be 2

independent of the unobservables in the treatment model. Since they are unobservable, 3

one can never explicitly test whether the treatment was truly random. However, if 4

randomization was carried out correctly, treatment should also be uncorrelated with 5

observable covariates. This is testable, and applying this test is standard in experimental 6

approaches. 7

Researchers use this same argument in non-experimental cases as well. If a researcher 8

wants to argue that his instrument or treatment is approximately randomly assigned, then 9

it should be uncorrelated with observable covariates as well. Even if this is strictly not 10

required for consistent estimates of instrumental variables, readers may be skeptical of the 11

assumption that the instrument is uncorrelated with the unobservables if it is correlated 12

with the observables. Researchers often test for this type of relationship as well.17 The 13

problem with this approach is that simply testing the null of uncorrelatedness is not that 14

useful. Just because you reject the null does not mean it isn’t approximately true. We 15

would not want to throw out an instrument with a tiny bias just because we have a data 16

set large enough to detect a small correlation between it and an observable. Along the 17

same lines, just because you fail to reject the null does not mean it is true. If one has a 18

small data set with little power one could fail to reject the null even though the instrument 19

is poor. To address these issues, Altonji et al. (2005a) design a framework that allows them 20

to describe how large the treatment effect would be if “selection on the unobservables is 21

the same as selection on the observables.” 22

Their key variables are discrete, so they consider a latent variable model in which a 23

dummy variable for graduation from high school can be written as 24

Gi =

{
1 Y ∗i ≥ 0
0 Y ∗i < 0

25

where Y ∗i can be written as 26

Y ∗i = β0 + αD f i +

K∑
j=1

Wi jβ j 27

= β0 + αD f i +

K∑
j=1

S j Wi jβ j +

K∑
j=1

(1− S j )Wi jβ j 28

= β0 + αD f i + X ′iβ + νi . 29

17 Altonji et al. (2005a) discuss a number of studies that do so.
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Wi j represent all covariates, both those that are observable to the econometrician and1

those that are unobservable, the variable S j is a dummy variable representing whether2

the covariate is observable to the empirical researcher, X ′iβ =
∑K

j=1 S j Wi jβ j represents3

the observable part of the index, and νi =
∑K

j=1(1−S j )Wi jβ j denotes the unobservable4

part.5

Within this framework, one can see that different assumptions about what dictates6

which observables are chosen (S j ) can be used to identify the model. Their specific goal7

is to quantify what it means for “selection on the observables to be the same as selection8

on the unobservables.” They argue that the most natural way to formalize this idea is to9

assume that S j is randomly assigned so that the unobservables and observables are drawn10

from the same underlying distribution.11

The next question is what this assumption implies on the data that can be useful for12

identification. They consider the projection:13

proj(Zi | X ′iβ, νi ) = φ0 + φX ′iβ + φενi14

where Zi can be any random variable. They show that if S j is randomly assigned,15

φ ≈ φε.16

This restriction is typically sufficient to insure identification of α.18
17

Altonji et al. (2005a,b) argue that for their example this is an extreme assumption18

and the truth is somewhere in between this assumption and the assumption that Zi is19

uncorrelated with the unobservables which would correspond to φε = 0. They assume20

that when φ > 0,21

0 ≤ φε ≤ φ.22

There are at least three arguments for why selection on unobservables would be expected23

to be less severe than selection on observables (as it is measured here). First, some of24

the variation in the unobservable is likely just measurement in the dependent variable.25

Second, data collectors likely collect the variables that are likely to be correlated with26

many things. Third, there is often a time lapse between the time the baseline data is27

collected (the observables) and when the outcome is realized. If unanticipated events28

occur in between these two time periods, that would lead to the result.29

Notice that if φ = 0 then assuming φε = φ is the same as assuming φε = 0. However,30

if φ were very large the two estimates would be very different, which would shed doubt31

on the assumption of random assignment. Since φ essentially picks up the relationship32

18 In some cases it is not point identification, but either 2 or 3 different points.
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between the instrument and the observable covariates, the bounds would be wide when 1

there is a lot of selection on observables and will be tight when there is little selection on 2

observables. 3

Altonji, Elder, and Taber consider the case of whether the decision to attend Catholic 4

high school affects outcomes such as test scores and high school graduation rates. Those 5

who attend Catholic schools have higher graduation rates than those who do not attend 6

Catholic schools. However, those who attend Catholic may be very different from 7

those who do not. They find that (on the basis of observables) while this is true in the 8

population, it is not true when one conditions on the individuals who attend Catholic 9

school in eighth grade. To formalize this, they use their approach and estimate the model 10

under the two different assumptions. In their application the projection variable, Zi , is 11

the latent variable determining whether an individual attends Catholic school. First they 12

estimate a simple probit of high school graduation on Catholic high school attendance 13

as well as many other covariates. This corresponds to the φε = 0 case. They find a 14

marginal effect of 0.08, meaning that Catholic school raises high school graduation by 15

eight percentage points. Next they estimate a bivariate probit of Catholic high school 16

attendance and high school graduation subject to the constraint that φε = φ. In this 17

case they find a Catholic high school effect of 0.05. The closeness of these two estimates 18

strongly suggests that the Catholic high school effect is not simply a product omitted 19

variable bias. The tightness of the two estimates arose both because φ was small and 20

because they use a wide array of powerful explanatory variables. 21

6. DURATIONMODELS AND SEARCHMODELS 2223

In this section we relate the previous discussion to the competing risks model and the 24

search model. We show that the competing risk model can be written in a way that 25

is almost identical to the Roy model. We also show how the basic ideas of exclusion 26

restrictions can be used to identify a version of a search model. 27

6.1. Competing risks model 2829

With duration data a researcher observes the elapsed time until some event occurs. The 30

prototypical example in labor economics is the duration of unemployment and we focus 31

on that example. We explain why identification of this model is almost identical to 32

identification of the Roy model. Let Ti denote the length of an unemployment spell. 33

There are (at least) four different ways to characterize the distribution of Ti . The first 34

is the cumulative distribution function F(t) ≡ Pr(t > Ti ), which in the context of 35

unemployment durations is the probability the individual found a job. The second is the 36

density function f . The third is the survivor function defined as 37

S(t) ≡ Pr(Ti > t) = 1− F(t). 38



HESV4A-B06 P: S0169-7218(11)00412-6 I: 978-0-444-53450-7 P: 56 (1–82)

56 Eric French and Christopher Taber

The fourth is the hazard function, which is the job finding rate at time t , given that the1

individual was unemployed at time t :2

h(t) ≡ lim
δ→0

Pr(Ti ≤ t + δ | Ti ≥ t)

δ
3

=
f (t)

S(t)
.4

The link between the hazard rate and survivor function is:5

h(t) =
f (t)

S(t)
=

dF(t)/dt

S(t)
6

=
−dS(t)/dt

S(t)
7

=
−d log S(t)

dt
. (6.1)8

There is a large literature on identification of duration models. Heckman and TaberQ10 9

