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1. Introduction

The effects and transmission mechanisms of fiscal policy are a highly controversial issue
in recent macroeconomic research. Recently, a multiplicity of countries approved mas-
sive and aggressive fiscal stimulus packages in order to prevent further output losses and
facilitate the economic recovery.1 Beside these fiscal stimulus packages, the monetary
authorities - the Federal Reserve and the European Central Bank - stem against the
downturn with extremely expansionary monetary policy measures.2

However, the massive interventions of governments and monetary authorities are not
independent of each other. There are many channels through which one policy affects
the other. A major risk is that governments may be tempted to inflate its debt with
allowing for higher inflation in the future (Seigniorage). In this case expansionary fiscal
policy would lead to expansionary monetary policy, which accelerates inflation and may
result into real appreciations of the currency and - in an extreme case - to a currency
or banking crisis.3 From a forward looking perspective fiscal spending is likely to have
crowding out effects of other aggregate demand components. A high government’s credit
demand may result in too less or too expansive credit for the private sector and therefore
may lead to a decline in private consumption and private investment. With respect to
this channel, monetary policy has a key role. When monetary policy is active, it will
respond to boosted aggregate demand with an increase in the nominal interest rate -
since it will try to close the output gap. This in turn dampens private consumption and
investment and leads to crowding out effects. Another direct channel in which fiscal pol-
icy impinges on the monetary authority is the government’s tax policy. Setting indirect
taxes (for example a VAT) has an effect on the price level and thus on inflation. This
may influence inflation expectations and lead to higher wage demands which in turn
may trigger a wage-price spiral.
Along this line, most macroeconomist agree that a ”good” policy design should be in
terms of macroeconomic stability. In particular, a high volatility of employment and
output is contrary to the mission of monetary and fiscal policy. In technical terms
this implies that the underlying equilibrium reveals determinacy and therefore locally
uniqueness. Monetary policy in the sense of interest rate rules with feedback to en-
dogenous variables have been exhibit in depth according to this principle. In contrast,
the implications of fiscal policy have not been scrutinized that detailed. This procedure
is sufficient in an environment in which the Ricardian equivalence holds and in which
taxes are non distortionary.4 Under these assumptions the problem can be separated

1For instance, the American Recovery and Reinvestment Act (ARRA) in the United States is with a
volume of 787 billion US-dollars in 2009 and 2010 - in addition to the 125 billion US-dollars provided
by the Economic Stimulus Act already in 2008 - the largest fiscal program ever seen in world history.

2 The Federal Reserve drastically lowered the Federal Funds Target Rate to the 0-0.5 percent level.
Additionally, highly unconventional monetary policy actions have been imposed, e.g. the monetary
base increased by over 200 percent and the FED purchased long-run government bonds that amount
up to 300 billion US-dollars.

3See Hilbers (2004).
4Ricardian equivalence in the sense of Woodford (1995) implies that government debt has no impact on
real quantities.
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into two independent sub-problems, solved recursively as shown by Leeper (1991). Fol-
lowing this approach the monetary problem is solved isolated from fiscal issues. Under
these circumstances, the Taylor principle creates conditions under which the equilibrium
shows determinacy. Fiscal policy has to be passive, in the sense that government debt
evolves in a stable manner. In this context fiscal policy can only be active, if and only
if the solution of the monetary problem is an equilibrium which reveals one degree of
indeterminacy. Then, government debt has to evolve unstable, to restore equilibrium
determinacy as shown by Leith and von Thadden (2006). However, if the assumption
of Ricardian equivalence is dropped non-trivial effects of fiscal policy arise, posing the
question of the interaction between monetary and fiscal policy. To be precisely, we un-
derstand fiscal policy as the sequence of current and anticipated taxes, spending and
debt affecting aggregate consumption. Since debt and the sequence of taxes are parts
of wealth they influence consumption, while government spending has a direct effect on
aggregate demand.
The baseline New Keynesian model assumes an infinitely-lived representative agent that
faces the decision of consumption and investment. In this intertemporal decision prob-
lem the interest rate is the decisive factor, since a higher interest rate creates incentives
to shift consumption to the future. However, if the assumption of infinitely-lived agents
is relaxed, wealth affects arise causing non-trivial interactions of demand and supply,
that are also a consequence of endogeneity of the capital stock.
Introducing an Overlapping Generations Model (OLG, henceforth) accounts for this ap-
proach. The basic concept is derived from the seminal contributions of Yaari (1965) and
Blanchard (1985).5 The model we use is based on that in Annicchiarico et al. (2009)
where the overlapping generations assumption and capital accumulation is embedded
into a New Keynesian model. The reminder of the paper is structured as follows. Sec-
tion 2 presents the structure of the model. Section 3 discusses the optimal policies using
(i) a Ramsey approach and (ii) a linear quadratic approach. Section 4 briefly concludes.

2. An OLG Model with Sticky Prices

The OLG model in the spirit of Blanchard/Yaari features a constant population with
identical preferences and a perfectly competitive life insurance market, such that there
is no incentive for intergenerational bequest. In addition, insurance companies collect
financial wealth from the deceased redistributing by paying a fair premium to the sur-
vivors. Consumer’s utility consists of consumption, government spending, and disutility
of work. Furthermore, we introduce nominal rigidities in the sense of Calvo (1983), i.e.
firms can not reset their prices in a fully flexible manner, instead they face a constant
probability of being allowed to readjust. Therefore, they set prices as a weighted average
of future expected marginal costs. Firms use labour and capital as inputs to produce
differentiated goods. We furthermore assume convex capital adjustment costs.

