
Non-exclusive Dynamic Contracts, Competition,

and the Limits of Insurance ∗

Laurence Ales Pricila Maziero†

Tepper School of Business The Wharton School
Carnegie Mellon University University of Pennsylvania

July 22, 2009

Abstract

We study how the presence of non-exclusive contracts limits the amount of insurance
provided in a decentralized economy. We consider a dynamic Mirrleesian economy
in which agents are privately informed about idiosyncratic labor productivity shocks.
Agents sign privately observable insurance contracts with multiple firms (i.e., they are
non-exclusive), which include both labor supply and savings aspects. Firms have no re-
striction on the contracts they can offer, interact strategically. In equilibrium, contrary
to the case with exclusive contracts, a standard Euler equation holds, the marginal rate
of substitution between consumption and leisure is equated to the worker’s marginal
productivity. Also, each agent receives zero net present value of transfers. To sustain
this equilibrium, more than one firm must be active and must also offer latent con-
tracts to deter deviations to more profitable contingent contracts. In this environment,
the non-observability of contracts removes the possibility of additional insurance be-
yond self-insurance. To test the model, we allow firms to observe contracts at a cost.
The model endogenously divides the population into agents that are not monitored
and have access to non-exclusive contracts and agents that have access to exclusive
contracts. We use US survey data and find that high school graduates satisfy the
optimality conditions implied by the non-exclusive contracts while college graduates
behave according to the second group.
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1 Introduction

What type of contractual arrangements are available to workers in a decentralized economy

when firms compete for the provision of social insurance? In this paper, we study how, in

a decentralized economy, the presence of non-exclusive contracts endogenously limits the

contracts offered and hence the amount of insurance. We find that competition and non-

observability of insurance contracts significantly reduce the amount of insurance provided:

the equilibrium allocation in our environment is equivalent to a self-insurance economy and

only linear contracts are offered.

Multiple credit and labor relations are an important aspect of everyday life. Survey data

shows that individuals and households receive insurance against idiosyncratic risk from a

multitude of sources: publicly provided insurance (unemployment, Medicare, Medicaid, dis-

ability, food stamps, progressive income taxation); privately provided insurance (employer,

between and within family transfers);1 financial instruments in credit markets; and hous-

ing and other large durable goods. The same consideration is true for labor relationships.

Paxson and Sicherman (1994) look at the number of concurrent labor relationships held by

survey respondents of the Panel Study of Income Dynamics (PSID) between 1977 and 1990

and the Current Population Survey (CPS) of 1991. They find that for any given year, 20%

of working males held at least a second job, and during their working life there is at least a

50% probability of holding a second job. However, monitoring all the transactions an agent

might engage in with other firms is very costly for an individual firm, especially if these

relationships include activities in the informal labor market, private savings, and the ability

to transfer leisure into consumption through either home production or shopping time (see

Aguiar and Hurst (2005)). Motivated by these considerations, the key friction addressed in

this paper is the non-exclusivity and non-observability of contractual relations. In the first

part of the paper, we characterize the optimal contract under the assumption that none of

1The Panel Study of Income Dynamics reports for the years 1969 to 1985 a measure of income transfer
received by households. We find that, in a given year, 24% of the households report receiving a transfer and
67% of the households received a transfer at some stage. These transfers are significant, averaging $1,930
(1983 dollars) and represent between 70% to 90% of total food expenditures.
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the labor and credit relations an agent engages in can be observed by an individual firm.2 We

interpret this friction as reflecting both the costs that a firm might incur when monitoring

the transactions agents engage in and the inability of firms to offer contracts contingent on

the agents’ actions with other firms in the economy. In the second part of the paper, we

endogeneize the observability of contracts by allowing firms to costly monitor contracts and

take the model to the data.

The environment studied is a finite horizon dynamic Mirrleesian economy in which agents

are privately informed about idiosyncratic labor productivity shocks that evolve over time.

Agents wish to insure this risk by signing contracts with insurance providers (firms). Agents

are not limited to a single insurance/labor relationship and can sign contracts with multiple

firms. The contracting arrangements are private information of the contracting parties.

Given this friction, in general, the communication between agent and firms cannot be limited

to the exogenous private shock of agents (firms might also seek information about the other

relations the agent has engaged in), as in the case with observable contracts. We extend

the results in the common agency literature to our dynamic environment and characterize

equilibrium using a menu game.3 In this game, each firm offers collections of payoff relevant

alternatives – menus – and delegates to the agent the choice within these menus. The choice

of the agent from a menu can reveal information about his type and the other contractual

arrangements in which he might be involved. We impose no restriction on the contracts that

firms can offer. A firm can, for example, offer a spot labor contract, a linear intertemporal

borrowing and saving contract, a state contingent dynamic insurance contract, and so on.

The non-observability of contracts removes the possibility of additional insurance beyond

self-insurance and only linear contracts arise in equilibrium. We find that three optimality

conditions must hold in equilibrium. First, the intertemporal marginal rate of substitution

between consumption at time t and consumption at t + 1 is equal to the marginal rate of

transformation (a standard Euler equation holds).4 Second, the marginal rate of substitution

2The characterization under exclusive contracts is well understood, see Prescott and Townsend (1984).
3See Peters (2001), Martimort and Stole (2002), and Epstein and Peters (1999).
4If contracts are exclusive, the Euler equation does not hold and agents are savings constrained (see
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between consumption and leisure is equated to the marginal productivity for any time and

any history.5 Third, the net present value of the transfers received in equilibrium is equal

zero for every agent in the economy. These optimality conditions imply that the unique

equilibrium allocation is equivalent to an economy in which agents can trade non-contingent

bonds and are paid their marginal productivity and in which there is no redistribution.

The intuition for this result is the following. If, for example, a firm offers an intertemporal

contract at an implicit rate of return lower than the marginal rate of transformation, it would

provide a profitable opportunity for an entrant: it can offer a contract with a return slightly

higher and make profits.6 Such entry cannot be prevented by the first firm by also offering

latent contracts because it cannot induce negative profits to the entrant.

These results, linking side trading and linear contracts, are reminiscent of Allen (1985),

Hammond (1987), Cole and Kocherlakota (2001). We contribute to this literature by explic-

itly modeling competition between firms and determining endogenously the market structure.

To sustain the equilibrium allocation we show that an incumbent firm must offer latent con-

tracts to deter deviations of other incumbent firms.7 Moreover, in equilibrium more than

one firm must offer the equilibrium allocation. The intuition for this result is that the equi-

librium allocation is the most profitable non-contingent contract; however some contingent

contracts deliver higher profits. If there is a unique incumbent or no latent contracts, a firm

will deviate and offer one of these contracts.

To derive testable implications between non-exclusivity of contracts and the availability

of insurance in the data, we generalize the model, relaxing the assumption about the ob-

servability of contracts. We assume that at time 0, a firm can pay a cost for each agent

which allows the firm to observe all the contracts the agent signs. We assume that agents

Golosov, Kocherlakota, and Tsyvinski (2003)).
5This is also different with respect to the exclusive contracting environment (see, for example, Mirrlees

(1971) and Golosov, Tsyvinski, and Werning (2006)), where this relation holds only for the highest skill type,
while all of the remaining types face a distortion on the intratemporal margin that discourages consumption
and hours provided.

6Or similarly, offering a labor contract at an implicit wage lower than marginal productivity.
7In our equilibrium characterization, restricting to direct mechanisms, while not restrictive in the previous

papers, results in non-existence of equilibrium.
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are heterogeneous with respect to the probability distribution of the productivity shock:

some agents draw the productivity shock from a low mean distribution, while others draw

from a distribution with higher mean. If the cost is paid, a firm offers the optimal contract

under exclusivity (as in Golosov, Kocherlakota, and Tsyvinski (2003) and Albanesi and Sleet

(2006)). If the cost is not paid, firms offer the contract described in this paper, which imple-

ments the self-insurance allocation. With this extension, the model endogenously partitions

the population into groups with access to different insurance contracts. Agents with lower

average productivity have access to non-exclusive contracts while agents with higher pro-

ductivity have access to exclusive contracts. We use US survey data to test whether agents’

consumptions and hours allocations, when grouped by education attainment, satisfy the op-

timality conditions under exclusive or non-exclusive contracts. We find that the consumption

of college graduates evolves according to the inverse Euler equation, while for individuals

with less than college, the consumption satisfies the standard Euler equation. Looking at the

static consumption-leisure distortion calculated in the data, we investigate how it evolves as

agents age. The model prescribes a constant distortion over age if workers have access to

non-exclusive contracts while an increasing distortion in the other case. We find that also in

this dimension, we cannot reject the hypothesis that high school graduates behave according

to the linear contracts whereas the other group is closer to the constrained efficient contract.

Related Literature

This paper is related the literature on optimal social insurance contracts and its implementa-

tion through taxation, commonly referred to as new dynamic public finance.8 In general, the

environment studied in these papers assumes that insurance is provided by a unique provider

-the government- who perfectly controls both consumption and labor decision of the agents.

With respect to this literature, this paper has two distinct implications. Our main result

suggests that the constrained efficient allocation cannot be implemented in decentralized

environments unless every aspect of the contracting is observable, thus making necessary the

8For a review, refer to Kocherlakota (2006) and Albanesi (2008).
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provision of insurance via taxes or a centralized institution that makes information public.

However, our results also highlight that the presence of hidden and self-enforcing activi-

ties (for both consumption and labor) might undo any incentives the government provides

through taxes. Related to this last point, our work is also related to a literature on optimal

contract in the presence of hidden trades.9 In particular, Cole and Kocherlakota (2001)

show that, in an private information endowment economy, equilibrium is equivalent to self-

insurance when agents can secretly save in a storage technology. In an environment similar

to ours, Golosov and Tsyvinski (2007) characterize equilibrium when agents can engage in

hidden trades of Arrow-Debreu securities. They show that a standard Euler equation holds

and that the decentralized equilibrium is not efficient, since firms do not internalize the

effects of the contracts offered on the market rate of return. This paper can be seen as a

generalization of the previous two papers, in the sense in that those the recontracting possi-

bilities are assumed exogenously (a market with linear prices or a storage technology) while

in this paper the recontracting market is a result of an equilibrium game between insurance

providers.

This paper also relates to Bisin and Guaitoli (2004), who analyze a static moral hazard

environment under non-exclusive contracting. Their main result shows that latent contracts

are used to sustain the equilibrium. However, the nature of the moral hazard environment,

differently from our environment, enables latent contracts to prevent any profitable entry

by additional insurance providers, thus delivering a positive profit equilibrium to the incum-

bents.

The quantitative analysis in this paper is related to Townsend (1995) and Ligon (1998).

These papers investigate whether the consumption patterns in villages in Thailand and India,

respectively, are consistent with the predictions of a constrained efficient allocation or the

full information model. Ligon (1998) estimates the inverse Euler equation and the Euler

equation for three villages in India. He finds that in two villages the consumption behavior

is consistent with the Euler equation while in one village it is consistent with the constrained

9For example Cole and Kocherlakota (2001), Golosov and Tsyvinski (2007) and Abraham and Pavoni
(2005).
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efficient allocation. Townsend (1995) investigates the consumption in Thai villages and finds

that for some the constrained efficient allocation describes accurately the fluctuations while

for others the full information model is a good benchmark. The study also emphasizes how

villages differ in information flows between households (including assets and transactions)

and how this could be responsible for the different insurance regimes observed.

The paper is organized as follows. In Section 2, we describe the environment and show

that any equilibrium can be implemented by a menu game. Section 3 characterizes the

equilibrium of our benchmark environment and shows that it is equivalent to self-insurance.

We also show that latent contracts are necessary to implement the equilibrium allocation.

Section 4 extends the model, allowing firms to observe contracts, and analysis its implications

using US survey data. Section 5 is the conclusion.

2 Environment

Consider an economy populated by a continuum of measure one of ex ante identical agents

and I firms (insurance providers), with I ≥ 2. The economy lasts for a finite number T of

periods. Agents’ period utility is defined over consumption c and labor l and is given by

u(c) − v(l). Agents discount future utility at rate 0 < β < 1. Assume u : R+ → R is twice

continuously differentiable, increasing and strictly concave function, limc→0 u
′(c) = ∞ and

limc→∞ u
′(c) = 0; and v : R+ → R is twice continuously differentiable, increasing and strictly

convex function and liml→L̄ v
′(l) =∞, where L̄ is the maximum feasible number of hours in

a period. At every time t = 1, 2, ..., T , each agent draws a privately observed productivity

shock θt ∈ Θ, where Θ is a finite set and its smallest element is strictly positive. 10 We

assume the law of large numbers holds. The shock is distributed according to probability

distribution π(·) and is independent and identically distributed over time and across agents.

Let θt = (θ1, ..., θt) denote the history of uncertainty of an agent up to time t. Given a

sequence of consumption and leisure {c, l} = {ct, lt}Tt=1, the expected discounted utility of

10Assume minθ∈Θ θ > 0.
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an agent is given by

U ({c, l}) = E0

T∑
t=1

βt−1[u(ct)− v(lt)]. (1)

For a given realization of the labor productivity shock θ, an agent can produce y units of

effective output according to y = θl, where l denotes his labor input. We assume the labor

input is private information of the agent while output y is publicly observable to each firm

for which the agent is producing output y.