(1994), Van den Berg (2001), and Abbring (forthcoming) provide excellent surveys ofQ11 10

this literature.19 Rather than survey the full literature here we relate it to our previous11

discussion. Given that Ti must be positive, it is natural to model Ti using the basic12

framework we have been using all along:13

log(Ti ) = g(X i )+ εi .14

Clearly if we could observe the distribution of log(Ti ) conditional on X i , identification15

of g and the distribution of εi would be straightforward.16

However, often we cannot observe the full duration of Ti because the spell (or our17

observation of it) is truncated before the worker is re-employed. For example the worker18

may die, be lost from the data, or the survey may end. In the classic medical example we19

might want to estimate the duration until a patient has a heart attack, but if she dies from20

cancer we never observe this event. Hence the name “competing risk model.” To put this21

in the context of our Roy model example, suppose an unemployed worker would take22

the first offer they received and they can get an offer as a fisherman or a hunter. Define23

the model as24

log(T f i ) = g f (X i )+ ε f i (6.2)25

log(Thi ) = gh(X i )+ εhi (6.3)26

19 Key papers include Elbers and Ridder (1982), Heckman and Singer (1984a,b), Ridder (1990), Honoré (1993), and
Abbring and Ridder (2009).
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where T f i and Thi are the amount of time it would take until the worker received an 1

offer as a fisherman or as a hunter, X i denotes observable variables that are independent 2

of the unobservables (ε f i , εhi ).
20 The econometrician can observe whether the worker 3

becomes a fisherman or a hunter and the length of the unemployment spell. However, 4

notice that as Heckman and Honoré (1990) point out, this is just another version of 5

the Roy model. Rather than observe the maximum of Y f i and Yhi , the econometrician 6

observes the minimum of log(T f i ) and log(Thi ). 7

The specification (6.2) and (6.3) above is not the way that many researchers choose 8

to model duration data. Often they model the hazard function directly as it is sometimes 9

easier to interpret. Moreover, if the observable covariates change over time, the hazard 10

model is a more reasonable way to model the durations. The most common specification 11

is the mixed proportional hazard model 12

h(t | X i = x) = ξ(t)φ(x)ωi (6.4) 13

where ξ(t) is referred to as the baseline hazard, ωi is an unobservable variable which is 14

independent of the observables, and X i denotes observable characteristics. Most studies 15

find that the hazard rate for finding a job tends to decline with the unemployment 16

duration. The model above allows for two possible interpretations of this empirical 17

regularity. First, it could be that as unemployment durations lengthen, skills depreciate, 18

making it harder to find a job. This is captured by ξ(t). Second, it could be that some 19

people are just less able to find a job than others in ways not captured by observables. This 20

is captured in ωi . Van den Berg (2001) provides a thorough discussion of this model. 21

Heckman and Honoré (1989) show how to map the hazard specification into a 22

framework that is similar to what we use in our analysis of the Roy model. The 23

transformation is simplest is when ξ(t) = 1. In that case one can write the survivor 24

function as 25

Pr(Ti > t | X i = x) = e−tφ(X i )ωi . (6.5) 26

It is straightforward to derive Eq. (6.4) using the survivor function (6.5) and Eq. (6.1). 27

Define g(·) = − log(φ(·)) and Fω to be the distribution of ωi . In order to obtain 28

the cumulative density function of unemployment durations we must integrate over the 29

distribution of unemployed individuals: 30

Pr(Ti ≤ t | X i = x) =
∫

1− e−tφ(x)ωi dFω 31

20 We do not need to make use of exclusion restrictions here so we do not distinguish between observables that may enter
differently.
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=

∫
1− exp(− exp(log(t)− g(x))+ log(ωi ))dFω1

≡ Fω̃(log(t)− g(x)) (6.6)2

where Fω̃ is defined implicitly by this relationship. Note that Fω̃ is a legitimate CDF, as3

it is strictly increasing from 0 to 1.21 Thus one can think of the data generating process as4

log(Ti ) = g(X i )+ ω̃i5

where ω̃i is distributed according to Fω̃ and is independent of X i .6

In the more general case in which ξ(t) is not constant, it is well known that one can7

write the survivor function as8

e−4(t)φ(X i )ωi (6.7)9

where 4 is the integrated hazard10

4(t) ≡
∫ t

0
ξ(t)dt.11

Equation (6.7) differs from Eq. (6.5) by the term4(t) instead of t . Thus replacing t with12

4(t) in Eq. (6.6) yields13

log(4(Ti )) = g(X i )+ ω̃i .14

Heckman and Honoré (1989) use a more general framework to think about the15

competing risks model in which the probability of not getting a fishing job by time t f16

and not getting a hunting job by time th , S(t f , th | X i = x), can be written as17

S(t f , th | X i = x) = K (exp{−4 f (t f )φ f (x)}, exp{−4h(th)φh(x)})18

where φ j (x) = exp(−g j (x)) for j = f, h. This is a generalization of a model in which19

log(4 f (T f i )) = g f (X i )+ ω̃ f i20

log(4h(Thi )) = gh(X i )+ ω̃hi21

because22

S(t f , th | X i = x) = Pr[log(4 f (T f i )) > log(4 f (t f )), log(4h(Thi ))23

21 It is the distribution of a convolution between log (ωi ) and an extreme value.
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> log(4h(th)) | X i = x] 1

= Pr[g f (x)+ ω̃ f i > log(4 f (t f )), gh(x)+ ω̃hi > log(4h(th))] 2

= Pr[−ω̃ f i < − log(4 f (t f ))+ g f (x),−ω̃hi 3

< − log(4h(th))+ gh(x)] 4

= F−ω̃ f i−ω̃hi (− log(4 f (t f ))+ g f (x),− log(4h(th))+ gh(x)) 5

≡ K (exp{−4 f (t f )φ f (x)}, exp{−4h(th)φh(x)}) (6.8) 6

where F−ω̃ f i−ω̃hi is the joint CDF of (−ω̃∗f i ,−ω̃
∗

hi ), and K is defined implicitly as
Q12

7

K (a, b) = F−ω̃ f i−ω̃hi (− log(− log(a)),− log(− log(b))). 8

Heckman and Honoré (1989), Theorem 1 contains the following result. We 9

reproduce their result, only altering the notation. 10

Theorem 6.1. Assume that (T f i , Thi ) has the joint survivor function as given in (6.8). Then 11

4 f , 4h, φ f , φh, and K are identified from the identified minimum of (T f i , Thi ) under the 12

following assumptions 13

1. K is continuously differentiable with partial derivatives K1 and K2 for i = 1, 2 the limit as 14

n → ∞ of Ki (η1n, η2n) is finite for all sequences of η1n, η2n for which η1n → 1 and 15

η2n → 1 for n →∞. We also assume that K is strictly increasing in each of its arguments 16

in all of [0, 1] × [0, 1]. Q1317

2. 4 f (1) = 1, 4h(1) = 1, φ f (x0) = 1 and φh(x0) = 1 for some fixed point x0 in the 18

support X . 19

3. The support of {φ f (x), φh(x)} is (0,∞)× (0,∞). 20

4. 4 f and 4h are nonnegative, differentiable, strictly increasing functions, except that we allow 21

them to be∞ for finite t . 22

(Proof in Heckman and Honoré (1989).) 23

Since the model is almost identical to the Roy model, the intuition for identification 24

is very similar so we don’t review it here. We do mention a few things about these 25

assumptions. First note that assumption (2) in Theorem 6.1 is just a normalization as one 26

cannot separate the scales of φ f , 4 f , and ν f . The more notable difference between this 27

and the theorem we presented in the Roy model section above is the lack of exclusion 28

restrictions. What is crucial in being able to do this is the assumptions about K in 29

assumption (1). In their proof they show that for any x in the support of X i , 30

lim
t→0

∂ Pr(T f i<t,Thi>T f i |X i=x)
∂t

∂ Pr(T f i<t,Thi>T f i |X i=x0)

