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Abstract

The VPIN, or Volume-Synchronized Probability of INformed trading, metric is intro-
duced by Easley, López de Prado and O’Hara as a real-time indicator of order flow toxicity.
They find the measure useful in measuring evolving order flow imbalances which may help
signal impending market turmoil, exemplified by historical high readings of the metric prior
to the flash crash. More generally, they show that VPIN is significantly correlated with
future short term return volatility. Our empirical investigation of VPIN documents that it
is a relatively poor predictor of short run volatility, that it did not reach an all-time high
prior, but rather after, the flash crash, and that its predictive content is due primarily to
a mechanical relation with the underlying trading intensity. Our preliminary experimenta-
tion suggests that modified variants of VPIN contain superior information which may be
more effective as real-time market stress indicators. Nonetheless, we caution against the
adoption on any such specific metric until it has been shown to be robust to the type of
analysis and tests that we undertake in the present paper.
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1 Introduction

In a recent series of articles, Easley, López de Prado and O’Hara, henceforth ELO, (2011a,
2011b, 2011c) develop the “Volume-Synchronized Probability of INformed trading” (VPIN)
metric as a proxy for the imbalance or “toxicity” of order flow. ELO (2011a) focus on the
events surrounding the “flash crash” on May 6, 2010. An important feature of their definition
of VPIN is that it captures the market dynamics in event time, as measured in equal increments
of trading volume, rather than in calendar time. Hence, their analysis relies on a transformed
time scale where the basic unit is a fixed volume bucket rather than a constant stretch of
calendar time. They find that their implementation of VPIN provides a couple of striking
empirical results, using one-minute observations for the order flow on the E-mini S&P 500
futures contract at the Chicago Mercantile Exchange.

First, they note that the VPIN measure was unusually high in the week preceding May 6,
2010, and the situation worsened in the hours just prior to the crash. In fact, they observe
that the VPIN metric for the E-mini S&P 500 futures contract reached an all-time historical
high by 1:30pm CT, and the crash began at 1:32pm CT according to the CFTC-SEC Report
time line, detailed in CFTC-SEC (2010). Second, they show that the VPIN measure leads the
celebrated Volatility Index, or VIX, for the S&P 500 index, both prior, during and following the
dramatic events of May 6, 2010. As such, they suggest VPIN may provide a superior and more
timely indicator of future short term volatility, or emerging turmoil, than the option-implied
volatility measure, VIX, which is otherwise often referred to as the “market fear” gauge.

The findings reported by ELO are quite extraordinary. As they note, they raise the pos-
sibility that VPIN may serve as a reliable indicator of stress in the financial markets, thus
providing regulators, brokers and traders alike with a real-time warning signal of market mal-
function. In order to make the measure available to the broader public in a timely fashion
they also suggest the introduction of an exchange traded futures contract written on VPIN.1

In this paper, we take an in-depth look at the empirical performance of this VPIN metric,
applied to the E-Mini S&P 500 futures contract. We reach conclusions that, on key points,
diverge from those of ELO. One, VPIN is not a useful predictor for future return volatility.
Traditional forecast variables, including the VIX index, are generally vastly superior to VPIN,
even for very short horizons. Two, VPIN did not attain a historical high prior to the flash crash,
but only after the crash subsided. Moreover, reconstructing the real-time information available
just prior to the crash, we find little evidence that VPIN would have alerted an observer of
a sharply rising probability of impending market collapse. Three, VPIN is, by construction,
mechanically related to the underlying trading intensity and its predictive content is largely
subsumed by that of the trading pattern. Four, VPIN is subject to considerable idiosyncratic
sampling noise due to dependence on the point at which the volume clock is initiated.

Although sampled according to a trading scale governed by a volume clock, VPIN is highly
correlated with trading intensity. This occurs because of the critical role of the (one-minute
calendar) time bar in aggregating individual transactions into volume blocks that, effectively,
are treated as single transactions. In particular, all transactions within a time bar are jointly
classified as all active buys or all active sells. When trading is active, each time bar contains a
lot of volume, the number of time bars used for constructing an update to VPIN becomes small,
and the fraction of trades classified jointly as unidirectional rises. This, in turn, increases the

1The algorithm for VPIN, detailed in ELO (2011c), has been submitted to the U.S. Patent and Trademark
Office, and a patent is pending. For detailed prescriptions on potential contract design, see ELO (2011b).
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expected value of the order imbalance measures, independently of the order flow imbalance.
Quantifying this effect, we find that most of the time variation in VPIN is explained by the
heterogeneity in the trading pattern, while trade classification plays a minimal role.

Of course, the trading pattern is endogenous and may respond to, and to a large extent
reflect, the underlying order flow imbalances so the above does not imply that VPIN is un-
informative. However, trading intensity is well known to correlate strongly with, and contain
predictive content for, a variety of market activity variables, including return volatility. Hence,
to assess the incremental contribution of VPIN, it is critical to disentangle the information con-
veyed by the VPIN metric from that associated with the trading pattern. Towards this end,
we introduce a few novel measures designed to neutralize the confounding impact of the time
bar and to identify the dependence on the trade classification scheme. For instance, using a
fixed volume bin rather than a time bar in measuring order imbalances provides a pure trading
time based metric for VPIN, while randomizing the trade classification annihilates the effect
of systematic order imbalances.

Relying on fixed volume bin VPIN measures, we find only a negligible link with trading vol-
ume but, more strikingly, a pronounced negative association with return volatility. Thus, once
we annihilate the source of mechanical correlation between the trading intensity and VPIN,
the relationship between VPIN and volatility reverses sign. Likewise, using an alternative
approach to control for the impact of the trading pattern, the contribution of VPIN to short
term volatility prediction, over and beyond the component of VPIN explained by the observed
trading pattern, is negative. Moreover, we obtain similar conclusions from a VPIN measure
computed from (non-aggregated) transaction data. Finally, on the day of the flash crash, both
the transaction and fixed volume bin VPIN measures rise prior to the crash, confirming that
order flow imbalances likely were operative on this day, but the measures never reach truly
extreme values neither before nor after the crash. Hence, overall, our study raises questions
about the reliability of this VPIN metric for assessing order flow toxicity.

Finally, we experiment with the computation of a signed VPIN measure, allowing signed
order imbalance measures to offset in the computation of VPIN. This approach seems to
drastically reduce the idiosyncratic noise and appears helpful in detecting the direction and
momentum in the order flow imbalance around the flash crash. Thus, it may be fruitful to
explore modifications of the VPIN measures along such lines. Nonetheless, we caution against
the adoption and reliance on any specific metric before it has been carefully scrutinized and
shown to be robust to the type of analysis and tests that we undertake in the present paper.

Our main results are summarized throughout the paper in brief paragraphs labeled “find-
ings.” The reader wanting a quick overview may skim the paper and focus on the text sur-
rounding any “finding” of particular interest for supporting evidence.

The remainder of the paper is structured as follows. Section 2 verifies that we obtain
results comparable to ELO (2011a) when exploiting their VPIN metric. Section 3 introduces
alternative ways of constructing VPIN. Section 4 explores the properties of VPIN and notices
the potential for a mechanical correlation with trading intensity. Section 5 presents empirical
results based on the full sample. Section 6 revisits the flash crash and reviews the evidence
through the lens of alternative VPIN measures. Section 7 provides some concluding general
reflections on VPIN, including issue of reproducing the measure, the use of a signed version
of VPIN, and reasons behind the surprising negative correlation between fixed bin VPIN and
volatility. Section 8 concludes.
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2 A First Look at VPIN and the Flash Crash

2.1 Data

Our study is based on transaction data for the E-mini S&P 500 futures contract over the period
January, 2008 through July 2010. The E-mini contract is traded exclusively in a fully electronic
limit order book market on the Chicago Mercantile Exchange (CME) Globex trading platform.
Our data were extracted from the Time & Sales series obtained from CME DataMine and
include the full sequence of trades consummated over the given period, along with the time
(in seconds), the price, and the number of contracts exchanged for each transaction. This
series covers a period similar to the one explored by ELO although it does not include the
last few months of their sample. It is important that the underlying transaction data are
comprehensive so we have confirmed that the number of contracts traded during the regular
trading hours on May 6, 2010, match the figure reported by Kirilenko et al. (2011).2 Moreover,
our series seems to contain a slightly larger trading volume than what is employed by ELO
who rely on a different source for their data. Hence, our transaction series appears to provide
a comprehensive account of the trading activity in the E-mini S&P 500 futures contract.

2.2 One-Minute VPIN and the Flash Crash

Before proceeding with our more detailed empirical analysis, we confirm that our data series
is compatible with the one used by ELO and, in particular, that we are able to obtain similar
evidence regarding the behavior of VPIN on May 6, 2010. Hence, we construct VPIN following
the prescriptions in ELO (2011c). We obtain comparable data by aggregating our transaction
series into one-minute observations, or “time bars,” containing the last recorded price and
the cumulative trading volume over the minute. This series represents our version of the
one-minute bars used by ELO. Since the two series are not identical it is important to check
whether they produce qualitatively similar results.3

Figure 1 depicts the daily maximum values achieved across our sample for the S&P 500
futures price, the one-minute based VPIN measure and the VIX. It is evident that VPIN spikes
to an all-time high on May 6, 2010. The only other day displaying a similar type of spike is
June 6, 2008, but it does not attain the level reached on the day of the “flash crash.” We also
note that VIX jumps on May 6, 2010, but it remains well below the values observed during
the financial crisis of 2008-2009.

Figure 2 offers a detailed look at May 6, 2010. It shows the extremely rapid drop of
the equity index level during the flash crash and the equally dramatic recovery immediately
thereafter. This development was accompanied by an escalation in trading activity and a quick
run-up in the VIX measure. Finally, we confirm that VPIN had been rising steadily throughout
the day, increasing from around 0.30 in early trading to about 0.56 just prior to the crash –
quite closely mimicking the values of ELO (2011a), Exhibit 5. Moreover, the ascent of the
VPIN measure was particularly marked in the last 25 minutes before the crash. Comparing
Figure 2 to the various graphs in ELO (2011a), there is a close correspondence between all
main qualitative features. Hence, we are able to replicate the primary characteristics of the
ELO study for the overall sample as well as for this critical day.

2This study explores features of the flash crash using a more detailed audit-trail data set for the transactions
in the E-mini S&P 500 futures contract during regular trading hours over May 3-6, 2010.

3We do not provide details about the construction of VPIN here, as it is covered at length below.
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Figure 1: This figure depicts daily values of the S&P 500 index, VPIN for δ = 1 min, and the VIX
from January 2008 through June 2010.

Importantly, however, there is one key result, cited in ELO (2011a), that we cannot con-
firm. We summarize this point as our first “finding”:

FINDING 1

The level of VPIN just prior to the flash crash is elevated, but it is not at a historical high.
The VPIN metric only achieves a historical high after the crash has subsided.