5A different way would be to introduce distortionary taxes as shown by Schmitt-Grohé and Uribe (2006)
or rule-of-thumb consumers as shown by Gaĺı et al. (2004).
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2.1. Consumer Preferences

Each agent, throughout his lifetime faces a constant probability of death, denoted by λ.
In addition, at any time t, a cohort of size λ is born, and total population is normalized
to one. Private markets provide insurance risklessly through life insurance companies.
Free entry and a zero profit condition imply that agents will pay (receive) a rate λ to
receive (pay) one good contingent on their death. Since there is no bequest motive - and
since negative bequests are ruled out - agents will contract to have all of their wealth
return to the life insurance company contingent on their death. The insurance company
will equally distribute the wealth of the deceased to the survivors.

2.1.1. Individual Consumption

Let us denote consumption, government spending and the labor supply by Cs,t, Gs,t, Ns,t.
Then, the representative agent j belonging to generation s solves the maximization
problem

max
Cs,t,Bs,t,Ns,t

E0

∞∑
t=0

[(1− λ)β]t
[

(ξtCs,t(j))
1−σ

1− σ
+

(ϑtGs,t(j))
1−γ

1− γ
− (µtNs,t(j))

1+ϕ

1 + ϕ

]
, (1)

subject to her budget constraint,

Bs,t+1(j)

Rt

+QtKs,t+1(j) ≤ As,t(j) +Ws,t(j)Ns,t(j) + Zs,t(j)− Ts,t(j)− PtCs,t(j). (2)

Here, Pt is the aggregate price index, Bs,t is a risk free per capita government bond,
which pays a gross nominal interest rate Rt = (1+ it). Zs,t are nominal aggregate profits
of the intermediate firm at time t. The agent receives labor income Ws,t(j)Ns,t(j) and
has to pay lump sum taxes Ts,t(j). Furthermore, β is the households discount factor.
In addition, we assume that households utility in every generation is subject to three
shocks, viz. (i) a preference shock, ξt, (ii) a government spending taste shock, ϑt, and
(iii) a disutility shock, µt.
Financial wealth is given by As,t,

As,t(j) =
1

1− λ
[
Bs,t(j) +

[
(1− δ)Qt +Rk

t

]
Ks,t(j)

]
, (3)

where Qt represents the price of capital, Rk
t is the nominal rental rate of capital and

Ks,t(j) denotes capital holdings.
The capital accumulation is given by

Kt+1 = (1− δ)Kt + φ

(
It
Kt

)
Kt, (4)
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where φ′(·) > 0, φ′′(·) ≤ 0, φ′(δ) = 1 and φ′′(δ) = δ captures convex adjustment costs.
Profit maximization implies

Qtφ
′
(
It
Kt

)
= Pt. (5)

By minimizing total expenditures, we obtain the demand function, Cit =
(
Pit
Pt

)−ε
Ct.

The household chooses the path of {Cs,t(j), Bs,t+1(j), Ks,t+1(j), Ns,t(j)}∞t=0, such that the
first-order conditions are given by

∂Lt
∂Cs,t(j)

= (ξtCs,t(j))
−σ − ζtPt = 0, (6)

∂Lt
∂Bs,t+1(j)

= −ζt
1

Rt

+
1

1− λ
β(1− λ)ζt+1 = 0, (7)

∂Lt
∂Ks,t+1(j)

= −ζtQt +
1

1− λ
β(1− λ)ζt+1

[
(1− δ)Qt+1 +Rk

t+1

]
= 0, (8)

∂Lt
∂Ns,t(j)

= −(µtNs,t(j))
ϕ + ζtWs,t(j) = 0, (9)

where ζt is the Lagrangian multiplier on the budget constraint. Combining the first two
derivatives gives the standard Euler equation for consumption flows, i.e.

1 = βRt
1

πt+1

(
ξtCs,t(j)

ξt+1Cs,t+1(j)

)σ
. (10)

In addition, the labor supply schedule reads as

Ws,t(j)

Pt
= (µtNs,t(j))

ϕ(ξtCs,t(j))
σ. (11)

Following Woodford (2003), we define the stochastic discount factor as

Λt,t+1(s, j) = β
1

πt+1

(
ξtCs,t(j)

ξt+1Cs,t+1(j)

)σ
, (12)

such that

Λt,t+1(s, j) =
1

Rt

. (13)

The transversality condition, ruling out a Ponzi-Game, is

lim
T→∞

Et(1− λ)T−tΛt,T (s, j)As,T (j) = 0, (14)

where Λt,T (s, j) =
∏T

k=T+1 Λk−1,k(s, j), as well as Λt,t(s, j) = 1.
The Appendix shows that the equation for individual consumption is

PTCs,T (j) = [1− β(1− λ)] [As,t(j) +Hs,t(j)] . (15)
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Here, we have defined Hs,t(j) as human wealth,

Hs,t(j) =
∞∑
T=t

Et(1− λ)T−tΛt,T (s, j) (Ws,T (j)Ns,T (j) + Zs,T (j)− Ts,T (j)) , (16)

which is the expected, discounted stream of labor incomes and profits net of taxes.

2.1.2. Aggregate Consumption

First, notice that in the symmetric equilibrium all workers of all generation will receive
the same wage and supply the same amount of work, such that

Ws,t(j) = Wt, (17)

Ns,t(j) = Nt, (18)

for all j ∈ (0, 1).
The aggregate value, Xt, of any individual variable, Xs,t(j), is obtained according to

Xt =
t∑

s=−∞

{∫ λ(1−λ)t−s

0

Xs,t(j)dj

}
. (19)

The aggregate budget constraint, the aggregate consumption, and aggregate labor supply
are then given by

Bt+1

Rt

+QtKt+1 = At +WtNt + Zt − Tt − PtCt, (20)

PtCt = [1− β(1− λ)] [At +Ht] , (21)

Wt

Pt
= (µtNt)

ϕ(ξtCt)
σ. (22)

The human wealth is then given by

Ht =
∞∑
T=t

Et(1− λ)T−tΛt,T (WTNT + ZT − TT ) . (23)

Then, as shown in the Appendix, aggregate consumption follows

PtCt =
ψ

1− ψ
λEtΛt,t+1At+1 +

1− λ
1− ψ

EtΛt,t+1Pt+1Ct+1, (24)

where ψ = [1− β(1− λ)].
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2.2. Intermediate Good Firms

Along the firm side of our economy, intermediate good producers i use capital, Kt(i),
and labor, Nt(i), as inputs for a Cobb-Douglas production function, viz.