∂t

= φ f (x). 31

One could in principle use this form of identification for the Roy model, but it is 32

somewhat less natural in the Roy framework, as taking the limit as t → 0 corresponds to 33
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taking limits as the log of wages become arbitrarily large. It also makes heavy use of the1

independence assumption, which is not necessary for identification of g f when one has2

exclusion restrictions. Finally, the basic approach will not expand to the “labor supply”3

model in which we only observe wages in one sector and to the generalized Roy model4

in the same way that exclusion restrictions do.5

Abbring and van den Berg (2003) extends Heckman and Honoré’s (1989) results6

on the mixed proportional hazards competing risk models in a few ways, including7

generalizing the assumptions for identification somewhat and considering identification8

in the case in which researchers observe multiple spells.9

6.2. Search models1011

Eckstein and van den Berg (2007) present a nice survey of Empirical Search models.12

We avoid a general discussion, but rather combine the proportional hazard model with13

a search model. In a well known result Flinn and Heckman (1982) show that the search14

model is not fully identified. They use the Lippman and McCall (1976) search model15

in which workers search for jobs until their wage exceeds their reservation wage. In this16

model, one essentially assumes that the worker stays at the job forever. All workers are17

assumed to be ex-ante identical and face the same distribution of offered wages, which we18

denote by F . The reservation wage wr is the point at which the individual is indifferent19

between taking the job and continued search. It is defined implicitly by the formula20

c + wr
=
λ

r

∫
∞

wr
(x − wr )dF(x)21

where c is search cost, r is the interest rate, and λ is the hazard rate of finding a job.22

Flinn and Heckman (1982) assume that one observes the time until finding a job23

(Ti ) and the wage a worker receives conditional on finding the job. The only source of24

heterogeneity in the model comes from the timing of the job offers and the draw from25

the wage offer distribution. Clearly one can identify the distribution of accepted wage26

offers which is the distribution of observed wages. The reservation wage is the lowest27

acceptable wage, so one can identify wr as the minimum observed wage. Then they can28

identify29

f (x)

1− F(wr )
for x ≥ wr .30

They can also identify the hazard rates of job finding which is31

λ(1− F(wr )).32
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However, this is all that can be identified. In particular, one cannot separate λ from 1

(1 − F(wr )). Furthermore, the distribution of wage offers below the reservation wage 2

is not identified. This is quite intuitive. Since nobody works at a salary below the 3

reservation wage, we do not have any information from the data on what that distribution 4

might look like.22 Furthermore, identification of the model above relies on the strong 5

assumption that people are identical. All dispersion in observed wages comes from 6

identical people with identical skills being offered different wages. It also implies a 7

constant hazard rate of finding jobs λ, which is at odds with the data. 8

By using exclusion restrictions and using some of the ideas from the Roy model with 9

the arguments from the mixed proportional hazard model, most of the components of 10

the model can be identified. In particular let the arrival rate of job offers be 11

λi = φ(Xλi , X0i )ωi (6.9) 12

where now Xλi is an exclusion restriction that influences the arrival rate, but not any 13

other aspect of the model. We assume that search cost is defined as 14

log(Ci ) = gh(Xhi , X0i )+ εhi . (6.10) 15

Finally we assume the wage offer that individual i would receive at time t is 16

log(W f i t ) = g f (X f i , X0i )+ ε f i t . (6.11) 17

The complicated aspect of this model is that workers may reject the first offer they 18

receive, and then receive a second different offer. Thus we need the time subscript on 19

ε f i t to denote that this draw can be different. The second issue is that one would expect 20

the distribution of offered ε f i t to not be identical across workers. We assume that the 21

distribution of ε f i t is individual specific coming from distribution Fiε f . That is each 22

time a worker gets a new offer it is a draw from the distribution of Fiε f . As above X i is 23

observable and independent of (νi , ε f i t , εhi ). 24

Using the Lippman and McCall (1976) model, define W ∗i as the solution to the 25

equation 26

Ci +W ∗i =
λi

r

∫
∞

log(W ∗i )−g f (X f i ,X0i )

(eg f (X f i ,X0i )+ε f i t −W ∗i )dFiε f (ε f i t ). (6.12) 27

22 Of course this raises an interesting question. What does it mean for a firm to make an offer that it knows no worker
would ever take? In most wage posting models, a firm would never post a wage that no worker would take (see e.g.

Burdett and Mortensen, 1998). However, if there is a job match component, one can also write down a model in
which one could define the counterfactual wage at which a worker would be paid at a job in which he would never
take (whether that offer is actually “extended” or not is largely semantic issue).
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The reservation wage is defined as1

W r
i ≡ max{W ∗i , 0}. (6.13)2

If search costs are sufficiently high, W ∗i could be negative. But because the distribution3

of wages is bounded below at 0, the reservation wage would be 0.4

The added assumptions to identify the model are completely analogous to those we5

used for the Roy model earlier6

Assumption 6.1. (ε f i t , εhi , νi ) is continuously distributed with support R3, and is7

independent of X i .8

Assumption 6.2. supp(φ(Xλi , X0i ), g f (X f i , x0), gh(Xhi , x0)) = R+ × R2 for all9

x0 ∈ supp(X0i ).10

Assumption 6.3. The marginal distributions of ε f i t ,εhi , and νi have expected values11

equal to zero. Moreover, the expected value of eε f i t is finite.12

Assumption 6.4. (X i ) = (X f i , Xhi , Xλi , X0i ) can be written as (X c
f i , Xd

f i ,13

X c
hi , Xd

hi , X c
λi , Xd

λi , X c
0i , Xd

0i ) where the elements of X c
= (X c

f i , X c
hi , X c

λi , X c
0i ) are14

continuously distributed (no point has positive mass), and Xd
= (Xd

f i , Xd
f i , Xd

λi , Xd
0i ) is15

distributed discretely (all support points have positive mass).16

Assumption 6.5. For any (xd
f , xd

h , xd
λ , xd

0 ) ∈ supp(Xd
f i , Xd

hi , Xd
λi , Xd

0i ), g f (xc
f , xd

f ,17

xc
0, xd

0 ), gh(xc
h, xd

h , xc
0, xd

0 ), and φ(xc
λ, xd

λ , xc
0, xd

0 ) are almost surely continuous across18

(xc) ∈ supp(X c
i | Xd

i = xd).19

Theorem 6.2. Under Assumptions 6.1–6.5 and that φ and the distribution of ωi satisfy the20

assumptions in Heckman and Honoré (1989), given that we observe Ti and w f iTi from the21

model determined by Eqs (6.9)–(6.13), we can identify φ and g f on their support, and gh up22

to location on a set X ∗ that has measure 1.23

(Proof in Appendix.)24

Unlike some of the other models, we have not completely identified the error25

structure (or the location of gh). This is probably not surprising given the complexity26

of Fiε f and the relatively modest data conditions.23
27

23 Some aspects of the distribution of wages can be identified. For example identification of the marginal distribution of
ωi is straightforward. Describing the distribution of Fiε f is difficult because it is a distribution of distributions. Given
the cost in setting up notation to discuss this, we do not try to characterize this distribution. A typical assumption
would be that we could write ε f i t = ε f i + ζ f i t , where ε f i is an individual specific term that does not vary across
wages and ζ f i t is iid.
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We conclude this section after making three comments. First, it is not clear that one 1

cares about the location of gh . 2

That is, for many interesting policy counterfactuals, identification of the aspects above 3

should be sufficient. Second, with more structure more features of the model should be 4

identified.24 Third, if a researcher observes multiple spells on the same worker, this can 5

add much identifying information. The identification problem arises because if we see 6

one worker making more than another we do not know if it is because the first worker is 7

more productive or if they just happened to get a fortunate draw from offer distribution. 8

With panel data, if we see that the first worker consistently earns more money across 9

many employers, this would suggest that the difference has more to do with ability than 10

with draws from the offer distribution. 11

We have barely scratched the surface of identification of search models. Many papers 12

being estimated today are based on equilibrium models such as Mortensen and Pissarides 13