This result is corroborated by the middle panel of Figure 1 where the dashed horizontal line
indicates the level 0.56 – the value VPIN attains just prior to the flash crash. The VPIN series
exceeds this level on 26 separate days, prior to May 6, 2010, during our sample, constituting
more than 4% of the days prior to the crash. In other words, according to our, admittedly short,
historical series, one would expect to observe a value, corresponding to the level attained by
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Figure 2: This figure depicts minute-by-minute data for the S&P 500 futures index level, the VPIN
measure constructed from one-minute data, the S&P 500 volatility index, VIX, and the volume of traded
contracts of the S&P 500 E-mini futures on the CME, for May 6, 2010. The green vertical lines indicate
the timing of the “flash crash.”

VPIN prior to the flash crash, about once a month.4 In light of this observation, the behavior
of VPIN prior to the crash, arguably, remains noteworthy but not truly exceptional. We now
turn towards a more detailed investigation of potential sources of predictive power in VPIN.
However, first we need to explain how the VPIN metric is computed.

3 Constructing the VPIN Metric

3.1 Data Aggregation and Trade Classification

Our study is based on transaction data extracted from the Time & Sales files for the E-mini S&P
500 futures contract covering a given sample period that we denote [0, T ]. Each transaction,
or tick, is represented by triplet (ti, pi, si), where ti indicates the time of transaction i, pi
denotes the price at which the contracts were traded, and si denotes the size of transaction

4This also appears consistent with Exhibit 2 in ELO (2011a), where the VPIN metric exceeds 0.60 on many
distinct days before May 6, 2010. Hence, the statement in ELO (2011a) on this point may reflect incorrectly
attributing the maximum value of VPIN, attained after the crash, to the value prior to the crash.
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i, expressed in terms of the number of futures contracts exchanged. Transaction times are
measured in seconds and form a non-decreasing sequence 0 ≤ t1 ≤ t2 . . . ≤ T . While many
trades may occur within the same second, we know the order at which they were executed
via an associated transactions sequence indicator. As such, we have a complete transactions
history for the contract over the sample period.

ELO (2011c) argue forcefully that trade classification is error prone at the transaction level.
Hence, they focus on transaction data aggregated into time bars. However, there are many
different ways in which to aggregate transactions data and we shall also explore a procedure
that combines the underlying transactions into blocks with an equal trading volume, i.e., the
same number of traded contracts. Consequently, we adapt the notation to accommodate such
different forms of aggregation.

First, we define the time bars. We let 0 = T0 < T1 < T2 . . . represent an equally-spaced
calendar time grid with fixed time step δ, so that Tj = δ · j. The empirical analysis in
ELO exploits one-minute bars, or δ = 60 seconds, although they consider alternative values.
Correspondingly, we focus on the one-minute time bars, but we explore the sensitivity of the
results to variation in the degree of time aggregation in detail. Once the time bars are defined,
the data may be represented by the triplets (Tj , Pj , Nj), where Pj is the last transaction price
prior to time Tj , and Nj is the total number of contracts traded over the time interval [T0, Tj),
for j = 1, . . . , Jδ = T/δ. Note that Nj denotes the cumulative volume traded by the end of
the jth time bar. Sometimes, it might be more convenient to represent the aggregated data by
the triplets (Tj , Pj , nj), where nj = Nj −Nj−1 denotes the volume within the jth bar.

Following ELO, we sign the entire order flow within each time bar using a classification
scheme, akin to the so-called tick rule. Let the binary variable bj = ±1 indicate whether
the contracts exchanged within the jth time bar are labeled buyer or seller initiated. For
j = 2, . . . , Jδ, this indicator is defined as

bj =

{
1, if Pj > Pj−1, or Pj = Pj−1 and bj−1 = 1
−1, otherwise

(1)

This rule ascribes a price increase (decrease) over a given time bar to buying (selling) pressure
and classifies the full transaction volume during this bar as active buying (selling) volume.
While this clearly will misclassify some transaction whenever a time bar contains both active
buys and sells, ELO deem this approach, based on aggregated order flow, superior to assigning
trade direction based on an actual tick rule, where each individual transaction is classified
according to the price change from one tick to the next.

If we need to be explicit about the choice of time grid, we may write (T δj , P
δ
j , N

δ
j ) and bδj .

Furthermore, we may think of the use of transaction data as a limiting case where we perform
no time aggregation so that, with slight abuse of notation, we have δ = 0.

Second, we define the volume bins. We let 0 = N0 < N1 < N2 . . . represent an equally-
spaced volume grid with the fixed volume step ν, so that Nk = ν · k and nk = Nk − Nk−1 =
ν. Our data may now be represented by triplets (Tk, Pk, Nk), where Tk and where Pk are,
respectively, the calendar time and trade price associated with the last contract included in
volume bin k for k = 1, . . . ,Kν , where Kν is the number of complete non-overlapping volume
bins of size ν in the sample. Similarly to the classification rule (1), the binary variable bk
classifies the entire order flow within the kth volume bin, for k = 2, . . . ,Kν . If we need to be
explicit about the choice of volume grid, we write (T νk , P

ν
k , N

ν
k ) and bνk.

In summary, the trade classification rule (1) assigns an active buy or sell indicator to each
transaction throughout the sample, but they are bundled into sequences of unidirectional buys
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and sells according to the length of the time bar or volume bin they reside in. Whether
this rule dominates alternative classification schemes in terms of providing a useful input for
constructing proxies for order flow imbalances over longer time spans is in part an empirical
question. We provide evidence for alternative values of δ or ν when presenting our findings.

3.2 The Volume Clock, the OI Measure and VPIN

Following ELO, we now introduce a volume-based time-scale transformation. Thus, rather
than monitor the market dynamics in calendar time, we employ a fixed volume bucket, V ,
expressed in terms of the number of traded contracts. Hence, each time increment in the
subsequent analysis represents equidistant trading volumes, but potentially highly varying pe-
riods of calendar time. Throughout our analysis, we set V = 35,000 traded futures contracts,
corresponding roughly to (1/50)th of the average daily trading volume. This choice mimics the
leading case adopted by ELO. It is well documented that such “tick time” sampling alleviates
the non-normality of returns stemming from time-varying volatility because volatility is highly,
albeit imperfectly, correlated with trading volume. Consequently, this “event time” transfor-
mation reduces the heterogeneity of the return distribution and helps render the information
content of each incremental observation comparable.

Each volume bucket comprises a set of aggregate transaction triplets, each representing
a different block of trading volume. For underlying triplets defined from time bars, we will
inevitably need to sever those time bar, which comprise transactions straddling adjacent volume
buckets, into separate pieces so that each new fraction of the time bar falls squarely within
only one bucket. We generically denote the number of transaction blocks within a volume
bucket Q, and we define the relative size of each trade block within the bucket as wq = nq/V
for q = 1, · · · , Q, where nq = Nq − Nq−1 indicates the number of contracts traded in block
q. We obviously have, 0 < wq ≤ 1 and w1 + · · · + wQ = 1. Moreover, since every trade is
classified as a buy or sell, we may define V B and V S as the number of contracts classified as
bought and sold, respectively, over the volume bucket, so that, V B + V S = V .

Utilizing the binary trade indicator we construct the signed order imbalance measure, SOI,

SOI = w1 b1 + · · · + wQ bQ =
V B − V S

V
=

V B − V S

V B + V S
. (2)

Motivated by the market microstructure theory, detailed in ELO (2011c), the focus of ELO
(2011a) is on the absolute order flow imbalance relative to the total volume for the given bucket.
Hence, they define their order imbalance measure as,

OI = |SOI| =
|V B − V S |

V
=
|V B − V S |
V B + V S

. (3)

ELO construct the VPIN metric as the moving average of the order imbalance for the
preceding L volume buckets of size V , so the computation exploits the last L · V contracts
traded. Formally, let τ0 ≤ τ1 ≤ . . . ≤ τL = t denote the sequence of times corresponding
to the endpoints of the relevant volume buckets prior to time t, and let OI` denote the order
imbalance measure for the volume bucket that ends at time τ`. Then, making the dependence
on the underlying time bar explicit, we define,

V PIN δ
t =

1

L

L∑
`=1

OIδ` . (4)
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This VPIN metric constitutes the informed trading, or “toxicity”, measure constructed
according to the ELO procedure. It is obtained for a given set of observed transactions over a
specific sample period and reflects underlying choices of the volume bucket, V , the time bar,
δ, the trade classification indicator b, and the moving average parameter, L. These parameters
interact in a complex manner to determine both the level and the dynamic behavior of the
metric. The evolution of VPIN on the day of the flash crash must be interpreted with these
features in mind. The following section provides a more detailed analysis of the basic properties
of VPIN.

4 Basic Properties of VPIN

ELO (2011a) emphasize that trade time is the relevant metric to use in sampling the infor-
mation set as it is volume ranges that produce comparable amounts of information. This is
illustrated in ELO (2011c) by showing that return volatility across equal volume buckets is
much more homogenous than across equal calendar time intervals. Hence, we maintain a fixed
volume bucket, V , in computing VPIN throughout. In addition, recognizing that order im-
balance measures over short intervals may be somewhat noisy, the moving average parameter
L serves to smooth the series and thus enhance the signal content relative to transitory noise
components. We also abstain from any inquiry into this particular aspect of the VPIN defini-
tion. Instead, we focus squarely on the critical building block for VPIN, namely the behavior
of the OI measure for a given volume bucket of size, V .

Since all transactions within the sample are ordered, the set of trades falling within a given
volume bucket is fixed. The only variation in the OI measure stems from how we assign the
buy-sell indicator to the individual trades within the bucket. As explained in the preceding
section, ELO (2011a) use one-minute time bars for this purpose, thus computing the measure
as if all trades within the same time bar operate on the identical side of the market. In other
words, depending on the classification rule in equation (1), all trades within a given time bar
are jointly classified as either buyer- or seller-initiated.5

The adoption of a calendar time interval as a critical part of the trade classification device
within a volume clock scheme is unconventional. One important implication of this design
feature of VPIN is the introduction of an extreme degree of heterogeneity in the distribution
of the order imbalance measure as a function of the underlying trading intensity. This arises
from the fact that an increase in trading volume implies there are more trades per time bar
and thus a smaller number of time bars, Q, involved in the computation of the OI measure
within a volume bucket. This systematically increases the expected value of the OI measure,
independent of any other characteristic of the underlying trades. As a result, the OI measure is
mechanically correlated with trading volume, and thus also with return volatility, irrespective of
any actual trading imbalances. This is in sharp contrast to the outcome of tick or fixed volume
bin sampling which serves to generate homogeneous sampling distributions for the quantities
of interest. We first illustrate the implications of this point within a simple example.

5One rationale for sticking with one-minute time bars is that commercial vendors often make data available
to customers in this format as part of the regular data subscription services.
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4.1 A Simple Illustration

For simplicity, imagine that we have a volume bucket size of V = 1,000. The last recorded
price prior to 9:37 is 10.01, and the last observed trade indicator is a buy. For a moderately
busy trading period starting at 9:38, the volume bucket may contain six separate one-minute
time bars. Thus, for δ = 60 seconds, we assume that the triplets (T δq , P

δ
q , n

δ
q) = (Tq, Pq, nq)

take the following form,

(I) {(Tq, Pq, nq)}q=1...6 =

{ (9:38:00, 10.01, 100); (9:39:00, 10.02, 200); (9:40:00, 10.02, 200);

(9:41:00, 10.01, 300); (9:42:00, 10.01, 100); (9:43:00, 10.00, 100) }

The order imbalance for this bucket is OI = | 100 + 200 + 200− 300− 100− 100 | / 1, 000 = 0.

