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Doubts and Variability

Abstract
We examine the asset pricing properties of an endowment economy featuring a random

walk consumption process with stochastic volatility and a specification of preferences inter-
pretable as reflecting risk sensitivity (Tallarini (2000)) or robustness (Barillas, Hansen, and
Sargent (2009)). We estimate the parameters of the endowment process and find evidence
of stochastic volatility in log consumption growth. Introducing stochastic volatility helps
the model generate a more plausible unconditional market price of risk and increases the
measured welfare costs of business cycles by about 15%. We propose novel algorithms to
characterize and simulate the robust agent’s worst case model. Using this methodology we
find that the above asset pricing and welfare implications are due to an agent who fears
that his consumption growth not only has a lower mean and higher variance than in his
approximating model, but also displays disasters and persistence.



1 Introduction

One of the most enduring puzzles in the macro-finance literature is the equity premium puzzle.

The difficulty lies in designing a model that simultaneously generates a substantial market

price of risk and a low risk free rate, while also respecting stylized facts regarding consumption

dynamics, as displayed by Hansen and Singleton (1982) and Mehra and Prescott (1985). We

present evidence of one stylized fact regarding log consumption growth, that its conditional

standard deviation has changed through time, and examine its impact on the equity premium

and the welfare costs of business cycles. We model the conditional standard deviation of log

consumption growth as a stochastic process. Allowing for stochastic volatility in consumption

in this way allows us to capture both time variation in the conditional standard deviation,

but also generate moments in both the market price and quantity of risk. Many attempts to

explain the equity premium puzzle have focused on changing the dynamics of the consumption

process directly, as in the long run risks literature, started by Bansal and Yaron (2004). By

assumption, direct evidence of the persistent component of log consumption growth is hard

to detect in post war consumption data.1 An alternate explanation of the equity premium

involves including the possibility of disasters or rare events in consumption growth, first

championed by Rietz (1988). While originally criticized for lack of evidence of such disasters

in US data, in more recent work Barro (2006) and Barro (2009) argue in favor of evidence

of disasters in a range of other countries. Unlike these previous papers which specify the

statistically hard to detect long run risk or disasters in consumption that one should see in

the data, this paper is able to generate these phenomena endogenously in the mind of an

agent who fears his model is misspecified. Further, we do so using a specification for log

consumption growth that we show is supported by overwhelming statistical evidence.

We examine the effects of stochastic volatility in consumption in a world with an agent

who knows that there is stochastic volatility in his consumption process, but does not fully

trust the distributional assumptions on the innovations that govern both the behavior of the

volatility process and consumption series. The agent acknowledges that his model, a prob-

ability distribution, is an approximation to the true data generating process and fears its

misspecified in some way. He then considers a set of models surrounding his approximating

model which may also be generating his consumption and consumption volatility series. His

preference for robustness is captured by a penalty parameter θ which penalizes the relative

entropy of distorted models relative to the approximating model he has in mind. This pref-

1Although not completely impossible, as in Hansen, Heaton, and Li (2008).
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erence for robustness can be formulated as a two player game where the agent chooses to

maximize his utility, but his alter-ego, or an ’evil agent,’ attempts to minimize his utility

by choosing a minimizing, worst case, probability distribution. We refer to the consump-

tion process induced by the worst case probability distribution as the perceived consumption

process.

A changing level of risk in the economy, captured by stochastic volatility in log consump-

tion growth, interacts with an agent’s fear that his model is misspecified. This interaction

reflects the fact that the level of volatility in the economy affects the agent’s ability to detect

differences between his approximating model and alternative models. Consequently, the level

of volatility affects the set of plausible models the agent entertains as a way of expressing

his doubts over his approximating model. The robust agent assesses random variables using

a distorted expectations operator that reflects the dynamics of the worst case model within

the set of models considered plausible.

The stochastic volatility specification forces us to expand the tool set necessary to analyze

an agent’s fear of model misspecification in a general nonlinear and non-Gaussian setting. The

worst case model is approximated using a perturbation approach. Once this worst case pdf

has been approximated, we propose simple Monte Carlo methods to draw from this distorted

distribution. The ability to draw from this distribution without an a priori characterization

opens the door for economists to carry out similar analysis in a wide variety of settings where

an agent’s fear of model misspecification may be important.

We characterize how the agent’s worst case distribution changes depending on the current

level of volatility. Specifically, as the volatility rises, for a given distortion, the marginal

entropy penalty the evil agent faces decreases. This allows for a greater distortion of the

joint distribution of the innovations to consumption growth and the volatility process in

periods with high volatility.

The mean of the marginal distribution of the consumption growth innovation varies with

the volatility state and decreases when volatility rises. Because the volatility process is per-

sistent, this state dependent mean shift of the consumption growth innovation generates

persistence in the perceived worst case consumption growth process. The agent fears that

his consumption growth process has a long run risk component. Similarly, the worst case

marginal distribution of the innovation to the stochastic volatility process is also state de-

pendent, with a mean which varies positively with the volatility state. Viewed as a distorted

joint distribution, the evil agent chooses to negatively correlate both innovations, making

the bad times even worse. Unconditionally, because volatility innovations are negatively cor-
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related with consumption innovations, this introduces a negative skewness in his perceived

consumption growth series. The interaction between the negative covariance of the shocks

and mean shifts in the distorted distributions that depend on the level of volatility, generates

disasters in the perceived consumption growth process that do not occur frequently in the

approximating model.

How do these perceived consumption dynamic phenomena affect the estimated market

price of risk? Incorporating stochastic volatility, which generates the worst case consumption

dynamics, enhances the ability of the model to simultaneously generate a high market price of

risk and low risk free rate. That is, for a given value of θ, the model comes closer to attaining

the Hansen-Jagannathan bounds than in the homoskedastic case. This is because uncertainty

in the estimated parameters induces positive skewness in the distribution of market prices

of risk. We demonstrate that there is considerable variation in the market price of risk

over time and that this variation is primarily due to variation in the conditional variance

of the stochastic discount factor, rather than in the conditional mean. We therefore obtain

a time varying market price of risk while also generating a risk free rate that is stable over

time. From a robustness perspective, we acknowledge that the term ‘Market Price of Risk’ is

something of a misnomer. Under this interpretation, the objects that are typically referred

to as the market price of risk and risk premia are not only driven by concerns regarding

risk, or gambles over known probabilities, but also fears of model misspecification, where

the probabilities over outcomes are unknown. With this in mind, much of the unconditional

market price of risk is accounted for by a component that can be interpreted as a market price

of model uncertainty and movements over time in the market price of risk reflect, largely,

movements in the conditional market price of model uncertainty. We demonstrate that the

market price of model uncertainty depends positively on the volatility state of the economy.

We calculate posteriors for the welfare costs of business cycles, or how much an agent

would be willing to pay to avoid fluctuations in his consumption path. For a value of the

penalty parameter, θ, that allows the model to attain the Hansen-Jagannathan bounds, the

costs are substantial, and are increased by about 15% relative to a non stochastic volatility

specification. This increase in the welfare costs of business cycles is now due to a negative

skewness in the distribution of these welfare costs in the stochastic volatility model. From the

robustness perspective, much of these welfare costs can be reinterpreted as an agent willing to

pay to eliminate model uncertainty rather than the traditional thought experiment of paying

current consumption to avoid known risks.

Bayesian methods are used to draw from the posterior distribution of parameters charac-
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terizing the endowment process and to calculate the market price of risk and welfare costs.

Given the parameter uncertainty reflected in our posterior, we express the proximity of the

model’s market price of risk to the Hansen and Jagannathan (1991) bounds in terms of a

posterior probability of the unconditional market price of risk. Using samples from our pos-

terior distribution of parameters, we calculate the associated mean and standard deviation

of our stochastic discount factor, (E[Λt,t+1], σ(Λt,t+1)) assuming particular values of θ, and

plot them on the same graph, which we call Hansen-Jagannathan Clouds. This depiction

of our entire posterior for (E[Λt,t+1], σ(Λt,t+1)), yields significant information beyond what

can be gleaned from best point or modal estimates and allows us to identify the dimensions

of parameter uncertainty that are of particular importance. In a similar spirit, we use the

posterior for the endowment parameters to obtain an associated posterior for our measures

of welfare loss from the existence of risk and/or uncertainty. Maximum a posteriori estimates

from our posterior are used in our theoretical examination of the interaction between model

uncertainty and stochastic volatility.

Detection error probabilities are used to determine what values of θ are reasonable. De-

tection error probabilities quantify how likely one is to make an error when performing a

likelihood ratio test to discriminate between the approximating and worst case models. High

detection error probabilities suggest that the competing models are hard to distinguish using

the amount of data available and are thus plausible to worry about. We calculate the detec-

tion error probabilities for various values of θ and find that the detection error probability

curve for the stochastic volatility model lies above that of the homoskedastic model. That is,

differences in models are harder to detect in a stochastic volatility setup relative to the ho-

moskedastic model. While the homoskedastic model is able to attain the Hansen-Jagannathan

bounds, it does so with a relatively low detection error probability. For values of θ that reach

the Hansen-Jagannathan bound, our stochastic volatility model increases the associated de-

tection error probability by a factor of about 3. Instead of keeping the penalty parameter θ

fixed across models, by keeping the detection error probabilities fixed, the stochastic volatility

model allows for larger distortions relative to the homoskedastic model.

The equity premium puzzle, and the difficulty of solving it in standard expected util-

ity frameworks, motivated Tallarini (2000) to adopt a recursive specification of preferences

and abandon the expected utility paradigm. Working in a simple random-walk endowment

economy with a particular form of Epstein-Zin preferences, Tallarini was able to generate a

sufficiently high market price of risk without inducing a counterfactually high risk free rate.