Each firm i ∈ {1, ..., I} offers labor and credit contracts to agents to insure against

productivity shocks. A contract prescribes, at every time t, output requirement yit and

consumption transfer yit + bit. The period profit of firm i is given by V i(bi) = −bi. Firms can

transfer resources over time at constant rate q.11

An important feature of our environment is that agents can sign contracts simultaneously

with more than one firm, and the terms of the contract between an agent and a firm i are

not observed by other firms.12 We do not impose any restriction on the contracts offered by

each firm. For example, a firm can offer a contract for the entire time horizon t = 1, ..., T ;

for a particular set of dates; only credit contracts (yt = 0, ∀t); only labor contracts, or both.

We also do not impose any specific contingency on the contracts; in particular, we do not

restrict to linear contracts.

At time 0, before any uncertainty is realized, agents sign a contract with each firm

i.13 To take into account the voluntary participation of agents, every firm is required to

offer at time 0 a null contract that determines no output requirement and no consumption

transfers in every period. The contracts offered by a firm at time 0 are contingent on the

future communication between that firm and the agent. We assume that contracts must be

honored and neither firms nor agents can renege on them.14

11This fixed interest can be interpreted as the firm having access to external credit markets.
12We assume that each agent is atomless and no interaction between agents is allowed.
13The ability of a firm to offer a contract prescribing transfers and output requirement at any future date

t and giving the agents the option of not entering the contract (offering the (0, 0) pair at time t) is, for the
agent, a costless option of entering into that contract at time t. This, together with the fact that, for a firm,
not contracting with an agent between time 0 and time t does not reveal any additional, makes our analysis
equivalent to the case where agents decide to enter or not a contract at any future date, not only at time 0.

14We interpret contracts as self-enforcing in the following way. Both agents and firms have access to
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2.1 Communication and Menu Games

Communication

Firms and agents communicate according to communication mechanism,15 which consists

of message spaces Ri for time 0 and message spaces Mi
t for each t ∈ {1, ..., T}, for each

firm i ∈ {1, ..., I}. Denote the set of all possible messages that can be exchanged by an

agent and firm i up to time t by Mi,t = Mi
1 × ... × Mi

t. Each firm chooses allocation

functions git :Mi,t → R2, which specify transfers of consumption and output at time t, and

φi : Ri → Gi
1(Mi,1)× ...×Gi

T (Mi,T ), where Gi
t(Mi,t) is the set of all measurable mappings

from message space Mi,t to the allocation space R2. Let (b(mi,t), y(mi,t)) = git(m
i,t) denote

the allocation received by an agent who sends messages mi,t = (mi
1, ...,m

i
t) to firm i. The

function φi determines the contracts an agent will face in all subsequent periods. Denote by

Gi(Mi) = Gi
1(Mi,1)× ...×Gi

T (Mi,T ) andMi =Mi
1× ...×Mi

T . Let Φi(Ri,Mi) be the set of

all measurable mappings from message spaceRi to the set Gi and note that φi ∈ Φi(Ri,Mi).

Let M = ×Ii=1Mi and R = ×Ii=1Ri. Denote the game associated with the communication

mechanism (M,R) by ΓM,R.

At time 0, before any uncertainty is realized, each firm i simultaneously offers a collection

of allocation functions φi, and agents communicate with firms sending a message ri. This

message determines, through φi, the functions git at every period t. The timing of the game

ΓM,R is the following:

• At time 0:

1. Each firm i simultaneously offers contract φi : Ri → Gi(Mi);

2. Agents send a report ri ∈ Ri to each firm i.

• At time t:

an enforcement mechanism (“court”) upon the payment of a cost, whenever one of the parties reneges on a
contract. If this cost is paid, the terms of the contract between the two parties in consideration become public,
and this court can enforce a punishment to the party that reneged on the contract. If either firms or agents
falsely report a breach on the contracts, they can also be punished by court. We assume this punishment
can be made large enough so that in equilibrium neither firms nor agents will renege the contracts signed.

15No communication between firms is allowed.
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1. Agent learns his private type θt;

2. Firm offers allocation rule git :Mi,t → R2 according to φi(ri);

3. Agent sends a message mi
t ∈Mi

t to each firm i;

4. Payoffs are realized.

Given messages (M,R), we consider a static Nash equilibrium played by firms at time 0

when choosing the contracts that are offered in future periods. Given these contracts, agents

optimize choosing the report at time 0 and messages in every period t = 1, ..., T .

Definition 1 (Equilibrium of Communication Game). A pure strategy equilibrium of

ΓM,R is (r∗,m∗, φ∗, g∗) such that:16

1. Agent’s message m∗t : G
1
t × ...×GI

t ×Θt →Mt solves for each t ∈ {1, ..., T}:

Ut
(
mt−1, θt|g∗

)
= max

mt∈Mt

u

(
I∑
i=1

(
bi(mi,t) + y(mi,t)

))
− v

(∑I
i=1 y(mi,t)

θt

)
+

+β
∑
θt+1

π(θt+1)Ut+1

(
mt, θt+1|g∗

)
,

subject to
∑I

i=1 (bi(mi,t) + y(mi,t)) ≥ 0,
∑I

i=1 y(mi,t) ≥ 0, ∀t

where (b(mi,t), y(mi,t)) = g∗,it (mi,t).

2. Agent’s reporting strategy at time 0, r∗ : G1 × ...×GI → R solves:

max
r∈R

∑
θ1

π(θ1)U1

(
m0, θ1|g

)

where gi = φi,∗(ri).

3. For each i ∈ {1, ..., I}, taking as given the choices of the other firms and the agents’

16We do not allow random strategies.
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choices, firm’s i allocation function φi,∗ solves:

V i(φi,∗, φ−i,∗) ≡ min
T∑
t=0

∑
θt

π(θt)qtbi,∗t (θt),

b∗t (θ
t) = b(mt,∗(θt)), gi = φi (ri,∗) and g−i,∗ = φ−i,∗ (r−i,∗) .

Denote the equilibrium allocation of a general communication game by (b∗, y∗).

Menu Games

If contracts are exclusive (or equivalently observable), the environment is equivalent to a stan-

dard dynamic Mirrleesian environment as in Golosov, Kocherlakota, and Tsyvinski (2003).

In this case, the revelation principle guarantees that without loss of generality, firms can

restrict to direct mechanisms that are incentive compatible. However, under non-exclusive

contracting, the preference ordering of the agents is influenced not only by their exogenous

private information, but also by the set of contracts offered. In particular, the choice of an

agent in the contracts offered by firm i depends on the contracts offered by other firms. This

implies that restricting to a direct mechanism may not allow a firm to have a rich enough

communication with the agent in order to obtain information on the other contracts.

In order to characterize the contracts offered by each firm, we extend the delegation prin-

ciple proved by Peters (2001) and Martimort and Stole (2002) to our environment. This

principle states that, without loss of generality, the equilibrium outcomes of any communi-

cation game can be implemented as an equilibrium of a menu game. The key idea is that any

communication in the original communication mechanism can be replaced by firms offering

menus of payoff-relevant alternatives and delegating to the agents the choice within this

menu. To incorporate a richer communication between firms and agents, firms might offer

menus with elements that are not chosen in equilibrium (latent contracts). As highlighted by

Arnott and Stiglitz (1991), offering latent contracts might be necessary to sustain particular

equilibria by deterring entry of additional insurance providers and by preventing deviation

of the incumbent insurance providers.17

17Our environment differs from the previous literature along two dimensions. First, the environment is
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A communication mechanism induces allocation functions and, hence, distribution over

allocations. This means that to prove the equivalence between the equilibrium allocation of

a given communication mechanism and the equilibrium of a menu game, it is essential that

the menus offered are rich enough to capture the strategies used to implement equilibrium in

a communication mechanism. In our environment, a menu is a sequence of sets, where each

set is a subset of the allocation space R×R+. For a message space (M,R), define, for each

firm i, the set Ci
t(m

i,t−1,Mi
t|Gi

t) as the menu that can be implemented through a message

space Mi
t at time t given a history of messages mi,t−1 and a set of allocation functions Gi

t.

Formally, a menu at time t is the following set:

Ci
t(m

i,t−1,Mi
t|Gi

t) ≡ {Ci
t ⊆ R×R+| ∃ git ∈ Gi

t ⊆ Gi
t(Mi,t) : Ci

t = Im(git|mi,t−1)} ∀t, ∀i (2)

where

Im(git|mi,t−1) =
{
x ∈ R× R+| ∃ mi

t ∈Mi
t : x = git

(
mi,t−1,mi

t

)}
∀t, ∀i. (3)

Each set defined in (2) contains all subsets of R2 with cardinality at most Mi
t.

For any subset Gi
t ⊆ Gi

t(Mi,t), let Gi = Gi
1 × ... × Gi

t and define a sequence of menus

offered by firms at time 0 as:

C
(
Gi
)

=
{
Ci
t ⊆ Ci

t(m
i,t−1,Mi

t|Gi
t), t = 1, ..., T, ∀mi,t−1 ∈Mi,t−1,mi

t ∈Mi
t

}
. (4)

At time 0, each agent chooses a sequence of menus in the collection offered by firm

i. Define Ci as the collection of menus that are consistent with a communication system

(M,R).

Ci(Ri,Mi) ≡ {Ci ⊆ Ci
(
Gi
)
|∃ φi ∈ Φi(Ri,Mi) : Gi = Im(φi)}. (5)

dynamic in the sense that the exogenous uncertainty is realized in every period. Second, agents choose a
communication-contingent contract from each firm i before any uncertainty is realized. This is important
since at time 0, agents are identical thus might be possible to extract more information about the contracts
being offered by other firms.
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This set contains all the collections of sets Ci with cardinality less than or equal to the

cardinality of Ri. Without explicitly writing the dependence on the message spaces, let

Ci = Ci(Ri,Mi) and let Ci be a generic element of Ci. Let C =
∏

iC
i and C =

∏
i Ci be the

collection of all menus. Let ΓC,C be the game associated with menus (C, C).

Definition 2 (Equilibrium of Menu Games). A pure strategy equilibrium of a menu game

is a collection of menus Ĉ and agents’ choices Ĉ ∈ Ĉ and (b̂it, ŷ
i
t) ∈ Ci

t(b̂
i,t−1, ŷi,t−1|Ĉi) ∀t ∈

{1, ..., T} , ∀i ∈ {1, ..., I}:18

1. Agents’ choice at time t, (b̂t, ŷt) : Ct(b̂
t−1, ŷt−1|Ĉ)×Θt → Ct(b̂

t−1, ŷt−1|Ĉ) solves:

Ut

(
bt−1, yt−1, θt|Ĉ

)
= max

(bt,yt)∈Ct(b̂t−1,ŷt−1|Ĉ)
u

(
I∑
i=1

(bit + yit)

)
− v

(∑I
i=1 y

i
t

θt

)
+

+β
∑
θt+1

π(θt+1)Ut+1

(
bt, yt, θt+1|Ĉ

)
,

subject to
∑I

i=1(bit + yit) ≥ 0,
∑I

i=1 y
i
t ≥ 0 ∀t.

2. Agents’ choice at time 0, Ĉ : Ĉ → Ĉ solves:

max
C∈Ĉ

∑
θ1

π(θ1)U1

(
b0, y0, θ1|C

)
.

3. For each i ∈ {1, ..., I}, Ci solves, taking as given Ĉ−i chosen by firms −i and the agents’

choice Ĉ−i, {b̂t(θt), ŷt(θt)}Tt=1:

V i(Ĉi, Ĉ−i) ≡ min
T∑
t=0

∑
θt

π(θt)qtb̂it(θ
t)

b̂it(θ
t) ∈ Ĉi

t(b̂
i,t−1, ŷi,t−1|Ĉi), Ĉi

t(b̂
i,t−1, ŷi,t−1|Ĉi) ∈ Ĉi

b̂−it (θt) ∈ Ĉ−it (b̂−i,t−1, ŷ−i,t−1|Ĉ−i) and Ĉ−it (b̂−i,t−1, ŷ−i,t−1|Ĉ−i) ∈ Ĉ−i.
18We do not allow for random menus.
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Denote the equilibrium allocation of a menu game by (b̂, ŷ).

Note that a menu might contain more alternatives than the cardinality of the type space,

implying that some alternatives are not chosen in equilibrium. Similarly, at time 0 a firm

might offer more than one set of contracts, also implying that some contracts are offered

and not chosen by agents in equilibrium. We denote a contract as latent if it is offered

in equilibrium by a firm but is not chosen in equilibrium by any agent. As we show in

this paper, latent contracts have an important role in sustaining equilibrium allocations by

preventing other firms from deviating to other contracts.

The following proposition shows that an equilibrium in a general communication system

can be implemented as an equilibrium of a menu game. In this menu game, the collection of

menus offered by each firm must be compatible with the general communication mechanism

as defined above.

Proposition 1 (Delegation Principle). Let (b∗, y∗) be an equilibrium allocation of a general

communication game ΓM,R. Then there exists (b̂, ŷ) that is an equilibrium allocation of a

menu game ΓC,C and (b∗, y∗) = (b̂, ŷ).

Proof. In Appendix A.