Now, assume the trading is twice as intensive, meaning that the time between trades shrinks
by a factor of two, so that the same underlying trades now form the following time bars,

(II) {(Tq, Pq, nq)}q=1,2,3 = { (9:38:00, 10.02, 300); (9:39:00, 10.01, 500); (9:40:00, 10.00, 200) }

The order imbalance measure then becomes OI = | 300− 500− 200 | / 1, 000 = 0.40.

Next, imagine the trading is three times as intensive as in the original case, so the trades
now combine to form only two one-minute bars,

(III) {(Tq, Pq, nq)}q=1,2 = { (9:38:00, 10.02, 500); (9:39:00, 10.00, 500) }

The order imbalance measure is then OI = | 500− 500 | / 1, 000 = 0.

Increasing the trading intensity to four times the original level, the first four original trade
blocks are combined into the first time bar. It will contain 800 traded contracts. The next 200
contracts will belong to a second time bar. Assuming the last trade price within this time bar
remains at 10.00 or below, we have the following situation,

(IV) {(Tq, Pq, nq)}q=1,2 = { (9:38:00, 10.01, 800); (9:38:30, 10.00, 200) }

The order imbalance measure is OI = | 800− 200 | / 1, 000 = 0.60.

If the trading intensity is now assumed to reach fivefold the original level, the first five
original trade blocks form the first new time bar, containing 900 traded contracts. The last
100 contracts will belong to a second time bar. Under the assumptions above, we have,

(V) {(Tq, Pq, nq)}q=1,2 = { (9:38:00, 10.01, 900); (9:38:12, 10.00, 100) }

The order imbalance measure now becomes OI = | 900− 100 | / 1, 000 = 0.80.

9



Finally, if the trading intensity is sixfold or more than in the original scenario, then we
only have one time bar within the volume bucket,

(VI) {(T1, P1, n1)} = { (9:38:00, 10.00, 1000) }

The order imbalance measure now becomes OI = | − 1, 000 | / 1, 000 = | − 1.0 | = 1. This
trading intensity may appear excessive, but it is typical of truly chaotic market conditions,
including the period around the flash crash when trading was extremely elevated for long
stretches of time. The result is the mechanical production of a sequence of OI measures that
take the value of unity. The only moderating effect during such periods is when the time bars
are split across two adjacent volume buckets and the OI measure becomes a volume-weighted
average of the trade direction indicators for the two bars.

Hence, the SOI measure varies from -1 to 0.8 across the scenarios, while OI fluctuates
from 0 to 1. This makes it clear that the order imbalance measure associated with a given
volume bucket can be extraordinarily noisy – for a given set of underlying transactions, OI
may take on any possible value between 0 and 1, depending on the trade intensity and the
way in which the boundary of the volume buckets interact with the time bars. Moreover, it
also shows how the OI measure tends to inflate in concert with the trading intensity. As the
speed of trading grows, the number of time bars within the volume bucket declines and there
is less room for diversification of the buy and sell indicators. In the limit, the measure becomes
identically unity, irrespective of both the actual price path and the proportion of active buy and
sell transactions within the volume bucket. The OI measure degenerates into a pure trading
intensity measure.

What would happen if we instead were using a FB-VPIN methodology, relying on a bin size
of ν = 200? Unfortunately, this requires a more detailed knowledge of the actual underlying
transactions. However, assuming simply that the original sequence of aggregate trades within
the minute bars in scenario (I) constitutes the actual trades, and each occur within the last
second of the time bar, we obtain the following scenario,6

(FB) {(T νq , P νq , nνq )}q=1...5 =

{ (9:39:00, 10.02, 200); (9:40:00, 10.02, 200); (9:41:00, 10.01, 200);

(9:41:00, 10.01, 200); (9:43:00, 10.00, 200) }

The order imbalance for the bucket based on this bin size is then OI = | 200 + 200 − 200 −
200− 200 | / 1, 000 = | − 0.2 | = 0.2

The point of the fixed volume bin approach is that this SOI statistic depends only on the
sequence of trades and thus will remain at -0.2, irrespective of the intensity of trading. Thus,
it is arguably a more suitable measure for capturing the volume-weighted order imbalances in
pure trading time.

6If there were several trades within each minute, as there almost inevitably would be, we would avoid the
rough splitting of individual large transactions into adjacent volume bins. This improved granularity would
allow for more variability in the trade indicators, and thus help diversify the signed imbalances across volume
bins, typically resulting in a lower IO measure.
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Of course, our illustration may be overly simplistic and may not capture the systematic
effects across the sample appropriately. In particular, it is likely that the trading pattern will
change in systematic ways as volatility and uncertainty increases and this may drive VPIN in
particular directions that distinguish these episodes from the VPIN measures observed during
more benign trading conditions. In other words, the variation in trading intensity may be
informative in and of itself, and VPIN may extract additional information about the state of
the market from such patterns. This could also potentially help render the time bar OI more
compatible with the corresponding FB-OI measures, avoiding any systematic impact of the
awkward idiosyncratic variation in time bar SOI observed in this example. We turn to a more
formal analysis to address such questions.

4.2 Systematic Variation in the Order Imbalance and VPIN Measure

To assess the significance of the temporal variation in the OI measure, it is useful to benchmark
it against a simple reference measure that is void of explicit market microstructure features
indicating the presence of trade imbalances. One standard approach in asset pricing is to
assume the price process constitutes a semi-martingale with respect to the natural filtration
generated by the past history of prices and trades. This assumption is necessary to ensure
the absence of arbitrage within a frictionless market. It implies that any predictability, or
drift, in the price over short horizons is trivial and may be ignored relative to the size of the
(unpredictable) return innovations. At the same time, this setting is consistent with a large
degree of predictability in trading volume and return volatility. In fact, it is often alleged that
volatility and volume both tend to respond to a positively serially correlated information flow
series that is latent or unobserved. Consequently, a strong positive correlation is expected
between return volatility and trading volume.7 Moreover, since volatility and volume both
are highly persistent series, either may be readily predicted by its own lagged values. The
illustration above suggest that OI mechanically will be strongly correlated with volume, so
it is useful to disentangle the various factors governing the dynamics of the OI measure and,
ultimately, the VPIN metric to assess their relative information content.

4.2.1 Systematic Variation in VPIN due to Trading Intensity

We first explore the pure impact of time variation in trading intensity on the OI measure. For
this purpose, assume counterfactually that the trade classification scheme produces an i.i.d.
sequence of buy-sell indicators, {bq }, taking on the values of +1 and -1 each with probability
1/2. In this setting, the expected value of any future trade indicator is zero, i.e., E[bq] = 0.
Moreover, to annihilate any impact from heterogeneity in order size, let each time bar represent
an equal amount of trading volume so that wq = 1/Q. The only variable impacting the value
of OI is now Q, which varies directly with the trading intensity.

Within this simplified setting, we obtain an analytical expression for the expected OI
measure as a function of the time bars within a volume bucket. Letting this mapping be
denoted F (Q) = E(|SOI(Q)|) = E[OI(Q)], we document, in the appendix, that

F (Q) =
(2q)!

22qq!q!
, if Q = 2q, or Q = 2q + 1 . (5)

7This account is closely related to the so-called “mixture-of-distributions hypothesis” which was explored by,
e.g., Clark (1973), Epps and Epps (1976), Tauchen and Pitts (1983), and Andersen (1996).
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Figure 3 plots this expected order imbalance function for different values of Q, with the latter
displayed on a log scale.

1 10 100 1000
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Q

Figure 3: The figure plots the expected order imbalance as a function of the number of components,
Q, used in the computation. The expectation is computed under the assumption of purely random and
uninformed order flow and homogeneous trade sizes.

Intuitively, the order imbalance is non-increasing in Q, starting at unity for Q = 1. Sec-
ondly, we observe that F (2q) = F (2q + 1), for example, F (2) = F (3) = 0.5, F (4) = F (5) =
0.375, and even F (10) = F (11) = 0.246. Thirdly, as Q grows large, F (Q) approaches zero at

the rate Q−
1
2 , as is also evident in Figure 3. In fact, for Q large, we formally have,

F (Q) ∼
√

2

πQ
. (6)

These expected OI measures, derived assuming no information asymmetry and no system-
atic order imbalance, provide a very conservative benchmark for the observed OI measures. In
reality, the volume contained within individual time bars vary in size, and F (Q) is strictly min-
imized when volume is evenly distributed across the bars. For example, if Q = 2, but w1 = 0.9
and w2 = 0.1, the expected order imbalance is 0.9, which is much higher than F (2) = 0.5,
even in the absence of any systematic order imbalance. In addition, for a variety of reasons,
the trade classification sequence, {bq }, will not be independent which also tends to increase
the value of OI.

In summary, the values indicated in Figure 3 provide a conservative lower bound for the
expected OI measure for a given value of Q. The result has important implications.

FINDING 2

All else equal, the expected value of the OI measure is decreasing in Q. This implies, impor-
tantly, that as trading intensifies, OI and VPIN, mechanically, tend to rise, because Q declines.
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One corollary to Finding 2 is that persistent time variation in the trading intensity will induce
prolonged swings in the level of OI and VPIN, correlated with overall trading volume, even in
the absence of any systematic order imbalances or heterogeneity in order size.

We hasten to caution against the conclusion that any observed time variation in trading
intensity is unrelated to order imbalances. It is possible, indeed likely, that a significant pro-
portion of the variation in trading intensity is related to the general market environment. The
relevant question is then whether the trade classification scheme provides additional informa-
tion beyond what we can infer from the observable trading pattern. We explore such issues in
the empirical section below.

FINDING 3

All else equal, the level of OI, and hence VPIN, is monotonically related to the length of the
time bar, δ. In particular, adopting longer time bars (a higher δ) leads to higher VPIN mea-
sures, as Q declines.

This last result is no surprise. ELO (2011c) discuss related issues and emphasize the need to
compare only the relative size of OI and VPIN over time, and not the actual levels. The finding
does, however, have the practical implication that the design of the OI and VPIN variables
must be calibrated to the existing market conditions to allow for comparisons across time or
markets. In particular, if there is a trend in the liquidity, or average trading intensity, of the
market, then the “effective” Q has shifted, and a corresponding change in the size of the time
bar is required to render the VPIN series stationary over the full period. That is, the time
bars must vary in size to accommodate systematic shifts in overall liquidity across time. For
example, a positive trend in trading volume should be accompanied by a shrinkage of the time
bar. Otherwise, the drift in trading volume would mechanically be interpreted as an increase
in the average order imbalance and seen as signaling a more turbulent market setting. One
response is to only compute or compare VPIN measures over relatively short sample periods
where the overall trading environment is deemed sufficiently stable.