Yt(i) = AtKt(i)
αNt(i)

1−α, (25)

where we denote the technology shock by At. Then, we can write the labor input as a
CES aggregator of individual labor supply, such that

Nt(i) =

(
t∑

s=−∞

∫ λ(1−λ)t−s

0

Ns,t(i, j)
η−1
η

) η
η−1

. (26)

Cost minimzation by firms yields the optimality condition

Kt(i)

Nt(i)
=

α

1− α
Wt

Rk
t

, (27)

and real marginal costs are given by

MCt =
α−α(1− α)α−1

At

(
Rk
t

Pt

)α(
Wt

Pt

)1−α

, (28)

being identical across all firms.
Intermediate good producers price setting decision is modelled through a discrete time
version of Calvo (1983) staggering mechanism. In each period, a firm faces a constant
probability, 1− θ, of being able to re-optimize its price and chooses the new price Pt(i)
that maximizes

Et

∞∑
T=t

θT−tΛt,TYT (i) (Pt(i)− PTMCT ) , (29)

subject to the demand schedule

YT (i) =

(
Pt(i)

PT

)−ε
YT . (30)

The first-order condition is

Et

∞∑
T=t

θT−tΛt,TYTP
ε
T

(
Pt(i)− (1 + µPPTMCT

)
= 0, (31)

where µP = 1
ε−1

is the equilibrium mark-up. Finally, the aggregate price index follows

Pt =
[
θ(Pt−1)1−ε + (1− θ)Pt(i)1−ε] 1

1−ε . (32)
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2.3. Final Good Firms

Perfectly competitive firms bundle type-i differentiated goods into homogenous final
goods by a Dixit-Stiglitz aggregator

Yt =

[∫ 1

0

Yt(i)
ε−1
ε

] ε
ε−1

, (33)

where Yt(i) is the quantity of the intermediate good produced by intermediate good firm
i. From the maximization program of the representative competitive firm, taking as
given the final good price Pt and the prices of the intermediate goods Pt(i) ∀ i ∈ [0, 1],
the overall demand addressed to the producer of intermediate good i is

Yt(i) =

(
Pt(i)

Pt

)−ε
Yt, (34)

while the zero profit condition in the final good sector implies

Pt =

[∫ 1

0

Pt(i)
1−εdi

] 1
1−ε

. (35)

2.4. Monetary and Fiscal Policy

2.4.1. Monetary Policy

Monetary policy follows a standard interest rate rule with a feedback to the endogenous
variables inflation and output. The Taylor rule is then given by(

1 +Rt

1 +R

)
=

[(
1 + πt
1 + π

)φπ (Yt
Y

)φY ]
eνt , (36)

where φπ > 0 is the weight on inflation and φY > 0 is the weight on output. νt is an
interest rate shock.

2.4.2. Fiscal Policy

Our fiscal authority issues Bonds, provides government spending, Gt, and uses lump
sum taxes for redistribution purposes. However, only two of those instruments can be
set independently, while the third follows from the budget constraint. Then, the flow
budget constraint in nominal terms is given by

Bt+1

Rt

= Bt + PtGt − Tt. (37)
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Rewriting this equation in real terms gives

lt+1

Rt

=
lt
πt

+Gt − τt, (38)

where lt = Bt/Pt−1 denotes total real government liabilities and τt = Tt/Pt is real tax
collections.
We assume that our fiscal authority follows a debt-based tax rule and a government
spending rule to conduct fiscal policy.6 Following Leeper (1991), the tax rule can - in
log-linearized terms - be written as

τ̂t = τl l̂t + τY Ŷt. (39)

Here, τl ≥ 0 is the parameter governing the feedback on liabilities and τY ≥ 0 is the
coefficient on output. The former accounts for a debt stabilization goal of the fiscal
authority, while the latter takes business cycle movements into account.
Then, we assume that the government spending rule - in log-linearized terms - follows

Ĝt = −ωl l̂t − ωY Ŷt + Γt, (40)

where Γt is an exogenous spending shock. As before, ωY > 0 accounts for the business
cycle stabilization goal of our government and ωl > 0 is about to stabilize debt.

2.5. Closing the Model

In the symmetric equilibrium, factor and goods market clear, such that

Nt =

∫ 1

0

Nt(i)di, (41)

Kt =

∫ 1

0

Kt(i)di, (42)

for all i ∈ [0, 1].
The resource constraint is described by

Yt = Ct + It +Gt. (43)

The technology shock is a standard AR(1) process, i.e.