Proposition 1 states that for given message spaces (M,R), there exists a menu game that

implements the same equilibrium allocation. It is important to note that message spaces

restrict the menus that can be offered in a menu game. From the previous result, if firms

are allowed to use unrestricted message spaces, the same equilibrium can be implemented if

firms can offer unrestricted menus as stated in Corollary 1 in Martimort and Stole (2002).

From now on, we focus on unrestricted menu games.

The presence of two rounds of communication (at time 0 and at every time t) allows to

further simplify the unrestricted menu game. We show that any time t menu that contains

latent points (allocations not chosen in equilibrium) can alternatively be replaced by a time

t menu with the same number of elements as the type space and latent menus at time 0.

This implies that, without loss of generality, we can restrict firms to offering time t menus

that have the same cardinality of the type space, which we call minimal menus.
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Definition 3 (Minimal Menus). A menu Ci ∈ Ci is minimal if for all C−i ∈ C−i and

(bit, y
i
t) ∈ Ci

t , for all Ci
t ∈ Ci, there exists θt ∈ Θ, such that (bit, y

i
t) = (b∗,i(θt), y∗,i(θt)).

Intuitively, a menu is minimal if all of its elements are chosen by some agent in equilibrium.

Proposition 2. Let C = {Ci, C−i} be an equilibrium of a menu game. There exists a payoff

equivalent equilibrium C̃, such that every C̃i ∈ C̃i is a minimal menu for all i.

Proof. In Appendix A.

3 Equilibrium Characterization

An important message of the previous section is that direct mechanisms might not be suf-

ficient when characterizing the optimal contract. This means that firms might offer latent

(off-equilibrium) contracts. In this section, the use of latent contracts plays an important

role, in particular to show that an equilibrium exists. We show that equilibrium would fail

to exist if firms were restricted to offer direct mechanisms.19

3.1 Characterization under Exclusive Contracts

Before characterizing the optimality conditions in our environment, we review two robust

equilibrium conditions in an environment in which there is competition between insurance

providers and contracts are exclusive.20 The seminal paper of Prescott and Townsend (1984)

shows that in a general class of private information economy, the first welfare theorem holds.

The decentralized economy is equivalent to a planning problem that maximizes the ex ante

lifetime utility of the agents subject to feasibility and incentive compatibility constraints (in

every period for every realization agents weakly prefer the allocation designed for them).

19Throughout the paper, an incumbent refers to a firm that offers a menu that contains transfers and/or
output recommendations other than the null contract and some agent chooses some of these contracts in
equilibrium. An entrant refers to an insurance provider that, at all times, every agent chooses the null
contract from the menus offered by this firm. We assume the number of firms I is large enough so that an
entrant always exists.

20Alternatively, the allocation can be implemented in an economy in which all the contracts an agent signs
are observable and a firm can offer a contract contingent on agent’s actions with all other firms.
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In an environment similar to ours, and in the presence of exclusive contracting, the

equilibrium allocation has the following features:21

1. The marginal rate of substitution between consumption and leisure is equated to the

marginal productivity only for the highest type, originally shown by Mirrlees (1971):

u′(c(θ̄)) =
1

θ̄
v′
(
y(θ̄)

θ̄

)
, (6)

u′(c(θ)) >
1

θ
v′
(
y(θ)

θ

)
, ∀ θ 6= θ̄, θ ∈ Θ, (7)

where θ̄ ≡ maxθ∈Θ θ. The intuition for this result is the following: in order to separate

types, it is optimal to discourage less productive agents to work. This implies that all

but the most productive agents work and consume less than they would in a competitive

environment.

2. If preferences are separable in consumption and leisure, the marginal rate of substi-

tution of consumption between any two periods differs from the intertemporal rate of

transformation for all types (the standard Euler equation does not hold):

1

u′(c(θt))
=

1

βR
E

[
1

u′(c(θt+1))
|θt
]
, ∀ t, θt. (8)

This equation, derived originally by Rogerson (1985) and generalized in Golosov,

Kocherlakota, and Tsyvinski (2003), implies that for all periods u′(c(θt)) < βRE [u′(c(θt+1))|θt].

This means that it is optimal to make any type of agent saving constrained in order

to encourage the truthful revelation of productivity in future periods.

3.2 Optimality Conditions under Non-exclusivity

We now derive the equilibrium conditions in the presence of non-exclusive contracting. This

friction implies that the above equilibrium conditions cannot be implemented.

21For a review of the results of constrained efficient allocation in dynamic Mirrleesian environments, refer
to Golosov, Tsyvinski, and Werning (2006).
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Under exclusivity, the optimal contract provides incentives to more skilled workers by

discouraging less skilled agents to work (with respect to the full information allocation).

The next lemma shows that this distortion cannot be implemented when contracts are not

exclusive, since agents can work an extra amount to other firms.

Lemma 1. In any equilibrium for every θt ∈ Θt, for all t the following holds:

u′(b(θt) + y(θt)) ≤ v′
(
y (θt)

θt

)
1

θt
, (9)

where b(θt) =
∑

i b
i(θt) and y(θt) =

∑
i y

i(θt) and where (bi(θt), yi(θt)) are the contracts

chosen by an agent with history θt from firm i at time t.

Proof. Suppose that for some history θt equation (9) does not hold:

u′(b(θt) + y(θt)) > v′
(
y (θt)

θt

)
1

θt
. (10)

In this case, the agent would like to consume and work more than the equilibrium contract.

An entrant can make strictly positive profits offering a supplemental contract with more

consumption and output. Consider an entrant that offers the contract at time t, CE
t =

{(−ε, δ∗(ε)), (0, 0)} where δ∗ and ε are constructed as follows. Let δ∗(ε|θt) be the solution

of the following problem:

U(ε|θt) ≡ max
δ≥0

u(b(θt) + y(θt) + δ − ε)− v
(
y (θt) + δ

θt

)
. (11)

A necessary first order condition for this problem is:

u′(b(θt) + y(θt) + δ∗(ε|θt)− ε) ≤ v′
(
y (θt) + δ∗(ε|θt)

θt

)
1

θt
. (12)

If ε = 0, the solution for the above problem is δ∗(0|θt) > 0 given that (53) holds. From

the Theorem of the Maximum, the solution δ∗(ε) is continuous on ε. Fix ε1 > 0 such that

|δ∗(0)− 0| > ε1. There exists ε2 > 0 such that if |ε− 0| < ε2 then |δ∗(ε)− δ∗(0)| < ε1. Let ε
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be such that 0 < ε < ε2.

An entrant offering this contract makes strictly positive profits, proportional to ε, and

the agent is strictly better off given that his utility is higher in some history with positive

probability. This contract is always profitable for the entrant even if other type θ̃t accepts

the deviating contract. The only way to deter this deviation is to have some latent contract

that makes no agent willing to choose it. However, if such a contract existed, it would have

been chosen in the original equilibrium, contradicting the fact that it is a latent contract.

When contracts are exclusive, the provision of incentives imply that agents are savings

constrained. The following lemma shows that this fails under non-exclusivity.

Lemma 2. In any equilibrium for every θt ∈ Θt, for all t, the following holds:

u′(ct(θ
t)) =

β

q

∑
θt+1

u′(ct+1(θt+1))π(θt+1), (13)

where ct(θ
t) =

∑I
i=1 (bit(θ

t) + yit(θ
t)).

Proof. In appendix B.

The intuition for the result is the following. If the equilibrium allocation does not satisfy

the Euler equation, an entrant firm can offer a savings (borrowing) contract at time t with

an implicit interest rate lower (higher) than the marginal rate of transformation. As long as

this contract is accepted, the entrant makes strictly positive profits and such contract can

be constructed in a way that provides higher utility to the agent.

In the next proposition, we show that in equilibrium the marginal rate of substitution

(MRS) between consumption and leisure is equated to the marginal productivity for every

history and also that the lifetime transfer received under any history is equal to zero, so that

there is no cross-subsidization between types.

Proposition 3. In any equilibrium the following two conditions hold:
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1. Zero net present value of transfers:

T∑
t=1

(
1

q

)1−t

bt(θ
t) = 0 ∀ θT ∈ ΘT . (14)

2. MRS equal to marginal productivity:

u′(b(θt) + y(θt)) = v′
(
y (θt)

θt

)
1

θt
∀ θt, t. (15)

Proof. In appendix B.

So far we characterized three necessary properties of the equilibrium allocation: (13),

(14), and (15). In subsection 3.3, we show that there is a unique allocation that satisfies

these conditions, which we denote by {b̂, ŷ} = {(b(θt), y(θt))Tt=1 θt ∈ Θt}. The next propo-

sition shows that an equilibrium exists by determining strategies of the firms (menus) that

sustain this allocation as an equilibrium. A crucial element of the proof is that the equi-

librium strategies must contain latent menus. These menus are similar to the ones derived

in the characterization of equilibrium to show that any contract other than self-insurance is

unprofitable.

Proposition 4. Allocation {b̂, ŷ} is the unique equilibrium allocation of a menu game.

Proof. We construct strategies of the firms and the agents that sustain allocation {b̂, ŷ} as

an equilibrium. Let firm i ∈ {1, 2} offer the following menus:

Ĉi
1 =

{
(bi1, y

i
1) : bi1 ∈ R, yi1 ∈ R+| u′

(
bi1 + yi1

)
=

1

θ
v′
(
yi1
θ

)
∀θ ∈ Θ

}
,

Ĉi
T (bi,T−1, yi,T−1) =

{
(biT , y

i
T ) : biT = 0, yiT ∈ R+| u′

(
−1

q
biT−1 + yiT

)
=

1

θ
v′
(
yiT
θ

)
∀θ ∈ Θ

}
,

and for periods t = 2, . . . , T − 1:

Ĉi
t(b

i,t−1, yi,t−1) =

{
(bit, y

i
t) : bit ∈ R, yit ∈ R+| u′

(
−1

q
bit−1 + bit + yit

)
=

1

θ
v′
(
yit
θ

)
∀θ ∈ Θ

}
.
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These firms also offer the following latent menus:

Dynamic Contract: for all t = 1, . . . , T

Ci,D
t (bi,t−1, yi,t−1) =

{
(bit, y

i
t) : bit ∈ R, yit = 0|bit = −1

q
bit−1 + x, x ∈ R

}
, biT = bi0 = 0

Static Contract: for all t = 1, . . . , T

Ci,S
t = {(0, δ) : δ ∈ R+}

Remaining firms i ∈ {3, . . . , I} offer the null contract. Given these menus, the agents

choose at time zero menu Ĉi from one of the two firms. We derive the agents’ choices

by backward induction. At time T , an agent with history (θT−1, θT ) and past choices

(b̃(θT−1), ỹ(θT−1)) chooses from menu Ci
T (b̃i(θT−1), ỹi(θT−1)) the allocation (b̃i(θT ), ỹi(θT ))

such that u′
(
−1
q
b̃i(θT−1) + ỹi(θT )

)
= 1

θT
v′
(
ỹi(θT )
θT

)
. For time t ∈ {1, ..., T − 1}, an agent

with history θt and past choices (b̃i(θt−1), ỹi(θt−1)) chooses from menu Ci
t(b̃

i(θt−1), ỹi(θt−1))

allocation (b̃i(θt), ỹi(θt)) such that

u′
(
−1

q
b̃i(θt−1) + b̃i(θt) + ỹi(θt)

)
=

β

q
Et

[
u′
(
−1

q
b̃i(θt) + b̃i(θt+1) + ỹi(θt+1)

)]
, (16)

u′
(
−1

q
b̃i(θt−1) + b̃i(θt) + ỹi(θt)

)
=

1

θt
v′
(
ỹi(θt))

θt

)
. (17)

Given agents’ choices, firm i’s profit is
∑T

t=1

∑
θt q

tb̃i(θt) = 0.

We next show that such strategies constitute an equilibrium by showing that there are no

profitable deviations by firms. In particular, the latent contracts Ci,S and Ci,D are sufficient

to deter any potential deviations.22

As a first step, we show that is not profitable for any firm to offer a contract that specifies

only intertemporal transfers (without any output requirements). Suppose firm j 6= 1, 2

offers a menu Cj containing sequences of transfers {bt}Tt=1. For each feasible sequence in

22Note that only offering menus Ĉi is not an equilibrium since either an incumbent or an entrant will
deviate, offering profitable welfare increasing menu, in the shape of a contingent contract. As an example,
consider the following profitable deviation (motivated by Abraham and Pavoni (2005)). Let {b̃(b−1), ỹ(b−1)}
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this menu,23 define the net present values of a sequence by: NPV ({bt}Tt=1) =
∑T

t=1
1

q1−t
bt.

The menu Cj is chosen by agents and is profitable only if contains at least one feasible

sequence with NPV > 0 and one with NPV < 0.24 Denote by {b̃t}Tt=1 the feasible transfer

with highest NPV. In the presence of menu CD, all agents choose this sequence, implying

that the entrant makes negative profits. Suppose not: there is an agent with history θT

that chooses a sequence {bt}Tt=1 6= {b̃t}Tt=1. This agent is better-off by choosing the sequence

{b̃t}Tt=1 and the following strategy in the menu CD: δt = bt − b̃t. This strategy enables him

to replicate his original allocation and have extra resources, since the net present value of

{δt}Tt=1 is negative:

δ0 =
T∑
t=1

1

q1−t bt −
T∑
t=1

1

q1−t b̃t < 0.