Alternatively expressed, the model and consumption process emitted a stochastic discount
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factor which attained the Hansen-Jagannathan bounds. However, this success entailed a sub-

stantial caveat: in order to attain the bounds, Tallarini was obliged to assume a degree of risk

aversion (captured by a parameter γ) that to some seemed implausibly high. In a response

to critics, Barillas, Hansen, and Sargent (2009) (henceforth BHS) showed how a potentially

implausible value of the risk aversion parameter could be reinterpreted as a plausible value

of an uncertainty aversion parameter - a parameter capturing the doubts of a particular type

of robust agent regarding his economic model. Thus, the two types of agents rank sequences

of consumption in the same manner but the interpretation of the gamma parameter differs

between them. Under the variability interpretation it controls an aversion to risk whereas

under the doubts interpretation, it controls how much an agent mistrusts his model. A sec-

ond interpretation of our results is that an agent has risk sensitive preferences and lives in a

world where he faces movements in the conditional standard deviation of his log consumption

growth process. Unlike before, the agent fully trusts the processes involved which generate

his consumption path. His preference for avoiding gambles with known probabilities in his

consumption are captured by his risk aversion parameter, γ. One can show that the agents

in these two very different interpretations have the same value function and we can map

between a risk aversion parameter γ and a preference parameter θ that captures the agent’s

preference for avoiding gambles of unknown probabilities.

In this paper we build on the work of Tallarini and BHS by revisiting their random

walk endowment specifications, but with stochastic volatility in the endowment process. The

use of Bayesian estimation distinguishes our approach from the classical methods used by

Tallarini and BHS. Further, the homoskedastic models used in Tallarini and BHS allows

exact computation of the likelihood function, value function, market price of risk, and worst

case distribution. We contrast the predictions of our stochastic volatility model with those

of the Tallarini/BHS homoskedastic endowment model in which, by construction, the market

price of risk and risk premia are constant. Bansal and Yaron (2004) examine the asset pricing

implications of a long run risk model with stochastic volatility at calibrated parameter values,

instead of focusing solely on the impacts of stochastic volatility. Additionally we estimate

the parameters of the stochastic volatility process. We show that the impact of parameter

uncertainty in the stochastic volatility process is essential for understanding the implications

of our model for the market price of risk. Under the variability interpretation, our model has

Epstein-Zin preferences with the intertemporal elasticity of substitution fixed at one, whereas

the long run risks model requires an IES > 1 and does not allow for the model ambiguity

interpretation. Further, we remain silent as to the exact data generating process for dividends
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and take returns as given to construct the Hansen-Jagannathan bounds.

The structure of the paper is as follows. In Section 2 we describe and estimate the

two endowment specifications. In Section 3 we outline the equity premium and risk free

rate puzzles, and describe risk sensitive preferences. In Section 4 we describe an alternate

interpretation of the mechanisms in section 3 as well as introduce new tools needed to analyze

this mechanism. In Section 5 we discuss the worst case model an agent fears, and its effect

on the conditional and unconditional market price of risk and welfare. Section 6 concludes

and proposes avenues for future work.

2 Economic Environment

2.1 Two Processes for Consumption

We first posit that log of consumption follows a random walk with drift φ and innovation

standard deviation, σ.
∆ log(Ct+1) = φ+ σεt+1

εt+1 ∼ N(0, 1)
(1)

This specification has been analyzed in both Tallarini and BHS. However, there is evidence

of time variation in the conditional standard deviation of many macroeconomic series, as

documented in Stock and Watson (2002), McConnell and Perez-Quiros (2000), Fernández-

Villaverde and Rubio-Ramı́rez (2007), Justiniano and Primiceri (2008), Bloom, Floetotto,

and Jaimovich (2009), and Clark (2009) to name but a few. Given the aforementioned

evidence, we propose an alternate endowment process that features stochastic volatility in

log consumption growth as follows:

∆ log(Ct+1) = φ+ σ exp(vt+1)ε1,t+1

vt+1 = λvt + τε2,t+1

(ε1,t+1, ε2,t+1)′ ∼ N(0, I)
(2)

Here, the innovations to the process in t+1 have conditional standard deviation, σ exp(vt+1).2

The process controlling the conditional volatility, vt is an AR(1) with persistence parameter,

2There is a slight technical issue with the data generating process, namely, the tails of the normal distri-
bution are too fat for the level consumption growth process to have finite expectation. This can be corrected

by assuming that p(ε2,t+1) ∝ exp(−1/2ε22,t+1 − 0.1 exp(0.1 exp(0.1 exp(
( ε2,t+1

2

)2
)))). The algorithm used to

estimate the model would not be affected. Further our perturbation approach described below, entails an nth

order approximation which depends on the first n moments of the distribution of the error terms but does
not depend on the tails of the distributions per se. The alternate distribution has a zero mean, and zero third
moment, with a variance near 1, and yield nearly identical results.
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λ, and innovations with standard deviation, τ . We use as our consumption series real per

capita nondurables and services from 1948:Q2 to 2009:Q4.3

2.2 Posteriors from Parameter Estimation

We use Bayesian methods to estimate the parameters of the endowment and volatility process

and report them in table (1). We put Uniform[0,1] priors on φ, σ, and τ and Uniform[-1,1]

on λ and draw from the posterior distribution using a Random Walk Metropolis Hastings

algorithm. In our stochastic volatility model, the likelihood is unavailable in closed form, and

we therefore rely on the Particle Marginal Metropolis Hastings Algorithm of Andrieu, Doucet,

and Holenstein (2010) which involves using a particle filter to evaluate the likelihood within

a Metropolis-Hastings Algorithm.4 We use 200000 draws from the posterior to compute the

above tables. In the following sections, we only rely on samples of the posterior distribution

of parameters and do not use all 200000 draws.

The posteriors for the homoskedastic model are centered around similar values to those

found in previous studies, with a slightly lower growth rate and higher variance, most likely

due to the longer data series including the recession starting in 2007 Q4. Our stochastic

volatility model yields a similar growth rate of consumption as the homoskedastic model.

We find that the σ parameter, although not directly analogous across models, is estimated

far more imprecisely than in the homoskedastic case. The volatility sequence has a very

persistent autocorrelation parameter λ, around 0.88, as well as a standard deviation of about

0.2. In both models there is a reasonable degree of parameter uncertainty, reflected in the

dispersion of our posteriors. Clearly this dispersion will imply uncertainty in our beliefs

regarding certain model properties and moments. In fact, as we shall discuss below, it is

instructive to see what dimensions of parameter uncertainty are important for particular

model moments.

We plot the the filtered stochastic volatility sequence in figure 1. We compute this series

as follows: for each draw of the posterior, the particle filter was re run at those parameter

values, at each time, an estimate of the conditional volatility Et[σ exp(vt)] = σ
N

∑
i exp(vit) was

computed and plotted. This generates a distribution of filtered volatility series, and we plot

3To compute our log consumption growth data, we added PCESVC96 and PCNDGC96 and and divided
by CNP16OV, all obtained from the St. Louis Fed and took log differences.

4The computationally intensive PMMH algorithm was programmed in Fortran 90/95 and parallelized
using MPI. The PMMH routine converges in distribution for any number of particles. Using 5000 particles
for the evaluation of the particle filter seemed to give accurate and stable estimates of the likelihood function.
See Smith (2010) for further details regarding this algorithm and specification or Creal (2010) for an overview
of sequential monte carlo methods in economics and finance.
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Table 1: Posterior - Homoskedastic Model
Quantiles

Parameter Mean 0.025 0.25 0.50 0.75 0.975

φ 0.0047 0.0040 0.0045 0.0047 0.0049 0.0053
σ 0.0052 0.0048 0.0051 0.0052 0.0054 0.0057

Table 2: Posterior - Stochastic Volatility Model

Quantiles
Parameter Mean 0.025 0.25 0.50 0.75 0.975

φ 0.0047 0.0041 0.0045 0.0047 0.0049 0.0053
σ 0.0047 0.0035 0.0042 0.0046 0.0050 0.0063
λ 0.8732 0.7011 0.8391 0.8851 0.9223 0.9743
τ 0.1981 0.1061 0.1614 0.1940 0.2305 0.3136

Figure 1: Posterior Distribution of Filtered Volatility Sequence
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the median and quantiles of that series. We notice that there is indeed much movement in the

conditional volatility sequence. Although seemingly acyclical for the earlier sample, starting

in the mid 1970’s, it generally peaks at the beginning of recessions and falls throughout. We

did not compute the Bayes factor, instead we compute the classical equivalent, a likelihood

ratio test. We have two (nested) models, and perform a likelihood ratio test of equality of

the models H0 : λ = τ = 0. The difference in the log likelihood evaluated at the maximum

likelihood estimates is 14.9 and the associated chi-square statistic is almost 30. This is far

greater than the critical value at the 0.001 level.5 Thus we find strong evidence against the

homoskedstic model.