At = AρAt−1e
αA,t , (44)

where 0 < ρA < 1 determines the degree of autocorrelation and αA,t ∼ N(0, σA) is
an i.i.d. error term following an univariate normal density distribution with standard

6See Leeper et al. (2010) for an Bayesian estimation of different tax rules within a neoclassical growth
model or Rossi and Wesselbaum (2010) for an Bayesian estimation of different tax rules in a DSGE
model with labor market imperfections.
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deviation σA and cov(At−1, αA,t) = 0 ∀ t.
The government spending shock is

Γt = ΓρΓ
t−1e

αΓ,t , (45)

where αΓ,t ∼ N(0, σΓ) is i.i.d. and cov(Γt−1, αΓ,t) = 0 ∀ t.
Finally, the interest rate shock is AR(1),

νt = νρνt−1e
αν,t , (46)

where αν,t ∼ N(0, σν) is i.i.d. and cov(νt−1, αν,t) = 0 ∀ t.
For the given stochastic processes {At,Γt, νt}∞t=0, a determined equilibrium is a sequence

of allocations and prices
{
at, Ct, C̃t, Gt, It, Kt, lt,MCt, Nt, πt, qt, rt, r

k
t , τ

w
t , τ

k
t ,Wt, Yt

}∞
t=0

which for given initial conditions satisfies equations (6) to (8), (23), (24), (26), (27), (29),
(30), (34), (38), (40) to (43), (46) to (49), and the expression for adjusted consumption.
Then, the set of equations forming the equilibrium is linearized around the non-stochastic
steady-state with zero inflation.
We calibrate our model on a quarterly basis for the United States based upon parameter
values from the recent literature.
On the household side, we set the disocunt factor to β = 0.998 as in Annicchiarico et al.
(2009). The probability of death, λ, is set to 0.015 as in Leith and Wren-Lewis (2000).
The weight of money in the utility function is 0.018. The inverse of the Frisch elasticity
of labor supply is 0.47 as in Benigno and Benigno (2004). The steady state work time
is set to 1/3.
Then, on the firm side, we set the elasticity of output to capital, α, to 0.3 as in in
Christiano et al. (2005). The price re-setting probability is calibrated to be 0.75 as
in Benigno and Benigno (2004). The capital depreciation rate is set to 0.025, which
is equal to 10 % per annum also following Christiano et al. (2005). The elasticity of
investment wit respect to asset prices is 1, as in King and Watson (1996). The elasticity
of substitution between goods is set to 11.
The Taylor rule parameters are set to their respective standard values of 1.5 for φπ,
0.125 for φY . The fiscal rule parameters are taken from Leeper et al. (2010) and are
set to ωl = 0.23 and ωY = 0.03. Furthermore, the coefficients of the tax rule are set to
τl = 0.5 and τY = 0.5, in line with Annicchiarico et al. (2009). The autocorrelations of
the three shocks are all set to 0.9.

3. Optimal Monetary and Fiscal Policy

This section presents two approaches to describe the design of optimal monetary and
fiscal policy. First, we begin with optimal policy from a timeless perspective as for
instance described in Woodford (2010). To be precise, we assume that our social planner
minimizes her objective loss function by setting the path of the available instruments.
Second, we derive explicit rules for the conduct of optimal monetary and fiscal policy
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by applying a linear quadratic approach.

3.1. A Quick Detour - Productivity and Spending Shock

Before, we start to describe the optimal policy reaction, we want to analyze the effects
of a negative productivity shock and an increase in government spending to better un-
derstand the role for fiscal and monetary policy.
The response of our economy to a one percent, negative, temporary technology shock
is presented in Figure 1. The decrease in productivity reduces output according to the
production fucntion (25). As a consequence, consumption and investment decline. The
decrease in investment leads the capital stock to slowly fall. While the shock dies out,
firms need to increase output which is mainly done by increasing employment, as the
adjustment along the capital dimension is time consuming. Since the monetary policy’s
primary target is inflation, the interest rate jumps on impact and converges from above
to the old steady state. The fall in tax payments and the higher interest rate payments
lead government liabilities to increase such that the government is more reluctant to use
its spending instrument.
Let us now consider an one percent increase in government spending. As shown in Fig-
ure 2, the increase in government spending translates into an increase in output, which
is slightly smaller as one ( dYt

dGt
≈ 0.87). The reason for this is a crwoding-out of private

consumption (due to the interest rate channel and a drop in financial wealth) and in-
vestment. The interest rate reacts to the underlying Taylor rule to the increased output
and higher inflation. Higher government spending also implies an increase in liabilities
, being also driven by higher interest rate payments.

3.2. Optimal Policy from a Timeless Perspective

We begin the discussion of optimal policy with a description of optimal monetary and
fiscal policy from a timeless perspective. The solution to the optimization problem is a
state-contingent evolution for our economy described by a sequence of first-order con-
ditions. The decisive property of this solution is that the continuation of the optimal
policy choosen in t0 is exactly the solution to the problem in t. To be precise, solving for
the forward path of the endogenous variabes subject to the constraint that only paths
consistent with the initial pre-commitment are feasible, one finds that this solution is
the forward path that conforms to the target criterion from t onward. It will also be
equivalent to the solution of the unconstrained Ramsey problem in t0.
As a starting point, the monetary authority has one instrument, namely the interest
rate Rt, while the government has two instruments, viz. τt, taxes, and Gt, government
spending.
Then, we can make the following propositions
Proposition 1
A feasible allocation is defined as a sequence that satisfies the representative household’s
budget constraint {Kt, Ct, Nt, Gt}∞t=0.
Proposition 2

12



A price system is a nonnegative bounded sequence
{
Wt, R

k
t , Rt

}∞
t=0

.
Proposition 3
A government policy is a sequence {Rt, τt, Gt}∞t=0.
Then, a competitive equilibrium satisfies Propositions 1-3. To be explicit, optimal mon-
etary and fiscal policy is the process {Rt, τt, Gt}∞t=0 associated with the equilibrium that
yields the highest level of utility to the representative household.
Therefore, the benevolent Ramsey planner chooses contigent plans to minimize the
quadratic intertemporal loss function in period t

