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Abstract

In real-life, individuals are often assigned by external planners to binary treat-

ments. Taste-based allocation by planners would make such assignments produc-

tively inefficient in that the expected returns to treatment for the marginal treat-

ment recipient would vary across covariates and be larger for discriminated groups.

This cannot be directly tested if a planner observes more covariates than the re-

searcher, because then the marginal treatment recipient is not identified. We present

(i) a partial identification approach to detecting such inefficiency which is robust

to selection on unobservables and (ii) a novel way of point-identifying counterfac-

tual distributions needed to calculate treatment returns by combining observational

datasets with experimental estimates. Our methods can also be used to (partially)

infer risk-preferences of the planner, which can rationalize the observed data. The

most risk neutral solution may be obtained via maximizing entropy. We illustrate

our methods using survival data from the Coronary Artery Surgery Study which

combined experimental and observational components. Such data combination can

be useful even when outcome distributions are partially known. Collecting such

data is no harder than running field experiments and its use is analogous to using

validation data for measurement error analysis. Our methods apply when individ-

uals cannot alter their potential treatment outcomes in response to the planner’s

actions, unlike in the case of law enforcement.

∗Address for correspondence: debobhatta@gmail.com. I am grateful to seminar participants at

CEMMAP, Cambridge and Uppsala and especially to Andrew Chesher for comments and to Amitabh

Chandra for pointing me to the CASS dataset. All errors are mine.
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1 Introduction

In many real-life situations, external agents (planners, henceforth) assign individuals to

treatments using covariate based protocols. For example, welfare agencies assign the

unemployed to job-training based on employment record, doctors refer patients to surgical

or medical treatment based on clinical test results, colleges admit student applicants to

academic programs based on test scores and so on. When protocols are chosen to maximize

a functional (say, mean) of the marginal distribution of the resulting outcome subject to

cost constraints, the protocol can be said to be "outcome-based". In the above examples,

the outcomes can be post-program earnings, days of survival and performance in final

examination, respectively. In all these cases, optimal protocol choice will seek to equate

the returns to treatment for the marginal treatment recipient across covariate groups but

this will typically cause average treatment rates to vary between groups. This is a situation

of "statistical discrimination". If, on the other hand, protocols are chosen to maximize a

covariate weighted mean of the outcome, the protocol can be said to be covariate-based

and the resulting between-group disparities in treatment rates at the optimal choice be

regarded as "taste-based" or non-statistical discrimination. For example, consider the

case where the treatment is assigning the unemployed to a job-training program and the

outcome is post-program earning. Then, an outcome oriented protocol choice will aim

to maximize mean earning.1 In contrast, a covariate-oriented protocol choice will seek

to maximize mean weighted earnings where the weights vary with covariate— rather than

outcome— values such as race or gender. In most situations of alleged discrimination

involving binary treatments, e.g., hiring, medical treatment, college admissions etc., the

problem reduces to discerning which of these two mechanisms had led to the observed

disparities.

Non-statistical discrimination implies that the treatment, to be thought of as a scarce

resource, is being assigned among individuals in a way that does not maximize its overall

productivity, where productivity is measured in terms of the outcome. This idea has a

long history in economics (Becker, 1957, Arrow, 1973) and suggests that distinguishing

between statistical and taste-based discrimination may be based on testing inefficiency

of treatment assignment using outcomes data. Detecting such inefficiency in practice,

however, is difficult because planners typically observe more characteristics than us, the

1or more generally, a weighted mean of earnings, where weights depend on earning alone—for instance

a logarithmic weight will incorporate risk aversion—but not on covariates like gender or race.
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researchers (Heckman, 1998). This makes it hard to rule out the possibility that the

subgroup receiving seemingly sub-optimal levels of treatment does so because they are

less endowed with some unobservable (to us) qualities which lower their expected outcome

from treatment as perceived by the planner. The purpose of this paper is to show how a

partial identification approach can be used in this situation to test implications of efficient

treatment assignment and, more generally, to infer which welfare functionals, defined on

the marginal distribution of outcome, can rationalize observed treatment assignments by

the planner.

We focus on the case where the treatment in question is binary but allow the outcome

of interest to be either binary or continuous. We assume that an experienced planner

observes for each individual a set of covariates and assigns him/her to treatment based on

the expected gains from treatment, conditional on these covariate values and subject to

an overall cost-constraint. In this set-up, a necessary condition for the planner’s assign-

ment to be productively efficient is that in every observable covariate group, the expected

net benefit of treatment to the marginal treatment recipient(s) is weakly greater than a

common threshold which, in turn, is weakly greater than the expected net benefit of the

marginal treatment non-recipient and where marginal is defined in terms of the charac-

teristics observed by the planner. The planner’s assignment results in an observational

dataset, where for each individual, we observe her treatment status, her outcome and

costs conditional on her treatment status and a set of covariate values. The problem is

to test taste-based treatment assignment from these data.

Typically, a single observational dataset is inadequate for this purpose for two reasons.

The first, already noted above, is that the planner can base treatment assignment on

characteristics that are not observed by us. This makes it hard, if not impossible, to

know who are the "marginal" treatment recipient and non-recipients— a problem already

recognized in the literature (c.f., Heckman, 1998, Persico, 2009). Secondly, benefits are

also hard to measure using observational data alone because counterfactual means are not

observed. In contrast, when we observe all the characteristics observed by the planner and

the outcome value without treatment is known (e.g., the final exam score of non-admitted

students is zero), then neither of these two problems exist and the observational dataset

may be adequate (c.f., sec. 3.4 below). In this case, the minimum of predicted gains

from treatment— with predictions calculated using the commonly observed covariates and

the minimum taken over their support— for the treated members of each covariate group
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represents the gain to the marginal treatment recipient in that group. One can then

test if these minima are equal across the groups. Such a strategy does not work if there

is selection on unobservables because the researcher— observing fewer covariates— cannot

replicate the predicted gains from treatment calculated by the planner.

In this paper, we discuss a new approach to detecting taste-based allocation in such

situations using the notion of partial identification. Our approach is motivated by the

implication of outcome-based allocation that expected net benefits in every subset of

treated individuals must weakly exceed expected net benefits in every subset of untreated

individuals— a (conditional) moment inequality condition. These moment inequalities for

subsets defined by covariates that the planner observes have testable implications for the

(cruder) subsets based on the covariates that we observe and intend to test for.2 These

implications can therefore be tested if we can measure the relevant counterfactual means.

We propose a novel way to measure the relevant counterfactuals by combining the obser-

vational dataset with experimental or quasi-experimental evidence on treatment effects

on subjects drawn from the same population. The latter appears to be of independent

interest because such combined data can be used to learn about features of the treatment

assignment process in more general settings. We discuss one such setting in section 5,

below. The data combination proposed here is analogous to using validation data for

measurement error analysis and collecting such combined data involves small incremental

effort beyond running a field experiment, as explained below.

Substantive assumptions: We now state the substantive assumptions which de-

fine our set-up. The first is that the planner is experienced in the sense that he can

form correct expectations. The second is that the planner observes and can condition

treatment allocation on all the characteristics (and possibly more than) those that we ob-

serve. Third, we observe the same outcomes and costs whose expectations— taken by the

planner— should logically determine (productively efficient) treatment assignment in the

observational dataset. Fourth, there are negligible externalities, i.e. where treating one

individual has a significant impact on the outcome of another individual (c.f., Angelucci

et al, 2009) and maximizing the overall outcome needs to take this into account.

The fourth assumption is credible in, say, the case of job-training, mortgage approval

or treatment of non-infectious diseases such as heart attack but less so in, say, academic

2Which covariates we should test on is guided by the problem at hand— e.g., for gender disparities we

analyze expected returns for treated and untreated males and for treated and untreated females.