3 Variability

3.1 The Risk Free Rate and Equity Premium Puzzles

We now summarize the risk free rate and equity premium puzzles. A stochastic discount

factor is defined as a random variable Λt,t+1 that satisfies the pricing relation:

pt = Et[Λt,t+1yt+1] (3)

Where pt represents the price at time t of a claim to payoff yt+1 in the next period and Et

represents the expectations operator conditional on information at time t. By taking yt+1 to

be a conditionally deterministic unit payoff, we observe that the one period risk free rate,

Rf
t , is given by the expectation of the stochastic discount factor. Thus we have

1

Rf
t

= Et[Λt,t+1] (4)

Given an observable sequence of returns, Hansen and Jagannathan seek bounds on the

stochastic properties of the stochastic discount factor. Hansen and Jagannathan showed

that an admissible stochastic discount factor must be such that for any zero-price excess

return, ξt+1, the following is true

|Et[ξt+1]|
σt(ξt+1)

≤ σt(Λt,t+1)

Et[Λt,t+1]
(5)

The quantity on the right hand side of the inequality is typically known as the market price

of risk, whereas the left hand side is the Sharpe ratio that captures the additional return on

5 The log likelihoods are 963.6 for the model with stochastic volatility and 948.6 for the homoskedstic
model. The critical value is χ2(2) = 13.82.
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an asset required to compensate for additional undiversifiable risk. We generally work with

an unconditional counterpart of this inequality,

|E[ξt+1]|
σ(ξt+1)

≤ σ(Λt,t+1)

E[Λt,t+1]

In the absence of a priced risk free asset, the unconditional form of the Hansen-Jagannathan

bounds implies a parabola in (σ(Λt,t+1), E[Λt,t+1]) space such that an assumption on the value

of the expectation of the stochastic discount factor pins down the minimal standard deviation

for an admissible stochastic discount factor. Clearly, any such assumption on the expectation

of the stochastic discount factor is equivalent to an assumption on the value of the risk free

rate. Now, under time separable CRRA utility,

Ut =
C1−γ
t

1− γ
The stochastic discount factor takes the form

Λt,t+1 = β

(
Ct+1

Ct

)−γ
(6)

where Ct is consumption in time t and γ is the coefficient of relative risk aversion which, in

this special case, is equal to the inverse of the intertemporal elasticity of substitution. If we

assume the aforementioned homoskedastic endowment specification, we obtain

E[Λt,t+1] = βexp(γ(−µ+ σ2γ
2

))
σ(Λt,t+1)

E[Λt,t+1]
=

√
exp(σ2γ2)− 1

(7)

Thus, one can increase the market price of risk implied by the model by increasing the value

of γ. However, due to the fact that the intertemporal elasticity of substitution is equal to

the inverse of γ, one cannot increase the degree of risk aversion without driving E[Λt,t+1]

downwards and, consequently, make the risk free rate implausibly high.6 Thus, increasing γ

does not allow the Hansen-Jagannathan bounds to be attained, despite the generation of a

high market price of risk.

3.2 Recursive Preferences

An agent with Epstein-Zin preferences has utility defined recursively as follows:

Ũt =

(1− β) (Ct)
1− 1

ϕ + β
(
EtŨ

1−γ
t+1

) 1− 1
ϕ

1−γ

1− 1
ϕ

6Strictly, this statement is only true over the range of γ values where the linear term in the expression for
E[Λt,t+1] dominates the quadratic term, but for plausible parameterizations, only this range is relevant.
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Here, ϕ is the intertemporal elasticity of substitution (IES), γ is a parameter governing risk

aversion and β is the discount factor. If we evaluate these preferences with the IES = 1,

taking logs and some algebra, we get the risk sensitive specification of preferences employed

by Tallarini. These preferences can be represented by the following recursion

Ut = log(Ct) + β
(1−β)(1−γ)

log (Et [exp ((1− γ)(1− β)Ut+1)])

= log(Ct)− βθlog
(
Et

[
exp

(
−Ut+1

θ

)]) (8)

where we define θ(γ) ≡ − 1
(1−β)(1−γ)

. Thus an increase in γ is equivalent to a decrease in θ.7

Given our specification of the endowment process the recursion above implies the following

Bellman equation

U(x) = log(C(x))− βθlog
(∫

exp

(
−U(x(ε))

θ

)
p(ε)dε

)
(9)

where p(ε) is the density of the random variable ε.

Associated with these preferences is a stochastic discount factor of the following form

Λt,t+1 = β

(
Ct+1

Ct

)−1
 exp

(
−Ut+1

θ

)
Et

[
exp

(
−Ut+1

θ

)]
 (10)

Provided that γ ≥ 1 we observe that the stochastic discount factor comprises two com-

ponents,

Λt,t+1 = ΛR
t,t+1ΛU

t,t+1

Where we define

ΛR
t,t+1 = β

(
Ct+1

Ct

)−1

ΛU
t,t+1 =

exp
(−Ut+1

θ

)
Et
[
exp
(−Ut+1

θ

)]
The first of which, ΛR

t,t+1, takes the form of the stochastic discount factor derived from

time separable logarithmic preferences. The second component, ΛU
t,t+1, which has conditional

expectation of unity, amends the stochastic discount factor according to movements in the

7Although not entertained in this paper, more generally, risk sensitive preferences are defined as:

Ut = u(Ct)− βθlog
(
Et

[
exp

(
−Ut+1

θ

)])
Where u(Ct) is some other period utility function.
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agent’s continuation value, relative to its expectation. If γ is unity and thus equal to the

inverse of the IES, then the second term vanishes (= 1) and we retrieve the stochastic dis-

count factor from the time separable logarithmic utility case. The significance of adopting

this specification of preferences and, in particular, the separation of attitudes to risk and

intertemporal consumption smoothing, can be seen in the expressions below

E[Λt,t+1] = βexp(−µ+ σ2

2
(2γ − 1))

σ(Λt,t+1)

E[Λt,t+1]
=

√
exp(σ2γ2)− 1

(11)

Thus, increasing γ, as before, increases the market price of risk but, unlike before, it does

not induce an increase in the risk free rate. In fact, for plausible parameterizations of the

shock variance, the effect on E[Λt,t+1] is minimal. Consequently, Tallarini showed that a

value of γ could be chosen such that the Hansen-Jagannathan bound is attained. As noted

by BHS, however, this represents a Pyhrric victory because the γ value required to approach

the Hansen-Jagannathan bound is so high as to imply an implausible degree of risk aversion.

4 Doubts

Until now, we have focused on a setup in which an agent has no uncertainty in the data

generating process, p(ε). Following BHS, we can re-interpret the previous results from the

view of an agent who fears that his model is misspecified. Given the nonlinearities inherent in

the stochastic volatility model, we are forced to extend the solution techniques to nonlinear

and potentially non-Gaussian frameworks.

4.1 Martingales, Martingale Increments and Distorted Distributions

Within the robust control literature it is convenient to have a language for characterizing alter-

native models in relation to a maintained approximating model. A robust agent is concerned

with how his welfare behaves across a set of plausible models. The fact that he considers

a set of models reflects his doubts regarding his approximating model, which he suspects is

misspecified in some way. Regarding the equilibrium of an economic model as a probability

distribution it is natural to specify alternative models in terms of distortions of the distribu-

tions associated with the agent’s approximating model. In Hansen and Sargent (2008), it is

proposed that the distortions be characterized in terms of Martingales. These Martingales

act as Radon-Nikodym derivatives by twisting the measures implicit in the approximating

model so as to obtain absolutely continuous measures that represent alternative models con-
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sidered by the agent. Under these twisted measures one can form objects interpretable as

expectations taken in the context of the distorted alternative model.

Following in this line, let =t be information available at t. Then define a non-negative

=t measurable function Mt such that E[Mt|=0] = 1. This function can be used to derive a

probability measure that is absolutely continuous with respect to the measure over =t implied

by the approximating model. With respect to the undistorted measure, Mt is a Martingale.

Using this Martingale we can define distorted expectations as follows

Ẽ[Wt]
.
= E[MtWt] (12)

As a measure of how different the distorted measure is from the undistorted measure associ-

ated with the approximating model, we use the concept of entropy, conditional on time-zero

information E[Mtlog(Mt)|=0].

Analytically and, as we shall see, computationally, it is convenient to factorize the Mar-

tingale, Mt, into a sequence of increments, mt as, mt+1 = Mt+1

Mt
if Mt > 0 and 1 otherwise.

Thus Mt+1 = mt+1Mt, and Mt = M0

∏T
j=1mt. Using this Martingale increment we can de-

fine a distorted conditional expectation for a =t+1-measurable random variable, bt+1, given

=t and, more generally, use mt+1 to capture the distortion of the conditional distribution of

=t+1 given =t
E[Mt+1bt+1|=t]
E[Mt+1|=t]

=
E[Mt+1bt+1|=t]

Mt

= E[mt+1bt+1|=t] (13)

4.2 Multiplier Preferences

An ambiguity averse agent with Hansen-Sargent multiplier preferences has value function

W (x0) = min{mt+1}
∑∞

t=0 E{βtMt [log(C(xt)) + βθE(mt+1log(mt+1)|εt, x0)] |x0}

Where the minimization is subject to the evolution of the endowment process and Mt+1 =

mt+1Mt, E[mt+1|εt, x0] = 1, mt+1 ≥ 0 and M0 = 1. The agent’s desire for robustness

is reflected in the minimization over the sequence of Martingale increments. The degree of

robustness is controlled by the penalty parameter θ that enters in the objective by multiplying

the conditional entropy associated with a given distortion. For θ > 0 we thus observe that

the agent is penalized for considering distortions from his approximating model. Thus, a

particularly implausible distorted model may imply dynamics that are painful for the agent

but its negative effect on the objective is offset by a positive countervailing contribution

reflecting its high entropy and, thus, it does not solve the minimization problem.
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We seek a recursive expression of the problem and write the following Bellman equation

W (x) = log(C(x)) + min
m(ε;x)≥0

(β

∫
[m(ε;x)W (x(ε)) + θm(ε;x)log(m(ε;x))]p(ε)dε) (14)

where p(ε) is the density of the random variable ε under the approximating model and the

minimization is subject to
∫
m(ε;x)p(ε)dε = 1, x is the current state, and x(ε) is the real-

ization of the state tomorrow. We have written the minimizing likelihood ratio mt+1(εt+1) as

a time invariant function of the state, m(ε;x) to allow for this worst case distribution to be

state dependent. If we substitute the solution to the minimization problem into the Bellman

equation we obtain the expression

W (x) = log(C(x))− βθlog
(∫

exp

(
−W (x(ε))

θ

)
p(ε)dε

)
(15)

This implies that the agent with multiplier preferences will form the same ranking of con-

sumption paths as a risk sensitive agent since, recalling (9), we observe that U(x) = W (x).

The main message is that the θ in (9) has a different interpretation from that of θ in (15).

Under the variability interpretation, and given an assumed rate of time preference, θ reflects

attitudes towards well defined, quantifiable risk. Under the doubts interpretation, θ reflects

the degree to which the agent fears model misspecification.