These additional resources can be used to increase consumption in any period, making the

agent better-off.

The next step is to rule out contracts that offer jointly consumption transfers and output

requirements. In appendix C we show that, in the last period, a contract that specifies

be the solution to the following problem:

Ũ(b−1) = max
b,y

∑
θ

π(θ)
[
u(b(θ) + y(θ))− 1

θ
v

(
y(θ)
θ

)]
, (18)

s.t. u(b(θ) + y(θ))− 1
θ
v

(
y(θ)
θ

)
≥ u(b(θ̂) + y(θ̂))− 1

θ
v

(
y(θ̂)
θ

)
,∑

θ

π(θ)b(θ) = b−1.

Note that Ũ(b−1) is strictly larger than the utility of autarky with b−1 additional (possibly negative) re-
sources. The firm can deviate from the set of menus Ci defined above by substituting the T − 1 menu with
the original time T menu, and by replacing the time T menu with

C̃T (bi,T−1, yi,T−1) =
{
{b̃(biT−1 − ε), ỹ(biT−1 − ε)}| solves (18)and ε > 0

}
,

For a sufficiently small ε, the agent prefers this contract to the original, and in addition, this deviation
provides additional ε

q1−T profits.
23A sequence {bt}Tt=1 is feasible if bt ∈ Cjt (bt−1)∀bt, t.
24If all sequences have NPV=0, the menu is not chosen, since the equilibrium allocation {b̂, ŷ} is the

allocation that maximizes agents’ welfare with no redistribution. Similarly, if all transfers are negative, the
menu is also not chosen, while if all transfer have NPV > 0 the firm makes a loss.
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transfers from productive to unproductive is unprofitable and any contract that implies

redistribution from unproductive to more productive agents reduces agents’ welfare with

respect to the equilibrium allocation. Thus, in the last period, a firm can only provide a

contract with no redistribution.25

For the dynamic case we focus on a two period example with two values of productivity

shock, θH > θL. If the firm provides negative redistribution at time 1, given appendix C, the

contract will not be chosen at time zero. The remaining alternative is to provide, at time 1,

some redistribution from the productive to the unproductive agent. To do this, a firm must

offer transfers with higher net present value together with higher output requirement. If not,

the productive agent deviates, using both Ci,D and Ci,S, replicating his original allocation

and receiving transfers with higher NPV. Suppose now that at time 1, the θH agent receives

transfers equal to b1−∆ while θL agent receives b1 +∆ (with ∆ > 0). The best case for both

agents is to receive transfers at time 2 that does not depend on the realization of the type in

that period. Thus we can write transfers for the high type as b2,H and for the low type b2,L.

These transfers are such that b1−∆+qb2,H > b1 +∆+qb2,L. This implies that a lower rate of

return is charged to low productivity agents relative to high productivity agents. Since the

low agent has lower consumption, this interest rate differential is welfare decreasing. Hence

the benefits to the high agent are offset by the utility loss of the low agent. And, from an

ex-ante perspective, the agent is better-off choosing the original equilibrium.

Finally for {b̂, ŷ} to be sustained as an equilibrium allocation, at least two firms must

offer the equilibrium and the latent contracts. If not, the unique firm active in equilibrium

will re-optimize, and offer a contract that implies some redistribution (as the example in

footnote 22) since no latent contract is preventing such deviation.

Summarizing, the allocation {b̂, ŷ} can be sustained in equilibrium by at least two in-

cumbents simultaneously offering the menu Ĉi and the latent contracts Ci,S, and Ci,D. This

is necessary to prevent deviations by any firm to a more profitable and ex ante welfare

25In a static environment this completes the proof since it rules out the existence of a contract that is, at
the same time, profitable and preferred by the agents.
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improving contract that features redistribution. This result highlights the importance of

allowing firms to offer latent contracts. If offering such contracts were not allowed, as in

direct mechanisms, equilibrium would fail to exist in this environment.

3.3 Equivalence to Self-Insurance

In the previous propositions we showed that the equilibrium allocation satisfies a standard

Euler equation, the marginal rate of substitution between consumption and leisure is equated

to marginal productivity in every period, and the net present value of transfers received under

any history is equal to zero (there is no redistribution). These equilibrium conditions are

the same optimality conditions in a decentralized economy in which agents can borrow and

save at rate R = 1/q.

Let {c∗, y∗} = {c∗(θt), y∗(θt)}Tt=1 be the solution to the following problem:

max
c,y≥0

T∑
t=1

∑
θt

βt−1π
(
θt
) [
u
(
c(θt)

)
− v

(
y(θt)

θt

)]
(19)

s.t.
T∑
t=1

c(θt)− y(θt)

R1−t = 0, ∀θT ,

where R is taken as given.

Proposition 5. Let {b̂, ŷ} = {b̂(θt), ŷ(θt)}Tt=1 be the equilibrium allocation of a menu game.

Let the agents’ consumption be ĉ(θt) = b̂(θt) + ŷ(θt) for all θt and for all t. If R = 1/q,

c∗(θt) = ĉ(θt) and y∗(θt) = ŷ(θt) for all θt and for all t.

Proof. The first order conditions of (19) are:

u′(c(θt)) = βR
∑
θt+1

u′(c(θt+1))π(θt+1), (20)

u′(c(θt)) =
1

θt
v′
(
y(θt)

θt

)
, (21)

T∑
t=1

c(θt)− y(θt)

R1−t = 0, ∀θT . (22)
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A solution to (19) exists. Also, the maximization problem (19) has a strictly concave objec-

tive function and the constraint set is convex; hence, the first order conditions are necessary

and sufficient for the optimum and the optimum is unique.

The previous proposition summarizes how non-exclusivity and non-observability of con-

tracts limit the ability to provide insurance and also the contracts that are offered in equi-

librium. Our environment with firms interacting strategically and being allowed to offer any

type of contracts, in equilibrium, is equivalent to an environment with competitive firms

offering linear contracts with no redistribution. A immediate implication of the proposition

is that the equilibrium is unique in terms of allocation.

Corollary 1. There is a unique equilibrium allocation of a menu game.

4 Endogenous Insurance and Quantitative Analysis

In this section, we derive a simple testable model that endogenously generates heterogeneous

insurance regimes. To do this, we relax the assumption on observability of the contracts. As

in a costly state verification model, we give firms the option of paying a fixed cost, γ ≥ 0, to

monitor all the transactions an agent engages in.26 We assume that agents are heterogeneous

with respect to the probability distribution of the productivity shock. There are two groups

of agents: the first group draws the productivity shock from a low mean distribution, while

the second draws from a distribution with higher mean. We show that in this modified

environment, different groups of agents will have access to different insurance possibilities.

Using US survey data, we show that this extension can rationalize the coexistence of multiple

insurance regimes observed in the data.

26Note that costly state verification models as in Townsend (1979) allow, upon paying the cost, the
realization of uncertainty to be observable. Here we keep the realization of uncertainty private but allow the
contracts an agent sign to be observable.
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4.1 Monitoring Costs

At time 0 (and only at time 0), before offering a set of contracts to an agent of type j ∈ {1, 2},

each firm chooses between the following two options: pay a cost γ to observe all the contracts

an agent engages in, and choose which contract to offer under full observability; or not pay the

cost and offer the most profitable contract under non-exclusivity. Agents are heterogeneous

with respect to the probability distribution of the productivity shock. A fraction of agents

(“low mean agents”) draws, at every time t, a shock θt ∈ Θ, distributed according to π(·)

while the a fraction of agents (“high mean” agents) draws the productivity shock λθt, where

θt ∈ Θ, distributed according to π(·) and λ > 1. Let θ̄ and λθ̄ be the average productivity of,

respectively, low and high mean agents. Whether an agent is a low or high mean is publicly

known by all the firms. For each group of agents, a firm decides whether to pay or not the

monitoring cost and which contracts to offer in each case.

If a firm monitors an agent, the environment is equivalent to the one described in Prescott

and Townsend (1984). We refer to optimal contract in this case as the “exclusive contract”.

If the monitoring cost is not paid, the environment is the one studied in previous sections

of this paper. From Proposition 5, this environment is equivalent in terms of allocation to

a self-insurance economy, in which agents can borrow and save at fixed rate R and are paid

wages equal to marginal productivity. We refer to the optimal contract in this case as the

“non-exclusive” contract.

To determine which contract each group of agent will have access to, for a given value

of monitoring cost γ, firms compare the lifetime utility delivered under exclusive and non-

exclusive contracts. This means that a firm finds profitable to pay the cost and offer the

exclusive contract if agent’s utility is higher in this case. If firms do not find it profitable to

pay the cost, an agent will receive the lifetime level of utility associated with non-exclusive

contracts. We show that, under a particular assumption on the utility function, there exists

a level of the monitoring cost such that low mean agents have access to the non-exclusive

contract, whereas high mean agents have access to the exclusive contracts. In appendix D,

we show that if γ = 0, the exclusive contract is always preferred over the non-exclusive, since
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is cheaper to provide a given level of lifetime utility under exclusive contracts. For analytical

convenience, we assume the following utility specification.

Assumption 1. u (c) = log c; v(l) = −a log(1− l).

The zero profits level of lifetime utility (w̄NE (·)) is defined as:

w̄NE
(
xθ̄
)

= max
c,y

T∑
t=1

∑
xθt∈xΘ

βt−1π(θt)

[
u
(
c(θt)

)
− v

(
y(θt)

xθt

)]
(23)

∑
t

[
c(θt)− y(θt)

R1−t

]
= 0, ∀θT ,

where the argument x = 1, λ refers to the agents’ productivity distribution.

Similarly for the exclusive contracts, define wE (·|γ) as follows. Note that for the exclusive

contracts, the lifetime utility level that delivers zero profits also depends on the monitoring

cost.

wE
(
xθ̄|γ

)
= max

c,y

T∑
t=1

∑
xθt∈xΘ

βt−1π(θt)

[
u
(
c(θt)

)
− v

(
y(θt)

xθt

)]
(24)

∑
θt,t

βt−1π(θt)

[
u
(
c(θt)

)
− v

(
y(θt)

xθt

)]
≥
∑
θt,t

βt−1π(θt)

[
u
(
c(θ̃t)

)
− v

(
y(θ̃t)

xθt

)]
∀θ̃t

∑
t

[
c(θt)− y(θt)

qt−1

]
= γ, ∀θT . (25)

The following proposition states that there exists a value for the monitoring cost so that

different agents have access to different insurance contracts.

Proposition 6. There exists γ∗ > 0 such that:

w̄NE
(
θ̄
)

= wE
(
θ̄|γ∗

)
w̄NE

(
λθ̄
)

< wE
(
λθ̄|γ∗

)
Proof. In appendix D.
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The steps to show the result are the following. We first show that, under non-exclusive

contract, indirect lifetime utility of high mean agents is proportional to the lifetime utility

of low mean agents (by a factor proportional to λ). The assumption on the utility function

is crucial to show this result. Second, we show that, under exclusive contracts, the lifetime

utility is scaled by a factor larger than λ. This implies that, for a given λ, there is a

value of the monitoring cost so that the firms can promise a higher lifetime utility under

the exclusive contract than under the non-exclusive. The same result can also be proved

if u (c, l) =
(cαl1−α)

1−σ

1−σ . The general CRRA case, with u (c, l) = c1−σ

1−σ + a l
1−σl
1−σl

, is verified

numerically.27

4.2 Quantitative Implications

So far we showed that our extended model implies that different groups of agents have access

to different insurance contracts. This implies that, along some dimensions, the allocations

is characterized by a different set of equilibrium conditions. To test the implications of the

model, we use US household survey data and divide the population by education attainment:

those with less than a college degree and those who completed college or more. We estimate

for each of the groups two implications of the model: an intertemporal optimality condition

on consumption and an intratemporal condition on consumption and leisure. We consider the

education level a proxy for a worker’s average productivity and according to our model, agents

with higher average productivity (college graduates) satisfy the optimality conditions of the

exclusive contracts, while agents with lower average productivity (high school graduates)

satisfy the optimality conditions of non-exclusive contracts.

Data

We use the Krueger and Perri Consumer Expenditure Survey (CEX) dataset for the period

27Another way to endogenously divide the population in two different insurance regimes is to assume
agents are heterogenous with respect to the monitoring cost γ. In this case, we show that there exists a
cutoff value γ∗ such that if agents have cost γ, with 0 < γ ≤ γ∗, they have access to the exclusive contract
and receive lifetime utility w(γ). While agents with cost γ, with γ > γ∗, have access to the non-exclusive
contract, receiving lifetime utility w̄NE .
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1980 to 2003 and divide the population by the education level of the reference person. To

abstract from college and retirement decisions, we restrict our sample to households with

the reference person age is between 25 and 55.28 We only consider reference person who

worked more than 520 hours and less than 5096 hours per year and with positive labor

income. We exclude households with wage less than half of the minimum wage in any given

year and households who responded to all four interviews and with no missing consumption

data. Table 8 (appendix E) describes the number of households in each stage of the sample

selection. All the nominal data are deflated using the consumer price index calculated by

the Bureau of Labor Statistics with base 1982-84=100.29 In Table 9 (appendix E) we present

some descriptive statistics of the sample considered. All the earnings variables and hours

refer to the reference person, while the expenditure variables are total household expenditure

per adult equivalent.30 The consumption measure used includes the sum of expenditures on

nondurable consumption goods, services, and small durable goods, plus the imputed services

from housing and vehicles, as calculate by Krueger and Perri (2006).