4



settings or treatment of infections such as AIDS or malaria. Bhattacharya, 2009 considers

roommate assignment in college where peer effects play a crucial role. The third assump-

tion simply clarifies that the notion of productivity (with respect to which inefficiency is

defined) must be fixed beforehand and it should be observable and verifiable. The second

assumption defines the "selection on unobservables" problem. The first assumption—a

"rational expectations" idea is standard for analyzing choice under uncertainty in applied

microeconomics (c.f., the KPT paper cited below). It is part of our definition of efficiency,

i.e., we are testing the joint hypothesis that the planner can calculate correct expectations

and is allocating treatment efficiently, based on those calculations. This has been termed

"accurate statistical discrimination" elsewhere in the literature (c.f., Pope and Sydnor,

2008, Persico, 2009, page 250). Correct expectations are more reasonable for treatments

that are fairly routine— such as college admissions to well-established academic programs

and less tenable for treatments that are relatively new, e.g., admission to a relatively new

academic program.3 Concerns for misallocation, especially along discriminatory lines, are

more frequently voiced for routine treatments and therefore, it makes sense to concentrate

on those for the purpose of the present paper. Notice that here we are describing the be-

liefs of a large central planner who is experienced, rather than small individuals making

one-time choice decisions. It is presumably less contentious to expect correct beliefs in

the former case than in the latter.

Plan of the paper: Section 2 discusses the contribution of the present paper in

relation to the existing literature in economics and econometrics. Section 3 presents

the partial identification methodology, discusses how counterfactuals may be identified

via data combination, describes how a bounds analysis can help detect misallocation

and also discusses some extensions and caveats. Section 4 analyzes the complementary

problem of inferring a planner’s underlying risk-preferences which would justify the current

allocations as efficient. Given that the identified set of admissible preferences is typically

large dimensional and can therefore be hard to report, we introduce a method of choosing

those elements in the identified set that are "close" to some reference ones with specific

economic meaning and outline inference theory for such estimated elements. Section

5 sketches an alternative use of data combination in a set-up where correct beliefs are

3We will be concerned with expectations conditional on covariate values and so correct expectation is

more credible the cruder the conditioning set. In our application, we consider a two-covariate conditioning

set.
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not assumed but treatment is assigned based on commonly observed covariates. Section 6

presents the empirical illustration and section 7 concludes. The appendix contains further

details of proofs/statements mentioned in the main text.

2 Literature

Persico, 2009, provides a comprehensive survey of existing empirical approaches to the

detection of taste-based discrimination in general settings. The approaches are varied

and their applicability is usually context-specific. Here, we focus on detecting evidence of

taste-based assignment of a binary treatment where the treator can be expected to observe

more characteristics than the researcher. Our approach is based on using outcome data.

In that sense, it is thematically close to Knowles, Persico, Todd, 2001 (KPT, henceforth)

who examined the problem of detecting taste-based prejudice separately from statistical

discrimination in the context of vehicle search by the police, using data on the search-

outcome (hit rates). KPT’s key insight is that in law-enforcement contexts, potential

treatment recipients can alter their behavior— and thus their potential outcome upon

being treated— in response to the treator’s behavior. This implies that equilibrium hit rates

should be equalized across observed demographic groups under efficient search— a testable

prediction. If hit rates are higher for one group, then the police is better-off searching

that group more intensively and hence the group is better-off reducing the contraband

activity. While the KPT approach applies to many situations of interest, especially ones

involving law enforcement, it is not applicable to all situations of treatment assignment

where misallocation is a concern. For example, it is very difficult— if not impossible— for

patients to alter their potential health outcomes with and without surgery in response to

the nature of treatment protocols used by doctors.

In another outcome-based approach, Pope and Sydnor (2008) seek to detect taste-

based discrimination in peer-to-peer lending programs. PS use the facts that in these

lending programs, (i) the researchers observe all the characteristics that the planners

(lenders) observe and (ii) a competitive auction among lenders for funding each individual

application drives interest rates so that every approved loan is at the "marginal" level of

(expected) return. PS observe the actual returns on the approved loans and can test

efficiency by comparing mean (and thus marginal) returns across race for approved loans.

The peer-to-peer lending situation is different from job-training, medical treatment etc.,
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where the same treatment protocol is used for all applicants and/or treatments are not

allocated via a competitive bid, so that the PS approach cannot be used here (c.f., page

11 of PS).

A second aim of the present paper is to infer what outcome-based objectives can ra-

tionalize observed treatment disparities across demographic groups. In that sense, it has

some substantive similarities to a series of papers in the time-series forecasting litera-

ture which propose testing rationality of forecasts made by central agencies (c.f. Elliott,

Komunjer and Timmerman (2005), Patton and Timmerman (2007) and references cited

therein). The idea there is to (point) estimate parameters of a loss-function which ratio-

nalize the observed forecasts. The set-up in that literature assumes that the action (i.e.,

the forecast) itself has no effect on the distribution of the realized future outcome. In

contrast, the key issue in our set-up is that the action (the imposed treatment status)

fundamentally determines which distribution the eventual outcome will be drawn from

and so the methodology of forecast rationality tests cannot be used in our problem.

A recent set of papers in the econometrics literature have addressed the issue of how

treatments should be assigned when only finite sample information is available to the

planner regarding treatment effectiveness. This is relevant to those treatments that are

relatively new, so that the planner is unlikely to know the actual distribution of outcomes

with or without treatment— a situation usually termed "ambiguity" in the decision theory

literature. See, for instance, Dehejia, 2005, Manski, 2004, 2005, Hirano and Porter, 2008,

Stoye, 2006 and Bhattacharya and Dupas, 2010. The present paper may be described as

addressing the reverse problem. That is, when the treatment in question is routine and

the planner can be expected to know the true outcome distributions (or at least able to

form correct expectations), can we assess efficiency of the treatment assignment protocols

using finite sample evidence, allowing for the possibility of selection on unobservables?

3 Methodology

Using the Neyman-Rubin terminology, denote outcome with and without treatment by

0 and 1, respectively and let ∆ = 1 − 0. We will allow for treatment effects

to be negative, i.e., Pr (1 − 0  0) may be positive. Analogously, define 1 and 0

as the potential costs corresponding to treatment and no treatment, respectively. Let

 = () denote the covariates observed by the planner, where the component  is
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not observed by us. Let W denote the support of  . Let  denote expectations taken

w.r.t. the planner’s subjective probability distributions, which are assumed to be identical

to the true probability distributions in the population. We will assume that all variables

defined here have finite expectations. The planner’s treatment allocation gives rise to the

observational dataset, where for each individual, we observe her treatment status ( = 1

or 0), her outcome,  and cost  which are respectively (1 1) or (0 0) depending

on whether  = 1 or 0, and the set of covariates . For any random variables  ,  ,

let  | (|) denote the conditional C.D.F. of  at  given  =  and  (·) denote the
marginal c.d.f. of  .

From the planner’s perspective, a treatment protocol is a function  : W → [0 1],

specifying the probability of treatment for individuals with  = . Each such protocol

will give rise to a distribution of outcome  , given by

  () =

Z ∙Z
 ()1| (|) +

Z
{1−  ()}0| (|)

¸
 () .

An outcome-based criterion is one where protocol  is preferred over protocol  if and

only if   (·) is preferred over   (·). The latter preference could be captured by expected
utility i.e.  () =

R
 ()  (|) or quantile utility  () = −1 ( |) for some  ∈ [0 1]

etc. The important point here is that the planner’s preferences are over the marginal

distribution of  resulting from the protocol and not the distribution of  , conditional on

 and hence the term "outcome-based". For example, if the treatment is a job-training

program and  is post-program earning, an outcome oriented protocol choice will aim

to maximize mean earnings. In contrast, a covariate-oriented protocol choice will seek to

maximize mean weighted earnings where the weights vary with covariate values, such as

race or gender.