We can view this specification of robust preferences as a particular form of a two player

game, in which the agent discussed so far attempts to maximize his welfare, but is partly

thwarted by an ‘evil agent’ who distorts the model facing the agent. The extent to which the

evil agent can distort the model is however constrained by restricting the distorted models

to be similar to the undistorted model. It is useful to employ this language in our context

where the evil agent’s actions can be thought of as the choice of the distorting Martingale

increment, similarity is defined in terms of entropy and the extent to which the evil agent is

restricted is captured by θ.

The minimizing Martingale increment for the above problem, which can be thought of as

the evil agent’s policy function, is given by

m̂t+1(εt+1) =

 exp
(
−W (x(εt+1))

θ

)
Et

[
exp

(
−W (x(εt+1))

θ

)]
 (16)

Again, we observe a form of equivalence between the robust and risk sensitive agents in that

the stochastic discount factor used by the robust agent to price assets takes the form

Λt,t+1 = β

(
Ct+1

Ct

)−1

m̂t+1(εt+1) (17)
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which, by (10) and (16), we see to be the same as that of the risk sensitive agent, up to

reinterpretation. The robust agent evaluates risky payoff streams according to the worst case

distorted model p̃(ε) as follows

Et [mt,t+1Rt+1] = 1

β
∫
R(ε)

(
C(x(ε))
C(x)

)−1 exp(−W (x(ε))
θ )

Et[exp(−W (x(ε))
θ )]

p(ε)dε = 1

β
∫
R(ε)

(
C(x(ε))
C(x)

)−1

p̃(ε)dε = 1

Ẽt

[
β
(
Ct+1

Ct

)−1

Rt+1

]
= 1

Previously, the second component, ΛU
t,t+1of the stochastic discount factor was interpretable

as reflecting the effect of unanticipated shocks on the evaluation of future welfare under a

fully trusted approximating model. Now, under the robustness interpretation, it reflects

the distortion of the approximating model’s conditional distribution such that payoffs are

evaluated under the worst of a set of plausible models considered by the agent. Thus, the asset

pricing implications of the previous section can be attributed to an agent who values assets

according to a distorted conditional expectations operator Ẽt and an associated distorted

density p̃(εt).

4.3 Detection Error Probabilities

Given the equivalence between risk-sensitive preferences and the indirect utility function of an

agent with multiplier preferences outlined above, one can map between (E[Λt,t+1], σ(Λt,t+1))

pairs and interpret them in terms of risk or uncertainty aversion. Outside information, from

experimental evidence to investment portfolios, guide what levels of risk aversion γ one thinks

are realistic. We need an analogous sanity check for our uncertainty aversion parameter θ.

Such a check is given by detection error probabilities which characterize a set of distorted

models in terms of whether or not, with a limited amount of data, an agent could accurately

distinguish between the worst case and approximating models using likelihood ratio tests.

BHS use the mapping between detection error probabilities and the value of θ to show that

the γ required to attain Hansen-Jagannathan bounds implies a value of θ is associated with a

detection error probability between 1 and 5%. Said differently, the distorted model an agent

entertains has a type 1 error of between 1 and 5%.

We have a nonlinear state space model with a likelihood function that is unavailable in

closed form. Below we describe how we compute the detection error probabilities and extend

the techniques of Anderson, Hansen, and Sargent (2003) to nonlinear discrete time mod-
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els. Although our innovations are normally distributed under the approximating model, the

strategy outlined below can handle any probability distribution. Further, under the distorted

model in a nonlinear framework, the distorted model may no longer be Gaussian even if the

approximating model is. Let Y1:t be a vector of observables, or signals, up to time t and X1:t

be a vector of unobservables up to time t. We, as an agent or econometrician, want to calculate

p(Y1:T |θ) =
∏T

t=1 p(Yt|Y1:t−1)

=
∏T

t=1

∫
p(Yt|Xt)p(Xt|Y1:t−1)dXt

We can use a particle filter to do so. Given a set of draws {X i
1:t−1}Ni=1 with weights

{W i
t−1}Ni=1

• draw X i
t ∼ q(X i

t |Yt, X i
1:t−1)

• compute weight W i
t =

p(Yt|Xi
t)p(X

i
t |Xi

t−1)

q(Xi
t |Yt,Xi

1:t−1)
W i
t−1

• compute likelihood contribution as Lt =
∑N

i=1 W
i
t

• resample X i
1:t = (X i

1:t−1, X
i
t) with probability ∝ W i

t , set weights W i
t = 1/N

The likelihood under the approximating model is then p(Y1:T |θ) =
∏T

t=1 Lt. When

importance density, q(X i
t |Yt, X i

1:t−1) is equal to the transition density, q(X i
t |Yt, X i

1:t−1) =

p(Xt|Xt−1),the weights and likelihood contribution are just ∝ p(Yt|X i
t). We need to make the

following strong assumption for tractability, that the evil agent cannot distort signals to the

econometrician. That is,

p̃(Yt|Xt) = p(Yt|Xt)

In order to make the detection error probabilities operational for our stochastic volatility

model, we need to add measurement error to the consumption sequence as follows:

∆log(Ct) = φ+ σevtε1,t + σmeε3,t

It is often assumed that the shocks to the state equation (in our case ε2,t) are independent

of shocks to the measurement equation (ε1,t) and that one has the ability to compute the

probability density functions of the associated randomness. Under our distorted probability

distribution, this is no longer the case as we have allowed the evil agent to distort the joint

distribution of (ε1,t, ε2,t), and we have no way to calculate the marginal density functions, nor

re-write these shocks in such a way that they are independent of each other. Thus, by adding

measurement error to the state equation, we can redefine what is the state in our stochastic
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volatility model, Xt = (ε1,t, ε2,t, vt−1), and then rely on standard techniques in the nonlinear

filtering literature. Using measurement errors as a tool to evaluate likelihoods has a long

history in economics, especially with estimating production economies.8 We constrain σme

to be an order of magnitude smaller than σ, and set σme = 0.1σ. Now we have the ability to

evaluate the likelihood under the distorted probability measure. Here we wish to calculate

p̃(Y1:T |θ) =
∏T

t=1 p̃(Yt|Y1:t−1)

=
∏T

t=1

∫
p̃(Yt|Xt)p̃(Xt|Y1:t−1)dXt

=
∏T

t=1

∫
p(Yt|Xt)p̃(Xt|Y1:t−1)dXt

The key idea is to use the approximating model as the proposal distribution in the particle

filtering step, that is,

Given a set of draws {X i
1:t−1}Ni=1 with weights {W i

t−1}Ni=1

• draw X i
t ∼ p(X i

t |X i
t−1)

• compute weight

W i
t =

p(Yt|Xi
t)p̃(X

i
t |Xi

t−1)

p(Xi
t |Xi

t−1)
W i
t−1

= p(Yt|X i
t)m̃(X i

t)W
i
t−1

• compute likelihood contribution as L̃t =
∑N

i=1 W
i
t

• resample X i
1:t = (X i

1:t−1, X
i
t) with probability ∝ W i

t and set W i
t = 1/N

The distorted likelihood is then p̃(Y1:T |θ) =
∏T

t=1 L̃t. The sampling weights are multiplied

by the martingale distortion term m̃(X i
t) relative to the case where we could draw from the

distorted transition density p̃(Xt|Xt−1). We do not need to use the approximating model,

but seems like a natural proposal distribution. If a different importance density is used, the

weights become,

W i
t =

p(Yt|X i
t)m̃(X i

t)p(X
i
t |X i

t−1)

q(X i
t |Yt, X i

1:t−1)
W i
t−1

but the rest of the algorithm remains the same.

4.4 Drawing from the Worst Case Distribution

Given an approximation of the minimizing Martingale increment, we can characterize an

approximation of the worst case distribution using Monte Carlo methods. The methods are

simple but, to the best of our knowledge, a novel contribution to the robust control literature.

8We do not try to re-estimate the model including measurement error.
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Let us partition the state vector into components that are unknown until the resolution of

randomness in t, ηt, and those that are predetermined in t, st. Thus, the state, xt = (ηt, st).

In the case of our approximate solution of the stochastic volatility model, it is useful to think

of the predetermined component being the lagged volatility level, st = {vt−1}.9 The stochastic

component is the innovation in the endowment process and the innovation in the stochastic

volatility process, ηt = {ε1,t, ε2,t}.
If we denote the perturbation-based approximation of the minimizing Martingale incre-

ment m̃(xt) and partition the state vector as xt = (ηt, st) where ηt are the shocks realized in

t and st are the components of the state that are predetermined in t. The transition density

is now

p(Xt|Xt−1) = p(ηt)

since the predetermined components of the state evolve as st = f(η̃t−1, st−1). Similarly the

distorted transition density is

p̃(Xt|Xt−1) = p̃(ηt; st)

Using this decomposition of the state, we can express the distorted distribution of ηt as

follows

p̃(ηt; st) = m̃(ηt; st)p(ηt) (18)

where we recall that p(·) is the density of the approximating model and p̃(·) represents

the twisted probability density function associated with the worst case distribution. This

decomposition shows clearly how the distorted distribution can depend on the predetermined

states, and thus may vary though time. Also note that in our discrete time nonlinear model,

the distorted distribution may imply that the shocks are dependent, despite the fact that

under the undistorted model, the shocks are independent.

Our insight is that even though we do not know anything about this worst case distri-

bution, since we are able to evaluate the distorted pdf, we can draw from it using Monte

Carlo methods. Using the draws from the distorted distribution, we can then compute any

relevant quantity that deals with this worst case distribution. Here we propose a few simple

algorithms for drawing from the distorted distribution. Once one has the ability to gener-

ate variables from the distorted distributions, generating data, computing likelihoods, and

characterizing the worst case model becomes feasible.