In order to contrast the F (Q) measure to VPIN, it must be smoothed in a comparable
manner. Hence, as for the VPIN definition in equation (4), we let τ1 ≤ . . . ≤ τL = t denote
the sequence of times corresponding to the endpoints of the relevant volume buckets prior to
time t, and let Q` denote the number of time bars included in the volume bucket that ends at
time τ`. Then we define,

U-VPIN1δt =
1

L

L∑
`=1

F (Q`) . (7)

This measure is constructed under the assumption of a purely random order flow and a
homogeneous volume distribution. But these assumptions are likely to be violated and either
feature will inflate the measure. Hence, it is an extremely conservative measure that will tend
to produce values much smaller than the realized VPIN values. The label U-VPIN1 refers to
the fact that it is our first measure computed along the lines of VPIN, and it is “uninformed”
about the underlying price path and order size distribution. As such, we intend to use it for
gauging, qualitatively, the type of variation in the VPIN measure we may expect to experience
due merely to changes in the underlying trading intensity.
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4.2.2 Systematic Variation in VPIN Attributable to the Trading Pattern

The F (Q) and VPIN measures capture only the impact of the number of elements used for
computing OI. Any variation in volume across the time bars will increase the measure. Since
the actual trading process involves transactions of highly varying size, we now develop an
alternative benchmark that reflects the impact of volume heterogeneity on the expected OI
measure. Unfortunately, direct analytic expressions are no longer feasible. However, observe
that the expression for the expected OI measure is,

E[OI] = E |SOI | = E |w1 b1 + · · · + wQ bQ |. (8)

This is an L1 norm applied to the signed order imbalance measure. It turns out that the
corresponding L2 norm is highly tractable under the maintained assumption that the {bq }
sequence is i.i.d. and symmetric. That is, we can instead exploit the measure,

√
E [SOI2] =

√
E
[

(w1 b1 + · · · + wQ bQ )2
]

=
√
w2
1 + · · · + w2

Q (9)

This measure is tantalizingly simple. Given the observed volume weight vector, w =
(w1, . . . , wQ)′, for a given volume bucket, the expected order imbalance measure is simply
given by the Euclidean norm of w. Due to Jensen’s inequality we have the relation,

E[OI(w)] = ||SOI||1 ≤ ||SOI||2 = |w | ≡
√
w2
1 + · · · + w2

Q

Hence, this metric provides an upper bound on the impact of the observed trading pattern
on the expected OI measure, provided the trade indicator follows an i.i.d. process. However,
we expect positive serial correlation in the trade indicator sequence, implying that the OI
measure may be smaller or larger than the |w | measure, depending on the strength of the
Jensen inequality bias versus the serial correlation in {bq }.

In summary, the time variation in this L2 norm should provide a gauge on the variation in
the order imbalance measure that is attributable to the characteristics of the trading process
and not directly associated with the trade indicator sequence, {bq }. By the same token, any
systematic residual variation in the OI measure is likely due to asymmetries in the active order
flow, as captured by the {bq } indicators.

As for the other order imbalance measures, we convert the |w| measure into a VPIN style
metric by computing a backward looking moving average. Exploiting the identical timing
notation as for VPIN, and letting w` denote the volume weight vector for the bucket that
terminates at time τ`, we define,

U-VPIN2δt =
1

L

L∑
`=1

|w` | . (10)

While U-VPIN1 is based on an L1 norm for the expected order imbalance measure, U-VPIN2
is based on a related L2 norm. Moreover, like U-VPIN1, U-VPIN2 is “uninformed” about the
actual price path, and thus the trade indicator sequence, utilized by VPIN.

For a given distribution of Qi across buckets, U-VPIN2 is minimized when the trading
volume associated with each time bar within each bucket is identical, while it is maximized
when the volume within one time bar dominates the volume associated with the other time
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bars, i.e., if one volume weight is near unity and the remainder are tiny. Hence, this measure
captures variation in the heterogeneity of the observations within the volume buckets. At the
same time, U-VPIN2 is constructed assuming a purely random trade direction, so its variation
cannot be directly attributed to order flow imbalances. Again, we caution that the trading
pattern, surely, is not independent of market conditions, and thus U-VPIN2 is not unrelated
to tensions in the market. It rather reflects the component of VPIN that is directly related to
the observed trading pattern.

FINDING 4

All else equal, the expected value of the OI and VPIN measures is increasing in the degree of
volume heterogeneity across time bars.

Finding 4 implies that any systematic relationship between volume heterogeneity across time
bars and the state of the market will create corresponding correlations between VPIN and
overall market conditions. We document below that this feature is empirically relevant for
VPIN and helps explain its otherwise seemingly anomalous behavior as the time bar shrinks.

4.2.3 Removing the Impact of Trading Intensity via Fixed Volume Bin VPIN

The ELO VPIN metric is tied to the measurement of volume-weighted order imbalances across
time bars. As noted in Finding 2, this renders the measure highly sensitive to the trading
intensity. One way to avoid this mechanical dependence on trading intensity is to compute
the OI measure from equally-sized volume bins instead. In fact, this approach may be seen as
the natural response to the observation that activity within a high-frequency market setting
should be measured in trading time rather than calendar time.

Following the notation in Section 3.1, the basic data triplets now consist of (Tk, Pk, Nk) =
(T νk , P

ν
k , N

ν
k ), where Tk and Pk are, respectively, the calendar time and trade price associated

with the last contract included in volume bin k, and the cumulative volume traded by the end of
each volume bin is Nk = ν ·k. Hence, each volume bin contains a fixed number, Nk−Nk−1 = ν,
of traded contracts, for k = 1, . . . , Kν . In our empirical work, we choose ν = 1,000 or ν =
5,000. These values imply that each volume bucket with V = 35,000 contains either 35 or 7
separate volume bins. These figures span the average number of time bars included in the ELO
OI measure across the typical trading day while, by construction, eliminating the heterogeneity
in volume across the bins used for computing OI.

Each volume bucket now comprises a fixed set of Q = V/ν bins, each containing an equal
fraction, wν = ν/V = 1/Q, of the overall trading volume within the bucket. We apply the
ELO trade classification scheme (1) to each bin. Hence, we may define the “fixed bin” signed
order imbalance measure, SOIν , for a given volume bucket as follows,

SOIν = w1 b1 + · · · + wQ bQ =
b1 + · · · + bQ

Q
=

V B − V S

V
. (11)

As previously, let τ1 ≤ . . . ≤ τL = t denote the sequence of times corresponding to the
endpoints of the relevant volume buckets prior to time t. Moreover, we let SOI ν` denote the
fixed bin signed order imbalance measure for the bucket terminating at time τ`. We then define
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the “Fixed-Bin” VPIN, or FB-VPIN, as,

FB-V PIN ν
t =

1

L

L∑
`=1

|SOI ν` | . (12)

This FB-VPIN measure retains the dependence on the trade classification scheme, but
it breaks the mechanical relationship with trading intensity. As such, this measure will be
useful in identifying the variation in the ELO VPIN metric that stems from order imbalances
measures based on a genuine trading time scale.8

5 Empirical Results for the Full Sample

5.1 Summary Statistics for the Trading in E-mini S&P 500 Futures

We first present the general features of the trading volume series for the E-mini S&P 500
futures across our sample period, with a view towards the critical aspects discussed in the
Section 4. Table 1 provides descriptive summary statistics.

It is evident that the E-mini S&P 500 futures market generally is extremely liquid. There
were more than 185,000 trades per day on average, and the daily volume averaged in excess of
2,166,000 contracts. That implies an average transaction size of around 11.7 contracts. During
the regular trading hours, there were about 390 transactions per minute or 6.5 transactions per
second. Although the numbers are much lower outside the regular trading hours, the activity
is still impressive, with a trade being consummated about once every two seconds.

Our choice of L = 50 and V = 35, 000 contracts for computing VPIN must be assessed in
view of these numbers. As indicated, they were calibrated to ensure a close approximation to
the setting of ELO. In particular, V represents almost (1/50)th of the average daily volume,
so the amount of trades used to compute VPIN corresponds to about one typical trading day.
This makes it comparable to the corresponding choice in ELO although it is infeasible to obtain
a perfect match as their data set covers a slightly lower number of transactions.

Another critical dimension is the number of transaction per time bar, as this is a major
factor both in determining the reliability of the trade classification scheme and in determining
the average number of blocks used in computing the OI measure. First, we note that a time bar
of one minute will, on average, encompass 390 separate transactions during the regular trading
hours. These will all be classified as active buys or active sells depending on the price change
over the one-minute period. Clearly, many of these trades are misclassified as small series
of active buys and sells often alternate in rapid succession.9 Nonetheless, it is an empirical

8In principle, one can use the approach of the previous subsection to construct “uninformed” versions of
FB-VPIN, which not only annihilate the mechanical relationship with trading intensity but also remove the
dependence on price information. However, the corresponding measures, U-FB-VPIN1 and U-FB-VPIN2, will
be constants, because each volume bucket now consists of the same number (Q) of equal size bins, implying,

U -FB-V PIN1 νt ≡ F (Q), and U -FB-V PIN2 νt ≡
1√
Q
,

9The first order tick return autocorrelation across the sample is around -0.41, while the next four tick
return autocorrelations also are negative, albeit small. This suggests a rapid alternation between transactions
consummated at the bid and ask quote. While it is not fool-proof to associate a down-tick with an active sell and
an up-tick with an active buy, it should not induce a dramatic bias as the order book depth typically is much
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Table 1: Descriptive Trading Statistics for the E-mini S&P 500 Futures Contract

All RTH OTH HTH

Volume (1 day), 000s 2166.53 1952.20 261.00 137.94
# Trades (1 day), 000s 185.45 156.42 32.83 20.56

Volume (1 min), 000s 1.52 4.81 0.26 0.10
# Trades (1 min), 000s 0.13 0.39 0.03 0.01

Order Size 11.68 12.48 7.95 6.71
# Days 667.00 652.00 652.00 15.00

Order Size: Average Daily Percentiles

Min 10% 50% 75% 90% 99% 99.9% Max

All 1.0 1.0 2.1 6.3 23.6 187.5 539.0 1654.9

Notes: This table reports summary statistics for the trading in E-mini S&P 500 futures contract

over the period 01/2008-07/2010. The data are reported separately for Regular Trading Hours

(RTH, 8:30-15:15 CT), Overnight Trading Hours (OTH, 15:15-8:30 CT), Holiday Trading Hours

(HTH, exchange holidays), and combined hours (All).

question whether the trade classification scheme provides useful insights into the effective
order flow imbalance in the market, and we explore this issue further below. However, it also
motivates us to analyze the behavior of the VPIN metric across alternative choices of time bars
for which the degree of trade misclassification will vary. Second, there will be an average of
7-8 time bars within each volume bucket during regular trading hours. Moreover, depending
on the trading intensity of any given trading period, this number fluctuates anywhere from 25
down to 1. Inspecting Figure 3, it is evident that the expected OI measure is highly sensitive
to the number of time bars in the volume bucket, Q, as reflected in the steepness of the curve
in the relevant range. In other words, VPIN will, by construction, vary dramatically over time
in response to persistent variation in the underlying trading volume, independently of whether
the transactions are evenly balanced across buys and sells or not.