The planner’s mean maximization problem in the outcome oriented case is:

max
(·)

½Z ∙Z
 () 1| (|) +

Z
{1−  ()} 0| (|)

¸
 ()

¾
, (1)

s.t. Z ∙Z
 () 1| (|) +

Z
{1−  ()} 0| (|)

¸
 () ≤ . (2)

8



The solution, as shown in the appendix part A, is of the form45

∗ () = 1 { (∆ − ∆| = ) ≥ 0} , with
 =

Z
∈W

1 { (∆ − ∆| = ) ≥ 0}  () . (3)

To keep the problem realistic, we will assume that the constraint is such that not all

individuals with positive expected treatment effect can be treated, i.e.,

 

Z
∈W

1 { (∆ | = ) ≥ 0}  () ,

which will imply that the the constraint binds at the optimum.

In contrast, in the covariate-oriented case, the planner will maximize

max
(·)

½Z
∈W

 ()

∙Z
 () 1| (|) +

Z
{1−  ()} 0| (|)

¸
 ()

¾
,

(4)

subject to (2), where  () represents "taste-based weights" used by the planner for

inflating the outcome of individuals with covariate equal to . In this case, the solution

will be of the form

∗ () = 1 { ( ()∆ −∆| = ) ≥ 0} , with
 =

Z
∈W

1 { ( ()∆ −∆| = ) ≥ 0}  () .

Denoting the net expected benefit from treatment by

 () =
 [∆ | = ]

 [∆| = ]
,

it follows that in the outcome oriented case, type  is treated when  () exceeds the

fixed threshold  but for the taste-based case, the corresponding threshold 1
()

varies

by  and is lower for those ’s whose outcomes are more important to the planner. In

either case, the threshold represents the return to treatment for the marginal treatment

recipient; in the outcome-based case, it stays constant across covariates  but in the

4Although this solution is intuitive, a formal proof is needed because other criteria like [11 − 0
0
| =

] ≤ , etc., which seem intuitively just as sensible, do not solve the problem!
5Also, in the (essentially "measure zero") case of a tie— viz., where the budget constraint is such

that some but not all individuals of the marginal group can be treated, we implicitly assume that the

treatment is randomized among members of the marginal group.
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taste-based case, it varies with .6Thus, a test of taste-based assignment can be based on

comparing the treatment thresholds for different covariate-groups and testing if they are

equal. However, due to selection on the unobservables , the marginal treatment recipient

and consequently the treatment threshold cannot be identified. We now show how certain

inequalities implied by efficient treatment assignment may be useful for detecting taste-

based allocation.

Testable Inequalities: In the outcome-oriented case, since the planner ’s subjective

expectations are assumed to be consistent with true distributions in the population, we

must have that w.p.1,

 (∆ | = 1) ≥  (∆| = 1) ,

 (∆ | = 0) ≤  (∆| = 0) . (5)

Given the allocation procedure leading to (5), as  = () varies,  remains fixed but

treatment rates Pr ( = 1| ) will in general vary, giving rise to efficient or statistical
discrimination.

Since we do not observe , even the inequalities in (5) are not of immediate use to us.

However, an implication of (5) is potentially useful for detecting taste-based allocation.

Let X  denote the support of  for the subpopulation who would be assigned  = ,

 = 0 1 by the planner. Indeed, (5) implies thatZ
∈supp(|=1)

 (∆ | = 1) |=1 (| = 1)

≥ 

Z
∈supp(|=1)

 (∆| = 1) |=1 (| = 1) ,

i.e.

 [∆ − ∆| = 1 = ] ≥ 0, for all  ∈ X 1, (6)

and similarly

 [∆ − ∆| = 0 = ] ≤ 0, for all  ∈ X 0. (7)

6If  () equals the threshold for some value(s) of , then it represents the return to the marginal

treatment recipient; if not— e.g. if all elements of  are discrete— then it is a lower bound on the

return to the marginal treatment recipient and an upper bound on the return to the marginal treatment

non-recipient. But in either case,

min
:=1

 () ≥  ≥ max
:=0

 () ,

which is what we work off.
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In words, if the planner is outcome-oriented, then the net benefit from treatment for every

subgroup (that the planner can observe) among the treatment recipients must weakly ex-

ceed the treatment threshold, i.e.
[∆ |=1=]
[∆|=1=]

≥ . Since this would have to hold for

every subgroup among the treated, it must also hold for groups (observed by us) con-

structed by aggregating these subgroups and averaging the gain across those subgroups,

i.e.
[∆ |=1=]
[∆|=1=] ≥ . This leads to (6) and analogously for (7). This reasoning lets

us overcome the problem posed by the planner observing more covariates than us and

preserves the inequality needed for inference.

It follows now that if for some  6= , we have that

 [∆ | = 0  = ]

 [∆| = 0  = ]


 [∆ | = 1 = ]

 [∆| = 1  = ]
,

then we conclude that there is misallocation in terms of the mean outcome in a way that

hurts type  people.

Counterfactuals: To be able to use the above inequalities to learn about , we need

to identify the counterfactual mean outcomes  (0| = 1) and  (1| = 0) and

the counterfactual mean costs  (0| = 1) and  (1| = 0). The econometric

literature on treatment effect estimation has proposed a variety of ways to point-identify

or provide bounds on these counterfactual means. We propose a new and simple way to

point identify these means, viz., we supplement the observational dataset with estimates

from an experiment, where individuals are randomized in and out of treatment. If the

observational and the experimental samples are drawn from the same population, then

combining them will yield the necessary counterfactual distributions. To see this, notice

that for any  ∈ X 1,

 (0 ≤ | = )| {z }
known from expt

=   (0 ≤ | = )

=   (0 ≤ | = 1 = )×   ( = 1| = )| {z }
known from obs

+  (0 ≤ | = 0 = )| {z }
known from obs

×   ( = 0| = )| {z }
known from obs

. (8)

Similarly for any  ∈ X 0,

Pr (1 ≤ |)| {z }
known from expt

= Pr (1 ≤ | = 0 )× Pr ( = 0|)| {z }
known from obs

+Pr (1 ≤ | = 1 )| {z }
known from obs

× Pr ( = 1|)| {z }
from obs

. (9)
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Thus the two equalities above yield the counterfactual distributions  (0 ≤ | = 1 )

on X 1 and  (1 ≤ | = 0 ) on X 0. When we know the means but not the distribution

of 1 and 0 from the experiment, we have to replace the c.d.f.’s in the previous displays

by the corresponding means, giving us, for instance, for any  ∈ X 0,

 (1|)| {z }
known from expt

=  (1| = 0 )× Pr ( = 0|)| {z }
known from obs

+ (1| = 1 )| {z }
known from obs

× Pr ( = 1|)| {z }
from obs

.

Bounds: Combining (6), (7), (8) and (9) yield the following bounds on :

 = sup
∈X 0

⎛⎜⎜⎜⎝
 (1| =  = 0)| {z }

from (8)

− (0| =  = 0)| {z }
from obs data

 (1| =  = 0)| {z }
from (8)

− (0| =  = 0)| {z }
from obs data

⎞⎟⎟⎟⎠ ,

 = inf
∈X 1

⎛⎜⎜⎜⎝
 (1| =  = 1)| {z }

from obs data

− (0| =  = 1)| {z }
from (9)

 (1| =  = 1)| {z }
from obs data

− (0| =  = 1)| {z }
from (9)

⎞⎟⎟⎟⎠ . (10)

The bounds derived above essentially replace a minimum over finer subgroups (ob-

served by the planner ) by the minimum over groups (observed by us) of the subgroup

averages. So one would expect the bounds to be wider when (i) the unobserved covari-

ates have larger support making the average across subgroups further from the minimum

or maximum across subgroups, and (ii) the observed covariates are correlated with the

unobserved ones to a lesser extent.