9Our actual solution includes lagged state variables such as the lagged continuation value, which is needed
for accounting purposes for the functional objects we examine in the perturbation solution. The variables in
st should include anything that evolves deterministically given the current state, ie st+1 = f(ηt, st).
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4.4.1 Random Walk Metropolis - Hastings

Our first method is a simple random walk Metropolis-Hastings algorithm. This algorithm

produces a set of correlated draws η̃t ∼ p̃(ηt, st). In order to produce a sample of length T,

we pick one draw and repeat for each time period. Although perhaps more familiar in the

context of drawing from a posterior distribution, this algorithm can be used to construct a

Markov Chain whose invariant distribution is the one you wish to sample from in far more

general settings. The algorithm is as follows: Given we have some η̃t−1, st−1

1. Set st = f(η̃t−1, st−1)

2. for i = 1, . . . N

• Obtain a candidate draw, η∗t ∼ N(ηi−1
t ,Σ)

• If p̃(η∗t ) > p̃(ηi−1
t ) then set ηit = η∗t

• If p̃(η∗t ) < p̃(ηi−1
t ) then set ηit = η∗t with probability

p̃(η∗t )

p̃(ηi−1
t )

and ηi = ηi−1
t otherwise

3. draw one ηt from {ηit}Ni=1

4. increase t

This algorithm at each time period produces a Markov Chain whose invariant distribution

is the distribution we want to sample from. These draws can then be used to compute state

by state means, or, by repeating for t = 1, . . . , T this produces a series of states (η1:T , s1:T )

which can then be used to construct data under the distorted distribution.

4.4.2 (Repeated) Sampling Importance ReSampling

We propose an alternative to the simple Metropolis Hastings algorithm which takes advantage

of the relationship between the approximating and worst case model. Thus, we propose a

version as the Sampling Importance ReSampling (SIR) algorithm of Rubin (1987) and Smith

and Gelfand (1992) for drawing from this worst case model. It involves simulating draws from

the approximating model, then computing the weights, which just happen to be equal to the

minimizing martingale increment, then resampling with replacement using those weights.

This produces an unbiased estimate of the distribution p̃(ηt, st), and again, by repeating

these steps, can be used to generate a series of states from the distorted distribution and

construct data under this worst case model. Given some η̃t−1, st−1

1. set st = f(η̃t−1, st−1)
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2. draw ηit ∼ p(ηt), i = 1, . . . , N

3. assign weight W i
t = m̃(ηt; st)

4. resample with probability ∝ W i
t , call new set of draws η̃t

5. now η̃it ∼ p̃(ηt; st), i = 1, . . . , N

6. draw once from {ηit, st}Ni=1 and store

7. increase t

We use this algorithm to compute the moments and generate the distorted consumption series

in the sections below.10

5 Results

Given our posteriors for the parameters of the endowment processes we are able to calculate

posteriors for various moments of interest. In the case of the homoskedastic model this will

typically entail substituting draws from our posterior into closed form expressions. In the case

of the stochastic volatility model, where closed from expressions for moments are generally

unavailable, we will simulate the economy under each parameter draw to obtain simulation-

based posteriors for moments. In the latter case, we therefore confront errors arising both from

the use of perturbation approximation and from sampling variability. We chose to represent

our results in terms of γ and label those preferences RS, although interpret the results as an

agent who fears his model is misspecified. For a γ ∈ {2, 15, 35, 50}, we have an agent who fears

his model is misspecified with a penalty parameter θ ∈ {200, 14.28, 5.88, 4.08} respectively, or

as we will see, a detection error probability of, approximately, p(θ) ∈ {0.5, 0.3, 0.115, 0.05}.

5.1 Unconditional Market Price of Risk

We begin this section by examining the implications of the homoskedastic model. In a

Bayesian context, we want an estimator δ of some quantity h(ϑ), where ϑ is our vector of

parameters, which, after seeing a vector of data y, is distributed according to our posterior

10We experimented with a full Sequential Monte Carlo approach to generating a distorted series. Because
the resampled particles are not rejuvenated, for time periods l << T , this algorithm produces quite a bad
approximation to the worst case distribution. One can fix this using resample-move type algorithms as
discussed in the particle filtering literature and have found this to be an efficient method when the particle
degeneracy is not too severe.
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Figure 2: The Graph of Tallarini
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distribution ϑ ∼ p(ϑ|y). We use a quadratic loss function, L(δ, ϑ) = ‖h(ϑ)− δ‖2. We choose

δ̂ to minimize the expected loss ∫
L(δ, ϑ)p(ϑ|y)dϑ

Which gives rise to the estimator

ϑ̂(y) = Ep[h(ϑ)] =

∫
h(ϑ)p(ϑ|y)dϑ

We want estimates of E[Λt,t+1] and σ(Λt,t+1), so we estimate these quantities by

̂E[Λt,t+1] = Ep[E[Λt,t+1](ϑ)] =

∫
E[Λt,t+1](ϑ)p(ϑ|y)dϑ

and,

̂σ(Λt,t+1) = Ep[σ(Λt,t+1)(ϑ)] =

∫
σ(Λt,t+1)(ϑ)p(ϑ|y)dϑ

For samples of parameters from our posterior distribution, we use the formulas in 7 and

11 and compute the mean and standard deviation of the stochastic discount factor for each

draw. We then plot the average over those (E[Λt,t+1], σ(Λt,t+1)) pairs for both the expected

utility and risk sensitive utility cases without stochastic volatility for γ ∈ {2, 15, 35, 50} in

figure 2.

We first note the difficulty of attaining the Hansen-Jagannathan bounds using expected

utility and remind the reader that the slope of a ray from the origin going through these

points is the market price of risk in the economy. While the mean point estimates of the

market price of risk rises under the expected utility, the risk free rate rises as well, and the

mean point estimates move away from the Hansen-Jagannathan bound. However, with risk

sensitive preferences (whether the IES is fixed at 1), raising the value of the risk aversion

parameter generates stochastic properties of the stochastic discount factor that move toward

the bounds.

Since we have an entire posterior distribution of parameters, instead of focusing on the

means, medians, or modes of such distributions, we plot each (E[Λt,t+1], σ(Λt,t+1)) pair for a

sampling of draws from our posterior distribution. That is, we can plot (E[Λt,t+1](ϑ), σ(Λt,t+1)(ϑ))

for our parameters ϑ ∼ p(ϑ|y). This captures how the uncertainty in the parameter estimates

of φ and σ translate into uncertainty over the resulting market price of risk.

In figure 3 we demonstrate how our posterior over parameters implies a joint posterior

for components of the market price of risk (E[Λt,t+1], σ(Λt,t+1)), given particular values of γ.

We call this visual representation of the posterior distribution of (E[Λt,t+1], σ(Λt,t+1)) pairs as
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Figure 3: Hansen Jagannathan Clouds
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Figure 4: Hansen Jagannathan Clouds, σ fixed
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Figure 5: Hansen Jagannathan Clouds, φ fixed
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Hansen-Jagannathan Clouds. Much like the mean estimates, the clouds associated with the

expected utility case drift away from the Hansen-Jagannathan bounds as γ increases, while,

for higher values of γ the clouds associated with the risk sensitive/multiplier preferences

approach the bounds.

We note a curious behavior of the resulting clouds, namely that in the risk sensitive case,

the dispersion is predominantly in the σ(Λt,t+1) dimension, whereas in the expected utility

case the clouds exhibit a slight upward slope but stretched in both dimensions. We derive

simple intuition for these patterns by keeping, in turn, φ and σ close to their unconditional

means and then examining the posteriors conditional on these values. In particular, when

we plot the φ conditional on σ cloud, we keep all of the σ’s contained in a slice through

the posterior at its mean and ±0.25 standard deviations from that mean. Associated with

these mean σ values are a range of φ’s. We then calculate and plot the mean and standard

deviations of the stochastic discount factor associated with these parameter draws which

characterizes the uncertainty about the φ parameter as σ remains virtually fixed.11 We do

an analogous exercise and plot the σ’s associated with mean φ’s to examine the effects of

uncertainty about σ.

In figure 4 we observe that uncertainty about φ is barely reflected in uncertainty in either

E[Λt,t+1] or σ(Λt,t+1) under risk sensitive/multiplier preferences, but drives the majority of

the uncertainty in the expected utility case. Examining the formula for the expectation of the

stochastic discount factor in the expected utility case φ is multiplied by γ so for large gamma

any uncertainty about φ is enhanced. The standard deviation of the stochastic discount factor

under expected utility moves to just offset this keeping the market price of risk constant. In

the risk sensitivity/multiplier case the IES is fixed at unity and these effects does not apply.

Since φ is fairly accurately estimated, we do not see much movement when we vary this

parameter. The effect of parameter uncertainty over σ is substantially different as seen in

figure 5. Uncertainty about σ accounts for all of the uncertainty about the estimated market

price of risk in both the risk sensitive and expected utility cases.12 Thus any estimate of the

variance of consumption growth will be crucial for the resulting estimate of the market price

of risk.

With regard to our posterior for the market price of risk itself, we see in table 3 our

means for different γ values. Note that both expected utility and risk sensitive/multiplier

11We did this instead of re-estimating the model conditional on one particular sigma.
12This result can also be attained by staring at the formula for the market price of risk in both utility

specifications.
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Table 3: Market Price of Risk Without Stochastic Volatility

Quantiles
γ Mean 0.025 0.25 0.50 0.75 0.975

2 0.0105 0.0096 0.0101 0.0104 0.0108 0.0114
15 0.0786 0.0719 0.0761 0.0785 0.0810 0.0859
35 0.1848 0.1687 0.1787 0.1844 0.1904 0.2021
50 0.2663 0.2428 0.2573 0.2657 0.2746 0.2917

preferences imply the same (constant) market price of risk.