Intertemporal Optimality Conditions

The first implication we test is an intertemporal optimality condition regarding the evolution

of consumption. We showed that if agents have access to exclusive contracts, the consumption

allocation satisfies the following inverse Euler equation:

1

u′ (ct (θt))

β

q
= Et

[
1

u′ (ct+1 (θt+1))

]
. (26)

On the other hand, if agents have access to non-exclusive contracts, the allocation must

satisfy the following standard Euler equation:

u′
(
ct
(
θt
))

=
β

q
Et
[
u′
(
ct+1

(
θt+1

))]
. (27)

28By stopping at age 55 we also minimize the disconnection between consumption expenditure and actual
consumption (due to the progressive larger use of leisure in both preparation and shopping time) highlighted
in Aguiar and Hurst (2005).

29For a more detailed description of the data and sample selection, refer to Ales and Maziero (2008).
30We use the Census definition of adult equivalent.
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Assuming u(c) = c1−σ

1−σ , these equations imply, respectively:

ct(θ
t)σ
β

q
= Et

[
ct+1(θt+1)σ

]
, (28)

ct(θ
t)−σ =

β

q
Et
[
ct+1(θt+1)−σ

]
. (29)

These two equations can be nested in the following:

ct(θ
t)b
(
β

q

) b
|b|

= Et
[
ct+1(θt+1)b

]
. (30)

If the inverse Euler equation (28) holds, then b > 0, whereas if the standard Euler equation

(29) holds, b < 0. Taking expectation of (30) at time t, we get

∑
θt+1

π(θt+1)

ct(θt)b(β
q

) b
|b|

− ct+1(θt+1)b

 = 0, ∀θt. (31)

For a given education group, we test whether the intertemporal consumption decision is

compatible with exclusive or non-exclusive contracts by estimating the parameter b in (31).

If, for an education group, the value of b is negative, the consumption of these agents is

consistent with the predictions of (23). If the estimation of b has a positive value, it implies

that agents’ consumption satisfies the implications of (24). Our theory predicts that for

more educated individuals the value of b is positive. The analysis here closely follows Ligon

(1998) and Kocherlakota and Pistaferri (2008).31

Estimation Procedure and Results

A typical household is on the sample for a total period of four quarters. For the estima-

tion, we construct sample averages as follows. Denote by ci,t the consumption for household

i in the quarter that ends with month t, and let Nt be the number of observations available

31In particular, Ligon (1998) tests whether the standard Euler or inverse Euler condition better describes
the consumption behavior for three Indian villages. His results indicate that two out of three village provides
evidence for the inverse Euler equation.
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at time t. We de-seasonalize consumption with dummies corresponding to the month the

household was interviewed. The sample analog of equation (31) is:

g (b) =
1

T

T∑
t=3

(β
q

) b
|b|

1

Nt−3

Nt−3∑
i=1

cbi,t−3 −
1

Nt

Nt∑
i=1

cbi,t

 . (32)

As shown by Kocherlakota and Pistaferri (2008), this sample analog is still valid in the

presence of multiplicative classical measurement error in the consumption data.

The main disadvantage of this sample analog is that, by taking means over the population,

it does not take into account individual changes on consumption over time. An alternative

valid sample analog is the following:

g̃ (b) =
1

T

T∑
t=3

(β
q

) b
|b|

1

Nt

Nt∑
i=1

(
ci,t−3

ci,t

)b (33)

where in this equation Nt is the total number of households with consumption data for

time t and t− 3. The estimation of this equation, in the presence of multiplicative classical

measurement error in consumption, implies inconsistent estimation of the parameter β. A

standard approach in the literature is to estimate the log-linearized version of this sample

analog.32 Simple algebra shows that the log-linearized versions of equations (26) and (27)

result in the same log-linearized equation. This means that this procedure cannot be used

to test whether the consumption of a group of household satisfy (26) or (27).

In table 1 we report the estimation of parameter b for the two education groups, assuming

β
q

= 1. We estimate the parameter b in (32) using non-linear generalized method of moments.

We find that for college graduates b = 0.855, which is consistent with exclusive contracts.

While for individuals with education less than college the estimation indicates b = −1.128,

which corresponds to consumption evolving as predicted by non-exclusive contracts. Note

that for agents with education less than college we reject that b is positive, while for college

graduates we cannot reject a negative value for b.

32See Attanasio and Low (2004) and Ludvigson and Paxson (2001).
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Table 1: Estimation results for risk aversion

Education Group

Consumption Less than College College All Sample

Baseline de-seasonalized -1.128 0.855 -1.030

(0.459) (0.716) (0.728)

Baseline truncated* -1.128 0.864 -1.030

(0.458) (0.726) (0.728)

Estimation results for risk aversion from (31). A positive solution denotes the coefficient of risk aversion
consistent with the household’s decision under the constrained efficient contract, while a negative solution
denotes the estimated risk aversion consistent with the group being under a borrowing and saving contract.
*We drop households with consumption changes bigger than 5 times in absolute value.

As a robustness check, we perform the same estimation by dividing the population into

four education groups: those with less than a high school education, those who completed

high school, those with some college, and those who completed college or more. The results

are reported in table 2 and are consistent with the previous one: for individuals with edu-

cation less than college the estimated value of b is negative, while for college graduates, this

value is positive.

Another robustness check performed is to estimate the moment condition for all the

Table 2: Estimation results for risk aversion: multiple education groups

Education Group

Consumption Less than HS HS Less than College College

Baseline de-seasonalized -0.773 -1.346 -0.962 0.855

(0.355) (0.415) (0.865) (0.716)

Baseline truncated -0.774 -1.348 -0.962 0.864

(0.355) (0.414) (0.864) (0.726)
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Table 3: Estimation results for risk aversion

Education Group

Consumption Less than College College All Sample

Baseline de-seasonalized -0.970 1.157 -0.898

(0.206) (0.467) (0.341)

Baseline truncated -1.00 1.155 -0.904

(0.210) (0.486) (0.360)

Estimation results for risk aversion from (31) with households who answered at least one interview.

Table 4: Estimation results for risk aversion

Education Group

Consumption Less than College College All Sample

Baseline instrumented -0.972 1.167 -0.890

(0.213) (0.450) (0.365)

Estimation results for risk aversion from (31) using previous period interest rate as instrument.

households that have answered at least one of the interviews, not only for the households

who have answered the four interviews. The results are reported in table 3 and are consistent

with the results for the baseline sample. For both groups, the estimation of the coefficient

of risk aversion is bigger than in the benchmark case and the standard errors are smaller.

In this case, for both education groups, we can reject the value of b being the sign than the

estimated.

We also perform our benchmark estimation by using the previous period interest rate as

an instrument. The results are displayed in table 4 and are consistent with the benchmark

results.

Intratemporal distortions
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The second tested implication of the model regards the joint consumption and leisure decision

at a given time. Define, for an individual j, the intratemporal labor distortion as

τ jcl(t) =
1

θjt

v′(
yjt
θjt

)

u′(cjt)
(34)

As shown in Ales and Maziero (2008), if contracts are exclusive, an individual faces an

increasing average value of τcl over the course of his working life. This result relies on the

age dependent provision of incentives. As workers age (and the termination of the optimal

contract gets closer) it is optimal to progressively provide more incentives using current

promises of consumption and leisure (thus distorting more the static consumption-leisure

condition) rather than promises of future consumption and leisure.

On the other hand, as proved in the previous section, if agents have access to non-exclusive

contracts, τcl(t) is constant over age, since in this case the MRS is always equated to agent’s

marginal productivity. Hence evaluating how this distortion evolves over the working life

provides another testable implication of the model.

Estimation Procedure and Results

Using the following utility function u (c, l) =
(cαl1−α)

1−σ

1−σ , equation (34) is:

τ jcl(t) = 1− 1− α
α

1

θjt

cjt

L− ljt
, (35)

The main advantage of using this utility is that the intratemporal distortion is not affected

by the risk aversion parameter and α does not affect the behavior of τcl(t) over time.

To estimate the dependence of τcl on age, we regress its value on age. We run the

regression on the standardized values of all variables.33 We calculate the labor distortion

as follows. We use as proxy for a worker’s marginal productivity the imputed hourly wage,

which is calculated dividing the total labor income by the total number of hours in a year

For the measure of consumption, cjt we use total consumption expenditure, ljt is the yearly

33Precisely: τ jcl(age) = τ̄cl + δ ∗ age+ εjage.
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Table 5: Intra temporal distortion: singles

Education Group

δ Less than College College

OLS 0.011 (0.008) 0.016 (0.009)

Robust Regression -0.0018 (0.005) 0.021(0.005)

t-statistic -0.36 3.93

hours worked, and L is the feasible amount of yearly working hours, set at 5200. To abstract

from changes in family composition, we restrict the sample to individuals who are single.34

The results of this estimation are displayed in table 5. To control for heteroscedasticity and

outliers, we estimate δ using a robust regression and for completeness we also report the OLS

estimation. The coefficient on age for the entire sample is positive, as highlighted in Ales

and Maziero (2008). We find that a zero coefficient (implying independence over age) cannot

be rejected for individuals with education less than college, whereas for college graduates

the value of the coefficient is positive and significant, indicating that the labor distortion

increases with age.

We also estimate (34) for a specification of the utility function that is separable on

consumption and leisure. We assume u(c) = c1−σ

1−σ and v(l) = l1−σL
1−σL

with σL = 2. Table

6 shows the results using for the coefficient of risk aversion the estimation of the Euler

equation.35 The result is the same as in the non-separable case: for less educated individuals,

the coefficient on age is not significantly different than zero, while for college graduates this

coefficient is positive. As a robustness check, we also calculate the labor distortion including

married individuals in the sample. In this case, we consider as measure of consumption the

total household consumption. For the labor variables, we assume that leisure for the husband

and the wife are perfect substitutes and use total household earnings and hours to compute

34In our baseline sample the single individuals represent 18% of the population.
35We also estimate the equation for different values of risk version, within the range estimated in the

literature, and the result is qualitatively unchanged.
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Table 6: Intra temporal distortion: singles

Education Group

δ Less than College College

OLS 0.011 (0.008) 0.016 (0.009)

Robust Regression -0.0078 (0.005) 0.05(0.006)

t-statistic -1.44 7.28

Intra temporal distortion by age and education group for singles using estimates for risk aversion derived
from the estimation of the Euler equation.

Table 7: Intra temporal distortion: couples

Education Group

δ Less than College College

OLS -0.0007 (0.0003) 0.0003 (0.0005)

Robust Regression -0.0004 (0.0002) 0.0011 (0.0003)

t-statistic -1.76 3.59

Intra temporal distortion by age and education for household containing two adults.

the distortion. Due to data limitation,36 we restrict the sample to households with two or

less adults, the reference person and the spouse. In this case, the results are also consistent

with our benchmark estimation, as reported in table 7.

5 Conclusion

In this paper, we study a decentralized environment when firms compete for the provision

of insurance. We focus on how the presence of non-exclusive trades endogenously limits the

contracts offered, and consequently the amount of insurance implemented. We consider an

36The CEX records hours and earnings for the reference person and the spouse.
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environment in which consumers are privately informed about their skill shocks that evolve

over time and can sign non-observable contracts with insurance providers. Our main results

are that competition reduces the amount of insurance provided, the equilibrium is equivalent

to a self-insurance economy, and only linear contracts are offered. Also, in equilibrium there

is no redistribution.

To derive testable implications of the model, we extend the model and relax the assump-

tion on the observability of contracts: firms can pay a cost to observe all the contracts an

agent signs. Assuming agents are heterogeneous with respect to this cost, we find that agents

with lower monitoring costs have access to the constrained efficient contract, while agents

with higher monitoring costs have access to contracts that implement the self-insurance al-

location. This implies that the first group of agents attains a higher level of lifetime utility.

Considering education as a proxy for lifetime utility, we test the different intertemporal and

intratemporal implications of this model using US data. We find that agents with a high

level of education satisfy the optimality conditions of the constrained efficient model while

the consumption and hours of agents with less education evolve according to the borrowing-

savings economy.

References

Abraham, A., and N. Pavoni (2005): “The Efficient Allocation of Consumption under

Moral Hazard and Hidden Access to the Credit Market,” Journal of the European Eco-

nomic Association, 3(2-3), 370–381.

Aguiar, M., and E. Hurst (2005): “Consumption versus Expenditure,” Journal of Po-

litical Economy, 113(5), 919–948.

Albanesi, S. (2008): “Social Insurance,” in The New Palgrave Dictionary of Economics,

ed. by S. N. Durlauf, and L. E. Blume. Palgrave Macmillan.

36



Albanesi, S., and C. Sleet (2006): “Dynamic Optimal Taxation with Private Informa-

tion,” Review of Economic Studies, 73(1), 1–30.