Lt = (1− β)Et

∞∑
τ=0

βτ
[
π2
t+τ + υy2

t+τ

]
, (47)

where υ is the relative weight on output stabilization. In the case that υ = 0, we would
have strict inflation targeting, while the more realistic case of υ > 0 corresponds to
flexible inflation targeting.
Svensson (2002) has shown that, if the discount factor approaches unity and if a quarterly
model is applied, the limit of the loss function (47) is simply the weighted sum of the
unconditional variances of inflation and output, i.e.7

lim
β→1
Lt = V ar(πt) + υV ar(yt). (48)

Before we start to discuss our results, we want to briefly identify the distortions in our
model economy. Average mark-up distortions are caused by the assumption of monop-
olistic competition. Dynamic mark-up distortions follow from the introduction of sticky
prices. Since our model features real money balances, we also obtain monetary distor-
tions.
As a first step, we assume that the Ramsey planner determines optimal monetary and
fiscal policy jointly. Later on, we will interpret this as a benchmark case of cooperation
between monetary and fiscal authorities.
Figure 3 shows the optimal path of selected variables to a negative aggregate demand
shock for four different cases. First, and plotted in black, both instruments are set opti-
mally. Second, plotted in red, only government spending is set optimally, while monetary
policy follows the Taylor rule, see eq. (36). Third, plotted in blue, the interest rate is set
optimally, while government spending follows the rule determined before, see eq. (40).
Finally, plotted in green, both instruments follow their respective rules.
Let us begin with the obvious case of jointly optimal policy. As pointed out by Tin-
bergen (1952), if the number of targets equals the number of instruments, all targets
can be achieved. Our problem has two targets, viz. inflation and output, and two in-
struments, viz. the interest rate and government spending. Therefore, both targets can
be accomplished and hence the loss is 0. As a response to the negative productivity
shock, the Ramsey planner increases government spending as to offset the negative ef-

7In addition, it has to hold that the unconditional mean of inflation equals the inflation target, i.e.
E [πt] = π∗.
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fect of the shock on output and overcome the self-initiated crowding-out effects. While
government spending is used to stabilize output, monetary policy is left with mainly
stabilizing inflation and only slightly accomodating fiscal policy in stabilizing output.
Therefore, it increases the interest rate, as lower productivity and higher spending cause
a higher inflation rate. In the case, where the monetary authority sets the interest rate
optimal, while government spending follows its rule, we find that interest rates drop on
impact, as to stimulate economic activity, which is in contrast to all other cases. As the
monetary authority has to stabilize inflation and output, it can not stabilize both at the
same time. It allows inflation to increase, to avoid a larger drop in output (compare to
the green line, where both instruments follow rules). In addition, as spending follows
its rule, this instrument stays almost on its steady state level. Consequently, liabilities
fall as the nominal debt is inflated away and interest rate payments fall. However, as
indicated by Table 1, we find that this case creates the second highest loss. The reason is
a high volatility of output. The third case considers optimal government spending under
constrained monetary policy. Here, we observe a very small loss, almost being only a
fifth of the previous one. Causative for this result is the non-optimal use of spending
to stabilize output over the cycle. Since monetary policy is constrained to follow a Tay-
lor rule, the increase in the interest rate is larger as in the joint case. Here, monetary
policy is not optimal such that output fluctuates around the steady state. Government
spending can not be set optimally, as this would imply that inflation would increase,
hence creating a larger loss. Finally, if both instruments follow their respective rules,
we observe the highest loss. In this case, government spending is used to restrictively,
and the interest rate increases too much. We can conclue that government spending is
a key in order to stabilize the economy after the negative productivity shock. Monetary
policy should be accomodative in the way it sets the interest rate, as only cooperation
between both policies ensures much lower losses. From a game theoretical viewpoint,
cooperation, i.e. the case in which both instruments are set optimally, is always (also in
repeated games) a (subgame perfect) Nash equilibrium.

3.3. A Linear Quadratic Approach

This sections aims to find explicit rules for government spending as well as an optimal
inflation targeting rule. Therefore, we follow the seminal contributions from Benigno
and Woodford (2003, 2005, 2006) and solve the corresponding linear quadratic problem.
In a more recent application of the LQ approach to the design of fiscal policy in the
context of a standard New Keynesian model with Ricardian agents, Eser et al. (2009)
show that it is optimal to not use government spending to stabilize the economy. They
further show that monetary policy follows a standard inflation targeting rule as for in-
stance derived in Clarida et al. (1999). However, and as we have seen in the precedent
section, as our model features non-Ricardian agents (and capital), we find a role for ac-
tive fiscal policy to stabilize the economy. We are therefore interested in finding explicit
rules to identify the reaction schemes of both instruments and the potential degree of
interaction between the instruments. The full derivation of the LQ can be found in the
appendix.
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The social planner maximizes its objective function (which is a second-order approxi-
mation to the households utility function (1))

Lt = UcY



ΦŶt + 1
2

(
Ucc
Uc
− Wyy

Wy

)
Y Ŷ 2

t + UII
UcY

Ît + 1
2

(
UII
UcY

+ UII
UcY

I2
)
Î2
t +

(
UGG
UcY

+ VGG
UcY

)
Ĝt

+1
2

(
UGG
UcY

+ UGGG
2

UcY
+ VGG

UcY
+ VGG

UcY
G2
)
Ĝ2
t − WKK

WyY
K̂t − 1

2

(
WKK
WyY

+ WKKK
2

WyY

)
K̂2
t

−1
2

(
θ

(1−θ)(1−θβ)

)
(ε−1 + Wyy

Wy
Y )ε2π̂2

t

+
Ucξ
Uc
Ŷtξt + UcG

Uc
GŶtĜt + UcI

Uc
IŶtÎt +

UIξ
UcY

IÎtξt + UIG
UcY

IGÎtĜt +
UGξ
UcY

GĜtξt

−WyK

Wy
KŶtK̂t − WKµ

WyY
KK̂tµt − WyA

Wy
ŶtAt − WKA

WyY
KK̂tAt − Wyµ

Wy
Ŷtµt + VGϑ

UcY
Ĝtϑt


+t.i.p.+ ||O||3, (49)

s.t.