(1994), Burdett and Mortensen (1998), or Postel-Vinay and Robin (2002). We think Q1414

there is much work to be done on identification in these models.25
15

7. FORWARD LOOKING DYNAMICMODELS 1617

In this section we discuss an extension of the generalized Roy model into a dynamic 18

framework with uncertainty and forward looking behavior. We show that the basic 19

identification ideas presented above can be generalized to dynamic models. The 20

identification results for the simple models on which we focus can be extended to more 21

complicated environments. We begin with a two period model in which there are three 22

choices made over two periods. We then discuss some general issues with identifying the 23

components of the Bellman Equation. Finally we present a dynamic Generalized Roy 24

model that one can use for dynamic treatment effect evaluation. Once again we do not 25

provide a full review of the literature, but focus on expanding the generalized Roy model 26

into a forward looking dynamic model. Abbring (forthcoming) includes a morecomplete

Q15

27

discussion.26
28

7.1. Two period discrete choice dynamic model 2930

We begin with the framework of Taber (2000) who considers a simple version of a 31

dynamic model. To think of this model as an extension of the basic Roy model we go 32

24 Proving identification in nonlinear models such as this one is often quite difficult. This might not be problematic in
practice as researchers can search for multiple solutions in the data. If there are multiple solutions, all can be reported.

If only one solution exists, this should give a consistent estimate of the truth.
25 Canals-Cerda (2010) provides a recent example which adds measurement error in wages to the Flinn and Heckman

(1982) framework. Barlevy (2008) shows how to non-parametrically identify the wage offer distribution in the presence
of measurement error in wages and unobserved heterogeneity in skills.

26 Recent papers that cover aspects of identification not discussed here include Kashara and Shimotsu (2009) and Hu and
Shum (2009).
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from two occupational choices to three. While we could modify the fishing/hunting1

example to a dynamic context, it is easiest to think about this in terms of an education2

model as Taber does. In particular a student first decides whether to graduate from high3

school or not. After graduating from high school, she decides whether to attend college4

or enter the labor market directly. Extending beyond 3 choices is straightforward, but5

as in Taber we stick to the 3 choice model for expositional purposes. We focus on6

identification of the choice model and ignore data on earnings until Section 7.3.7

First consider the case in which there was no uncertainty or dynamics. We specify the8

model using the three value functions9

Vci = gc(Xci , X0i )+ εci10

Vdi = gd(Xdi , X0i )+ εdi11

Vhi = 012

where Vci is the value function for a college student, Vhi the value function for an13

individual with exactly a high school degree, and Vdi the value function for high school14

dropout. Individuals choose the option with the highest value function. That is15

Ji = argmax {Vdi , Vhi , Vci }.16

If there were no uncertainty in this model it would be a simple polychotomous choice17

model. Matzkin (1993) considers identification a general class of polychotomous choice18

modes under a number of different assumptions. One result is that since choices are only19

identified up to monotonic transformations, Vhi = 0 is a location normalization that we20

impose at this point. Adding dynamics and uncertainty does not change this result.21

Our goal now is to add dynamics and uncertainty to the model. The timing can be22

seen in the following figure23

��
��

��
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�
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Drop out(d)

��
��

��
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Enter labor force (h)

College (c)

24
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In the first period the agent chooses whether to graduate from high school. If she 1

graduates in the first period, she then chooses whether to go to college in the second. 2

The key aspect of the model is that information will be revealed between the first and 3

second period. The agent’s preferences are summarized by lifetime reward function V j i 4

at each terminal state j ∈ {c, h, d}. Taber defines Vdi so that it is known at the time 5

the high school graduation choice is made. Then in period two, Vci and Vhi are known 6

when the choice between c and h is made. That is, in period one the agent does not know 7

Xci or εci . The first period information is assumed to be contained in (X0i , X1i , ε1i ), 8

where X1i is observable in period one and will be informative about Xci while ε1i is 9

unobservable and informative about εci . We assume that decisions are made in order 10

to maximize expected lifetime reward. Thus the reward function at node g in the first 11

period takes the value 12

Vg(x1, xd , x0, ε1) ≡ E[max{Vci , Vhi } | (X1i , Xdi , X0i ) = (x1, xd , x0) , ε1i = ε1]. 13

The agent chooses node d if Vdi > Vg(X1i , Xdi , X0i , ε1i ) and chooses node g 14

otherwise. If she chooses g in the first period she chooses node c in the second if 15

Vci > Vhi and node h otherwise. 16

We let G(Xci | (X1i , Xdi , X0i ) = (x1, xd , x0)) denote the distribution of Xci 17

conditional on (X1i , Xdi , X0i ) = (x1, xd , x0). We can summarize the information 18

structure as follows 19

20

Known to the Agent at time one Learned by the Agent
at time two

Observed by the
Econometrician

ε1i , εdi εci X0i , X1i , Xdi

X0i , X1i , Xdi Xci Xci

G(Xci | (X1i , Xdi , X0i ) =

(x1, xd , x0))

Ji

21

We first consider identification of gc and gd up to monotonic transformations. We 22

follow Taber (2000) closely except that we use our notation and use stronger assumptions 23

than he does to avoid adding more notation.27
24

Assumption 7.1. For any (xc, x0) ∈ supp {Xci , X0i }, 25

supp{εdi } = R = supp{gd(Xdi , x0) | (Xci , X0i ) = (xc, x0)} 26

supp{εci } = R. 27

27 Taber (2000) allows for the possibility that the support of the error term could be bounded, which allows for weaker
support condition on the observables.
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This assumption is analogous to what we have been assuming all along. In order to1

estimate the full model, we need full support of gd conditional on (Xci , X0i ).2

Assumption 7.2. For any (xd , x0) ∈ supp {Xdi , X0i } , y ∈ R, and a ∈ (0, 1) , there3

exists a set X1(x f , x0, y, a) with positive measure such that for x1 ∈ X1(x f , x0, y, a),4

(a) Pr (gc(Xci , x0) < y | (X1i , Xdi , X0i ) = (x1, xd , x0)) > a.5

(b) The distribution of gc(Xci , x0) conditional on (X1i , Xdi , X0i ) = (x1, xd , x0) is6

stochastically dominated by the unconditional distribution of gc(Xci , x0).7

This is a stochastic analogue of a support condition. In the case in which Xci were8

known at time one so that X1i = Xci , this would be implied to be a standard support9

condition. However, it is general enough to allow for the distribution of Xci to not beQ1610

known at time one, but we still need a time one variable X1i that is useful in forecasting11

Xci . For example Xci could be a variable like family income while the child is in12

college while X1i is a variable like family income while the child is in high school.13

This assumption states that we can condition on the value of this variable so that the14

conditional probability that the agent chooses option c in the second period can become15

arbitrarily small. In the family income example this means we could condition on families16

whose income while the child is in high school are sufficiently low that college seems like17

a very unlikely outcome for the child.18

Assumption 7.3. (ε1i , εdi , εci ) is independent of (X1i , Xdi , Xci , X0i ), for any ε1 ∈19

supp(ε1i ),20

E(|εci | | ε1i = ε1) <∞21

and for any (x1, xd , x0) ∈ supp(X1i , Xdi , X0i ),22

E (|gc (Xci , x0)| | (X1i , Xdi , X0i ) = (x1, xd , x0)) <∞.23

Assumption 7.3 is the separable independent assumption that we have been making24

throughout this chapter. We also need to assume that the stochastic components have25

finite expectations so that Vg is finite.26

Theorem 7.1. Under Assumptions 7.1–7.3, from data on (X1i , Xdi , Xci , X0i , Ji ), gd and27

gc are identified up to monotonic transformation.28

(Proof in Taber (2000).)29

The basic strategy used in this proof is a stochastic extension of “identification at30

infinity.” This should not be surprising as this looks very much like the type of selection31

problem we have discussed throughout this chapter: we can not observe the choice32

between c and h unless individuals have already rejected d.33



HESV4A-B06 P: S0169-7218(11)00412-6 I: 978-0-444-53450-7 P: 67 (1–82)