Ales, L., and P. Maziero (2008): “Accounting for Private Information,” Minneapolis

Fed Working Paper 663.

Allen, F. (1985): “Repeated Principal-Agent Relationships with Lending and Borrowing,”

Economic Letters, 17(1-2), 27–31.

Arnott, R., and J. Stiglitz (1991): “Equilibrium in Competitive Insurance Markets

with Moral Hazard,” NBER Working Paper, 3588.

Attanasio, O., and H. Low (2004): “Estimating Euler Equations,” Review of Economic

Dynamics, 7(2), 405–435.

Bisin, A., and D. Guaitoli (2004): “Moral Hazard and Non-Exclusive Contracts,” Rand

Journal of Economics, 35(2), 306–328.

Cole, H., and N. Kocherlakota (2001): “Efficient Allocations with Hidden Income and

Hidden Storage,” The Review of Economic Studies, 68(3), 523–542.

Epstein, L., and M. Peters (1999): “A Revelation Principle for Competing Mechanisms,”

Journal of Economic Theory, 88(1), 119–160.

Golosov, M., N. Kocherlakota, and A. Tsyvinski (2003): “Optimal Indirect and

Capital Taxation,” Review of Economic Studies, 70(3), 569–587.

Golosov, M., and A. Tsyvinski (2007): “Optimal Taxation With Endogenous Insurance

Markets*,” The Quarterly Journal of Economics, 122(2), 487–534.

Golosov, M., A. Tsyvinski, and I. Werning (2006): “New Dynamic Public Finance:

A Users Guide,” NBER Macroeconomics Annual, 21, 317–363.

Hammond, P. (1987): “Markets as Constraints: Multilateral Incentive Compatibility in

Continuum Economies,” Review of Economic Studies, 54, 399–412.

37



Kocherlakota, N. (2006): “Advances in Dynamic Optimal Taxation,” Econometric So-

ciety Monographs, 41, 269.

Kocherlakota, N., and L. Pistaferri (2008): “Household Heterogeneity and As-

set Trade: Resolving the Equity Premium Puzzle in Three Countries,” Unpublished

Manuscript, University of Minnesota.

Krueger, D., and F. Perri (2006): “Does Income Inequality Lead to Consumption

Inequality? Evidence and Theory 1,” Review of Economic Studies, 73(1), 163–193.

Ligon, E. (1998): “Risk Sharing and Information in Village Economies,” The Review of

Economic Studies, 65(4), 847–864.

Ludvigson, S., and C. Paxson (2001): “Approximation bias in linearized Euler equa-

tions,” Review of Economics and Statistics, 83(2), 242–256.

Martimort, D., and L. Stole (2002): “The Revelation and Delegation Principles in

Common Agency Games,” Econometrica, 70(4), 1659–1673.

Mirrlees, J. (1971): “An Exploration in the Theory of Optimum Income Taxation,”

Review of Economic Studies, 38(114), 175–208.

Paxson, C., and N. Sicherman (1994): “The Dynamics of Dual-Job Holding and Job

Mobility,” NBER Working Paper W4968.

Peters, M. (2001): “Common Agency and the Revelation Principle,” Econometrica, 69(5),

1349–1372.

Prescott, E., and R. Townsend (1984): “Pareto Optima and Competitive Equilibria

with Adverse Selection and Moral Hazard,” Econometrica, 52(1), 21–45.

Rogerson, W. (1985): “Repeated Moral Hazard,” Econometrica, 53(1), 69–76.

Townsend, R. (1979): “Optimal Contracts and Competitive Markets with Costly State

Verification,” Journal of Economic Theory, 21(2), 265–293.

38



(1995): “Financial Systems in Northern Thai Villages,” Quarterly Journal of Eco-

nomics, 110, 1011–1011.

39



A Proofs of Section 2

Proof of Proposition 1

Proof. The proof is by construction. Starting from the equilibrium strategies of a general
communication game, we construct strategies for a menu game and show that these strategies
constitute an equilibrium.

Define as in (2) and (5) respectively the menus and the collection of menus that are
compatible with message spaces (M,R). Define the strategy of firm i in this menu game as:

Ĉi = {Ci ⊆ Ci
(
Gi
)
|Gi = Im(φi,∗)}. (36)

The collection of menus Ĉi contains all the subsets of the allocation space that are consistent
with the collection of allocation functions in the original equilibrium. Agents’ strategies are
defined as follows.

Ĉi = {Ĉi
t ∈ Ĉi : Ĉi

t = Im(gi,∗t |mi,t−1,∗) and gi,∗t = φi,∗(ri,∗)}

(b̂i(θt), ŷi(θt)) = gi,∗t (mi,t,∗(θt)).

Note that by construction Ĉi
t ∈ Ĉi and (b̂i(θt), ŷi(θt)) ∈ Ĉi

t , ∀θt, ∀t. The menu Ĉi
t is the

subset of allocation space, R2, that corresponds to the allocation function chosen by the
agent in the original equilibrium. Also (b̂i, ŷi) corresponds to allocation determined by the
allocation function given the equilibrium message sent by each type θt. If agents and firms
follow these strategies, the equilibrium allocation in the menu game is the same as in the
original equilibrium.

First let’s show that the agents’ strategies are an equilibrium. Suppose that at some time
t, for some firm i ∃ (bit, y

i
t) ∈ Ĉi

t such that:

u

(
I∑
i=1

(bit + yit)

)
− v

(∑I
i=1 y

i
t

θt

)
+ β

∑
θt+1

π(θt+1)Ut+1

(
b̂t−1, bt, ŷ

t−1, yt, θt+1|Ĉ
)
>

u

(
I∑
i=1

(b̂it + ŷit)

)
− v

(∑I
i=1 ŷ

i
t

θt

)
+ β

∑
θt+1

π(θt+1)Ut+1

(
b̂t, ŷt, θt+1|Ĉ

)
.

Since (bit, y
i
t) ∈ Ĉi

t , there exists mi
t ∈ Mi

t such that (bit, y
i
t) = gi,∗t (mi,t). Replacing in the

agents’ payoff:

u

(
I∑
i=1

(
bi(mi,t) + y(mi,t)

))
− v

(∑I
i=1 y(mi,t)

θt

)
+ β

∑
θt+1

π(θt+1)Ut+1

(
mt, θt+1|g∗

)
>

u

(
I∑
i=1

(
bi(mi,t,∗) + y(mi,t,∗)

))
− v

(∑I
i=1 y(mi,t,∗)

θt

)
+ β

∑
θt+1

π(θt+1)Ut+1

(
mt,∗, θt+1|g∗

)
.
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But this contradicts mi,∗ being an equilibrium in the original game. Now suppose Ĉi is not
an equilibrium for some i. There exists some Ci ∈ Ĉi such that:

U(Ci, Ĉ−i) > U(Ĉ).

Since Ci ∈ Ĉi, ∃ ri ∈ Ri such that Ci = Im(gi) and gi = φi,∗(ri). Replacing in the agents’
payoff:

U
(
gi, g∗−i,

)
> U

(
gi,∗, g∗−i

)
.

But this contradicts ri,∗ being an equilibrium in the original game.
Finally, we check that firms’ strategies constitute an equilibrium. Suppose ∃ Ci ∈

Ci(Ri,Mi) such that V i(Ci, Ĉ−i) > V i(Ĉi, Ĉ−i).
Since Ci ∈ Ci(Ri,Mi), there exists φi such that gi = φi(ri,∗). Replacing in the firm’s

payoff in the original game V i(φi, φ∗−i) > V i(φi,∗, φ∗−i). But this contradicts φi,∗ being an
equilibrium in the original game.

Proof of Proposition 2

Proof. We show the equivalence by construction. For a given firm i, by assumption there
exists at least one Ci ∈ Ci which is not minimal. As notation let Ci×C−i = C1×Ci...×CN ,
and let U(Ci, C−i) be the lifetime utility of a sequence of menus C as defined in equilibrium.
Define the set

P
(
Ci
)

= {C−i ∈ Ci | U(Ci, C−i) ≥ U(C̃i, C−i) ∀C̃i ∈ Ci}. (37)

The set P (Ci) contains all the menus C−i offered by other firms −i that resulted in Ci being
chosen from firm i. Note that if Ci is the unique element of Ci the set P (Ci) = Ci .
For each C−i ∈ P (Ci), construct the following sequence of menus:

C̃i
t

(
C−i|Ci

t

)
≡
{

(bi,∗t
(
θt, Ci, C−i

)
, yi,∗t

(
θt, Ci, C−i

)
) ∈ Ct

i , ∀ θt ∈ Θ
}
, ∀ C−it ∈ Ci,∀t.

(38)
Each set C̃i

t (C−i|Ci
t) contains the actual equilibrium choices of each type of agent and

is a minimal menu. Let C̃i(C−i) ≡ {C̃i
t (C−i|Ci

t)∀ C−it ∈ Ci,∀t}. Finally let C̃i =
{C̃i (C−i) ∀ C−i ∈ P (Ci)}. We now replace the menu Ci ∈ Ci by C̃i and show that
the equilibrium is the same. Let C̃i = {(Ci\Ci), C̃i}. We prove the statement in two steps.
We first show that each element of C̃i is chosen by the agent if and only if Ci was chosen
in the original equilibrium. We then show that C̃ = {C̃i, C−i} is an equilibrium of the menu
game by showing that none of the firms −i deviates to any C̃−i.

To show the first step, given that Ci was chosen in the original equilibrium U(Ci, C−i) ≥
U(Ĉi, C−i) ∀Ĉi ∈ Ci. By construction, we have that U(C̃i(C−i), C−i) ≥ U(Ci, C−i) and
U(C̃i(C−i), C−i) ≥ U(Ĉi, C−i), for all Ĉi ∈ C̃i, so that U(C̃i(C−i), C−i)) ≥ U(C

′i, C−i) for
all C

′i ∈ C̃i. To prove the reverse, suppose Ĉi ∈ C̃i is chosen by the agent. By the definition of
C̃i, if (bit, y

i
t) ∈ Ĉi

t ∈ Ĉi then (bit, y
i
t) ∈ Ci

t ∈ Ci so U(Ci, C−i) ≥ U(Ĉi, C−i) and U(Ci, C−i) ≥
U(Ci′ , C−i) for all Ci′ ∈ C̃i. Given that Ĉi is chosen then U(Ĉi, C−i) ≥ U(Ci′ , C−i) for all
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Ci′ ∈ Ci\C̃i. Combining these inequalities, we get that U(Ci, C−i) ≥ U(Ci′ , C−i) for all
Ci′ ∈ Ci, implying that Ci is chosen in the original equilibrium.

Suppose there exists a collection of menus C̃−i so that V −i(C̃−i, C̃i) > V −i(C−i, C̃i). Let
C∗ denote the equilibrium choice of the agent, such that U (Ci,∗, C−i,∗) ≥ U(Ĉi, Ĉ−i), for
all (Ĉi, Ĉ−i) ∈ C̃i × C̃−i. The first case is if C̃−i ∩ P (Ci) = 0. If C−i,∗ ∈ C̃−i ∩ C−i, we
immediately reach a contradiction since C∗ was also chosen in the previous equilibrium so
that profits must be equal. If C−i,∗ /∈ C̃−i ∩ C−i, then we reach a contradiction with C being
an equilibrium, since firm −i would have deviated from offering the menu C−i\P (Ci)∪C−i,∗
and would make strictly greater profits.

The second case is if C̃−i ∩ P (Ci) 6= 0. In this case, if C−i,∗ ∈ P (Ci) we immediately
reach a contradiction since the agent chooses the same menu in both equilibria so profits are
the same. If C−i,∗ /∈ P (Ci) then we contradict C being an equilibrium, since firm −i would
deviate from offering C−i\P (Ci) ∪ C−i,∗.

Repeating this procedure for every non-minimal menu Ci in the original Ci, we construct
C̃ where every menu is minimal.

B Proofs of Section 3

B.1 Proof of Lemma 2

Proof. Suppose that for some history θ̂t equation (13) does not hold.
Case 1:

u′(ct(θ̂
t)) >

β

q

∑
θt+1

u′(ct+1(θ̂t, θt+1))π(θt+1). (39)

In this case, the agent is borrowing constrained. An entrant can make strictly positive profits
offering a borrowing contract at a rate higher than 1/q, contradicting the original allocation
being an equilibrium. The first step is to construct the contract to be offered by a firm. Let
δ∗(ε) be the solution of the following problem:

U(ε) ≡ max
δ≥0

u(ct(θ̂
t) + δ) + βEtu

(
ct+1(θ̂t, θt+1)− δ

(
1

q
+ ε

))
. (40)

A necessary first order condition for this problem is:

u′(ct(θ̂
t) + δ) ≤ β

(
1

q
+ ε

)
Etu

′
(
ct+1(θ̂t, θt+1)− δ

(
1

q
+ ε

))
. (41)

If ε = 0, the solution for the above problem is δ∗(0) > 0 given that (39) holds. From
the Theorem of the Maximum, the solution δ∗(ε) is continuous on ε. Fix ε1 > 0 such that
|δ∗(0)−0| > ε1. There exists ε2 > 0 such that if |ε−0| < ε2 then |δ∗(ε)−δ∗(0)| < ε1. Let ε be
such that 0 < ε < ε2.37 Consider an entrant that offers the contract Ct = {(δ∗(ε), 0), (0, 0)}

37Note that u′(ct(θ̂t) + δ∗(ε)) is a finite, strictly positive number, hence also is the right hand side of
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and Ct+1 = {(−δ∗(ε)(1
q

+ ε), 0), (0, 0)}) and the contract (0, 0) for all other periods. This

firm is making strictly positive profits, proportional to δ∗(ε)ε, and the agent is strictly better
off keeping the original equilibrium together with this contract since increases the his utility
in a history with positive probability and keeps the same utility in all other histories.