Finally, we note the extreme right-skewed order size distribution. In a typical time bar
containing 390 transactions, about 200 will involve the exchange of only one or two futures
contracts. However, about 40 will involve more than 20 contracts each, and a few will entail
active trading of hundreds of contracts in a single transaction. While this order size hetero-
geneity is not likely to have a strong bearing on the behavior of the OI measures obtained from
one-minute bars, they will impact measures computed from a smaller number of transactions,
e.g., from transaction data, or from smaller time bars or volume bins.

deeper than the volume associated with individual transactions. Consequently, the best bid and ask quotes are
generally quite stable relative to the oscillation of transactions between the bid and ask. Hence, we expect that
sequences of hundreds of transactions typically involve a large number of both buys and sells.

17



5.2 Comparing Alternative VPIN Measures

We have argued that VPIN potentially is subject to a multitude of distortions stemming from
the variation in trading intensity, inhomogeneity of the volume weights across time bars, and
random variation in the trade classification scheme. One way to assess the significance of these
factors is to compare the behavior of the VPIN metric computed over alternative time bars
and contrast them with our U-VPIN1, U-VPIN2, and FB-VPIN measures, as each of these
convey information about the strength of the underlying forces impacting VPIN.

Figure 4 displays VPIN across the full sample computed using time bars of δ = 0, i.e., tick
data, δ = 10, and δ = 60, with each series plotted against the corresponding U-VPIN1 and
U-VPIN2. The latter series represent the expected values of VPIN, assuming random trade
classification and computed conditional on specific observed patterns of trading. Finally, the
bottom panel provides the FB-VPIN series, computed for fixed volume bins of ν = 5, 000 and
ν = 1, 000. By computing the metric in pure trade time, the FB-VPIN series eliminate any
mechanical time series correlation between trading intensity and VPIN.

Figure 4 highlights a number of interesting features. First, as expected, the VPIN measure
increases very significantly as the time bar grows longer. Likewise, the FB-VPIN values rise
as the volume bins grow lengthier. This simply reflects the bundling of ever larger sets of
transactions into volume blocks which each are classified as consisting of unidirectional trades.
As a result, the effective Q decreases and the expected VPIN grows. Second, it is evident that
VPIN is strongly correlated with U-VPIN1 and U-VPIN2, especially for the time-aggregated
series with δ = 10 and δ = 60. In fact, for δ = 60, U-VPIN2 almost coincides with VPIN,
with both series having very similar trends and spikes. Moreover, U-VPIN1 displays the same
qualitative time series variation even if, by construction, it attains somewhat lower values. In
contrast, the transactions (δ = 0) and FB-VPIN series appear much less consistent with VPIN
computed from time bars. Third, the upward spikes in the 10-second and 60-second (U-)VPIN
series on May 6, 2010, are striking. However, neither the transaction nor the FB-VPIN series
attain an unusually high value on May 6, 2010. The discrepancy between the time bar and
volume bin based VPIN series is remarkable, given that the volume bins of ν = 1, 000 and
ν = 5, 000 compute the underlying OI measures from a set of volume blocks that mirror the
number of blocks utilized, on average, by VPIN computed with δ = 10 and δ = 60, respectively.

FINDING 5

The ELO VPIN is highly correlated with U-VPIN1 and U-VPIN2 and the correlation increases
with the length of the time bar. Hence, the trade classification rule is close to negligible in
determining the time series variation of VPIN.

FINDING 6

VPIN computed from time bars behave dramatically differently from VPIN computed from fixed
volume bins or transaction data, even if the identical volume buckets are used for computations.
In particular, only time bar VPIN attains an exceptional value on May 6, 2010.

Complementary evidence is provided by Table 2. It reports the sample correlations between
the VPIN measures for different time bars along with correlations with the daily trading volume
and VIX. In addition, a separate correlation table for FB-VPIN, volume and VIX is included.
We have already noted the tendency for large time bars to induce a mechanical correlation with
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Figure 4: The top three panels of the figure plots the daily maximum values of VPIN (blue), U-VPIN2
(L2 metric, red), and U-VPIN1 (L1 metric, green) for δ = 0, and δ = 1 min. The bottom panel depicts
the FB-VPIN for ν = 1, 000 (blue) and ν = 5, 000 (green)

trading volume. The VIX index is incorporated as a reference for the subsequent discussion of
VPIN as a predictor for future short term return volatility.

Table 2 confirms the main conclusions from Figure 4 and brings out some new features.
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Table 2: Correlations

δ = 0

VPIN U-VPIN1 U-VPIN2

VPIN 1.00
U-VPIN1 0.66 1.00
U-VPIN2 0.80 0.85 1.00

Volume -0.23 -0.37 -0.41
VIX -0.57 -0.87 -0.75

δ = 10

VPIN U-VPIN1 U-VPIN2

VPIN 1.00
U-VPIN1 0.70 1.00
U-VPIN2 0.76 0.87 1.00

Volume 0.51 0.81 0.59
VIX 0.08 0.45 0.14

δ = 60

VPIN U-VPIN1 U-VPIN2

VPIN 1.00
U-VPIN1 0.78 1.00
U-VPIN2 0.81 0.98 1.00

Volume 0.60 0.82 0.79
VIX 0.21 0.46 0.38

δ = 300

VPIN U-VPIN1 U-VPIN2

VPIN 1.00
U-VPIN1 0.84 1.00
U-VPIN2 0.86 0.94 1.00

Volume 0.69 0.81 0.78
VIX 0.37 0.43 0.45

FB-VPIN

ν = 1K ν = 5K Volume VIX

Volume -0.09 0.05 1.00
VIX -0.42 -0.17 0.52 1.00

Notes: This table reports correlations of VPIN, U-VPIN1, U-VPIN2, 1-day trading volume, and VIX,

for different cases of δ =0, 10, 60 and 300 sec and ν = 1K and 5K. The sample period is 01/2008-07/2010.

First, we note the strong and generally increasing correlation between VPIN and the U-VPIN
measures as δ grows. It is 0.70-0.75 for δ = 10, about 0.80 for δ = 60, and around 0.85 for
δ = 300. Even at the transaction level, this correlation is very robust which is hard to discern
from Figure 4 due to the different scaling of the series.

Second, there is a dramatic break in the correlation between volume and VPIN measures
as we move from computing VPIN by time bars to ticks or volume bins. For time bar VPIN,
the positive correlation is not surprising, even if the magnitude might be. Trading volume is
strongly serially correlated, so Findings 2 and 3 suggest that volume will be correlated with
time bar VPIN. The main insight is rather that FB-VPIN covaries only weakly with trading
volume. The use of volume bins annihilate any impact from the variation in trading intensity
on FB-VPIN, so the result suggests that the trade direction indicators are largely unrelated
to overall trading volume. That is, to the extent VPIN captures order imbalances, this stems
almost exclusively from the impact of the trading pattern, while the trade indicators are largely
irrelevant. This is, of course, also consistent with the very high degree of correlation between
VPIN and the U-VPIN measures, and serves to corroborate Finding 5.
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Third, the time bar VPIN measures display positive correlation with VIX, although it
is noticeably weaker than the VPIN-volume correlations. Given the well-known strong posi-
tive association between volume and volatility, exemplified by the current sample correlation
of 0.52, the correlation between these VPIN measures and VIX is expected. In contrast, FB-
VPIN and transaction VPIN are strongly negatively related to VIX. This feature is remarkable
given the ELO findings. It suggests that VPIN, obtained at the transaction level or measured
consistently in trading time, is inversely related to the general long-run volatility level. More-
over, the effect is strongest at the transaction level and slowly dissipates as the transactions
are aggregated into larger volume bins. The relationship is highly significant for transaction
VPIN, suggesting a interaction between uncertainty or turmoil in the market and the trade
classification scheme in equation (1). The slow dissipation of this relation with the aggregation
level suggests that the same phenomenon remains at work but that the trade indicators become
less reliable as transactions are bundled into larger blocks with unidirectional classifications.
The surprising hypothesis arising from these observations is that VPIN measured in trading
time is negatively related to overall trading volume and longer run return volatility. By the
same token, time bar based VPIN measures, in general, display positive correlation with VIX
only because they are constructed in a manner that mechanically makes them covary strongly
with the concurrent trading intensity.

FINDING 7

Time bar VPIN is strongly correlated with trading volume and weakly correlated with VIX.
In contrast, VPIN, computed from fixed volume bins or transaction data, is weakly, and pre-
dominantly negatively, correlated with trading volume, and strongly negatively correlated with
VIX. Hence, the correlation between ELO VPIN and general market volatility largely reflects
the mechanical association between time bar VPIN and trading intensity.

In summary, when VPIN is computed in trading time it displays an entirely different
dynamic behavior than when extracted using time bars. At a minimum, this raises the question
of whether the two variants of VPIN capture fundamentally distinct features of the trading
process. To help address this issue, we explore the pronounced negative correlation between
transaction and fixed volume bin VPIN vis-a-vis VIX in further detail later.

5.3 VPIN as a Forecast of Future Short-Term Return Volatility

ELO suggest that VPIN may be useful for predicting impending turmoil in financial markets.
They provide evidence that VPIN with δ = 60 is correlated with future volatility, and that
the correlation is stronger for more extreme volatility realizations. These observations are
consistent with the findings above, where we also uncover a positive, albeit somewhat weak,
correlation between the ELO VPIN metric and concurrent VIX. However, as argued by ELO
(2011c), it may be important to distinguish short term order imbalance or toxicity induced
volatility, which may occur within the current trading day and only last, say, a few hours,
versus the broader volatility expectations for the coming month, as reflected in the VIX index.
Consequently, this section explores how well VPIN performs as a forecast variable relative
to other standard volatility predictors. Moreover, we seeks to shed additional light on the
mechanism that generates a correlation between VPIN and future volatility.

Table 3 provides a first overview of the evidence. It tabulates the correlations between alter-
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Table 3: Correlations of Future Absolute Returns with Various Measures

VPIN U-VPIN2

δ = 0 δ = 10 δ = 60 δ = 300 δ = 0 δ = 10 δ = 60 δ = 300 Volume VIX

|rt,t+1| -0.30 0.08 0.14 0.20 -0.38 0.10 0.23 0.25 0.30 0.46
|rt,t+10| -0.33 0.07 0.13 0.22 -0.41 0.10 0.24 0.28 0.32 0.49
|rt,t+50| -0.35 0.01 0.07 0.18 -0.42 0.04 0.18 0.23 0.28 0.47
|rt,t+250| -0.35 0.05 0.16 0.24 -0.44 0.11 0.25 0.27 0.38 0.54

Notes: “Volume” is one-day trading volume. The sample period is 01/2008-07/2010.

native predictor variables and future cumulative absolute returns over four different horizons,
ranging from a single to 250 volume buckets, corresponding to an average of a few minutes to
five full trading days. The candidate forecast measures include VPIN and U-VPIN2 obtained
from different time bars, along with lagged daily trading volume and the VIX index.