Identification of Models of the Labor Market 67

We identify gc in almost exactly the same way as we identified g f as presented for 1

the Roy Model. With an exclusion restriction we can condition on gd arbitrarily low 2

so that the probability of selecting node d is close to zero. This leaves us with a simple 3

binary choice model in which the agents choose between h and c. The type of exclusion 4

restriction used here is a variable that enters gd , but does not influence gc directly. One 5

can see this in the following expression 6

lim
gd (xd ,x0)→−∞

Pr(Ji = c | X i = x) 7

= lim
gd (xd ,x0)→−∞

Pr[gd(xd , x0)+ εdi ≤ Vg(x1, xd , x0, ε1i ), gc(xc, x0)+ εci > 0] 8

= Pr[gc(xc, x0)+ εci > 0]. 9

Using standard identification strategies for the binary choice model described in the first 10

step of identification of the Roy model, gc is identified. 11

Identification of gd is somewhat trickier, but one can use essentially the same idea. 12

In a static model one could use an identification at infinity argument by eliminating c 13

as an option and could compare the binary choice of d versus h. In this stochastic case 14

this is can not be done because the value of Xci is not known at time 1. Thus we need a 15

somewhat different type of exclusion restriction, a variable known at time one that does 16

not enter gd directly, but does have predictive power for the distribution of gc above and 17

beyond Xdi . To see how this works, suppose we have a variable X1i that satisfies these 18

conditions and that as x1 gets small the conditional distribution of gc shifts to the left. In 19

this case 20

lim
x1→−∞

E [max (gc(Xci , x0)+ εci , 0) | (X1i , Xdi , X0i ) = (x1, xd , x0) , ε1i = ε1] = 0, 21

so that 22

lim
x1→−∞

Pr(Ji = d | X i = x) 23

= lim
x1→−∞

Pr [gd(xd , x0)+ εdi > E [max (Vci , 0) | (X1i , Xdi , X0i ) 24

= (x1, xd , x0) , ε1i = ε1]] 25

= Pr[gd(xd , x0)+ εdi > 0]. 26

From this piece we can identify gd up to a monotonic transformation. This type of 27

variable will satisfy Assumption 7.2. Note that the type of exclusion restriction we need 28

here is something that is known at time 1, is useful in forecasting Xci , but does not affect 29

Vdi . 30

Taber (2000) goes on to consider identification of the distribution of the error terms. 31

The most general version of the full model above can not be identified without further 32
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assumptions, so he instead studies a few interesting cases. Identification of the error terms1

requires a different kind of exclusion restriction. His key assumption requires variation2

in gc(xc) holding x1 fixed. Thus we need some uncertainty from the point of view of3

the agents. The full model is not identified if agent’s have perfect information about4

future values of Xci .A natural way to satisfy this exclusion restriction is with time varying5

observables. The details can be found in Taber (2000).6

7.2. Identification of the components of the Bellman equation78

While the model above is dynamic, we have not used Bellman’s equation. A natural9

way to parameterize the model would be to define period specific utility functions10

uh (Xhi , X0i , εhi ) , uc (Xci , X0i , εci ) , and ug(X1i , X0i , ε1i ) in each of the three nodes11

above other than the dropout node. If we think of the model as a two period model we12

can define ud(t, Xdi , X0i , εdi ) to be the period specific utility of individual i if she drops13

out at time t . Conditional on graduating, she enters college if14

uc(Xci , X0i , εci ) > uh(Xhi , X0i , εhi ).15

The Bellman equation for the high school graduate is16

Vg(x1, xd , x0, ε1) ≡ ug(x1, x0, ε1)+ βE[max{uc(Xci , X0i , εci ),17

uh(Xhi , X0i , εhi )} | (X1i , Xdi , X0i ) = (x1, xd , x0), ε1i = ε1].18

Mapping back to the notation in the subsection above, the rest of the value functions are19

defined as20

Vdi = ud(1, Xdi , X0i , εdi )+ βud(2, Xdi , X0i , εdi )21

Vhi = ug(X1i , X0i , ε1i )+ βuh(Xhi , X0i , εhi )22

Vci = ug(X1i , X0i , ε1i )+ βuc(Xci , X0i , εci ).23

An obvious question arises as to whether one can separately identify the components24

of the value functions β, uh, uc, and ud . Unfortunately, in general one can not do25

this. Consider a full certainty version of the model. In this case the decision of which26

occupation to enter would depend on Vdi , Vhi , and Vci only. One can choose any β > 027

and any ug, but then always find a value of uc and uh to leave Vci and Vhi unchanged.28

For a simple model such as the one Taber (2000) presents, parameterizing the model in29

terms of the terminal value functions (i.e. Vdi , Vhi , and Vci ) avoids this problem as one30

does not need to decompose them into their components.31

However, Taber’s parameterization is clearly not feasible for an infinitely lived model.32

Furthermore, it is not convenient in an finite time model with many periods and state33

variables. It does not take advantage of the dimension reducing advantages of the Bellman34
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formulation: the functions would depend on the whole history of state variables rather 1

than just the current set. 2

Next we consider Rust’s (forthcoming) model. Note that we use his notation exactly 3

even though it is inconsistent with our previous notation. Let Si represent the current 4

state and Di represent the discrete choice. In general Si will contain elements that are 5

both observed and unobserved by the econometrician. He writes the Bellman equation 6

as 7

v(s, d) = u(s, d)+ β
∫

max
D′i∈D(S′i )

[v(S′i , D′i )]p(d S′i | Si = s, Di = d) 8

where v is the value function, u is the period specific utility function, β is the discount 9

rate, D(s) is the choice set in state of the world s, and p is the transitional probability 10

distribution of the state variables. Rust (forthcoming) shows that one can not separately 11

identify the model above from an alternative with the same β and p, but with 12

ū(s, d) = u(s, d)+ f (s)− β
∫

f (S′i )p(ds′ | Si = s, Di = d). 13

Intuitively this is close to the discussion above in the simple model in which you can 14

change the timing at which the innovation to utility takes place, without changing the 15

value function. 16

Magnac and Thesmar (2002) discuss this issue in much greater detail. They not only 17

show that the model is not identified, but document the extent of underidentification. 18

They additionally assume that one can write 19

u(Si , d) = ud(X i )+ εdi 20

where X i is the observable part of the state space and the unobservable εdi is mean 21

independent of x and independent across periods (conditional on x and d). That is Si 22

represents the state space, so if one knows Si , they also know X i and εdi . They show that 23

given knowledge of β and the joint distribution of the εdi , one can identify 24

Ud(x) ≡ ud(x)+ β
∫

max
D′i∈D(D′i )