−λPCt
[

1

R
π̂t+1 + κ

(
r̂kt −

(
Ŷt − K̂t

)
− π̂t

)]
, (50)

−λISt


−
(
r̂t − 1

1+ω
π̂t+1

)
+ 1

1+ω

(
Ŷt+1 − sI Ît+1 − sGĜt+1

)
+ ω

1+ω

{
1
sa

(
R
[
l̂t − d

Y
π̂t + Ĝt − τl l̂t − τyŶt

]
+ sbr̂t

)
+ R

sa
sK

(
r̂t + K̂t+1 + Ît−K̂t

η

)}
−Ŷt + sI Ît + sGĜt

 .(51)

One can show that the solution to this problem yields a rule for government spending,

Ĝt =
VGG− UGG− UcGY GŶt − UIGIGÎt − UGξGξt − VGϑϑt

UGG+ UGGG2 + VGG+ VGGG2
, (52)

and for the inflation target,

π̂t = −

Φ +
(
Ucc
Uc
− Wyy

Wy

)
Y Ŷt +

Ucξ
Uc
ξt + UcG

Uc
GĜt + UcI

Uc
IÎt − WyK

Wy
KK̂t − WyA

Wy
At − Wyµ

Wy
µt(

θ
(1−θ)(1−θβ)

)
(ε−1 + Wyy

Wy
Y )ε2

 .
(53)

First, let us consider the optimal rule for government spending. As we have seen in
the discussion of the Ramsey optimal policy, government spending reacts negatively to
output and, which is now evident, to investment. In addition, it would react to the
preference and the taste shock.
Second, we find an optimal inflation targeting rule which looks standard. Inflation reacts
to movements in output, as in Clarida et al. (1999). Furthermore, investment and
capital influence the optimal inflation rate. In contrast, the inflation rule has feedback
on all shocks and not just to the preference shocks. Finally, monetary policy takes into
account the path of government spending. While government spending was independent
from monetary policy actions, monetary policy itself reacts to changes in government
spending. It appears that inetractions between these two rules are only one-sided.
tba
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4. Conclusion

tba

16



A. Tables and Figures

Table 1: Losses.
V ar(π) V ar(y) L

R 0.1547 0.9828 0.6461
G 0.1108 0.0321 0.1268
R & G 0 0 0
Rules 0.2638 1.4832 1.0054

Notes: υ = 0.5, R: Interest Rate set optimally, Spending follows rule. G: Spending set optimally,
Interest Rate follows Taylor Rule. R & G: Both set optimally and Rules: Both follow rules.
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Figure 1: Impulse Responses to a 1 % negative Productivity Shock. Horizontal axes measure
quarters, vertical axes deviations from steady state.
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Figure 2: Impulse Responses to a 1 % increase in Government Spending. Horizontal axes
measure quarters, vertical axes deviations from steady state.
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B. Individual Consumption

The households utility function is given by

Us,t =
∞∑
t=0

[(1− λ)β]t
[

(ξtCs,t(j))
1−σ

1− σ
+

(ϑtGs,t(j))
1−γ

1− γ
− (µtNs,t(j))

1+ϕ

1 + ϕ

]
, (54)

which is maximized subject to the intertemporal budget constraint

Bs,t+1(j)

Rt

+QtKs,t+1(j) ≤ As,t(j) +Ws,t(j)Ns,t(j) + Zs,t(j)− Ts,t(j)− PtCs,t(j), (55)

where financial wealth is

As,t(j) =
1

1− λ
[
Bs,t(j) +

[
(1− δ)Qt +Rk

t

]
Ks,t(j)

]
, (56)

and j is the representative agent belonging to generation s.
Maximization gives

∂Lt
∂Cs,t(j)

= (ξtCs,t(j))
−σ − ζtPt = 0, (57)

∂Lt
∂Bs,t+1(j)

= −ζt
1

Rt

+
1

1− λ
β(1− λ)ζt+1 = 0, (58)

∂Lt
∂Ks,t+1(j)

= −ζtQt +
1

1− λ
β(1− λ)ζt+1

[
(1− δ)Qt+1 +Rk

t+1

]
= 0, (59)

∂Lt
∂Ns,t(j)

= −(µtNs,t(j))
ϕ + ζtWs,t(j) = 0, (60)

where ζt is the Lagrangian multiplier on the budget constraint.
Combining the first two derivatives gives the standard Euler equation for consumption
flows

1 = βRt
1

πt+1

(
ξtCs,t(j)

ξt+1Cs,t+1(j)

)σ
. (61)

In addition, the labor supply schedule reads as

Ws,t(j)

Pt
= (µtNs,t(j))

ϕ(ξtCs,t(j))
σ. (62)

Now, let the stochastic discount factor be

Λt,t+1(s, j) = β
1

πt+1

(
ξtCs,t(j)

ξt+1Cs,t+1(j)

)σ
, (63)

such that

Λt,t+1(s, j) =
1

Rt

. (64)
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The FOC for capital can be written as

1 = β

(
ξtCs,t(j)

ξt+1Cs,t+1(j)

)σ
1

πt+1

[
(1− δ)Qt+1 +Rk

t+1

]
Qt

, (65)

1 = Λt,t+1(s, j)

[
(1− δ)Qt+1 +Rk

t+1

]
Qt

, (66)

which also is

Λt,t+1(s, j)Rt = Λt,t+1(s, j)

[
(1− δ)Qt+1 +Rk

t+1

]
Qt

= 1. (67)

The LHS of the budget constraint can also be written as

Bs,t+1(j)

Rt

+QtKs,t+1(j) ≤ ..., (68)