The raw correlations indicate that VPIN generally provides a comparatively poor volatility
forecast. For δ > 0, the VPIN correlations with future volatility, at all horizons, are uniformly
lower than those associated with U-VPIN2, even though the only difference between them is the
trade classification scheme. Taken at face value, this implies that the trade classification rule
induces variation in the VPIN metric that lowers its correlation with future return volatility,
relative to the random classification associated with U-VPIN2. One potential explanation is the
fact that lagged daily volume is more highly correlated with the future realized return volatility
than VPIN. Since U-VPIN2 is more strongly correlated with volume than VPIN, this suggests
that the source of the VPIN-volatility correlation is the volume-volatility correlation. Hence,
one may hypothesize that the VPIN measures predict future return volatility solely due to their
mechanical correlation with trading volume. We further note that the correlations suggest
VIX, generally, is a vastly superior predictor of future realized volatility than any of the other
forecast variables. Finally, we observe that the strikingly strong negative association between
transaction VPIN and future realized volatility is consistent with the negative contemporaneous
correlation between transaction VPIN and VIX, discussed in the preceding section.

In order to more formally assess the hypothesis concerning the general relationship between
VPIN and future short-term realized volatility, we now compare the predictive performance
within a regression setting where we can control directly for the impact of auxiliary variables.
We focus on VPIN measures obtained from time bars with δ = 60, but the qualitative findings
are identical for other choices of (strictly positive) time bars. Table 4 summarizes the evidence
for a representative subset of the regressions we have explored.

The results are clear cut. From the first row in either panel, we see that there, indeed, is a
highly significant relationship between VPIN and future return volatility although the degree
of predictive power is limited as reflected in the adjusted R2 of about 2% and 6%, respec-
tively, for the two forecast horizons. The second row of the panels present the corresponding
regression results for U-VPIN2. The improvement in forecast performance is striking, with the
explanatory power rising more than twofold. Given the high correlation between the two alter-
native measures, it supports the hypothesis that the variation in trading activity, as reflected in
U-VPIN2, is the underlying source of volatility predictability: the inclusion of order imbalance
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Table 4: Forecast Regressions for Absolute Return

Panel A: 1-Period Forecast

Const. VPIN U-VPIN2 Vol×10−7 VIX×10−2 R̄2

Reg 1 0.01 0.39 1.98
( 0.32) ( 7.34)

Reg 2 -0.14 0.72 5.27
( -5.35) ( 10.88)

Reg 3 0.02 0.57 8.64
( 2.27) ( 13.10)

Reg 4 -0.02 0.55 20.87
( -4.44) ( 36.35)

Reg 5 0.07 -0.16 0.64 8.84
( 3.86) ( -3.09) ( 13.00)

Reg 6 -0.07 0.15 0.54 21.15
( -6.92) ( 5.80) ( 37.11)

Reg 7 -0.04 0.18 0.50 21.45
( -7.75) ( 7.40) ( 34.02)

Panel B: 50-Period Forecast

Const. VPIN U-VPIN2 Vol×10−7 VIX×10−2 R̄2

Reg 1 0.02 0.36 6.28
( 1.17) ( 7.34)

Reg 2 -0.13 0.69 18.61
( -5.16) ( 11.10)

Reg 3 0.02 0.57 33.31
( 2.45) ( 13.62)

Reg 4 -0.02 0.55 78.49
( -4.41) ( 40.63)

Reg 5 0.08 -0.21 0.66 34.75
( 5.46) ( -4.54) ( 13.42)

Reg 6 -0.06 0.11 0.54 79.05
( -6.38) ( 5.07) ( 40.96)

Reg 7 -0.04 0.17 0.49 80.52
( -8.00) ( 8.05) ( 38.91)

Notes: The figures represent OLS regression coefficients. t-statistics based on HAC-standard errors,

constructed with 50 lags, are reported in parentheses. VPIN and U-VPIN are for δ = 60 seconds;

“Vol” is the one-day backward trading volume. The sample period is 01/2008-07/2010.
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information, as reflected in VPIN, but not U-VPIN2, is detrimental to forecast performance.
This brings us to row three of the panels which document another dramatic improvement from
simply using the lagged one-day trading volume as a forecast variable for future volatility.
The explanatory power is now fivefold that obtained with VPIN. Along similar lines, row five
demonstrates that VPIN has no – or even negative – auxiliary explanatory power in forecast-
ing return volatility once we control for overall trading activity. Obviously, the two regressors
are strongly correlated, rendering the point estimates somewhat unreliable, but the minimal
increase in overall explanatory power relative to the univariate trading volume regression in
row three confirms the lack of independent predictive content of the VPIN metric. Finally, row
four shows that the VIX index provides superior predictive power relative to trading volume.10

Nonetheless, as evidenced by rows six and seven, the trading activity variables do contain
useful information for future return volatility over and above the VIX measure although the
improvements in explanatory power over using VIX alone is marginal.

FINDING 8

The ELO VPIN metric is, in general, much less robustly correlated with future short-term
realized volatility than regular volatility predictor variables. Moreover, it is less correlated with
future return volatility than the corresponding U-VPIN2 measure, suggesting that the trade
classification rule actively degrades the volatility forecast content of VPIN.

FINDING 9

The evidence is consistent with the hypothesis that ELO VPIN metric is weakly correlated with
future return volatility largely because of its correlation with trading volume. Once we control
for trading volume, ELO VPIN is, if anything, negatively related to future return volatility.

One concern about the above analysis is that it utilizes the entire sample and thus mixes
evidence across all market regimes. Consequently, it does not allow for the possibility that
VPIN is relatively uninformative during benign times, but may become highly informative
about market conditions as order flow turns decidedly toxic. This is a harder hypothesis to
test using a relatively short historical sample, so we turn to a more informal descriptive account
of the behavior of VPIN across the dramatic events associated with the flash crash.

6 Revisiting the Flash Crash

6.1 A Closer Look at the Dynamics of Trading Activity

Table 5 provides summary statistics for the trading process on May 6, 2010. Comparing the
statistics with the corresponding numbers in Table 1, we note that the trading volume was
more than 250% of the daily average for the sample. However, there is no significant difference
in the order size distribution for May 6, 2010, relative to a regular day.

Next, Figure 5 complements our original depiction of the trading activity on this day in
Section 2.2. It displays the evolution of numerous alternative VPIN measures and the dynamics

10Moreover, we note that VIX is not an ideal predictor of future return volatility, since it is feasible to construct
better performing forecast measures using different aspects of the option data, see, for example, Andersen and
Bondarenko (2007) for evidence.
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Table 5: Descriptive Statistics for the E-mini S&P 500 Futures, May 6, 2010

All RTH OTH

Volume (1 day), 000s 5672.59 5097.10 575.49
# Trades (1 day), 000s 439.28 383.09 56.19

Volume (1 min), 000s 3.98 12.55 0.56
# Trades (1 min), 000s 0.31 0.94 0.06

Order Size 12.91 13.31 10.24

Order Size Percentiles

Min 10% 50% 75% 90% 99% 99.9% Max

All 1.0 1.0 2.0 6.0 25.0 200.0 559.0 2334.0

Notes: This table reports summary statistics for the trading in the E-mini S&P 500 futures contract

on May 6, 2010. The data are reported separately for Regular Trading Hours (RTH, 8:30-15:15 CT),

Overnight Trading Hours (OTH, 15:15-8:30 CT), and combined hours (All).

of the order size as well as the trading intensity, as given by the number of minutes it takes to
trade 35,000 contracts (one volume bucket), throughout the day.

Focusing initially on the bottom right panel, we note that the trading intensity around
the flash crash rose to levels which imply that each volume bucket between 13:10-15:00 CT
contains no more than three one-minute time bars, and, even more strikingly, from 13:40-13:55
CT, the volume buckets were filled in less than one minute. This tautologically implies a string
of volume buckets producing OI measures of near unity, irrespective of the underlying order
imbalances. This is confirmed by the qualitatively similar increase in U-VPIN1 and U-VPIN2
over this period for both δ = 60 and δ = 10. In other words, the one-minute time bar VPIN
must rise sharply, for purely mechanical reasons, due to the acceleration in trading activity,
and independently of the degree of toxicity in the market. While it is likely we would never
observe such a trading pattern in the absence of rapidly rising order flow toxicity, the dynam-
ics of VPIN simply cannot shed light on the issue. For VPIN to signal the impending market
chaos, it must attain extreme values prior to the crash. Turning towards this crucial timing
dimension, we observe that the VPIN and U-VPIN series for δ = 10 and δ = 60 reach their
maximum after 14:00 CT, and thus some time after the flash crash cycle has played itself out.
Again, this may be viewed as a mechanical consequence of the construction of the metric.
VPIN is computed from a long moving-average of order imbalance measures which induces
extreme short run momentum in response to a rapid and maintained escalation in the trading
activity. As observed in Finding 1, the evidence for VPIN reaching an extreme level prior to
the crash is less compelling, but we pursue this question further shortly.
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Figure 5: For May 6, 2010, this figure plots market statistics at 1-minute frequency from 7:30-15:15
CT. The black vertical line shows the start of the regular trading hours (RTH). Left panels: (1) VPIN
(blue), U-VPIN1 (green), and U-VPIN2 (red) for δ = 0, (2) same for δ = 10 sec, (3) same for δ = 60
sec. Right panels: (1) VPIN for fixed volume bins with ν = 1K (blue) and ν = 5K (green); (2) the
average trade size and its 10-minute moving average, (2) the estimated number of 1-minute intervals in
volume bucket of size V .

FINDING 10

The explosive increase in one-minute VPIN during and following the Flash Crash is fully ex-
plained by the underlying trading pattern, as evidenced by the qualitatively identical behavior
of the U-VPIN series. In particular, the trading intensity rose to such levels that many of the
underlying OI measures mechanically were attaining their maximum value of unity during this
period, independent of the actual order flow imbalances in the market.
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A few additional observations on Figure 5 are warranted. First, transaction VPIN again
behaves very differently from ELO VPIN. It is flat during the crash itself and then drops off
sharply as the prices start rebounding following the crash, even as one-minute VPIN continues
to soar. The FB-VPIN for ν = 1,000 displays features quite similar to transactions VPIN, while
the FB-VPIN for ν = 5,000 represents an intermediate case between ELO and transaction
VPIN. Second, we observe that the VIX index also was elevated for a relatively long period
and seems to reach a maximum over an hour after the crash. However, as documented by
Andersen, Bondarenko and Gonzalez-Perez (2011), this is an artifact of dramatic swings in
the liquidity of the S&P 500 options market which distorts the computation of the index. If
one applies a coherent range of option strikes within the VIX index formula across May 6,
2010, the index attains its maximum value exactly at the nadir of the S&P 500 index for the
day. Third, we note that the dramatic increase in trading activity around the flash crash may
have received a minor boost from a drop in the average order size, presumable resulting from
a decline in the depth of the order book.