Simplified calculation: Observe that the lower bound calculation, suppressing ,

reduces to

 (∆ | = 0)

=
 (1)− (1| = 1)Pr ( = 1)

Pr ( = 0)
− (0| = 0)

=
 (1)− (1| = 1)Pr ( = 1)− Pr ( = 0) (0| = 0)

Pr ( = 0)

=
 (1)− (1)− ((1−)0)

Pr ( = 0)
=

 (1)− ( )

Pr ( = 0)
.

Similarly, for the upper bound,

 (∆ | = 1) =
 ( )− (0)

Pr ( = 1)
.

12



The bounds are then easily calculated as

 = inf
∈X 1

½
 ( | = )−exp (0| = )

 (| = )−exp (0| = )

¾
 = sup

∈X 0

½
exp (1| = )− ( | = )

exp (1| = )− (| = )

¾
.

Alternative designs and data issues: There are two different ways to perform the

data combination exercise. In the first, the observational micro-data are combined with

estimates obtained from an experimental study, conducted by other researchers. In prac-

tical terms, due to data protection conventions, it is much easier to access experimental

estimates than it is to access the raw micro-data from trials which were used to calculate

those estimates. However, one has to make sure that the observational group and the

experimental group were drawn from the same population and the same covariates were

recorded in both cases.

The better option is to actually run an experiment, which can also be done in two

ways. In the first, a sample of individuals is randomly divided into an experimental arm

and a non-experimental one. The experimental arm individuals are randomly assigned to

treatment and the observational arm ones are handed over to a planner who uses his/her

discretion. This design was used in the CASS (1981) study in the US for studying the

efficacy of coronary artery surgery. This is the set-up used to derive (8) and (9) above,

which is motivated by our empirical application.7 The second way is as follows. First,

present all the individuals to the planner and record his recommendations for treatment.

This recommendation is recorded as  = 1 when recommended to have treatment and

as  = 0, otherwise. Then we randomize actual approval across all applications (ignor-

ing the planner ’s recommendation) and observe the outcomes for each individual. The

counterfactual  (0| = 1) can then be obtained directly (i.e. without using (8) and

(9)) from the outcomes of those who are approved by the planner but were randomized

out of treatment. Conversely for  (1| = 0).

The experimental approach requires significantly more work to implement but gives

us the ideal set-up where the experimental and observational groups are ex-ante identi-

cal and the same variables can be recorded for both groups. The first method, where

7In the appendix, we present a brief outline of how our methods need to be modified if the experimental

sample has worse outcomes and/or higher costs than the observational sample, which may happen in

medical trials. In brief, this would widen the bounds and make it harder to detect inefficiency. But if

inefficiency is detected with wider bounds, then it would also have been detected with narrower bounds.
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experimental results from existing studies are used instead of actually running an exper-

iment, is applicable in many more situations. However, one is somewhat constrained by

the outcomes and covariates that the original researchers had chosen. For the exercise of

inferring risk preferences (see section 5, below) in the case of non-binary outcomes, one

would need the full experimental approach because trial studies rarely report marginal

distributions of 0 and 1 (rather than means and medians) which are needed to conduct

this exercise.

3.1 Misallocation

The bounds analysis presented above can be used to test whether there is misallocation

of treatment both within and between demographic groups. To fix ideas, suppose  =

(1 ) and we are interested in testing if there is treatment misallocation within

males and within females and then we want to test if treatment misallocation between

males and females occurs in a way that hurts, say, females.

To do these tests, perform the above analysis separately for females and males and

get the bounds

Γ =

Ã
sup∈(1|=1=0)

[∆ |1==1,=0]
[∆|1==1,=0]

,

inf∈(1|=1=1)
[∆ |1==1,=1]
[∆|1==1,=1]

!

and analogously Γ. Now, if Γ (or Γ) is empty, then we conclude that there is

misallocation within females (males). Further, if Γ ∩ Γ is empty, then it implies

that different thresholds were used for females and males and thus there is misallocation

between males and females.

Intuition: Why empty sets imply misallocation can be best understood by ignoring

1 for the time being. Notice that Γ ∩ Γ =  means that either

[∆ | = 0, = 1]

[∆| = 0, = 1]


[∆ | = 1, = 0]

[∆| = 1, = 0]
, (11)

or
[∆ | = 1, = 1]

[∆| = 1, = 1]


[∆ | = 0, = 0]

[∆| = 0, = 0]
. (12)

The first inequality (11) means that the return to treatment among treated males is less

than that among untreated females— i.e., females are being under-treated. Equivalently,

females face a higher threshold. Similarly, (12) means that males are being under-treated.
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Notice that the inequalities (12) or (11) can be interpreted and used directly without

reference to a specific model of optimization or treatment allocation such as (3). However,

the link with (3) gives our analysis a firm grounding in classical economic theory of choice

under uncertainty.

3.2 Implicit discrimination

Suppose the two groups of interest are the rich and the poor. Assume identical treatment

costs for now and suppose we detect an inequality of type (11):

[∆ | = 0, = 1]  [∆ | = 1, = 0],

which suggests that there is taste-based treatment assignment that hurts the poor. It is

possible that this is brought about by a planner who practices taste-based discrimination

against blacks but is not necessarily biased against the poor. The following scenario

illustrates the point. Suppose it is the case that for two constants   , we have

 (∆ | )     (∆ | )
  (∆ | )   (∆ | )  .

Suppose the planner observes both race and wealth status and thus assigns the rich blacks

and all whites to treatment. Then we have that

 (∆ | = 0) =  (∆ | )
 (∆ | = 1) =  (∆ | )× Pr (|)

+ (∆ | )× Pr (|)
'  (∆ | ) if Pr (|) ' 1.

Since it is the case that

 (∆ | )   (∆ | ) ,

we will conclude that

 (∆ | = 0)   (∆ | = 1) ,

i.e., that there is misallocation which works against the poor. This will happen even if

the DM is not explicitly discriminating against the poor. The root is of course the high
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positive correlation between being white and rich. This shows that detecting misallocation

that hurts a group we chose to test may not imply that the planner is practising taste-

based allocation where taste dictates him to be biased for or against the characteristics

which define the chosen group— it could arise from intentional discrimination against a

positively correlated characteristic.

3.3 Selection on observables

In some situations, a researcher may have access to exactly the same set of covariates 

that the planner had observed prior to making the decision. Examples include written

application for loans or student admissions where applications are scored and the appli-

cation forms and scores respectively are made available to the researcher. Even in this

case, the treatment threshold may not be point-identified. To see this, consider the situ-

ation where there is a single covariate—say gender— that is observed both by the planner

and us and no other covariate is observed by anyone else. Also assume that ∆ = , a

known fixed cost of treatment. Suppose the planner assigns individuals to treatment only

if  (∆ − |) ≥ 0. Now suppose the expected benefit of treatment to women is
 and that to men is  and they satisfy      . Then

 (∆ | = 1) =  (∆ |) =    =  (∆ |) =  (∆ | = 0)

and all we know is that  ∈
³






´
. Thus, even when selection into treatment is based

only on observables, the treatment threshold may not be point-identified.

4 Broadening the model

We now extend the analysis to include risk averse behavior by the planner and transform

the problem of detecting misallocation for a specific outcome to the problem of detecting

the extent of risk aversion which justify the observed allocation as an efficient one.

4.1 Risk Aversion: Parametric

In this part of the analysis we ask what risk-averse utility function(s) are consistent with

efficient allocation, given the data. To do this we consider a family of risk averse utility
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functions  (· ), indexed by a finite dimensional parameter  and the corresponding

allocation rule which is a generalization of (3)

 = 1 iff
 ( (1 ) |)− ( (0 ) |)

 (1|)− (0|)
 . (13)

Examples of such utility functions are CRRA  ( ) ≡  1−
1− for  ∈ (0 1) and CARA

 ( ) ≡ − for  ≥ 0. Let ∆ () ≡  (1 )−  (0 ).