Bs,t+1(j) +RtQtKs,t+1(j) ≤ .... (69)

Using (67),

Λt,t+1(s, j)
[
Bs,t+1(j) +

[
(1− δ)Qt+1 +Rk

t+1

]
Ks,t+1(j)

]
≤ .... (70)

Using the definition for financial wealth, the LHS equals

Λt,t+1(s, j)As,t+1(j) ≤ .... (71)

Then, the budget constraint can be written as

(1−λ)Λt,t+1(s, j)As,t+1(j) +PtCs,t(j) ≤ As,t(j) +Ws,t(j)Ns,t(j) +Zs,t(j)−Ts,t(j). (72)

The transversality condition is given by

lim
T→∞

Et(1− λ)T−tΛt,T (s, j)As,T (j) = 0. (73)

Applying this to the budget constraint yields

∞∑
T=t

Et(1−λ)T−tΛt,T (s, j)PTCs,T (j) ≤ As,t(j)+
∞∑
T=t

Et(1−λ)T−tΛt,T (s, j) (Ws,T (j)Ns,T (j) + Zs,T (j)− Ts,T (j)) .

(74)
Notice that

Etλ
T−tΛt,T (s, j)PTCs,T (j) = βT−tPTCs,T (j). (75)

It follows

∞∑
T=t

Et(1−λ)T−tβT−tPTCs,T (j) ≤ As,t(j)+
∞∑
T=t

Et(1−λ)T−tΛt,T (s, j) (Ws,T (j)Ns,T (j) + Zs,T (j)− Ts,T (j)) .

(76)
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Using the expression for a geometric row yields

1

1− β(1− λ)
PTCs,T (j) ≤ As,t(j)+

∞∑
T=t

Et(1−λ)T−tΛt,T (s, j) (Ws,T (j)Ns,T (j) + Zs,T (j)− Ts,T (j)) .

(77)
Define

Hs,t(j) =
∞∑
T=t

Et(1− λ)T−tΛt,T (s, j) (Ws,T (j)Ns,T (j) + Zs,T (j)− Ts,T (j)) , (78)

as human wealth.
Then, individual consumption follows

PTCs,T (j) = [1− β(1− λ)] [As,t(j) +Hs,t(j)] . (79)

C. Aggregate Consumption

First, the aggregate value of any variable Xt is obtained by

Xt =
t∑

s=−∞

{∫ λ(1−λ)t−s

0

Xs,t(j)dj

}
. (80)

The aggregate budget constraint, the aggregate consumption, and aggregate labor supply
are then given by

Bt+1

Rt

+QtKt+1 = At +WtNt + Zt − Tt − PtCt, (81)

PtCt = [1− β(1− λ)] [At +Ht] , (82)

Wt

Pt
= (µtNt)

ϕ(ξtCt)
σ. (83)

Remember that

Ht =
∞∑
T=t

Et(1− λ)T−tΛt,T (WTNT + ZT − TT ) . (84)

For simplicity, let us define
ψ = [1− β(1− λ)] . (85)

We know that the following has to hold

Bt+1

Rt

+QtKt+1 = EtΛt,t+1

[
Bt+1 +

[
(1− δ)Qt+1 +Rk

t+1

]
Kt+1

]
, (86)
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such that the aggregate budget constraint is given by

EtΛt,t+1

[
Bt+1 +

[
(1− δ)Qt+1 +Rk

t+1

]
Kt+1

]
= At +WtNt + Zt − Tt − PtCt, (87)

or
EtΛt,t+1At+1 + PtCt = At +WtNt + Zt − Tt. (88)

Here, aggregate financial wealth is

At = Bt +
[
(1− δ)Qt +Rk

t

]
Kt. (89)

Then, the aggregate consumption equation can be written as (by using (88) to substitute
into (82), while noticing that the period t human wealth has to be subsituted out such
that the sum now starts at t+ 1.)

PtCt = ψ

[
EtΛt,t+1At+1 + PtCt + Et

∞∑
T=t+1

(1− λ)T−tΛt,TΩT

]
, (90)

where
Ωt = WtNt + Zt − Tt. (91)

Now, if we iterate the aggregate consumption equation one period forward, we obtain

Pt+1Ct+1 = ψ [At+1 +Ht+1] , (92)

equivalently,

Pt+1Ct+1 = ψ

[
At+1 + Et+1

∞∑
T=t+1

(1− λ)T−(t+1)Λt+1,TΩT

]
. (93)

Multiplying by (1− λ)Λt,t+1 and taking expectations, we arrive at

(1− λ)EtΛt,t+1Pt+1Ct+1 = ψ

[
(1− λ)EtΛt,t+1At+1 + Et

∞∑
T=t+1

(1− λ)T−tΛt,TΩT

]
. (94)

Solving for the expression in ΩT

Et

∞∑
T=t+1

(1− λ)T−tΛt,TΩT =
1

ψ
(1− λ)EtΛt,t+1Pt+1Ct+1 − (1− λ)EtΛt,t+1At+1. (95)
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Inserting (95) into (90) gives

PtCt = ψ

[
EtΛt,t+1At+1 + PtCt + Et

∞∑
T=t+1

(1− λ)T−tΛt,TΩT

]
, (96)

PtCt = ψ

[
EtΛt,t+1At+1 + PtCt +

1

ψ
(1− λ)EtΛt,t+1Pt+1Ct+1 − (1− λ)EtΛt,t+1At+1

]
,(97)

PtCt = ψ [EtΛt,t+1At+1 + PtCt − (1− λ)EtΛt,t+1At+1] + (1− λ)EtΛt,t+1Pt+1Ct+1,(98)

PtCt = ψ [PtCt + λEtΛt,t+1At+1] + (1− λ)EtΛt,t+1Pt+1Ct+1, (99)