[v(S′i , D′i )]p(d S′i | X i = x, Di = d)− uk(x) 25

+β

∫
max

D′i∈D(S′i )
[v(S′i , D′i )]p(d S′i | X i = x, Di = k) 26

where k is one of the elements of D(s). They further explore the model with additional 27

identifying information and correlated random effects. 28
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How problematic is it that the model is not fully identified? The answer to this1

question depends on the purpose of the model. That is, even if the model is not fully2

identified, one may still be able to identify policy counterfactuals of interest. Ichimura3

and Taber (2002) provide one example of a case in which the policy counterfactual can4

be identified. They start with the model of Keane and Wolpin (2001) and show how one5

can estimate a semiparametric reduced form version of this model and use it to evaluate6

the effect of a tuition subsidy on college enrollment. They key is having enough structure7

on the model to map variation in the data to the counterfactual tuition subsidy.8

Aguirregabiria (2007) presents a different and somewhat more general example ofQ17 9

policy evaluation in a finite time dynamic discrete choice model. We do not get into the10

details as it is different from the types of labor models we study here, but he shows that,11

despite the fact that his full model is not identified, the welfare effect function resulting12

from the policy change can be identified. Thus one can do welfare analysis even though13

the full model is not identified.14

7.3. Dynamic generalized Roy model1516

Heckman and Navarro (2007) provide another example showing that one can identify17

interesting counterfactuals even when the full model is not identified. Their study18

complements the discussion in this chapter as it extends the work on identification in19

dynamic discrete choice models into the treatment effects literature discussed in Section 520

above. They consider a finite time optimal stopping problem. Using the notation used21

above in Section 7.2, Di is either zero or one, and once it is one it remains one forever.22

Their main example is a schooling model in which students decide at which time to leave23

school (assuming that after leaving they cannot come back). The model is essentially24

a dynamic generalized Roy model. Let Tia and L ia respectively denote the level of25

schooling and a dummy for whether individual i is out of school at age a. Using a26

somewhat modified version of their notation we can write time a earnings as27

Yi,a,t,` = µ(a, t, `, X i )+ εi,a,t,`28

where t and ` represent potential outcomes of Ti,a and L i,a. Heckman and Navarro29

(2007) also assume that the cost of schooling can be written as30

Ci,t = 8(t, X i , Zi )+ ωi,t .31

In order to keep our notation complete and consistent across sections we will32

assume that random variable 2i,a summarizes all information (both observables and33

unobservables) that individual i has at age a. This means that if we know 2i,a we also34

know (X i , Zi , Ti,a, L i,a, εi,a,t,l , ωi,t ), so when we condition on 2i,a = θ, we are35
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conditioning on (X i , Zi , Ti,a, L i,a, εi,a,t,l , ωi,t ) = (x, z, t, `, εa,t,`, ωt ). We will make 1

use of this notation below. 2

Once a student leaves school they make no further decisions, so if a student leaves 3

school at age a with t years of schooling, lifetime utility discounted to the time one 4

leaves school is written as 5

R(a, t, θ) = E

 T̄∑
j=0

(
1

1+ r

) j

Yi,a+ j,t,1 | 2i,a = θ

 . 6

The only decision that agents make is to whether they will drop out of school or not. 7

For a student at age a with t years of schooling the value function when they make this 8

decision is written as 9

V (a, t, θ) = max
{

R(a, t, θ), µ(a, t, 0, x)+ εa,t,0 −8(t, x, z)− ωt 10

+

(
1

1+ r

)
E
[
V (a + 1, t + 1,2i,a+1) | 2i,a = θ

]}
. 11

This is basically a dynamic version of the generalized Roy model. Identification follows

Q18

12

by essentially combining the arguments used by Taber (2000) for the dynamic aspects 13

of the model with the arguments for identification of the generalized Roy model. 14

Heckman and Navarro (2007) use higher level assumptions to avoid the use of exclusion 15

restrictions.28 They also use a factor structure on the distribution of the error term to 16

reduce dimension. We refer readers interested in these generalizations and in the details 17

of their proof to their paper. Here we attempt to give an intuitive feel for identification 18

of this model and show how it is related to identification of the generalized Roy model 19

presented in Section 3.3. 20

Identification of reduced form choice model 21

In this case they do not derive an explicit reduced form, but note that 22

Pr(Ti,a = t | X i = x, Zi = z) 23

can be identified directly from the data. 24

28 This relates back to our discussion of identification and exclusion restrictions in the sample selection model at the very
end of Section 3. Exclusion restrictions prevent one from setting g̃ f (x) = g f (x)+ h(g(x)) but shape restrictions on
g and g f can do this as well. Their “higher level assumptions” are essentially assuming that we make restrictions on g f
so that we can not add h(g(x)) to it and remain in the permissible class of g f functions.
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Identification of the earnings equation µ1

With exclusion restrictions this can be done in exactly the same way as in the static model.2

Assuming that εi,a,t,` has a zero mean,3

lim
Pr(Ti,a=t |(X i ,Zi )=(x,z))→1

E
[
Yi,a+ j,t,1 | (X i , Zi ) = (x, z)

]
= µ(a + j, t, 1, x).4

lim
Pr(Ti,a>t |(X i ,Zi )=(x,z))→1

E
[
Yi,a,a,0 | (X i , Zi ) = (x, z)

]
= µ(a, a, 0, x).5

Thus this is a version of an “identification at infinity argument.” Heckman and Navarro6

(2007) do not use this explicit argument because they avoid exclusion restrictions with a7

higher order assumption. However, they do use identification at infinity.8

Identification of89

Next consider the identification of the cost of schooling function 8. The best way to10

think about identification in these types of models is to start with the final period and11

work backward.12

Since the maximum length of schooling is T̄ , the final decision is made when the13

individual has T̄ − 1 years of schooling. At that point the student decides whether to14

attend the final year of school or not. Heckman and Navarro (2007) use an “identification15

at infinity” argument so that Pr(Ti > T̄ − 2 | X i = x, Zi = z) ≈ 1. Then the problem16

becomes analogous to a static problem.29 That is17

lim
Pr(Ti>T̄−2|X i=x,Zi=z)→1

Pr(Ti T̄ = T̄ | X i = x, Zi = z)18

= Pr
(

R(T̄ − 1, T̄ − 1,2i,T̄−1) < µ(T̄ − 1, T̄ − 1, 0, x)+ εi,T̄−1,T̄−1,019

−8(T̄ − 1, x, z)− ωi,T̄−1 +

(
1

1+ r

)
20

× E
[
R(T̄ , T̄ ,2i T̄ ) | 2i,T̄−1

]
| X i = x, Zi = z

)
.21

This is analogous to identification of the gh function in the Roy model.30
22

Now one can just iterate backward given knowledge of all variables at T̄ and23

T̄−1.That is, the distribution of ( 1
1+r )E

[
V (T̄ − 1, T̄ − 1,2i,T̄−1) | 2 ¯i,T−2

]
has beenQ1924

29 Once again, Heckman and Navarro (2007) use higher order assumptions that do not require exclusion restrictions. For
example they allow for either an exclusion restriction or a cost variable to identify the scale (such as tuition described
in Section 4 above).