Hence, under the original equilibrium, a firm can offer a contract that makes strictly
positive profits. This contradicts the allocation being an equilibrium.

The other case can be proved using a similar argument.

B.2 Proof of Lemma 3

Proof. For a history θt−1, define the net present value of transfers received from time t
onwards by:

At(θ
t−1, θTt−1) =

T∑
n=t

(
1

q

)t−n
bn(θt−1, θnt−1), (42)

where θnt−1 = (θt, θt+1, . . . , θn) is the sequence of shocks following history θt−1 from time t to
n and bn(θt−1, θnt−1) is the equilibrium transfer chosen at time n by an agent with history θn.
We show, using a backward induction argument, that for all t, As(θ

s−1, θTs−1) is independent
of θTs−1 for all s ≥ t. This implies that A1(θT ) is the same for all θT ∈ ΘT . If A1(θT ) > 0, firms
make strictly negative profits in equilibrium and would be better off offering a null contract.
If A1(θT ) < 0, an entrant can offer the same sequence of transfers giving an additional
transfer ε > 0 in the terminal period. Since the sequence of transfers is not contingent and
is profitable for all types, there is no latent contract that makes it unprofitable.

1. Equations (14) and (15) hold for t = T .

We first show that at time T , transfers are independent of realization of time T shock and
then show that for time T equation (15) holds.

Equation (14) holds at t = T :

Suppose that (14) does not hold and let b(θT ) = minb∈C(bT−1,yT−1) b and b(θT−1, θ̂T ) the second

smallest b. Denote by θ̂T = (θT−1, θ̂T ). The contradiction argument relies on the incumbent
firm deviating to an allocation that delivers higher profits. First note that it must be true
that y(θ̂T ) + b(θ̂T ) > y(θT ) + b(θT ). If not, given that b(θ̂T ) > b(θT ) then y(θ̂T ) < y(θT ), an
entrant firm can offer the following contract C̃T = {(−ε, y(θT ) − y(θ̂T )); (0, 0)}, for some ε
small enough. An agent with type θT is better off by choosing allocation (b(θ̂T ), y(θ̂T )) in
menu CT together with (−ε, y(θT )− y(θ̂T )) in menu C̃T . With these choices, his utility is:

u
(
b(θ̂T )− ε+ y(θT )

)
− v

(
y(θT )

θT

)
> u

(
b(θT ) + y(θT )

)
− v

(
y(θT )

θT

)
equation (41). This implies that ct+1(θ̂t, θt+1)− δ∗(ε)

(
1
q + ε

)
> 0 for all (θ̂t, θt+1).
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where the inequality holds as long as b(θ̂T )− ε > b(θT ). No latent contracts can prevent this
deviation, since it is profitable for the entrant as long as some agent accepts it.38

The equilibrium allocation, being optimal for the agent, must satisfy the following:

u(b(θ̂T ) + y(θ̂T ))− v

(
y(θ̂T )

θ̂T

)
≥ u(b(θT ) + y(θT ))− v

(
y(θT )

θ̂T

)
, (43)

u(b(θT ) + y(θT ))− v
(
y(θT )

θT

)
≥ u(b(θ̂T ) + y(θ̂T ))− v

(
y(θ̂T )

θT

)
. (44)

Case 1 If (43) holds with equality, an agent of type θ̂T is indifferent between his equilibrium
choice and the choice of agent θT . However, the insurance providers receive strictly higher
profits from the allocation θT , since by assumption b(θ̂T ) > b(θT ). This incumbent can
deviate to an alternative menu that differs from the original by offering at time T only the
allocation chosen by agent θT . No latent contract can induce lower profits to deter this
deviation, since now the deviating incumbent offers a subset of the allocations that were
available in the original equilibrium. The argument also holds if the equilibrium allocation
is divided between multiple insurance providers.
Case 2 Suppose that (43) holds with strict inequality. Following the argument in the
previous case, for any type θ̄T such that b

(
θ̄T
)
> bT (θT ), it must be true that:

u(b(θ̄T ) + y(θ̄T ))− v
(
y(θ̄T )

θ̄T

)
> u(b(θT ) + y(θT ))− v

(
y(θT )

θ̄T

)
. (45)

Otherwise, the incumbent firm will offer only the contract containing bT (θT ).
Consider the following deviation by an incumbent firm b̃(θ̂T ) = b(θ̂T ) − ε and b̃(θT ) =

b(θT ) + ε− δ for ε, δ > 0 and ε > δ (to be defined explicitly below) and keeping unchanged
all the other allocations.39 This deviation reduces the spread of transfers and increases
incumbent’s profit by a factor proportional to δ.

To show that such deviation is profitable, thus reaching a contradiction, we show that
there is no latent contract α ≡ (αb, αy) that can induce a reduction in the profits of this
firm. Suppose such contract exists. One possibility is to induce θT agents, when faced with
the deviating allocation b̃, to choose b̃(θ̂T ). This would imply a reduction of profits, since
b̃(θ̂T ) > b̃(θT ). Such latent contract has to satisfy:

u(b̃(θ̂T ) + y(θ̂T ) + αb + αy)− v

(
y(θ̂T ) + αy

θT

)
> u(b̃(θT ) + y(θT ))− v

(
y(θT )

θT

)
. (46)

38Note that this case arises in the solution of the constrained efficient allocation: high skilled agents work
more and make positive transfers to less skilled agents. The deviation C̃T makes this allocation unprofitable
in our environment, since it induces skilled agents to choose the allocation designed for low skilled agents
and working an additional amount with entrant.

39If there are multiple θ with values equal to b(θ̂T ) or b(θT ), the same deviation applies to all such transfers.

44



Since α is not chosen in the original equilibrium, it must also be true that

u(b(θT ) + y(θT ))− v
(
y(θT )

θT

)
≥ u(b(θ̂T ) + y(θ̂T ) + αb + αy)− v

(
y(θ̂T ) + αy

θT

)
. (47)

However, u(b̃(θT ) + y(θT )) > u(b(θT ) + y(θT )) and u(b(θ̂T ) + y(θ̂T ) + αb + αy) > u(b̃(θ̂T ) +

y(θ̂T ) + αt + αy), which combined with (47) implies

u(b̃(θT ) + y(θT ))− v
(
y(θT )

θT

)
> u(b̃(θ̂T ) + y(θ̂T ) + αb + αy)− v

(
y(θ̂T ) + αy

θT

)
, (48)

contradicting (46). As before, consider any other type θ̄T 6= θT with b
(
θ̄T
)
> b (θT ):

u(b̃(θT ) + y(θT ) + αb + αy)− v
(
y(θT ) + αy

θ̄T

)
> u(b(θ̄T ) + y(θ̄T ))− v

(
y(θ̄T )

θ̄T

)
. (49)

Since a latent contract is not chosen in the original equilibrium, it must also be true that

u(b(θ̄T ) + y(θ̄T ))− v
(
y(θ̄T )

θ̄T

)
≥ u(b(θT ) + y(θT ) + αt + αy)− v

(
y(θT ) + αy

θ̄T

)
. (50)

The previous equation must hold with equality, otherwise in the original equilibrium the
deviating firm would not offer contract b

(
θ̄T
)
. Let

∆(θ̄) = min
α∈C−iT

{
u(b(θ̄T ) + y(θ̄T ))− v

(
y(θ̄T )

θ̄T

)
+ (51)

−u(b(θT ) + y(θT ) + αb + αy) + v

(
y(θT ) + αy

θ̄T

)}
.

This gives the minimum utility gain agent θ̄T receives from choosing allocation (b(θ̄T ), y(θ̄T ))
instead of (b(θT ), y(θT )) combined with any other latent contract α. Since (50) holds with
strict inequality, ∆

(
θ̄
)

is strictly positive for each θ̄. Let ᾱ ≡ arg min ∆(θ̄). There exists
ε
(
θ̄
)
> 0 such that

u(b(θ̄T ) + y(θ̄T ))− v
(
y(θ̄T )

θ̄T

)
≥ (52)

u(b(θT ) + y(θT ) + ᾱt + ᾱy + ε
(
θ̄
)
)− v

(
y(θT ) + ᾱy

θ̄T

)
>

u(b(θT ) + y(θT ) + ᾱb + ᾱy + ε
(
θ̄
)
− δ)− v

(
y(θT ) + ᾱy

θ̄T

)
.
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Let ε = minθ̄ 6=θ ε
(
θ̄
)
. Under this choice of ε, the above equation contradicts (50). Equation

(52) also implies that for all θ̄ 6= θ, choice following the deviation is the same as in the
original equilibrium.

The last step in the proof requires checking that the time T − 1 incentive constraints
hold. This is necessary in order to leave the decision of the agents unchanged at time T − 1.
Note that for a given ε > 0, there exists δ∗ > 0 that makes the utility, calculated in time
T − 1, of the modified contract the same as in the original contract. To see this, note that
if δ = ε the change in utility of the agent is negative following the proposed deviation, while
if δ = 0 the utility change is positive, since the agent now faces a reduction in the spread
of consumption at time T because y(θ̂T ) + b(θ̂T ) > y(θT ) + b(θT ). This implies that there
exists an intermediate value of δ∗ such that ε > δ∗ > 0 so that the change is zero. Hence,
the time T − 1 decision will be unchanged if δ = δ∗.

Equation (15) holds at time t = T :

Lemma 1 implies that there is only one case left to consider. Suppose that for some θT =
(θT−1, θT )

u′(b(θT−1) + y(θT )) < v′

(
y
(
θT
)

θT

)
1

θT
. (53)

In this case, the agent would like to consume and work less than the equilibrium contract. A
deviation that reduces the total output and consumption by agent θT cannot be provided by
an entrant, since a worker cannot deliver negative hours. However, an incumbent firm will
find it optimal to deviate from the equilibrium contract, offering an allocation with lower
consumption and lower output requirement and making strictly positive profits. Formally,
it offers the original contract at all time t < T and at time T , a menu that contains a null
contract, the modified allocation chosen by θT and the original allocation chosen by the
remaining types:

CT
(
b(θT−1), y(θT−1)

)
={(

b(θT ) + y(θT ) + δ∗(ε|θT )− ε, y(θT ) + δ∗(ε|θT )
)

; (0, 0) ;
(
y(θ̂T ) + b(θ̂T ), y(θ̂T )

)
θ̂T 6= θT

}
where δ∗ and ε are constructed in a similar fashion to the proof of Lemma 1, with the
constraint δ ≤ 0.
With this deviation, the incumbent makes strictly positive profits, proportional to ε, and
there exists ε so that agents’ utility is unchanged following this deviation. This guarantees
that no deviation at time T − 1 takes place. This contract is always profitable for the
incumbent even if another type θ̃T accepts it. If an agent with type θ̃T is able to choose the
pair (b(θT ) + y(θT ) + δ∗(ε|θT )− ε, y(θT ) + δ∗(ε|θT )) at time T , it implies that he must also
have chosen the allocation sequence {(b(θn) + y(θn), y(θn))}T−1

n=1 in previous periods. From
the previous step in the proposition, transfers from any history are independent of time T ;
i.e., this agent will receive transfers with the same net present value as in the original choice.
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Hence, the deviation is profitable.

2. Equations (14) and (15) hold for t < T .

As an inductive assumption, suppose (14) holds for t + 1. We now show it holds for period
t. Rewrite the net present value of transfers as:

At(θ
t−1, θTt−1) =

T∑
n=t

(
1

q

)t−n
bn(θt−1, θnt−1) =

bt(θ
t−1, θt) + q

T∑
n=t+1

(
1

q

)t+1−n

bn(θt−1, θnt−1) = bt(θ
t−1, θt) + qAt+1(θt, θTt ).

By way of contradiction, there exist θt and θ̂t following history θt−1 such that

bt(θ
t−1, θt) + qAt+1(θt−1, θt) < bt(θ

t−1, θ̂t) + qAt+1(θt−1, θ̂t). (54)

By the inductive assumption bt(θ
t−1, θt) < bt(θ

t−1, θ̂t). As in the proof for time T , the
contradiction argument relies on deviations by entrants to guarantee that (15) holds and on
deviations by entrant and incumbent firms to imply that the net present value of transfers
is zero.