When the planner ’s subjective expectations are consistent with true distributions in

the population, we have that

 ( (1 ) | = 1)− ( (0 ) | = 1)

 (1| = 1)− (0| = 1)
 , w.p.1.

As before, we do the analysis separately for males and females to get the bounded sets in

terms of :

[ ()   ()] =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

sup∈(1|=1=0)
[∆ ()|1==1,=0]
[∆|1==1,=0]

 

≤ inf∈(1|=1=1)
[∆ ()|1==1,=1]
[∆|1==1,=1]

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

and similarly, [ ()   ()].

So the values of  consistent with efficient allocation within gender are the ones for

which

 () ≤  () and  () ≤  () . (14)

Further, the values of  which are consistent with efficient allocation across gender are

the ones for which

max { ()   ()} ≤ min { ()   ()} . (15)

If the set of  for which both (14) and (15) hold turns out to be empty, then no member

of the corresponding family of utility functions will justify the observed allocation as an

efficient one.

4.2 Risk Aversion: nonparametric

Now consider a general differentiable Bernoulli utility function  (·) which will be the
ingredient of a VnM utility defined over lotteries. In order for such a utility function to

rationalize the observed treatment choice, we must have that for all  0

 [ (1)−  (0) | = 1  = ]

 [∆| = 1  = ]
≥  [ (1)−  (0) | = 0  = 0]

 [∆| = 0  = 0]
. (16)

17



Here, we focus on the case where both  and  are discrete. The continuous case is

treated as a separate subsection. So assume that 1 and 0 are discrete, with union

support equal to {1}.The above condition reduces to: for all  0:
X
=1

 ()

½
Pr (1 = | = 1)− Pr (0 = | = 1)

 [1 − 0| = 1  = ]

¾
| {z }

=1( ), say

≥
X
=1

 ()

½
Pr (1 = |  = 0)− Pr (0 = |0 = 0)

 [1 − 0| = 0 =  ]

¾
| {z }

0( 0), say

.

Letting  () =  and  ( 
0) = 1 ( )− 0 ( 

0), the previous display reduces to

a set of linear restrictions

1 = 0,  = 1 (affine normalization),

+1 ≥ ,  = 1 − 1 (monotonic),
+1 − 
+1 − 

≥ +2 − +1
+2 − +1

,  = 1 − 2 (concave),
X
=1

 ( 
0) ≥ 0 for all  0. (17)

When  is also discrete, the above inequalities define a finite-dimensional polyhedron.

There exist algorithms for finding extreme points of a polyhedron defined through in-

equality constraints. The identified set of ’s are the convex hull of those extreme points

and one can base a test of planner rationality on whether the identified set of ’s is empty.

4.2.1 Equivalent conditions:

At this point, it is meaningful to ask the following question. Suppose we find that for

 () = , i.e., allocations based on expected gains, the corresponding set of ’s is empty—

suggesting misallocation. Then under what conditions shall we always (never) find a

nondecreasing concave utility function under which the observed allocations will be effi-

cient under the utility function? In other words, is every observed allocation justifiable

as an efficient one for some choice of  (·)? The following proposition provides the answer
in the case where  takes on finite positive values.

Suppose w.l.o.g.  takes values in the finite set 0 = 1 ≤ 2 ≤  ≤  = 1. For two

subgroups 1 and 2, let

 () =
Pr ( = | =  = )

 (∆| =  = )
,
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for  = 1 ,  = 0 1,  = 0 1 and  = 1 2. Suppose that we have detected inefficiency

whereby group 2 is being under-treated, viz.,

 (∆ | = 1  = 1)

 (∆| = 1  = 1)
≤  (∆ | = 0  = 2)

 (1 − 0| = 0  = 2)
, i.e.,

X
=1

 [111 ()− 011 ()− 102 () + 002 ()] ≤ 0. (18)

Let

 = 111 ()− 011 ()− (102 ()− 002 ()),

and observe that by definition,
P

=1  = 0 and
P

=1  ≤ 0. The question is: can we
necessarily find  (·) nondecreasing and concave, such that

 ( (1)−  (0) | = 1  = 1)

 (∆| = 1  = 1)
≥  ( (1)−  (0) | = 0  = 2)

 (∆| = 0  = 2)
,

i.e.,

X
=1

 ()  0. (19)

The following propositions provide a characterization.

Define  =
P

=1 ,  =
P−1

=1 (+1 − ), for  = 2,....

Proposition 1 Suppose {} is such that
P

=1  = 0. The following conditions are

equivalent:

(i)  ≥ 0, for every  = 2,...,.

(ii) there does not exist any nondecreasing and concave  (·), such that (19) holds.
Proposition 2 Suppose {} is such that

P
=1  = 0. The following conditions are

equivalent:

(i)  ≥ 0, for every  = 1 − 1.

(ii) there does not exist any nondecreasing  (·), such that (19) holds.
The conditions in these propositions can be checked directly before we try to find the

set of solutions. Note that these two propositions are similar in spirit to the equivalence

of second (first) order stochastic dominance and dominance in terms of every concave and

monotone (resp., monotone) sub-utility function, but applicable to the case where the

’s are more complicated than just probabilities and the support points are not equally

spaced.

Proof. See appendix part B.
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4.2.2 Maximum entropy solution

The methodology outlined above (c.f., (17)) gives a whole set of utility functions which

may be difficult to report because it will generically be an infinite set. We therefore con-

sider a variant of the problem where, instead of trying to find the entire set of admissible

utilities, we find the one among them which is closest to a specific utility function, such as

the risk neutral one  () =  or a specific risk-averse one, e.g.,  () =
√
. This objective

can be achieved through the use of entropy maximization, which we describe now.

Recall the constraints (17). Define 1 = 1 = 0 and  =  − −1 for  = 2 . In

matrix notation, ⎡⎢⎢⎢⎢⎣
1

2





⎤⎥⎥⎥⎥⎦
| {z }



=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0  0

−1 1 0  0

0 −1 1 0 0

    

0  0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
| {z }



⎡⎢⎢⎢⎢⎣
1

2





⎤⎥⎥⎥⎥⎦
| {z }

,

where  is nonsingular. Also, for fixed , 0, let  ( 0) denote the -vector whose th

entry is  ( 
0). Then the constraints (17) can be rewritten as

 ≥ 0,  = 1  − 1,
X

=1

 = 1,


 − −1

≥ +1
+1 − 

,  = 1  − 1
0
£
−1 ( 0)

¤ ≥ 0 for all  0. (20)

Given the form of the constraints, one can apply the principle of maximum entropy and

solve

max

(
−

X
=1

µ


 − −1

¶
ln

µ


 − −1

¶)
, s.t. (20).

If there were no -constraints, then the solution would be  = −−1. This corresponds
to the risk-neutral situation  () = . Therefore maximizing the entropy s.t. the con-

straints corresponds to finding the most risk-neutral  (·) which satisfies the constraints.
Standard software can be used to perform these calculations since the problem is strictly

concave. Once the ’s are obtained, one can find the corresponding ’s by using  = −1.
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To get the utility function closest to  () =
√
, one would solve

max

(
−

X
=1

√
 −√−1 ln

µ
√

 −√−1

¶)
, s.t. (20).

In the absence of the -constraints, the solution would be  =
√
 −√−1, i.e.  () =√

, as desired.

In contrast to the set-identified situation, the maximum entropy problem will either

have no solution (if the constraint set is empty, for instance) or a unique solution, which

would make it easy to report. This unique solution will have a meaningful interpretation

as the admissible utility function closest to a specific utility function (e.g., a risk-neutral

one). Moreover, when the ’s are estimated, one can construct confidence intervals for

both the solution and the value function for the above problems, using the distribution

theory for the estimated ’s.

4.2.3 Inference

Testing whether the existing allocation is efficient for a given utility function, reduces

essentially to testing a set of (conditional) moment inequalities (c.f., (11) or (12) above).