30 Note that we have violated one convention in this chapter which is to make conditioning explicit such as E(· | Xi =

x). When we condition on 2i,T̄−1 we cannot do this explicitly because while the expectation inside the expression
conditions on its outcome, the probability expression (immediately after the = sign) treats2i,T̄−1 as a random variable.
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identified so once again we can use the identification approach of the static problem and 1

can use the same basic style of proof. That is we can condition on a set of variables so that 2

Pr(t > T̄ − 2 | X i = x, Zi = z) ≈ 1 so that identification is analogous to the static 3

problem. Consider the decision with T̄ − 2 years of schooling. 4

lim
Pr(Ti>T̄−3|X i=x,Zi=z)→1

Pr(Ti,T̄−1 = T̄ − 1 | X i = x, Zi = z) 5

= Pr
(

R(T̄ − 2, T̄ − 2,2i,T̄−2) 6

< µ(T̄ − 2, T̄ − 2, 0, x)+ εi,T̄−2,T̄−2,0 −8(T̄ − 2, x, z) 7

− ωi,T̄−2 +

(
1

1+ r

)
E[V (T̄ − 1, T̄ − 1,2i ¯,T−1) | 2i ¯,T−2] | X i = x, Zi = z

)
. 8

One can keep iterating on this procedure so that8 is identified in all periods. 9

Identification of the distribution of the error terms 10

Heckman and Navarro (2007) impose a factor structure so that 11

εi,a,t,` = α
′

a,t,`τi + εi,a,t,` 12

ωi,t = λ
′
tτi + ξi,t 13

where τi is a vector random variable, the ε′s and ξ ′s are all independently distributed, and 14

the α and λ terms are factor loadings. Given this structure and that the other components 15

of the model have been identified, identification of the distribution of the error terms 16

and factor loadings can be done by varying the indices in much the same way as in the 17

static model. We do not show this explicitly. 18

8. CONCLUSIONS 1920

In this chapter we have presented identification results for models of the labor market. 21

The main issue in all of these models is the issue of sample selection bias. We start with 22

the classic Roy model and devote much space to explaining how this model can be 23

identified. We then show how these results can be extended to more complicated cases, 24

the generalized Roy model, treatment effect models, duration data, search models, and 25

forward looking dynamic models. We show the importance of both exclusion restrictions 26

and support conditions for all of these models. 27

UNCITED REFERENCES 28
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TECHNICAL APPENDIX1

Proof of Theorem 2.1. Let X ∗ be the set of points (xc, xd) at which g is continuous2

in xc. For any (xc, xd) ∈ X ∗ and δ > 0, E(Yi | ‖X c
i − xc

‖ < δ, Xd
i = xd) is identified3

directly from the data.4

Since g is continuous at (xc, xd),5

lim
δ↓0

E(Yi | ‖X
c
i − xc

‖ < δ, Xd
i = xd) = g(xc, xd),6

so g(xc, xd) is identified on X ∗. By Assumption 2.2, X ∗ has measure one. �7

Proof of Theorem 3.1. Let X ∗ be the set of points (xc
f , xd

f , xc
h, xd

h , xc
0, xd

0 ) at which8

gh and g f are continuous in xc.9

First notice that for any x = (xc
f , xd

f , xc
h, xd

h , xc
0, xd

0 ) ∈ X ∗,10

lim
δ↓0

Pr(Ji = f | ‖X c
i − xc

‖ < δ, Xd
i = xd) ≡ Pr(Ji = f | X i = x)11

= g(x)12

is identified.13

Thus we have thus established that we can write the model as Ji = f if and only if14

g(X i ) > εi , where εi is uniform [0, 1] and that g is identified.15

Next consider identification of g f at the point (x f , x0). This is basically the standard16

selection problem. As long as g is continuous on the continuous covariates at this point,17

we can identify18

lim
δ↓0

Med(Yi | ‖X
c
f i − xc

f ‖ < δ, Xd
f i = xd

f , ‖X
c
0i − xc

0‖ < δ,19

Xd
0i = xd

0 , |1− g(X i )| < δ, Ji = f )20

= g f (x f , x0)+ lim
δ↓0

Med(ε f i | ‖X
c
f i − xc

f ‖ < δ, Xd
f i = xd

f , ‖X
c
0i − xc

0‖ < δ,21

Xd
0i = xd

0 , |1− g(X i )| < δ, Ji = f )22

= g f (x f , x0).23

Thus g f is identified. Note that having an exclusion restriction with strong support24

conditions is necessary to guarantee that the measure of the set of X i satisfying25

|1− g(X i )| < δ is not zero.26

Next we show how to identify gh . Note that for any (xh, x0) where g is continuous27

in the continuous covariates and δ > 0 we can identify the set28

X (xh, x0, δ) ≡ {̃x ∈ X ∗ : ‖x̃c
h − xc

h‖ < δ,29

x̃d
h = xd

f , ‖x̃
c
0 − xc

0‖ < δ, x̃d
0i = xd

0 , |0.5− g(̃x)| < δ}30
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where x̃ = (x̃ f , x̃h, x̃0). Under our assumptions it has positive measure. 1

The median zero assumption guarantees that 2

lim
δ↓0

X (xh, x0, δ) =
{

x̃ ∈ X ∗ : x̃h = xh, x̃0 = x0, 0.5 = Pr(Ji = F | X i = x̃)
}

3

=
{

x̃ ∈ X ∗ : x̃h = xh, x̃0 = x0, 0.5 = Pr(εhi − ε f i ≤ g f (x̃ f , x0)− gh(xh, x0))
}

4

=
{

x̃ ∈ X ∗ : x̃h = xh, x̃0 = x0, g(x̃ f , x0) = gh(xh, x0)
}

5

is identified. Since g(x̃ f , x0) is identified, gh is identified. 6

Finally consider identification of G given g f and gh . Note that from the data one can 7

identify 8

lim
δ↓0

Pr(Ji = f, log(Y f i ) < s | ‖X c
i − xc

‖ < δ, Xd
i = xd) 9

= lim
δ↓0

Pr(gh(Xhi , X0i )+ εhi ≤ gh(Xhi , X0i )+ εhi , g f (X f i , X0i )+ ε f i 10

≤ s | ‖X c
i − xc

‖ < δ, Xd
i = xd) 11

= Pr(εhi − ε f i ≤ g f (x f , x0)− gh(xh, x0), ε f i ≤ s − g f (x f , x0)) 12

which is the cumulative distribution function of (εhi − ε f i , ε f i ) evaluated at the point 13

(g f (x f , x0) − gh(xh, x0), s − g f (x f , x0)). By varying the point of evaluation one can 14

identify the joint distribution of (εhi − ε f i , ε f i ) from which one can derive the joint 15

distribution of (ε f i , εhi ). � 16

Proof of Theorem 4.1. As in the proof of Theorem 3.1, let X ∗ be the set of 17

points (zc, zd , xc
f , xd

f , xc
h, xd

h , xc
0, xd

0 ) at which gh, g f , ϕh and ϕ f are continuous in 18

(zc, zd , xc
f , xd

f , xc
h, xd

h , xc
0, xd

0 ). 19

First notice that for any (z, x) = (zc, zd , xc
f , xd

f , xc
h, xd

h , xc
0, xd

0 ) ∈ X ∗, 20

lim
δ↓0

Pr(Ji = f | ‖X c
i − xc

‖ < δ, ‖Z c
i − zc

‖ < δ, (Zd
i , Xd

i ) = (z
d , xd)) 21

= Pr(νi ≤ ϕ(z, x)) 22

= ϕ(z, x). 23

Thus ϕ is identified on the relevant set. Next consider g f and the joint distribution of 24

(νi , ε f i ). Note that for all (z, x f , xh, x0) ∈ X ∗ and any y ∈ R, we can identify 25

lim
δ↓0

Pr(Ji = f, Y f i ≤ y | ‖X c
i − xc

‖ < δ, ‖Z c
i − zc

‖ < δ, (Zd
i , Xd

i ) = (z
d , xd)) 26

= Pr(νi ≤ ϕ(z, x), g f (x f , x0)+ ε f i ≤ y) 27

which is the joint distribution of (νi , g f (x f , x0)+ε f i ) evaluated at (ϕ(z, x), y). Holding 28

(x f , x0) constant and varying (ϕ(z, x), y) we can estimate this joint distribution. Since 29
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the median of ε f i is zero, g f is identified and given g f the joint distribution of (νi , ε f i )1

is identified. Since the model is symmetric in h and f , gh and the joint distribution of2