6.2 VPIN as Crash Predictor

The issue of whether VPIN provided a signal indicating a sharply elevated degree of order
toxicity and a high risk of impending market turmoil prior to the flash crash cannot be conclu-
sively answered from our limited historical sample. However, we can summarize the evidence
as it would appear at the time just prior to the crash and seek to infer whether the prevailing
real-time value of VPIN was exceptional compared to the past history.

To this end, we construct three separate figures with scatter plots depicting pairwise obser-
vations of alternative volatility predictors versus subsequent realized volatility over different
forecast horizons. The associated linear regression lines convey the predictions from a simple
linear model exploiting available historical evidence. The sample covers the beginning of our
sample through the start of the flash crash, thus reflecting the real-time perspective that an
observer may have acquired at that juncture by constructing the various candidate volatility
predictors on a high-frequency basis. Note that we exploit non-overlapping forecast horizons
to avoid excessive cluttering of the displays.

Figure 6 provides the results for the 50-volume-bucket-ahead forecast horizon. The upper
right panel refers to the ELO version of VPIN, and the red dots indicate the VPIN values
observed over the five days preceding the flash crash. It is hard to detect any unusual pre-
crash pattern: even if VPIN clearly is elevated it is not exceptional, and the realized volatilities
are fairly subdued compared with the values attained during the financial crisis. We also note
the pronounced negative relation between transaction and FB-VPIN and the future realized
volatility as well as the more well-defined positive association between the volume and VIX
series and future realized absolute returns. In fact, the generally limited explanatory power of
ELO VPIN relative to a number of the other candidate predictor variables is evident by the
relative diffuse shape of the scatter plot. Nonetheless, it is also clear that none of the other
variables provide any clear indication that volatility is about to erupt prior to the crash.

Unfortunately, one problem with the relatively long forecast horizon employed in Figure
6 is that it limits the number of pre-crash observations quite severely, given our use of non-
overlapping forecasts. We therefore turn to shorter horizons for a more rich set of data points.
The disadvantage is that the scatter plots will tend to more dispersed as the realized absolute
returns over shorter horizons provide noisier measures of the underlying volatility; see, e.g.,
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Figure 6: This figure shows 6 scatter plots of average absolute return AAR(t, t + 50) versus VPIN
with δ = 0, 10, and 60 sec (top panels), versus VPIN with fixed volume bins B = 1000, Volume, and

VIX (bottom panels). “Volume” is one-day trading volume, in millions. AAR(t, t+T ) = 1
T

∑T
i=1 |rt+i|,

where rt = 100 lnPt/Pt−1 is the log return of the S&P 500 futures over one volume bucket. Red dots
indicate the 5 days preceeding 13:30 on May 6, 2010. The sample period is 01/01/2008-05/06/2010.

Andersen and Bollerslev (1998).
The plots in Figure 7, reflecting a forecast horizon of ten volume buckets, produce quali-

tatively similar results to those discussed above. Likewise, moving to the extreme end of the
spectrum, and only forecasting the absolute return over the next volume bucket, does not alter
the impression that one-minute VPIN moves around within an elevated, but nonetheless fairly
standard range prior to the crash on May 6, 2010. The main difference is that all the “clouds”
become more diffuse, reflecting the use of very imprecise volatility proxies. In summary, when
focusing on the pre-crash sample, there is no indication that real-time data on VPIN would
have forewarned an observed of the impending market turmoil.11

FINDING 11

The evolution of the one-minute VPIN series prior to the flash crash does not appear genuinely
remarkable along any dimension. In particular, the level of the series was elevated relative to
the average day, but it was not reaching values close to the historical extremes, and it was not
otherwise displaying any truly extraordinary behavior.

11We have confirmed that this conclusion is robust to the choice of sample period and that it, in particular,
is not dependent on the inclusion of the highly volatile period from August 2008 to May 2009.
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Figure 7: This figure shows 6 scatter plots of average absolute return AAR(t, t + 10) versus VPIN
with δ = 0, 10, and 60 sec (top panels), versus VPIN with fixed volume bins B = 1000, Volume, and

VIX (bottom panels). “Volume” is one-day trading volume, in millions. AAR(t, t+T ) = 1
T

∑T
i=1 |rt+i|,

where rt = 100 lnPt/Pt−1 is the log return of the S&P 500 futures over one volume bucket. Red dots
indicate the 5 days preceeding 13:30 on May 6, 2010. The sample period is 01/01/2008-05/06/2010.

7 Some Final Reflections on VPIN and Potential Modifications

7.1 The Issue of Replication and Verifiability

The illustration in Section 4.1 shows that VPIN can be very sensitive to minor changes in the
trading process. This suggests that the measure is not robust to small errors or changes in
the transaction record. Moreover, it is clearly dependent on the initial conditions as, given the
recorded trade sequence, the point at which we start cumulating the trading volume determines
the location of the volume buckets for any day throughout the sample. It is not clear, however,
whether this is a major concern or whether the use of a long moving average for computing
VPIN helps diversify and mitigate such effects so as to render them immaterial.

To assess the magnitude of such effects, and their potential impact on inference regarding
the events during the flash crash, we compile 350 different version of one-minute VPIN for
March 6, 2010, with each trajectory corresponding to a different location of the volume buckets.
Using a bucket of V = 35,000, the first trajectory is initiated with the first transaction of the
day, the second is initiated after the first 100 contracts have been traded, the third after 200
contracts are traded, and so on until the 350th trajectory is initiated after 34,900 contracts
have been traded. This provides an empirical bootstrap of the distribution of VPIN on the
day of the flash crash. In reality, the starting point of the sample, years earlier, determines the
exact location of the volume buckets on this day, and any shift in this starting date will alter
the placement of the buckets on May 6, 2010.

29



Figure 8: This figure shows 6 scatter plots of average absolute return AAR(t, t+ 1) versus VPIN with
δ = 0, 10, and 60 sec (top panels), versus VPIN with fixed volume bins B = 1000, Volume, and VIX

(bottom panels). “Volume” is one-day trading volume, in millions. AAR(t, t + T ) = 1
T

∑T
i=1 |rt+i|,

where rt = 100 lnPt/Pt−1 is the log return of the S&P 500 futures over one volume bucket. Red dots
indicate the 5 days preceeding 13:30 on May 6, 2010. The sample period is 01/01/2008-05/06/2010.

Figure 9 summarizes the effects of shifting the location of the volume buckets for the critical
part of the trading day on May 6, 2010. The upper left panel shows that VPIN often fluctuates
within a band exceeding 20% of the median level across the trajectories. The upper right panel
displays only five of the trajectories to allow closer inspection. It is evident that the individual
trajectories behave quite differently, even if they are correlated. For example, the dark blue
trajectory is at the highest level of the five at 11am CT, and it enters the crash period at
the second highest level. However, during the crash period, this VPIN trajectory actually
drops and its subsequent increase in much less pronounced than that associated with, say, the
violet trajectory. In fact, the latter evolves quite similarly to the trajectory used in our earlier
depictions of this trading day. Finally, the bottom panels display the range of values attained
by the different VPIN trajectories at the start of the crash (0.55-0.60) and at their highest
level during the day (0.67-0.82). The left panel is relevant for judging whether VPIN attained
a historical high prior to the crash while the right panel reflects the surge in trading intensity
associated with the crash which inevitably forces the metric to spike.

FINDING 12

The one-minute VPIN metric at any specific point in time on a given trading day is sensitive
to the exact sequence of trades recorded prior to that trading day. It implies that any change in
the starting point of the sample or any removal of potentially invalid trades early in the sample
will exert a significant impact on the VPIN metric throughout the entire sample.
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Figure 9: For May 6, 2010, this figure illustrates the distribution of VPIN values (δ = 60 sec) for
different starting points of the volume grid. The bottom panels show the histograms of VPIN values
at 13:30 and 14:00. The top left panel shows the VPIN trajectories generated by shifting the starting
point every 100 contracts. The top right panel shows only 5 trajectories, which are selected based on
the VPIN values at 14:00 (min, 25%, 50%, 75%, and max).

This brings up the issue of replication of the VPIN metric. Unless there is exact agreement
concerning the starting point and the recording and status of all transactions across two al-
ternative data sources, alternative computations of VPIN will produce significantly diverging
behavior across critical periods in the sample. This presents practical problems for the use of
the metric as an indicator of market stress and for the use of VPIN as the basis for a futures
contract. While an exchange may take on the task of monitoring the evolution of the relevant
transaction series, it is likely to remain an issue of contention that the realized VPIN series
will depend critically on inclusion or exclusion of specific trades.

In our case, we had to calibrate the starting date of our sample carefully to obtain a
sequence of VPIN observations that mirror those obtained by ELO across the flash crash.
This led us to adopt a slightly earlier starting date for our construction of the VPIN metric
than ELO, namely December 27, 2007, rather than the initial trading day of 2008.
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Another concern is the potential lack of robustness of empirical work involving VPIN.
The series cannot be readily replicated and the conclusions may hinge critically on rather
idiosyncratic features of the VPIN design such as the original starting point of the sample,
the exact source of the data, and the criterion adopted for excluding “unusual” trades from
the series. At a minimum, some standard for robustness should be adopted, documenting
the validity of inference across the range of possible alternative configurations of the volume
buckets across the relevant part of the sample.

7.2 Constructing Signed VPIN Measures

The dispersion in VPIN values documented above may be surprising. One might expect unusual
random fluctuations in the OI measure to diversify away across the fifty terms used to compute
the VPIN metric. However, since the OI measures represent absolute values, there is no
opportunity for large positive and negative values to cancel so, instead, the random outliers
will tend to cumulate across the moving average statistic.

Figure 10 illustrates this feature of the VPIN construction. The right panels display the
SOI measures associated with two of the VPIN trajectories from Figure 9. It is evident that
the blue trajectory, by chance, has many more moderate SOI observations, falling largely
within the range of [-0.50, 0], than the green trajectory during the period from 1-2pm CT.
This translates into significant difference in the behavior of the corresponding one-minute
VPIN series depicted in the top left panel. The green trajectory starts out well below the
blue at 1pm but ends up at a substantially higher level at 2pm. However, if we average the
signed SOI measures, rather than the absolute SOI measures, we obtain alternative signed,
smoothed order imbalance indicators. These are plotted in the lower left panel. Now, the blue
and green trajectories nearly coincide, showing that diversification across fifty observations is
effective once we retain the sign of the SOI measures. Apparently, these signed VPIN measures
are far less sensitive to the positioning of the volume buckets and may thus avoid the stark
dependence on initial conditions that plague the regular VPIN metric. Moreover, they provide
a clear message: there was a growing dominance of active selling in the market from noon
until the end of the crash, and then an immediate reversal towards restoration of the order
imbalance which is complete before 3pm.

We find these preliminary observations intriguing. They raise the possibility that construc-
tive use of this type of real-time order imbalance indices is feasible in practice. Obviously, one
concern is that they will turn out to be extremely highly correlated with the realized price
path and thus not provide much independent information. However, it is far beyond the scope
of this paper to present a thorough analysis of such signed VPIN metrics and related measures.