We have just seen how estimates of σ in the homoskedastic model affect the estimated

market price of risk in an endowment economy. However, in section 2, we found evidence of

stochastic volatility in that same consumption process, thus we need to re-examine the graphs

of Tallarini and BHS while accounting for stochastic volatility, which we do in figure 6. First

we compare means of the (E[Λt,t+1], σ(Λt,t+1)) pairs now computed using draws from the

posterior distribution of the stochastic volatility model. For each parameter draw, due to the

lack of closed form expressions for these objects, we solve the model using perturbation and

simulate to obtain these moments. Specifically, our perturbation solution we define objects

Et[Λt,t+1], and Λt,t+1, then simulate the model and compute E[Λt,t+1] = 1
T

∑T
t=1Et[Λt,t+1] and

σ(Λt,t+1) = sqrt( 1
T

∑T
t=1[(Λt,t+1− 1

T

∑T
j=1 Λj,j+1)2]). Doing so, we introduce both sampling and

approximation errors due to our use of simulations and perturbation methods, respectively.

However, by averaging out over draws from the posterior and over simulations, we try to

mitigate these effects.13

We notice that in the expected utility case, allowing for the possibility of stochastic

volatility increases the market price of risk, but also slightly increases the risk free rate in the

economy. Since the risk free rate is already far too high even without stochastic volatility,

we are indifferent to this effect. In the risk sensitive/multiplier case on the other hand, we

get a large increase in the average market price of risk without any noticeable penalty to

the risk free rate. To explain why, we turn to our Hansen-Jagannathan Clouds. Plotting

13Estimating the unconditional mean E[Λt,t+1] using 1
T

∑T
t=1 Λt,t+1 seems to give much more volatile and

inaccurate estimates of the mean compared to using the average of the conditional expectation which is why
it was used. This is because Λt,t+1 is much more volatile than Et[Λt,t+1]. Using E[Λt,t+1] = 1

T

∑T
t=1 Λt,t+1 in

the calculations ’fattens’ the clouds in the E[Λt,t+1] dimension and drives the average risk free rate negative
for higher values of γ. We can easily fix the risk free rate by changing the parameter β so that the mean
estimate remains positive. We use E[Λt,t+1] = 1

T

∑T
t=1 Λt,t+1 in the calculation of σ(Λt,t+1) to center the

estimate used in the variance calculation.
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Figure 6: Hansen Jagannathan Bounds With Stochastic Volatility

Table 4: Market Price of Risk: Risk Sensitive/Multiplier Preferences With Stochastic Volatil-
ity

Quantiles
γ Mean 0.025 0.25 0.50 0.75 0.975

2 0.0111 0.0077 0.0094 0.0105 0.0119 0.0179
15 0.0846 0.0579 0.0709 0.0792 0.0914 0.1399
35 0.2183 0.1390 0.1737 0.1956 0.2303 0.4419
50 0.3651 0.2031 0.2543 0.2945 0.3542 0.8424

Table 5: Market Price of Risk: Expected Utility With Stochastic Volatility

Quantiles
γ Mean 0.025 0.25 0.50 0.75 0.975

2 0.0111 0.0083 0.0098 0.0107 0.0118 0.0169
15 0.0841 0.0618 0.0734 0.0804 0.0890 0.1283
35 0.1975 0.1469 0.1722 0.1876 0.2102 0.2957
50 0.2838 0.2107 0.2471 0.2708 0.2997 0.4412
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Figure 7: Hansen Jagannathan Clouds With Stochastic Volatility
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Table 6: Conditional MPR, effect of ε2,t

Quantiles
ε2 Mean 0.025 0.25 0.50 0.75 0.975

+1 0.2701 0.2102 0.2459 0.2646 0.2887 0.3625
0 0.2341 0.1820 0.2126 0.2294 0.2485 0.3142
-1 0.1910 0.1422 0.1709 0.1865 0.2067 0.2646

these clouds on the same graphs as the homoskedastic specification case gain insight into the

mechanism, displayed in figure 7. First we see that the introduction of stochastic volatility

results in greater dispersion in both the expected utility and the risk sensitive cases. Given

that we have introduced additional parameters and attempted to estimate them using the

same consumption data it is intuitive that the dispersion of our posteriors should increase.

Also, some of the increased dispersion in the clouds is due to errors of approximation and

simulation of the model. The dispersion relative to the homoskedastic case is primarily

in the σ(Λt,t+1) dimension. These parameters induce a long positive tail in the posterior

distribution of market prices of risk that the model produces. Averaging over these values

pulls the estimated market price of risk upwards, especially in the risk sensitive case, and

we are able to approach the Hansen-Jagannathan bounds for a substantially lower value of

γ than in the homoskedastic case. Indeed, for γ = 35 and γ = 50 the increases are of 20

and 35 percent, respectively. Allowing for stochastic volatility in log consumption growth

allows us to reach the Hansen-Jagannathan bound with a risk aversion parameter γ that is

substantially lower than before.

5.2 Conditional Asset Pricing

In the homoskedastic endowment case the market price of risk is constant. However, in the

presence of stochastic volatility, the market price of risk varies over time. Since we employ

a third order perturbation approximation, we are able to capture this time variation. Due

to the failure of expected utility to reach the unconditional Hansen-Jagannathan bound, we

will focus on risk sensitive/multiplier preferences.

To see this, we plot in the mean of the joint posterior distribution of Et[Λt,t+1] and

σt(Λt,t+1) at different state configurations and with γ = 50. For each parameter draw, we

simulate the model and compute the stochastic steady state. At this stochastic steady state,

we calculate the conditional market price of risk, σt(Λt,t+1)

Et[Λt,t+1]
, and average over draws, yielding
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Figure 8: Conditional Market Price of Risk at Steady State: Effect of Volatility Innovations
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Figure 9: Conditional Market Price of Risk at Steady State: Effect of Consumption Growth
Innovations

the black circle. We then calculate the conditional market price of risk, averaged over draws

from the posterior, with the innovation to volatility, ε2,t evaluated +1sd (green triangle up)

and −1sd (red triangle down). We observe that we do get substantial action in the conditional

market price of risk that varies with innovations to the volatility innovation process. In the

high volatility shock case, the market price of risk is relatively high, increasing by up to 15%.

The opposite is true in the low volatility case. Table 6 reiterates these results.

In figure 9 we perform the same exercise but with the state configurations varying with

ε1,t, at zero and ±1sd. We observe that the value of the market price of risk does not appear

to depend on the value of the endowment innovation, which is intuitive given the random

walk nature of the (log) endowment process and the IES being fixed at 1.14 BHS note that

the overwhelming majority of what is normally termed the market price of risk arises from

the additional component of the stochastic discount factor that arises from risk sensitivity or

robustness, depending on interpretation. Here we examine which of these two components is

moving conditionally.

14We have not done this with Epstein-Zin preferences where the IES can be different from one.
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Figure 10: Variation in Conditional Moments
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Figure 10 plots histograms of the standard deviations of different moments of the market

price of risk. The column on the left deals with the standard deviation of the conditional first

moment, while the column on the right deals with the standard deviation of the conditional

second moment. The first row corresponds to standard deviations of the stochastic discount

factor. The second and third rows correspond to the standard deviations of conditional

moments of ΛR
t,t+1 and ΛU

t,t+1 respectively.

Firstly, we see the standard deviations of the conditional expectation of the stochastic

discount factor, σ(Et[Λt,t+1] is quite low, 0.00080 (first row, left column). This means that the

risk free rate in our model is not varying much over time in our model. The standard deviation

of the conditional variance of that stochastic discount factor, σ(Vt[Λt,t+1]) is two orders of

magnitude higher. This means that the movement in the conditional price of risk comes

primarily through the movement in the conditional variance term, which, as demonstrated

above, comes from movements in the vt sequence. Turning our attention to the sequences

which make up the stochastic discount factor, ΛR
t,t+1 and ΛU

t,t+1, we notice the following, first,

that σ(Et[Λ
U
t,t+1]) = 0 (last row, left column) since Et[Λ

U
t,t+1] = 1 and thus our approximate

solution lines up with our algebraic fact. Second, and more important, the standard deviation

of conditional variance of ΛU
t,t+1 is nearly the same as the standard deviation of the conditional

variance of the entire stochastic discount factor, Λt,t+1, ie σ(Vt(Λ
U
t,t+1)) ≈ σ(Vt(Λt,t+1)). Recall

that this term is much larger than the standard deviation in the conditional expectation,

which means that conditionally, the movement in the market prices of risk are driven primarily

by the ΛU
t,t+1 term and not ΛR

t,t+1. Under the doubts interpretation, ΛU
t,t+1 = mt+1(εt+1) a

likelihood ratio, or equivalently, movements in the conditional market price of risk are due to

changes in the distorted conditional distribution of the innovations (ε1,t, ε2,t). Thus, it is the

risk sensitive component or, under the doubts interpretation, the conditional market price of

model uncertainty, that is driving variation in what is typically termed the market price of

risk.15

5.3 Welfare Costs

Computing the welfare costs of business cycles has a long history in macroeconomics. Here

we examine whether allowing for stochastic volatility affects the computed costs. The first

thought experiment we consider is the effect on the agent’s value function of introducing

stochastic volatility. Tables below indicate that for all but extremely low values of γ the

15Note that due to covariance between ΛRt,t+1 and ΛUt,t+1, adding the variance components for some condi-
tional moment will not add up to the associated variance in the conditional moment of Λt,t+1.
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Table 7: Variation in Conditional MPR, γ = 50

Quantiles
ε2 Mean 0.025 0.25 0.50 0.75 0.975

σ(Et[Λt,t+1]) 0.00081 0.00036 0.00054 0.00069 0.00089 0.00197
σ(Vt[Λt,t+1]) 0.04043 0.01825 0.02704 0.03430 0.04470 0.09854
σ(Et[Λ

R
t,t+1]) 0.00001 0.00000 0.00001 0.00001 0.00001 0.00002

σ(Vt[Λ
R
t,t+1]) 0.00002 0.00001 0.00001 0.00001 0.00002 0.00004

σ(Et[Λ
U
t,t+1]) 0 0 0 0 0 0

σ(Vt[Λ
U
t,t+1]) 0.03959 0.01788 0.02649 0.03359 0.04379 0.09652

Table 8: Distribution of Value Function Without Stochastic Volatility

Quantiles
γ Mean 0.025 0.25 0.50 0.75 0.975

2 0.9344 0.8034 0.8881 0.9355 0.9783 1.0660
15 0.8989 0.7672 0.8522 0.9003 0.9437 1.0282
35 0.8443 0.7094 0.7976 0.8452 0.8891 0.9743
50 0.8033 0.6677 0.7566 0.8048 0.8503 0.9339

Table 9: Distribution of Value Function With Stochastic Volatility

Quantiles
γ Mean 0.025 0.25 0.50 0.75 0.975

2 0.9389 0.8179 0.8971 0.9399 0.9796 1.0526
15 0.8975 0.7588 0.8536 0.9007 0.9402 1.0182
35 0.8338 0.6590 0.7915 0.8432 0.8857 0.9653
50 0.7859 0.5696 0.7466 0.8009 0.8446 0.9274

distribution of the value function is shifted lower through the introduction of stochastic

volatility. This effect is particularly pronounced as γ increases.