There is an existing and expanding literature in econometrics, dealing with such tests.

For example, one can adopt the method of Andrews and Soares (2009) to conduct such

tests and calculate confidence intervals for the difference in treatment thresholds between

demographic groups. This corresponds to inference on the true parameters, rather than

inference on the identified set.

Inferring utility parameters consistent with efficient allocation is an estimation problem

where the parameters of interest are defined via conditional moment inequalities. The test

of rationality thereof is analogous to specification testing in GMM problems but now with

inequality constraints. For the parametric case or the nonparametric case with discrete

outcome and covariates, the utility parameters are finite-dimensional and we are interested

in inferring the entire feasible set of utility parameters. So inference can be conducted

using, e.g., Chernozhukov et al (2007). Tests of rationality again amount to checking

emptiness of confidence sets, which can be done using Andrews and Soares (2007), for

instance.

Inference for the maximum entropy solution, to our knowledge, is nonstandard. Es-

sentially, the inference problem is to find the distribution theory for the solution to the
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problem where the  functions in (20) are replaced by their estimate. Notice that this

problem is distinct fromM-estimation problems with deterministic parameter constraints.

Here the constraints involve estimated terms and the objective function is deterministic

which is the opposite of, say, inequality constrained least squares (c.f., Wolak (1989)).

We now outline a method of solving the sample analog of (20) and conduct inference

on the solution thereof. To do this, focus on the case where both  and  are discrete,

set  =  for all  (to save on notation) and rewrite the last set of inequalities in the

previous display as
P

=1 ̂ ≤ 0 for  = 1  . We drop the concavity requirement

on the sub-utility function and simply impose that it be non-decreasing. This allows for

more "behavioral" features such as loss aversion. Define

 () =
X
=1

 ln () ,  = 0 1 .

Denote the solution

0 = argmin


 () s.t.  ≥ 0, 01 = 1 and
X
=1

 ≤ 0,  = 1  .

Consider the estimator ̂, defined as

̂ = argmin


 () s.t.  ≥ 0, 01 = 1 and
X
=1

̂ ≤ ,  = 1  .

Proposition 3 (Consistency) Assume that
√
 (̂ − ) Ã  (0Σ). Choose  such

that  → 0 and
√
 →∞, as →∞. Then  lim ̂ = 0.

Proof. See appendix part C.

The asymptotic distribution for ̂ is interesting in that it entails an asymptotic bias

term. Here we consider the problem without concavity constraints on the sub-utility func-

tions but maintain the non-decreasing property. Define  to be the Lagrange multiplier

corresponding to the th -constraint for the population problem. Suppose constraints

1 1 bind at 
0, i.e. 00 = 0 for  = 1 1 and 0

0  0 for  = 1 + 1  . Let

1×1 =

⎡⎢⎢⎣
P

 
2
1

³

1

=1 

´


P
 11

³

1

=1 

´
  P

 11
³

1

=1 

´


P
 

2
1

³

1

=1 

´
⎤⎥⎥⎦ ,

0· = (1  1) ,  = 1 ,

11 = (11)01×1 .
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Proposition 4 Assume that
√
 (̂ − ) Ã  (0Σ). Choose  such that  → 0,√

 →∞, as →∞ and
√
2 → 0 as →∞. Then for any  = 1 2 ,

√


Ã
ln ̂ − ln 0 − 

Ã
X
=1


0·

!
0·

−111

!

= −0·−1
√


X
=1

n
̂·

0̂· − ·
0·
o

+0
√


(
(̂· − ·)−

P
=1 

0· (̂· − ·)P
=1 

0·

)
+  (1) .

The distribution of ̂ follows by the standard delta-method.

Proof. See appendix part C

There are three points to note about the distribution stated above. First, the as-

ymptotic distribution of ln (̂) and, consequently ̂, will have an asymptotic bias term,

proportional to  which, when multiplied by
√
 will go to ±∞. Hence, constructing a

CI for  will require us to remove this bias and a standard resampling-based bias cor-

rection, where the bias in ̂∗ − ̂ calculated by averaging across repeated resamples is

subtracted from ̂ −  to calculate the CI, will lead to (first order) correct coverage

asymptotically. Second, the asymptotic distribution depends on which constraints bind.

If none of the constraints bind, i.e., 1 = 0, then Pr (̂ 6= ) → 0 as  → ∞, so that the
point-estimate ̂ can be regarded as a degenerate 100% CI for . More generally, a CI

can be constructed by first testing which constraints bind. The CI is thus of a pre-test

variety and adjustments need to be made to the critical values at the first stage testing

to guarantee correct coverage for the eventual CI for . To test if a particular constraint

binds, i.e., 0 : 
00 = 0 vs 1 : 

00  0, we can use the criterion: reject if ̂0̂ ≤ 

where  =  (). We show in the appendix part C that this will give us a consistent

test of 00 = 0.

An alternative is to construct conservative CI’s which are valid no matter which con-

straints bind. The latter are likely to have large volumes but can be relatively easy to

construct as follows. We now let · and  to have dimension equal to  and let 
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determine which ones appear in the expressions, i.e.

× =

⎡⎢⎢⎣
P

 1 (1  0) 
2
1

³



=1 

´


P
 1 (1   0) 1

³



=1 

´
  P

 1 (1   0) 1
³



=1 

´


P
 1 (  0) 2

³



=1 

´
⎤⎥⎥⎦ ,

0· = (1 (1  0) 1  1 (  0) ) ,  = 1 ,

1 = (11)01× .

Then it follows from the previous display that

 =
√


Ã
ln ̂ − ln 0 − 

Ã
X
=1


0·

!
0·

−111

!

=
X

=1

1 (  0)1 +
X

=1

1 (  0)2 +  (1) ,

where 1, 2 are asymptotically normal random variables. This implies that w.p.a.1,

min

{1}+min


{2} ≤  ≤ max


{1}+max


{2}

and the distribution of the bounding random variables can be simulated by replacing 

by its consistent estimate ̂.

5 Inferring uncertainty aversion from treatment choice

Our data combination method can be used in treatment assignment situations, where the

planner may not have correct expectations to start with and is ambiguity averse, i.e.,

for two treatment protocols with the same (subjective) expected outcomes, the planner

would prefer the one for which there is less "parameter uncertainty". In this section we

outline this problem and show how data combination is useful for learning the planner’s

aversion to parameter uncertainty.

In this set-up, there is an experimental dataset where the treatment was randomly

assigned, the entire dataset is available to both the planner and us. Next, there is an

observational dataset where the planner observed the characteristics of the subjects and

assigned them to treatment, using his knowledge of treatment effects from the experimen-

tal data alone. In the observational data, we observe the characteristics of the subjects

and their treatment status, as determined by the planner. From this, we try to infer the
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planner’s extent of uncertainty aversion. Thus, we drop the assumption that the planner

knows the true outcome distributions but impose that the planner and we observe (i) the

same experimental data and (ii) the same covariates for the observational subjects.

To fix ideas, consider the case with discrete  taking values 1, 2... . Let 1 =

Pr (1 = 1| = ), 0 = Pr (0 = 1| = ),  = Pr ( = ). The following exposition

is motivated by the job-training example, where the cost of training a candidate does

not vary by covariate values but generalization to that case is not hard. Further, we will

assume that , the fraction of unemployed with  =  in the observational study is

known to the planner at the time of deciding on the protocol. We will maintain these

assumptions throughout this section.

If the planner uses protocol  :  7−→ [0 1], his expected outcome is

X
=1

{1 + (1− )0} .

Since the ’s are now assumed unknown to the planner, the above expectation cannot be

calculated directly. But, based on the experimental dataset, the planner can construct

a posterior distribution for the ’s, given his priors. We will assume that the planner

chooses  to maximize

 () =

Z


Ã
X

=1

{1 + (1− )0} ;
!
 (|) ,

s.t.