FINDING 13

The use of absolute (OI), rather than signed, order imbalance (SOI) measures in the construc-
tion of one-minute VPIN tends to inflate the idiosyncratic variation of the metric. The use of
signed order imbalance measures, along with their dynamic evolution, may improve robustness
and help identify the direction of developing order imbalances in the market.
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Figure 10: For May 6, 2010, this figure illustrates the signed OI (δ = 60 sec) for two different starting
points of the volume grid, corresponding to the minimum (blue) and maximum (green) values of VPIN
at 14:00. Note that for this plot, “OI” stands for the signed open interest.

7.3 On the Behavior of Transactions VPIN

Perhaps our most striking finding is the fact that transaction and fixed volume bin VPIN
produce opposite conclusions of those obtained via time-bar VPIN. The effect of moving from
time bars to tick or fixed bin data is so pronounced that there must be a rational explanation.
We provide initial observations on the issue, but do not pursue this at length as it will take us
outside the scope of the present work.

ELO (2011c) argue that the results obtained from tick data are so counterintuitive that
they, a priori, should be disregarded. They suggest the seemingly perverse results stem from
a massive amount of trade misclassification at the high-frequency level. This is not entirely
obvious, however. In some respect, tick data provide the best opportunity to minimize the
effects of trade misclassification, given that the market, most of the time, operates with a well-
defined bid-ask spread of one to two ticks. In this scenario, it is usually correct to associate an
up-tick with an active buy and a down-tick with an active sell. The classification of zero tick
change transactions – which constitute a large proportion of the observations – is more dubious.
As the best bid and ask prices shift over time, the classification rule will mislabel a number
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of these trades. However, given the oscillation between up- and down-tick transactions, these
mistakes will typically not produce very long sequences of errors, and those that do occur will
tend to be alleviated through diversification via the averaging across a huge set of transactions.
For example, with a volume bucket of V = 35,000, there are thousands of transactions in the
typical bucket and random misclassifications largely wash out.

The use of transaction data has additional benefits. First, it avoids assigning the same
trade direction to hundreds of transactions within blocks defined by volume bins or time bars,
and thus likely misclassifying close to half them. If these blocks of trades are large, the errors
from using high aggregation levels do not readily diversify away. Second, the use of transaction
data eliminates the dependence on initial conditions, as the classification of any given trade
now is independent of the location of the volume buckets.

Given the apparent advantages of using tick data, what is behind the curious empirical
results obtained from the transaction VPIN measure as well as fixed volume bins? In partic-
ular, why is transaction VPIN strongly negatively correlated with trading volume and return
volatility, and why do these variants of VPIN drop rather than soar during episodes like the
flash crash? We suggest that the following closely related facts provide part of the explanation.

One, the average trade size is negatively related to return volatility. In fact, the correlation
between VIX and the average trade size is -0.38 when measured over one volume bucket, -0.69
when assessed over 10 buckets, and -0.86 over measured over 50 buckets. This relation likely
reflects lower depth of the limit order book when volatility, and economic uncertainty, increases.
For a given volume bucket, we thus have a larger set of transactions when volatility is higher,
implying even better diversification of the trades, and a tendency for transactions VPIN to
drop. Nonetheless, this effect may be minor as transactions already are well diversified within
volume buckets. Moreover, the drop in order size does not explain why the FB-VPIN measures
inherit features of the transactions VPIN, as the fixed volume bins are not directly impacted
by this effect. Thus, there must be more to the story? We think it stems from the dynamic
behavior of the trade classification rule, as explained below.

Second, and importantly, for volume bins consisting of 1,000 and 5,000 traded contracts, we
find an average daily probability of a “continuation” in the trade indicator across consecutive
bins to be 67% and 58%, respectively. These trade persistence measures turn out to be strongly
negatively related to the VIX index, with correlations of -0.67 and -0.39, respectively. These
results are consistent with the hypothesis that an increase in volatility shrinks the proportion
of zero tick change buckets and thus raises the frequency of oscillation between positive to
negative tick changes. If the tick changes are close to symmetric over short horizons, as the
semi-martingale property implies, then this leads to a lower degree of persistence in the trade
classification indicator, and hence a drop in the associated VPIN measures. However, it is
clear that many other forces may be at play, and it requires a detailed study at the transaction
level to more systematically sort out the relevant factors.

FINDING 14

Transaction and fixed volume bin VPIN have negative correlation with volatility because the
trade classification produces less serially correlated trade indicators during volatile market con-
ditions. All else equal, this leads to lower order imbalance measures, for a given volume bucket,
as the volume bins (transactions) diversify more effectively when successive bins (transactions)
more frequently attain opposite signs. The reason behind this negative correlation between re-
turn volatility and the trade classification rule is worthy of additional study.
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8 Conclusion

Inspired by the striking empirical evidence of ELO (2011a), we have undertaken a detailed
study of the VPIN measure and its ability to forecast short term return volatility and signal
impending market turmoil. Our results are largely non-confirmatory. First, we note that
VPIN almost by construction is highly correlated with trading volume and thus will tend
to covary also with the current and future volatility level. However, once we control for the
component of VPIN that is driven by the volume dynamics, we find no incremental information
in VPIN concerning short term future volatility. Similarly, constructing VPIN measures from
volume bins or transaction data, avoiding the mechanical correlation with trading volume, we
find VPIN negatively correlated with future volatility - a feature we tentatively ascribe to a
negative correlation between the volatility level and the trade classification rule. This may
potentially arise from a drop in the depth of the limit order book as volatility and economic
uncertainty increases. Second, we found the VPIN metric prior to the crash on May 6, 2010,
to be elevated but less than extraordinary. Moreover, the VPIN dynamics throughout this day
is readily accounted for by the underlying trading pattern. As such, the identification of order
flow imbalances via the trade classification scheme has no visible impact on VPIN over this
period.

Our findings suggest that the ELO construction of VPIN may not be the most suitable way
of monitoring order flow imbalances and market tensions. This skepticism is further bolstered
by the idiosyncratic variation in VPIN associated with the location of the volume buckets
which renders it hard to replicate empirically on a day-by-day basis. A major reason for this
non-robustness is the computation of VPIN from a moving average of absolute order imbalance
measures. Seemingly, a signed version of the metric would be less sensitive to such features
and it would also allow for more direct monitoring of cumulative (signed) order imbalances.
Nonetheless, a signed VPIN measure would still be subject to a number of the potential
distortions analyzed in this paper, so a more in-depth analysis is warranted prior to adoption.
By the same token, it would be of interest to further study the empirical performance of the
signed transaction and FB-VPIN measures.

In conclusion, while a real-time statistic for gauging the prevailing order imbalance and
predicting episodic market stress scenarios is in high demand, we conclude that the ELO
procedure for computing the VPIN metric is not ideal. The search for a suitable alternative
is high on the research agenda. We hope the type of analysis performed and the battery of
tests undertaken in this paper ultimately will be helpful in identifying the more suitable and
robust market stress indicators among the very large set of candidate measures that may be
proposed.
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Appendix

A Proof of Equations (5) and (6)

Consider Q independent binary random variables b1, b2, . . . , bQ, where bi = ±1. Let SQ denote
their sum

SQ =

Q∑
i=1

bi.

The function F (Q) can be computed using the expectation of the absolute value |SQ| as

F (Q) =
E [|SQ|]
Q

=
1

2QQ

Q∑
i=0

CiQ · |Q− 2 ∗ i|,

where

Ckn =
n!

k!(n− k)!

is the binomial coefficient, sometimes also denoted as C(k, n), or
(
n
k

)
. We are going to use the

method of mathematical induction to prove that

G(Q) :=

Q∑
i=0

CiQ · |Q− 2 ∗ i| =
{

(2q)Cq2q, if Q = 2q

2(2q + 1)Cq2q, if Q = 2q + 1
(13)

It is easy to verify that the relationship in (13) is true for Q = 1, 2, 3, for which G(Q) = 1,
4, 12. Next we prove in two separate cases that (1) if the relationship is true for some Q = 2q,
then it is also true for Q = 2q + 1, and (2) if the relationship is true for Q = 2q + 1, then
it is also true for Q = 2q + 2. In both cases, we rely on two basic properties of the binomial
coefficients:

(i) C0
n = Cnn = 1,

(ii) Ck+1
n+1 = Ckn + Ck+1

n , for all 0 ≤ k ≤ n− 1.

Case 1: Suppose that G(2q) = (2q)Cq2q. We can re-write

G(2q + 1) :=

2q+1∑
i=0

Ci2q+1 · |2q + 1− 2 ∗ i|

= C0
2q+1 · (2q + 1) + C1

2q+1 · (2q − 1) + . . .+ Cq2q+1 · 1 + Cq+1
2q+1 · 1 + . . .+ C2q+1

2q+1 · (2q + 1).

The above expression is the sum of (2q+2) products, for which the first factor takes values
C0
2q+1, C

1
2q+1, . . . C

2q+1
2q+1 and the second factor takes values (2q+1), (2q−1), . . . , 3, 1, 1, 3, . . . , (2q−

1), (2q + 1). Using properties (i) and (ii), we substitute C0
2q+1 = C0

2q, C
i
2q+1 = Ci−12q + Ci2q for

1 ≤ i ≤ 2q, and C2q+1
2q+1 = C2q+1

2q . Re-arranging terms, we obtain

G(2q + 1) = C0
2q · (4q) + C1

2q · (4q − 4) + . . .+ Cq−12q · 4 + Cq2q · 2 + Cq+1
2q · 4 + . . .+ C2q

2q · (4q)
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= 2G(2q) + Cq2q · 2 = Cq2q · (4q + 2) = 2(2q + 1)Cq2q.

Case 2: Suppose that G(2q+ 1) = 2(2q+ 1)Cq2q. Proceeding similarly to the previous case,

G(2q + 2) :=

2q+2∑
i=0

Ci2q+2 · |2q + 2− 2 ∗ i|

= C0
2q+2 · (2q + 2) + C1

2q+2 · (2q) + . . .+ Cq2q+2 · 2 + Cq+2
2q+2 · 2 + . . .+ C2q+2

2q+2 · (2q + 2)

= C0
2q+1 · (4q + 2) + C1

2q+1 · (4q − 2) + . . .+ Cq2q+1 · 4 + Cq+1
2q+1 · 4 + . . .+ C2q+1

2q+1 · (4q + 2)

= 2G(2q + 1) = 4(2q + 1)Cq2q =
(2q)!

q!q!
· (2q + 1)

(2q + 2)(2q + 2)

(q + 1)(q + 1)

= (2q + 2)
(2q + 2)!

(q + 1)!(q + 1)!
= (2q + 2)Cq+1

2q+2.

The proof of (5) now obtains from (13) because

F (Q) =
G(Q)

2QQ
=

1

22q
Cq2q if Q = 2q, or Q = 2q + 1.

The proof of (6) follows from (5) and Stirling’s approximation for large factorials:

Q! ∼
√

2πQ

(
Q

e

)Q
.
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