We now compute the welfare costs of business cycles with and without stochastic volatility.

To calculate the welfare costs of stochastic volatility we will take a fourth order approximation

of the relevant variables. If we let the state xt = (vt, ε1,t, χ), where χ is our perturbation

parameter. We perturb around the point χ = 0, and evaluate the model at χ = 1. We have,

by use of our perturbation methods, an approximate value function, which is

U(xt) ≈ Uss + Ui,ssx
i
t + 1

2
Uij,ssx

i
tx
j
t

+1
6
Uijk,ssx

i
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j
tx
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t + 1
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l
t

In a third order approximation, risk adjustments show up once as a constant risk adjust-
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Table 10: Welfare Cost of Business Cycles Without Stochastic Volatility

Quantiles
γ Mean 0.025 0.25 0.50 0.75 0.975

2 -0.0027 -0.0033 -0.0029 -0.0027 -0.0026 -0.0023
15 -0.0383 -0.0455 -0.0405 -0.0380 -0.0357 -0.0319
35 -0.0929 -0.1105 -0.0983 -0.0923 -0.0868 -0.0775
50 -0.1339 -0.1593 -0.1417 -0.1330 -0.1250 -0.1117

Table 11: Welfare Cost of Business Cycles With Stochastic Volatility

Quantiles
γ Mean 0.025 0.25 0.50 0.75 0.975

2 -0.0032 -0.0067 -0.0034 -0.0028 -0.0024 -0.0018
15 -0.0446 -0.0938 -0.0473 -0.0392 -0.0336 -0.0256
35 -0.1084 -0.2278 -0.1150 -0.0953 -0.0815 -0.0622
50 -0.1562 -0.3283 -0.1657 -0.1373 -0.1175 -0.0896

ment term Uχχ,ss, as well as in the third order coefficients with linear time varying scalings

for some state k, Uχχ,k,ss(x
k
t − xss). The fourth order approximation is important as it con-

tains another constant risk adjustment term which is zero under the no-stochastic volatility

case, but positive in a model with stochastic volatility, Uχχχχ,ss, captures a risk-in-the-risk

adjustment. We can then calculate the welfare costs of business cycles as E[U(xt)|i] − Uss
for i ∈ {SV,NoSV }. Then finally, a welfare cost of stochastic volatility, how much an agent

is willing to give up to go from a model with stochastic volatility to one without, but still

maintaining risk in the economy.

E[U(xt)|SV ]− E[U(xt)|NoSV ]

The value function is is log consumption units, so a number such as -0.13 means that an

agent is willing to give up 13 percent of current consumption to go to a growth path with no

volatility. As we see in Tables 10 and 11, our mean estimate of the welfare costs of business

cycles, when these business cycles contain a stochastic volatility component, is about 15%

more than the homoskedastic case. Looking at the quantiles of the welfare costs of business

cycles, we see that again, the higher welfare costs are driven by the large (lower) tail of the

distribution of welfare costs associated with the stochastic volatility model.
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Table 12: Unconditional Distorted Moments of the Innovations
vt µ(ε1) µ(ε2) σ(ε1)2 σ(ε2)2

High -0.451 0.116 1.007 1.009
NSS -0.231 0.093 1.002 1.005
Low -0.127 0.084 1.001 1.000

5.4 Worst Case Distribution

In the model with stochastic volatility, the asset pricing and welfare costs come primarily from

an evil agent who distorts the joint distribution of ε1 and ε2, the innovations in the endowment

and volatility processes respectively. In addition to the lagged continuation value, the lagged

level of the stochastic volatility is also a predetermined state. We examine distortions in the

context of the lagged value of volatility being at its non-stochastic steady state and ±2sd

(where the standard deviations are unconditional). Thus we examine doubts in situations of

high, low and moderate variability.

Table 12 displays information on the conditional effects of the evil agent’s distortions.

We observe clearly the evil agent chooses to lower the mean of the endowment innovation,

µ(ε1,t), and that the distortion is more extreme the higher is the volatility state. The second

column features distortions in the mean shift of the volatility innovation, µ(ε2,t). Given the

undesirability of volatility, this latter distortion involves a positive mean shift. The evil agent

shifts the mean of ε2 upwards, with the size of this shift increasing in the level of volatility. The

fact that the size of the positive mean shift in ε2 is increasing in the level of volatility means

that the evil agent effectively increases the persistence of the perceived volatility process.

The evidence regarding the effect on diagonal terms in the covariance matrix is less clear as

these are subject to sampling variability.

When one examines the covariances of the shocks under the distorted distributions there

appears to be stronger evidence of distorted higher moments. In the high volatility case

the evil agent induces a correlation coefficient between the two innovations of almost 0.1 in

absolute value. The correlation is negative, implying that ‘good’ (‘bad’) endowment shocks

are associated with ‘good’ (‘bad’) volatility shocks. Thus, the evil agent makes the good

times better and the bad times worse by creating additional systemic risk in the mind of our

robust agent. Again we observe that the extent of the distortion is positively related to the

current level of volatility as the evil agent takes advantage of a deterioration in detectability.

How do these state dependent shifts translate into effects of unconditional moments in
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Table 13: Unconditional Distorted Covariance of the Innovations
vt Cov(ε1, ε2)
High -0.073
NSS -0.043
Low -0.012

Table 14: Unconditional Moments of Consumption Under Worst Case Model

γ 2 15 35 50 65

Mean 0.0047 0.0043 0.0035 0.0026 0.0011

St.Dev 0.0055 0.0056 0.0061 0.0070 0.0086

Skew -0.0224 -0.1809 -0.4693 -0.7150 -1.0433

Corr(lag)

1 -0.0058 -0.0003 0.0232 0.0564 0.1316
2 -0.0020 -0.0008 0.0171 0.0511 0.1165
3 -0.0034 -0.0024 0.0178 0.0442 0.0984
4 -0.0023 -0.0020 0.0134 0.0364 0.0862
5 -0.0044 -0.0004 0.0105 0.0269 0.0755
6 -0.0050 -0.0007 0.0083 0.0258 0.0635
7 -0.0023 -0.0024 0.0067 0.0226 0.0570
8 -0.0053 -0.0025 0.0063 0.0178 0.0519
9 -0.0035 -0.0029 0.0034 0.0170 0.0419

consumption growth? Here we simulate the model under the distorted probability distri-

bution and compute mean, variance, skewness, and autocorrelation in the corresponding

consumption growth process.

We in see in Table 14, by increasing γ, or lowering the penalty of model distortions, the

mean of the consumption growth process falls, just like in a homoskedastic model. This hap-

pens as the mean of the innovation to the consumption growth process loads on the volatility

series. When γ rises, the evil agent is able to distort the model more. The volatility state

dependent mean shifts in the consumption innovation µt(ε1,t) and increased persistence of

the distorted vt series, increase the unconditional variance of the consumption growth pro-

cess. Thus the agent fears that his consumption growth has lower mean and higher variance

than his approximating model. Even though under the approximating model, consumption

growth has no autocorrelation, the state dependent consumption growth innovation mean

shift is loading on the persistent volatility sequence vt inducing persistence in the worst case
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consumption growth process. This autocorrelation is small and hard to detect at lower values

of γ, but can be seen clearly as γ rises above 35. That is, the agent fears a consumption

process with a long run risk component.

Because the innovations (ε1,t, ε2,t) are negatively correlated under the distorted model and

larger conditional variances are associated with larger (negative) mean shifts in the consump-

tion growth process, his perceived consumption growth process is negatively skewed. Since

the consumption growth process is persistent, consumption takes occasional, largely negative

swings away from its mean. Much like Rietz (1988) who allows for very infrequent, large drops

in consumption growth that have not occurred in the data, our model works toward solving

the equity premium puzzle by the perceived possibility of disasters in economic growth in the

agent’s head. Because this distorted model is an optimal choice of an evil agent, the asset

pricing and welfare implications are an endogenous outcome. The endogenously generated

worst case model involves a lower growth rate and higher variance of consumption. Further,

the agent entertains the possibility that his consumption process is subject to disasters and

persistence in good and bad outcomes.

5.5 Detectability

Given the large effects that a high γ have on the market price of risk and on the worst case

probability model, we now ask how plausible are these values and answer using detection

error probabilities. If the two models have similar stochastic properties, they will be difficult

to detect in the length of data we observe, and the detection error probability will be close to

a half. Models that have very distinguishable characteristics will be easily identifiable. We

generate data under the true and worst case probability models for γ ranging from 2 to 64.

For each γ value, we generate 2000 time series of length 247 under both the true and dis-

torted probability models, and perform likelihood ratio test statistics using the methodology

described in Section 4.3.16 The particle filters were run with 40000 particles.17 We compare

the detectability with that of the homoskedastic model. All simulations were performed using

the same maximum a posteriori parameter values which generated the distorted distributions

in Section 5.4.