X
=1

 = ,

where  (|) = Π
=1 (1 0|) denotes the posterior for ,  denotes the

experimental data observed by us as well as the planner and  is a known class of utility

functions, strictly concave in the first argument and indexed by the uncertainty aversion

parameter  known to the planner but unknown to us. Examples include  (;) = −−
or  (;) = −1

−1 etc. For each , the planner’s optimization problem written above, due

to the strict concavity of  , will have a unique solution { ()}=1 . Since we observe
the realized values of treatment  following the planner’s assignment of each individual 

in the observational data, we can estimate  by maximizing the likelihood:

̂ = argmin


X
=1

(
 ln

Ã
X

=1

1 ( = )  ()

!
+ (1− ) ln

Ã
X

=1

1 ( = ) {1−  ()}
!)

.
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Here the asymptotics is on the number  of individuals in the observational data and the

distribution theory of interest is that of
√
 (̂− ), from which a confidence interval for

 can be constructed. For this problem, flat priors on (1 0) may be specified through

copulas whence the marginal prior on 1 and on 0 are uniform [0,1].

6 Empirical illustration

We now present an empirical illustration of the methodology developed in section 3. The

illustration is based on the Coronary Artery Surgery Study (CASS), conducted in early

1980’s in the US. A detailed description of the study design and its findings is provided

in the CASS paper cited below. Here we provide a brief overview. The purpose of the

present illustration is to show how our method performs in a real dataset that has the

data combination flavor. A more substantive empirical analysis of these data is being

conducted by the present author in an ongoing collaborative project (c.f., reference 7

below).8

The goal of the CASS study was to evaluate the effectiveness of coronary artery surgery

versus medical therapy in patients with mild to moderate angina. Patients with se-

vere angina were excluded from the study—bypass surgery was already known to improve

longevity in such patients. The design involved dividing the patients into a trial arm

where patients were randomized into or out of surgery and a non-trial arm where they

were assigned to surgery by physician discretion. The stated goal of this design, deduced

ex-post by the present author from the research paper cited below, was to check if out-

comes with and without the treatment were different in the experimental arm from that in

the observational arm. The study did not find any appreciable difference and it is unclear

to the present author as to what this conclusion implies. Nonetheless, the study design is

ideal for the objective of the present paper and provides a useful dataset for illustrating

the usefulness of the methodology developed above.

Specifically, in the CASS study, all patients undergoing coronary angiography in par-

ticipating sites and who showed indication of suspected or proven coronary artery disease

were entered into a registry (about n = 25,000). Out of these 2,100 were medically eligible

for randomization ( 65 years, mild to moderate angina, etc.) Out of these 2100, about

8The CASS data may be obtained through online request at

https://biolincc.nhlbi.nih.gov/studies/cass/?q=CASS.
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Experimental Observational t‐test

Variable Mean Std. Dev. Mean Std. Dev p‐value

death 0.36 0.48 0.34 0.47

treatment 0.50 0.50 0.43 0.50

unemployed 0.29 0.44 0.28 0.45 0.63

age 51.10 7.31 50.87 7.82 0.63

lvscor 7.55 2.90 7.46 2.96 0.54

previousmi 0.62 0.49 0.59 0.49 0.16

diabetes 0.09 0.28 0.06 0.24 0.04

stroke 0.01 0.12 0.01 0.10 0.52

smoking 0.40 0.49 0.42 0.47 0.46

N 704 1192

Figure 1:

1320 patients were not randomized and are referred to as randomizable patients and they

constitute our observational group. 780 patients were evenly randomized into medical

or surgical arms— the “randomized” patients constituting the experimental group. The

specific surgical (medical) therapy given to a surgical (medical) patient was decided by

the physician attending to the case. The primary endpoints of the study included death

and myocardial infarction (hear attack), and secondary endpoints included evaluation of

angina and quality of life. About 17 years of follow-up data for vital status were included.

Due to some cross-over in the long-run,9 we will refer to being assigned to surgery as the

treatment. Also, we choose only males for our analysis. Females constitute less than 10%

of the study sample and race is not recorded.

Summary statistics for some key variables is provided in the table marked "figure 1".

The variable lvscor is an index for how well the heart functions, with 5−8 being a normal
range; previousmi is a dummy for whether the patient had a previous heart attack and

smoking is a dummy for whether the patient is currently smoking. Our outcome variable

of interest, labeled "death", is the binary indicator for whether the patient died within

17 years from the date of treatment assignment.In the ideal situation, the enrollment

into the experimental arm should be random. However, in the CASS case, this seems to

931 of the 390 patients randomized into the surgical group refused surgery and utilized medical therapy

instead and about 1
4 of the 390 patients in the medical arm elected to undergo surgical therapy in the

long run.
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have been influenced to some extent by the physicians who were treating the patients.

In terms of most observable characteristics however, the two groups seem very similar.

They are very slightly different in terms of prior incidence of heart-attack and diabetes,

for which the experimental group seems slightly sicker. As explained in the appendix part

D, labelled "Non-identical distributions", this means that our bounds are still valid but

wider. When we do detect different thresholds using these wider bounds, we would also

have detected different thresholds under narrower bounds which would result if enrollment

into the experimental arm were random.

A drawback of this dataset is that no cost figures are available. So we focus on testing

efficiency in terms of the survival outcome alone without regard to costs. However, we

do have a variable recording employment status. Since all individuals in this dataset are

under 65 (and hence not covered by Medicare), we may regard employment status as

a crude proxy for health insurance coverage. In this case, cost-criteria might lead the

non-employed to receive the treatment less frequently than their health outcomes alone

might dictate.

Without cost numbers, our bounds are

 = sup
∈X 0

 (1 − 0| = 0  = ) = sup
∈X 1

½
exp (1| = )− ( | = )

Pr ( = 0| = )

¾
,

 = inf
∈X 1

 (1 − 0| = 1  = ) = inf
∈X 0

½
 ( | = )−exp (0| = )

Pr ( = 1| = )

¾
.

We first consider the case where the groups of interest are the unemployed versus

employed and then we will consider smokers versus non-smokers and use  quantiles of

age to narrow the bounds. That is, calculate the sample analog of the following bounds:

for unemployed,

 = max
∈(1)

½
exp (1|_ =   = 1)− ( |_ =   = 1)

Pr ( = 0|_ =   = 1)

¾
,

 = min
∈(1)

½
 ( |_ =   = 1)−exp (0|_ =   = 1)

Pr ( = 1|_ =   = 1)

¾
.

Similarly, for employed:


 = max

∈(1)

½
exp (1|_ =   = 0)− ( |_ =   = 0)

Pr ( = 0| =   = 1)

¾
,


 = min

∈(1)

½
 ( |_ =   = 0)−exp (0|_ =   = 0)

Pr ( = 1|_ =   = 0)

¾
.
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Instead of reporting the estimated max or min, we report the simple average, e.g., instead

of

̂ = max
∈(1)

(
̂exp (1|_ =   = 1)− ̂ ( |_ =   = 1)

̂  ( = 0|_ =   = 1)

)
,

we report

̃ =
1



X
=1

(
̂exp (1|_ =   = 1)− ̂ ( |_ =   = 1)

̂  ( = 0|_ =   = 1)

)
.10

Because the max will seek out those observations for which the probability in the denom-

inator is small, the estimate ̂ is likely to be very noisy. Since

 ≤ exp (1|_ =   = 1)− ( |_ =   = 1)

Pr ( = 0|_ =   = 1)
,

for each , it must also be smaller than the simple average of the RHS over  ∈ (1  ).
So ̃ is a valid (potentially conservative) but less noisy estimate. Also, one can

bootstrap ̃’s to construct p-values, unlike the case of max or mins for which there is a

boundary-value problem (Andrews, 2000). The estimated differences between the upper

bound of threshold for one group less the lower bound for threshold of the other group are

reported in the following tables for two different choices of groups. A negative difference

suggests that the second group is facing a higher threshold for treatment— i.e., there is

taste-based allocation against the second group. In the table, marked "figure 2", we report

the results corresponding to  = 2 and  = 10. The (one-sided) p-values were computed

by bootstrapping the end-points jointly. When taste-based allocation is detected, we

highlight the corresponding entry.This table suggests that the treatment threshold for the

non-employed is lower than that for the employed, contrary to our original hypothesis.