Under the inductive assumption, the agent faces no distortion on both his intratemporal
margin and intertemporal margin (recall Lemma 2) from time t + 1 onward. This implies
that the equilibrium allocation from time t + 1 onwards is equivalent to a self-insurance
economy (this will be formally proved in Proposition 5). Let St+1(x) be the utility the
agent receives from entering time t + 1 with a level x of net present value of assets. The
value function S is monotonically increasing in the level of assets. Given this, the agents’
equilibrium choices at time t satisfy the following:

u(b(θ̂t) + y(θ̂t))− v

(
y(θ̂t)

θ̂t

)
+ βSt+1

(
qAt+1(θ̂t)− b(θ̂t)

)
≥

u(b(θt) + y(θt))− v
(
y(θt)

θ̂t

)
+ βSt+1

(
qAt+1(θt)− b(θt)

)
, (55)

and

u(b(θt) + y(θt))− v
(
y(θt)

θt

)
+ βSt+1

(
qAt+1(θt)− b(θt)

)
≥

u(b(θ̂t) + y(θ̂t))− v

(
y(θ̂t)

θt

)
+ βSt+1

(
qAt+1(θ̂t)− b(θ̂t)

)
. (56)
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If y(θt) ≥ y(θ̂t), an entrant can offer the following menu that enables the agent to work
additional hours and move resources between time t and time t+ 1:

C̃t =
{(
b(θt)− b(θ̂t), y(θt)− y(θ̂t)

)
; (0, 0)

}
,

C̃t+1 =

{(
−1

q
[b(θt)− b(θ̂t)]− ε, 0

)}
.

This menu generates strictly positive profits to the entrant, proportional to ε. If this menu
is offered, agent θt will deviate, accepting the allocation for θ̂t together with the allocation
specified in the entrant’s menu. This is due to the fact that the agent can now replicate
his original time t level of output and have access to a strictly higher net present value of
transfers at a cost equal to ε.

Suppose now that y(θt) < y(θ̂t). The first case we consider is when consumption at time t is
higher for the agent with a higher net present value of transfer, y(θt) + b(θt) < y(θ̂t) + b(θ̂t).
As in the argument for period T , inequality (55) cannot hold with equality. This enables us

to reduce the time t spread of consumption between histories θt and θ̂t. Following the same
steps of time T , a contradiction can be reached.

The final case is y(θt) < y(θ̂t) and y(θt) + b(θt) ≥ y(θ̂t) + b(θ̂t). This case violates the
inter-temporal Euler equation for at least one of the two types, thus contradicting Lemma
2. To see this, suppose that the Euler equation (13) holds for agent θt. We have

u′(y(θt) + b(θt)) =
β

q

∑
θt+1

π(θt+1)u′(c(θt+1))

⇒ u′(y(θ̂t) + b(θ̂t)) ≥ β

q

∑
θt+1

π(θt+1)u′(c(θt+1))

⇒ u′(y(θ̂t) + b(θ̂t)) >
β

q

∑
θt+1

π(θt+1)u′(c(θ̂t, θt+1)),

where the last implication follows from the fact that an agent with higher transfer will have
higher consumption at time t+ 1, thus a lower expected marginal utility of consumption.

To conclude, given that it was shown that the net present value of transfers is independent
of the time t choice, we can follow the same steps as in time T to show that equation (53)
holds for time t.

C No profitable deviation with redistribution.

We show that there is no profitable deviation at time T that implies redistribution between
agents.
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We first show that any deviation, if chosen by agents, is such that transfers {b(θT−1, θi)}θi∈Θ

satisfy the following ordering: for all i, j if θi > θj then b(θT−1, θi) > b(θT−1, θj). Suppose not,

so there exists θi > θj with b(θT−1, θi) < b(θT−1, θj). Let {b̂T (θT−1), ŷ(θT )} be the allocation

chosen from the contract Ĉ at time T .40 The agents’ choices must satisfy the following, for
all θ, θ̂:

u
(
b̂T (θT−1) + b(θT ) + ŷ(θT ) + y(θT )

)
− v

(
ŷ(θT ) + y(θT )

θ

)
≥

u
(
b̂T (θT−1) + b(θT−1, θ̂) + ŷ(θT−1, θ̂) + y(θT−1, θ̂)

)
− v

(
ŷ(θT−1, θ̂) + y(θT−1, θ̂)

θ

)
.

Using this equation for θi and θj and from convexity of v, we have that ŷ(θT ) + y(θT ) >

ŷ(θT−1, θ̂) + y(θT−1, θ̂). Agent θi is better-off with the following strategy: choosing the pairs
(b̂T (θT−1), ŷ(θT−1, θ̂)) and (b(θT−1, θ̂), y(θT−1, θ̂)) and from menu CS

T choosing δi = ŷ(θT ) +

y(θT )− (ŷ(θT−1, θ̂) + y(θT−1, θ̂)). This allows him to have the same output requirements as
in the original choice but higher consumption transfers.

We now show that such intratemporal transfers (transferring from less to more productive
agents) reduce agents’ welfare with respect to the original equilibrium. Let N = |Θ| be the
number of possible shock realizations. We only need to consider the case with transfers
{b(θT−1, θi)}θi∈Θ ordered so that for all i, j if θi > θj then b(θT−1, θi) > b(θT−1, θj). Define
the time T utility of an agent with type θ and transfers b, that can optimally chose the
amount to work by the following:

W (b, θ) = max
y≥0

u(b+ y)− v
(y
θ

)
. (57)

Denote by y∗(b, θ) the solution of problem (57) characterized by:

u′(b+ y∗(b, θ)) =
1

θ
v′
(
y∗(b, θ)

θ

)
. (58)

Note that, for a given b, y∗ is increasing in θ, since v is convex. The envelope condition for
(57) implies:

∂W (b, θ)

∂b
= u′(b+ y∗(b, θ)) > 0. (59)

Given the definition of W , the time T utility under equilibrium menu Ĉ can be written as:

ûT =
N∑
i=1

π(θi)W (b̂T (θT−1), θi). (60)

40From proposition (3), transfers in contract Ĉ do not depend on time T realization of the shock.
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Let W̄ be the time T utility level attained accepting a deviation that delivers transfers b and
let WN(b) be the following:

WN(b) =
N∑
i=1

π(θi)W (bi + b̂T (θT−1), θi), (61)

where each individual W is as in (57). Abusing notation, set W (bi, θi) ≡ W (bi+ b̂T (θT−1), θi)
. Consider the most favorable case for the consumer and assume that the deviation incurs
zero profits, so that

∑N
i=1 πibi = 0. To show that any deviation reduces welfare (W̄ < ûT ),

we first show the following
N∑
i=1

πibiW
′(0, θi) < 0, (62)

Multiplying and dividing the above by W ′(0, θ), where θ is the smallest θi, implies that the
sign of (62) is determined by the sign of the following

N∑
i=1

πibiW
′(0, θi) = W ′(0, θ)

N∑
i=1

πibi
W ′(0, θi)

W ′(0, θ)
,

which is negative given the zero profit assumption and the fact that W ′(0, θi) is decreasing in
θi. Define a scale parameter g ∈ [0, 1] for all the transfers, and define the following function
of the scale parameter

G(g) =
N∑
i=1

πiW (g · bi, θi). (63)

Note that G(0) = ûT and by definition of W , W̄ ≤ G(1). Also, G is monotonically decreasing
in g since

∂G′(g)

∂g
=

N∑
i=1

πibiW
′(g · bi, θi), (64)

where W ′(g · bi, θi) = u′(g · bi + y∗(g · bi, θi)). As in the previous case, we also have that

u′(g · bi + y∗(g · bi, θi)) < u′(y∗(0, θi)), if bi > 0,

u′(g · bi + y∗(g · bi, θi)) > u′(y∗(0, θi)), if bi < 0.

This implies that G′(g) < G′(0) for all g > 0 and from (62) G′(0) < 0 so that G(1) < G(0) =
ūT .

D Proofs of Section 4

Optimality of Exclusive Contracts under Zero Costs.
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Lemma 3. For all feasible utility levels w, V (w) > Π(w):41

Proof. Let {cNE, yNE} and {cE, yE} be the solution of (23) and (24), respectively. Since
{cNE, yNE} is in the constraint set of (24), V (w) ≥ Π(w) for all w. Suppose there exists w
such that V (w) = Π(w). This implies that {cNE, yNE} is one of the solutions of (24) for this
w. Let θl = minθ Θ. A necessary first order condition for a solution of (24) is for all feasible
w:

u′(c(θt−1, θl)) >
1

θl
v′
(
y(θt−1, θl)

θl

)
, ∀ θt−1. (65)

However, since {cNE, yNE} is a solution of (23), it must satisfy the following necessary first
order condition:

u′(c(θt−1, θl)) =
1

θl
v′
(
y(θt−1, θl)

θl

)
, ∀ θt−1. (66)

This contradicts {cNE, yNE} being a solution of (24).42 So no such w exists.

Proof of Proposition 6

To prove the proposition, we first show the following two lemmas. For notation, let

U (c, y,Θ) the life-time utility of any allocation {c(θt), y(θt)} when shocks are in Θ.

Lemma 4. wNE
(
λθ̄
)

= 1−βT
1−β log λ+ wL

(
θ̄
)
.

Proof. Let {c(θt), y(θt)} be the solution of (23) for low mean agents. To prove the claim, we
show that {λc(θt), λy(θt)} solves the above problem for high mean agents. Suppose not, then
there exists an allocation {ĉ(λθt), ŷ(λθt)} that delivers higher utility U (ĉ, ŷ, λΘ). Consider

the allocation
{
ĉ(θt)
λ
, ŷ(θt)

λ

}
. This allocation is in the constraint set of problem (23) and

delivers utility

U

(
ĉ

λ
,
ŷ

λ
,Θ

)
= U (ĉ, ŷ, λΘ)− 1− βT

1− β
log λ. (67)

By the contradicting assumption, U (ĉ, ŷ, λΘ) > U (λc, λy, λΘ) = U (c, y,Θ) + 1−βT
1−β log λ,

which implies U (ĉ, ŷ, λΘ) − 1−βT
1−β log λ > U (c, y,Θ). Using (67), we get U

(
ĉ
λ
, ŷ
λ
,Θ
)
>

U (c, y,Θ) , contradicting allocation {c(θt), y(θt)} solving (23) for low mean agents.

Lemma 5. wE
(
λθ̄
)
> wE

(
θ̄
)

+ 1−βT
1−β log λ.

Proof. Let {c(θt), y(θt)} be the solution of (24) for low mean agents. Consider the relaxed
problem with the surplus constraint (25) holding as a weak inequality. Note that the al-
location {λc(λθt), λy(λθt)} is in the constraint set of this relaxed problem when agents are

41The set of feasible initial utility levels is the open interval
(

1−βT+1

1−β ¯
U, 1−βT+1

1−β Ū
)

, where
¯
U = infc,l≥0 u(c)−

v(l) and Ū = supc,l≥0 u(c)− v(l).
42Note that (65) holds with equality only for the highest realization of utility.
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high mean. Also, this constraint must hold with equality (otherwise the extra surplus can
be distributed in an incentive compatible way, increasing agent’s utility). This implies that
the allocation that solves the problem must deliver strictly higher utility. This implies

wE
(
λθ̄
)
> wE

(
θ̄
)

+ 1−βT
1−β log λ.

Proof of Proposition 6

Proof. Let γ∗ = V
(
wNE

(
θ̄
))

, where the function V is the solution of the following problem:

V (w0) = max
c,y

∑
θt,t

qtπ(θt)[y(θt)− c(θt)] (68)

∑
θt,t

βt−1π(θt)

[
u(c(θt))− v

(
y(θt)

θt

)]
= w0

∑
θt,t

βt−1π(θt)

[
u(c(θt))− v

(
y(θt)

θt

)]
≥
∑
θt,t

βt−1π(θt)

[
u(c(θ̃t))− v

(
y(θ̃t)

θt

)]
∀θ̃t

When writing problems (68), we abuse notation by denoting by θ the agents’ labor produc-
tivity for both groups of agents.

This implies wE
(
θ̄|γ∗

)
= wNE

(
θ̄
)
. Also, wE

(
θ̄|γ∗

)
+ 1−βT

1−β log λ = wNE
(
θ̄
)

+ 1−βT
1−β log λ.

Using the previous lemmas,

wE
(
λθ̄|γ∗

)
> wE

(
θ̄|γ∗

)
+

1− βT

1− β
log λ = wNE

(
θ̄
)

+
1− βT

1− β
log λ = wNE

(
λθ̄
)
.

It is possible to break the indifference of the firms with respect to low mean agents by
considering the monitoring cost γ = γ∗+ ε for some ε small enough. The result holds in this
case, since wNE

(
θ̄
)
> wE

(
θ̄|γ∗

)
and wE

(
θ̄|γ∗

)
is continuous on γ, so we can replicate the

same steps.

E Data

52



Table 8: Sample selection for CEX data

CEX

Baseline sample 69,816
Hours restriction 46,559
Earnings <=0 46,002
Labor income <=0 45,745
Minimum wage restriction 43,802
Age >=25 and <= 55 36,871

Final sample 36,871

Numbers indicate total observations remaining at each stage of the sample selection.

Table 9: Summary statistics for the CEX sample used.

CEX (80-04)

Age 39.17 (8.74)
Education

High school dropout 6.99
High school graduate 29.26
College 60.46

Race
White 86.95
Black 9

Family composition 3.07 (1.58)
Average earnings ($) 30,340 (20,406)
Average annual consumption ($) 13,542 (6,842)
Food ($) 3,791 (1,965)
Rent ($) 262 (487)
Hours 2.123 (567)

Note - All dollar amounts in 1983 dollars.
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