(1− ψ)PtCt = ψλEtΛt,t+1At+1 + (1− λ)EtΛt,t+1Pt+1Ct+1. (100)

Finally, aggregate consumption follows

PtCt =
ψ

1− ψ
λEtΛt,t+1At+1 +

1− λ
1− ψ

EtΛt,t+1Pt+1Ct+1. (101)
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D. Equation System - Log-Linear

CĈt =
ψλ

1− ψ
1

R
a
(
ât+1 − R̂t

)
+

1− λ
1 + ψ

C
1

R

(
Ĉt+1 + π̂t+1 − R̂t

)
, (102)

(1− λ)aât = Bl̂t + (1− δ)KQq̂t + rkKr̂kt + ((1− δ)Q+ rk)KK̂t, (103)

q̂t =
1

R
(1− δ)q̂t+1 +

[
1− 1

R
(1− δ)

]
r̂kt+1 − (r̂t − π̂t+1), (104)

Ît − K̂t = ηq̂t, (105)

ŵt = ψN̂t + σĈt, (106)

π̂t =
1

R
π̂t+1 + κM̂Ct, (107)

M̂Ct = r̂kt − (Ŷt − K̂t), (108)

ŵt + N̂t = r̂kt + K̂t, (109)

Ŷt = F̂t + αK̂t + (1− α)N̂t, (110)

K̂t = δÎt−1 + (1− δ)K̂t−1, (111)

Ŷt = sCĈt + sI Ît + sGĜt, (112)

l̂t = R

(
l̂t−1 −

ds

Y
π̂t−1 + Ĝt−1 − τ̂t−1

)
+ sbr̂t−1, (113)

τ̂t = τl l̂t + τY Ŷt, (114)

r̂t = ρrr̂t−1 + (1− ρr)
(
φππ̂t + φY Ŷt

)
, (115)

Ĝt = −ωl l̂t − ωY Ŷt + Γt, (116)
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E. Linear Quadratic Approach

First, we define the utility function of our households as

Ut =
∞∑
t=0

[(1− λ)β]t
[

(ξtCt)
1−σ

1− σ
+

(ϑtGt)
1−γ

1− γ
− (µtNt)

1+ϕ

1 + ϕ

]
. (117)

We can separate this function into three parts, viz.

U c =
(ξtCt)

1−σ

1− σ
, (118)

V =
(ϑtGt)

1−γ

1− γ
, (119)

W =
(µtNt)

1+ϕ

1 + ϕ
. (120)

Then, we use
Yt = Ct + It +Gt, (121)

to substitute for consumption in U c and approximate it up to second order, such that

U c ≈ UcY

[
Ŷt + 1

2

(
1 + Ucc

Uc
Y
)
Ŷ 2
t + UII

UcY
Ît + 1

2

(
UII
UcY

+ UII
UcY

I2
)
Î2
t + UGG

UcY
Ĝt + 1

2

(
UGG
UcY

+ UGGG
2

UcY

)
Ĝ2
t

+
Ucξ
Uc
Ŷtξt + UcG

Uc
GŶtĜt + UcI

Uc
IŶtÎt +

UIξ
UcY

IÎtξt + UIG
UcY

IGÎtĜt +
UGξ
UcY

GĜtξt

]
(122)

+t.i.p.+ ||O||3. (123)

Next step is a second order approximation to V,

V ≈ VGG

[
Ĝt +

1

2

(
1 +

VGG
VG

G

)
Ĝ2
t +

VGϑ
VG

Ĝtϑt

]
+ t.i.p.+ ||O||3. (124)

Furthermore, using the production function

Yt = AtK
α
t N

1−α
t , (125)

yields the second order approximation of the disutility of work (W )

W ≈ UcY


(1− Φ) Ŷt + 1

2

(
1 + Wyy

Wy
Y
)
Ŷ 2
t + 1

2

(
θ

(1−θ)(1−θβ)

)
(ε−1 + Wyy

Wy
Y )ε2π̂2

t + WKK
WyY

K̂t

+1
2

(
WKK
WyY

+ WKKK
2

WyY

)
K̂2
t +

WyKK

Wy
KŶtK̂t +

WKµK

WyY
KK̂tµt +

WyA

Wy
ŶtAt

+WKA

WyY
KK̂tAt + Wyµ

Wy
Ŷtµt

(126)

+t.i.p.+ ||O||3, (127)
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where Φ = 1
θ
, θ is the elasticity of substitution, and $̇ is the Calvo staggering parameter.

Combining the three approximations yields the maximization problem
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GŶtĜt + UcI

Uc
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+t.i.p.+ ||O||3, (129)

s.t.
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The derivatives are given by
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Y Ŷt +

Ucξ
Uc

ξt +
UcG
Uc
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Rearranging terms for ∂Lt
∂Ĝt

gives
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Using
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monetary policy makes the IS constraint non-binding,
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Then, the optimal government spending rule follows

Ĝt =
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. (157)

Government spending is negatively related to output and investment. Furthermore, it
decreases in the preference shock as well as in the government spending taste shock.
Then, by having a closer look at
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we can draw the conclusion that the debt coefficient, τl, in the tax rule should move
one-for-one with debt, as
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In contrast, we do not find a corresponding relationship for the output coefficient τy.
(technically: IS non-binding)
The optimal targeting rule for inflation is given by
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Finally,
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IÎt − WyK

Wy
KK̂t − WyA

Wy
At − Wyµ

Wy
µt(

θ
(1−θ)(1−θβ)

)
(ε−1 + Wyy

Wy
Y )ε2

 .
(165)

In this case, the monetary authority should react to government spending (interaction
of GP and FP), output (as usual), investment, the capital accumulation, and the taste
shock (related to G), the shock to disutility, and the productivity shock.
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