(νi , εhi ) are identified using the analogous argument. �3

Proof of Theorem 4.2. The first part is analogous to step three of identification of the4

Roy model presented in the text. Note that for any (z, x0) and δ we can identify the set5

X (z, x0, δ) ≡ {(z̃, x̃) ∈ X ∗ : ‖z̃c
− zc
‖ < δ, z̃d

= zd , ‖x̃c
0 − xc

0‖ < δ,6

x̃d
0 = xd

0 , |0.5− ϕ(z̃, x̃)| < δ}7

and it has positive measure where the elements of (z̃, x̃) are defined in the obvious way.8

The median zero assumption guarantees that9

lim
δ↓0

X (z, x0, δ)10

= {(z̃, x̃) ∈ X ∗ : z̃ = z, x̃0 = x0, 0.5 = Pr(Ji = F | (Zi , X i ) = (z̃, x̃))}11

= {(z̃, x̃) ∈ X ∗ : z̃ = z, x̃0 = x0, 0.5 = Pr(εhi − ε f i ≤ g f (x̃ f , x0)12

+ϕ(z, x0)− gh(x̃h, x0))− ϕ(z, x0)}13

= {(z̃, x̃) ∈ X ∗ : z̃ = z, x̃0 = x0, ϕ f (z, x0)− ϕh(z, x0)14

= gh(x̃h, x0)− g f (x̃ f , x0)}.15

Since gh and g f are identified by Theorem 4.1, ϕ f (z, x0)− ϕh(z, x0) is also identified.16

Given this we can identify the distribution of (εhi + νhi − ε f i − ν f i , ε f i ) and17

(εhi + νhi − ε f i − ν f i , εhi ) since in general18

lim
δ↓0

Pr(Ji = f, Y f i ≤ y | ‖Z c
i − zc

‖ < δ, Zd
i = zd , ‖X c

i − xc
‖ < δ, Xd

i = xd
0 )19

= Pr(εhi + νhi − ε f i − ν f i ≤ g f (x f , x0)+ ϕ f (z, x0)− gh(xh, x0)20

−ϕh(z, x0), ε f i ≤ y − g f (x f , x0)),21

and22

lim
δ↓0

Pr(Ji = r, Yhi ≤ y | ‖Z c
i − zc

‖ < δ, Zd
i = zd , ‖X c

i − xc
‖ < δ, Xd

i = xd
0 )23

= Pr(−
(
εhi + νhi − ε f i − ν f i

)
≤ gh(xh, x0)+ ϕh(z, x0)− g f (x f , x0)24

−ϕ f (z, x0), εhi ≤ y − gh(xh, x0)). �25

Proof of Theorem 5.1. Theorem 4.1 shows that the marginal distributions of ε f i and26

εhi are identified. Since their expectations are finite, E(ε f i ) and E(εhi ) are identified.27

We also showed that g f and gh are identified over a set of measure 1. Note that28

E(πi ) = E(Y f i ) − E(Yhi ) = E(g f (X f i , X0i ) + ε f i ) − E(gh(Xhi , X0i ) + εhi ) =29
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g f (X f i , X0i )− gh(Xhi , X0i )+ E(ε f i )− E(εhi ). Because all the components of E(πi ) 1

are identified, E(πi ) is identified as well. � 2

Proof of Theorem 5.2. The marginal distribution of X i , the joint distribution of 3

(X i , Y f i ) conditional on Ji = f and the joint distribution of (X i , Yhi ) conditional 4

on Ji = h are identified directly from the data. Assumption 5.2 guarantees that for both 5

fishing and hunting ( j ∈ { f, h}), the conditional distribution of Y j i conditional on X i 6

and Ji = j is the same as the conditional distribution of Y j i conditional on X i alone. 7

From each of these conditional distributions and the marginal distribution of X i , one can 8

identify E(Y j i ), and thus the average treatment effect is identified by taking the difference 9

between the two. � 10

Proof of Theorem 6.2. Let X ∗ be the set of points (xc, xd) at which the functions are 11

all continuous in xc. 12

First note that in this model the hazard rate of finding for any individual can be written 13

as 14

φ(Xλi , X0i )νi [1− Fiε f (log(W r
i )− g f (X f i , X0i ))]. 15

Our first goal is for any (x f , xλ,x0) ∈ X ∗, to identify the values of xh that send 16

gh(xh, x0) arbitrarily large so that all offers are accepted. Since the reservation wage is 17

strictly decreasing in gh , the hazard rate is strictly increasing in gh, we can do this by 18

fixing (X f i , X0i ) within some neighborhood of (x f , x0) and finding the value of xh 19

that minimizes the job finding rate. 20

More formally for any (x f , xλ, x0) and δ,define

Q21

21

xh(δ) ≡ argminE(Ti | ‖X
c
i − (x

c
f , xc

h(δ), xc
λ, xc

0)‖) < δ, (Xd
i = (x

d
f , xd

h (δ), xd
λ , xd

0 )). 22

Note that this minimum will be such that as δ→ 0, W r
i → 0 so that 23

lim
δ↓0

Pr(log(Ti ) < t, log(W f i t ) < w | ‖X c
i − (x

c
f , xc

h(δ), xc
λ, xc

0)‖ < δ, Xd
i 24

= (xd
f , xd

h (δ), xd
λ , xd

0 )) = Gω∗,ε(t + log(φ(xλ, x0)), w − g f (x f , x0)) 25

where G is the joint distribution between a convolution of ωi t and an extreme value 26

and of ε f i t . Given G, applying the identification arguments for the mixed proportional 27

hazard model one can identify φ. Furthermore, g f can be identified through the standard 28

argument for identification of the regression model. 29

Finally, recovering gh can be done in an analogous way as for the Roy model. Notice 30

that the reservation wage is scalable so that if we increase both Ci and Wi t by 10%, then 31

the reservation wage increases by 10% and the probability of job acceptance does not 32
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change. That is for any δ > 0 if w∗i solves1

egh(Xhi ,X0i )+εhi + w∗i =
λi

r

∫
∞

log(w∗i )−g f (X f i ,X0i )

(eg f (X f i ,X0i )+ε f i t − w∗i )dFiε f (ε f i t )2

then w∗i eδ solves3

egh(Xhi ,X0i )+δ+εhi + w∗i eδ4

=
λi

r

∫
∞

log(w∗i )−g f (X f i ,X0i )

(eg f (X f i ,X0i )+δ+ε f i t − w∗i eδ)dFiε f (ε f i t ),5

but the probability of accepting a job and thus the expected duration remains the same.6

Thus as in the identification of the slope that we discuss in Step 2 of the identification7

of the Roy model, for any (xh, x0) and (x̃h, x̃0) suppose we want to identify gh (xh, x0)−8

gh (x̃h, x̃0) . Fix xλ and x̃λ so that φ(xλ, x0) = φ(x̃λ, x̃0). Then the key here is finding9

values x f and x̃ f so that10

lim
δ↓0

E(log(Z(Ti )) | ‖X
c
i − xc

‖ < δ, Xd
i = xd)11

= lim
δ↓0

E(log(Z(Ti )) | ‖X
c
i − x̃c

‖ < δ, Xd
i = x̃d).12

But if this is the case it must be that13

g f (x f , x0)− gh(xh x0) = g f (x̃ f , x̃0)− gh(x̃h, x̃0)14

but then15

gh(xh, x0)− gh(x̃h, x̃0) = g f (x f , x0)− g f (x̃ f , x̃0)16

where the right hand side has already been identified. Thus gh is identified up to location17

on the set X ∗. �18
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