As we can see from figure 11 the addition of stochastic volatility decreases the ability

of an agent to discriminate between probability models, for a given value of γ. BHS are

16Given that we use (essentially) a particle filter to generate the data, this results in 10000 particle filter
evaluations for each gamma value in the stochastic volatility model.

17In cases where there was a divergence in the particle filter, we used likelihood computed up until that
time period.
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Figure 11: Detection Error Probabilities
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able to attain the Hansen-Jagannathan bounds with a γ of about 50, which corresponds to

detection error probability of 2.5%, in our stochastic volatility model, we are able to reach

the Hansen-Jagannathan bounds with a γ that is 30%. When framed in terms of detection

error probabilities, this corresponds to a number that is about 4.5 times larger.18 In Sections

5.1 and 5.3, we compared the market price of risk and welfare costs from the stochastic

volatility model and the homoskedastic model for a given level of risk aversion. We can now

hold he detection error probability fixed at a level which one finds comfortable and compare

the stochstic volatility model to the homoskedastic model. Relative to the homoskedastic

model, for a given detection error probability, the stochastic volatility model allows for a

larger γ parameter, thus a more distorted model. Hence allowing for stochastic volatility in

consumption increases in the market price of risk and welfare costs of business cycles relative

to the homoskedastic model for fixed values of the detection error probability.

6 Conclusions and Proposals for Future Work

In this paper, we have found evidence of stochastic volatility in log consumption growth.

By allowing for this stochastic volatility, we increase the unconditional market price of risk

that is both consistent with risk sensitive/multiplier preferences and the empirical data on

consumption and asset returns. Welfare costs of business cycles also increase. The asset

pricing implications are primarily driven by the component of the stochastic discount factor

associated with risk sensitive preferences or changes in the worst case model an agent who is

uncertain about his model entertains. Along with a lower mean and higher variance, such a

worst case model involves autocorrelation in consumption growth as well as a negative skew-

ness. In order to evaluate the plausibility of such a model, we have extended the techniques

of Hansen and Sargent to discrete time, nonlinear and potentially non-Gaussian frameworks.

We have only focused on an endowment economy where endogeneity comes from the evil

agent creating a worst case distorted model in the agent’s head. It is interesting to see

if uncertainty about the specification of technology growth yields similar results when the

agent makes investment, consumption, and labor decisions in a production economy. All

of the techniques developed in this paper can be easily extended to such a model and are

explored in Bidder and Smith (2010).

The seemingly cyclical nature of our filtered stochastic volatility sequence does not say

whether volatility caused consumption to fall, thus looking at stochastic volatility in a pro-

18The detection error probabilities for gamma = 34 and 36 were 11.5% and 11.05% respectively.
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duction model when the social planner has a concern for model misspecification might be able

to answer whether animal spirits can in fact cause recessions. The innovations were assumed

to be independent but one could estimate a model with correlation in the innovations. This

would make the market price of risk countercyclical as preliminary analysis yields a corre-

lation coefficient between the innovations of around -0.17. The filtered volatility sequence

might be able to predict asset returns and explain cross sectional variation in various portfo-

lios. Further, the time variation in volatility, and time variation in market price of risk, begs

the question whether or not returns are predictable in our model like they are in the data.

All these questions are ongoing research.
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A Appendix

A.1 Perturbation Solution

The (unscaled) risk sensitive value function is:

V (Ct, vt) = (1− β)log(Ct) + βlog
(
E[(exp(V (Ct+1, vt+1)))(1−γ)]

) 1
1−γ

Where:
Ct = exp(Zt)
Zt = φ+ Zt−1 + σexp(vt)ε1,t
vt = λvt + τε2,t
εt ∼ N(0, I)

If we define Ṽ (ε1,t, vt) = V (Ct, vt)− log(Ct−1), the detrended value function is:

Ṽ (ε1,t, vt) = (1−β)(φ+exp(vt)ε1,t)+βlog
(
Et[(exp(Ṽ (εt+1, vt+1))exp(φ+ exp(vt)ε1,t)))

(1−γ)]
) 1

1−γ

Alternatively, since ε1,t and vt are known at date t, we can write the scaled value function

as

Ṽ (ε1,t, vt) = (φ+ exp(vt)ε1,t) + βlog
(
Et[(exp(Ṽ (ε1,t+1, vt+1)))(1−γ)]

) 1
1−γ

For exposition, we can write the state, xt = (ε1,t, vt) = (εt, vt−1), since vt and vt−1, ε2,t contain

the same information. We write our minimizing martingale increment as a time invariant

function of the state:

mt(εt) = m(xt) = m(ε1,t, ε2,t; vt−1)

We approximate the log of the minimizing martingale increment by perturbation, so

log(m(xt)) ≈ lmss + lmi,ssx
i
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Where lm is short for log(m(xt)). The worst case pdf in our stochastic volatility model is

then given by:

p̃(ε1,t, ε2,t; vt−1) ≈ 1√
2π
exp(lmss + lmi,ssx

i
t + 1
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2
(ε21,t + ε22,t))

We show how to use this approximate pdf. We can also define other functional objects to be

approximated by taylor polynomials, specifically we can define the conditional expectation

and variance of the stochastic discount factor as

EtL = Et[Λt,t+1]
V tL = Et[(Λt,t+1 − EtL)2]
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And approximate these as taylor polynomials. We resort to the law of iterated expectations

to estimate the mean of the stochastic discount factor in our calculations E[Et[Λt,t+1]] =

E[Λt,t+1], as well as rely on EtL and VtL to compute variation in the conditional moments

and conditional market price of risk as MPRt =
√
V tL
EtL

.

A.2 Welfare Cost of Business Cycles

Recall our (4th order) approximate value function is:

U(xt) ≈ Uss + Ui,ssx
i
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Taking expectations, with the state xt = (ε1,t, vt, χ), substituting in the moments of the

normally distributed random variables ε1,t,vt,
19 and after eliminating aprior zero terms and

accounting for duplications, we have

E[U(xt)] = Uss + U1,1 + U2,2
τ2

1−λ2 + U3,3

+U1,1,2,2
τ2

1−λ2 + U1,1,3,31 + U2,2,3,3
τ2

1−λ2

+U1,1,1,13 + U2,2,2,23
(

τ2

1−λ2

)2

+ U3,3,3,3

However, U1,1 = U2,2 = U1,1,2,2 = U1,1,3,3 = U1,1,1,1 = U2,2,2,2 = 0, thus the average value

function is approximately

E[U(xt)] = Uss + U3,3 + U2,2,3,3
τ 2

1− λ2
+ U3,3,3,3

The deterministic steady state value function is Uss, so the welfare cost of business cycles

is thus U3,3 + U2,2,3,3
τ2

1−λ2 + U3,3,3,3 in the stochastic volatility model. In the homoskedastic

model, U2,2,3,3 = U3,3,3,3 = 0 and the welfare costs are just U3,3. The value function is in log

consumption units, thus this measurement is the amount an agent would be willing to give

up to go to a model with no fluctuations in his consumption. We take

E

[
Uss + U3,3 + U2,2,3,3

τ 2

1− λ2
+ U3,3,3,3|SV

]
− E [Uss + U3,3|NSV ]

as the welfare costs of being in a world with stochastic volatility, where the expectations are

computed averaging draws from the posterior distribution of parameters for the respective

models.

19E[ε1,t] = 0, E[ε21,t] = 1, E[ε31,t] = 0, E[ε41,t] = 3, E[vt] = 0, E[v2t ] = τ2

1−λ2 , E[v3t ] = 0, E[v4t ] = 3
(

τ2

1−λ2

)2
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A.3 Accuracy Check

A.3.1 Distorted Distributions

Our method is subject to two sources of approximation error. The first is that we use

an approximation to the minimizing Martingale increment and the second is that we are

employing Monte Carlo methods. Since the distorted distribution in the homoskedastic model

is known exactly we check our method against it. In this context the worst case distortion is

given by

p̃(η) ∼ N (µ(η), 1) (19)

where

µ(η) = − σ

(1− β)θ
(20)

Thus, the distortion takes the form of a state independent mean shift, where the size of

the shift is increasing in the level of risk in the approximating model and decreasing in θ.

The intuition behind the positive effect of σ is that greater variance in the shocks implies

that a broader set of distorted models are plausible.

In figure A.3.1 we plot Kolmogorov-Smirnov smoothed densities of our draws from p̃,

together with the normal density which is the approximating model. The predetermined

variable, the lagged continuation value is set at its non-stochastic steady state value. The

diagram shows clearly that, while there are some deviations, they are almost insignificant.

In particular, on the graph we include the means and standard deviations associated with

each chain’s draws and these are extremely close the the values they should theoretically

have under our parameterization (−0.244588, 1). In an attempt to be formal, we also apply

statistical tests to ascertain whether or not the distributions have the desired form. We

apply the Kolmogorov-Smirnov 1-sample test to the draws from each chain and find that the

tests resoundingly fail to reject the null that the draws are from N(w(θ), 1). Even though

the Kolmogorov-Smirnov 1-sample test of equality of distributions applies to uncorrelated

draws from a distribution, and our MCMC routine generates correlated draws, the results

are encouraging and we hope that they imply that our method is reasonably reliable in

more general models where all moments may be distorted and where the distortions are not

available in closed form, as in the stochastic volatility case.

A.3.2 Clouds

In figures 12 and 13 we plot both the clouds and means of our Hansen-Jagannathan clouds

for the homoskedastic case with risk sensitive preferences under various values of gamma,
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Figure 12: Hansen Jagannathan Clouds: Exact vs Approximated
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Figure 13: Mean of Hansen Jagannathan Clouds: Exact vs Approximated
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calculated first using closed form expressions and second, using our simulation/perturbation

methodology. While the approximate clouds have more dispersion than their closed form

counterparts, when we average over the parameter draws, we attain essentially the same

values of the market price of risk for each value of γ.
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