Why that should be the case cannot be answered convincingly within the confines of this

illustrative section. One possibility is that invasive procedures require longer recovery

periods which may be easier to implement when the person is not in employment. Further,

as we hinted above, not being employed does not necessarily mean that the individual

10Notice that this is not the same as

̂exp (1| = 1)− ̂ ( | = 1)

̂  ( = 0| = 1)
.
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q Nonem_ub‐Emp_lb Emp_ub‐Nonem_lb

2 ‐0.081 0.282

(pvalue=0.083)

10 ‐0.023 0.221

(pvalue=0.094)

Figure 2:

q Smoke_ub‐Non_lb Non_ub‐Smoke_lb

2 0.104 ‐0.032

(pvalue=0.016)

10 0.152 ‐0.116

(pvalue=0.019)

Figure 3:

has no health insurance coverage— they may receive Medicaid or be covered through a

spouse’s job.

We then repeat the analysis where unemployment status is replaced by smoking status.

The hypothesis of interest is that smokers are set a higher threshold for treatment. The

results are reported in the table marked "figure 3". It appears that smokers are indeed set

a higher treatment threshold than non-smokers. It is conceivable that this happens due

to worse "quality" of life for smokers or because they are likely to suffer from heart-attack

in the future again, raising costs. But it is hard pinpoint the exact reason without further

investigation.11

11Further investigations are being pursued in a separate and independent ongoing project in collabo-

ration with Amitabh Chandra.
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7 Conclusion

We have defined and analyzed the problem of detecting taste-based allocation of a binary

treatment via a partial identification approach using a novel data combination method.

The latter, though nonstandard, is somewhat similar in spirit to using validation data in

measurement error analysis. As explained in the text, we believe that such data com-

bination exercises should entail little additional logistical costs beyond running a field

experiment and are potentially useful for evaluating treatment assignment processes that

produce observational datasets in a variety of settings. Much of the treatment effects

literature in econometrics has, justifiably, focused on identifying effects of the treatment

from observational studies. In contrast, evaluating the treatment procols which give rise

to such observational data seems to be an interesting but less-researched topic to which

the present paper has attempted to contribute.

Our analysis in this paper is based on an expected utility framework. In the case of

non-binary outcomes, there are alternative approaches that are worth investigating. One

would be to consider the notion of loss aversion. A crucial feature of the analysis presented

above is that inequalities in terms of variables that the planner observes are preserved

when aggregated across unobservables— a version of the law of iterated expectations for

inequalities. This feature holds for expected utilities—including the case where the sub-

utility function exhibits loss aversion— but may not be shared by all the alternative criteria

for treatment assignment, e.g., if the goal were to minimize the variance of outcome in

the population. There are also possible extensions of the analysis that would relax the

assumption of correct expectations and incorporate some form of learning by the planner.

Altonji et al, 2001 consider such a case where the researcher initially has more informa-

tion than the planner who is supposed to "catch up" with increasing experience if he is

simply practising statistical discrimination initially. Another generalization is to consider

heterogeneity in assignment protocols across different planners. On the econometric front,

it is worth extending the inference methodology to the continuous outcome case, using a

sieve-type approach. We leave the exploration of these issues to future research.
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8 Appendix: Proofs

A. Derivation of (3): The solution to the problem

max


½Z
1 { ∈ } 11 (1 ) +

Z
1 { ∈ } 00 (0 )

¾
s.t. Z

 () 11 (1 ) +

Z
{1−  ()} 00 (0 ) ≤ , i.e.,

 (1)−
Z
{1−  ()} (∆| = )  () ≤ ,

33



is of the form ∗ = { :  () ≥ }, with

 () ≡  (∆ | = )

 (∆| = )
;  =

Z
∈

1 ( () ≥ )  () .

Proof. Since both  and ∗ satisfy the budget constraint, we must have thatZ
1 ( ()  ) (∆| = )  ()

=  (1)− 

=

Z
{1−  ()} (∆| = )  (). (21)

Then the welfare resulting from a generic choice of , differs from the welfare from

using ∗ by

 ()− (∗) =

Z
[ ()− 1 ( () ≥ )] () (∆| = )  ()

=

Z
1 ( ()  )  () () (∆| = )  ()

−
Z
1 ( () ≥ ) {1−  ()} () (∆| = )  ()

≤ 

Z
1 ( ()  )  () (∆| = )  ()

−
Z
1 ( () ≥ ) {1−  ()} (∆| = )  ()

= 

Z
1 ( ()  ) (∆| = )  ()| {z }

={(1)−}

−
Z
1 ( ()  ) {1−  ()} (∆| = )  ()

−
Z
{1−  ()} (∆| = )  ()| {z }

={(1)−}

+

Z
1 ( ()  ) {1−  ()} (∆| = )  ()

= 0.

B. Proof of proposition 1:
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Proof. (i) implies (ii). Notice that

−
X
=1

 () =
−1X
=1

 ( ()−  ()) =
−1X
=1



−1X
=

( (+1)−  ())

=
−1X
=1

( (+1)−  ())

=
−1X
=1

 (+1)−  ()

+1 − 
× (+1 − )

=
−1X
=1

Ã
−1X
=+1

½
 ()−  (−1)

 − −1
−  (+1)−  ()

+1 − 

¾!
× (+1 − )

+
 ()−  (−1)

 − −1

−1X
=1

 (+1 − )

=
−1X
=2

½
 ()−  (−1)

 − −1
−  (+1)−  ()

+1 − 

¾
×

−1X
=1

 (+1 − )

+
 ()−  (−1)

 − −1

−1X
=1

 (+1 − )

=
−1X
=2

½
 ()−  (−1)

 − −1
−  (+1)−  ()

+1 − 

¾
×  +

 ()−  (−1)
 − −1



By concavity of  (·), we have that for every :
 ()−  (−1)

 − −1
≥  (+1)−  ()

+1 − 
.

This plus  ≥ 0, for every  implies that
P

=1  () ≤ 0 for every concave and

nondecreasing  (·).
(ii) implies (i). Suppose   0 for some  ∈ {2 − 1}. We will show that there

exists a nondecreasing concave  (·) such that −P
=1  () ≤ 0. Recall that

−
X
=1

 () =
−1X
=2

½
 ()−  (−1)

 − −1
−  (+1)−  ()

+1 − 

¾
× 

+
 ()−  (−1)

 − −1


Consider a utility function of the form

 () =



× 1 ( ≤ ) + 1× 1 ( ≥ ) .
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It is obvious that this is a nondecreasing concave continuous function. Now, for this utility

function,

 ()−  (−1)
 − −1

= 0,

 ()−  (−1)
 − −1

−  (+1)−  ()

+1 − 
=

1


× 1 ( = ) ,

implying that −P
=1  () =   0.

Proof of proposition 2:

Define  =
P

=1 , for  = 2,....

Proof. (i) implies (ii). Notice that

−
X
=1

 () =
−1X
=1

 ( ()−  ()) =
−1X
=1



−1X
=

( (+1)−  ())

=
−1X
=1

( (+1)−  ()) ≥ 0.

(ii) implies (i). Suppose   0 for some  ∈ {2 − 1}. We will show that there
exists a nondecreasing  (·) such that −P

=1  ()  0. Recall that

−
X
=1

 () =
−1X
=1

( (+1)−  ())

Consider a utility function of the form

 () = 0× 1 ( ≤ ) +
− 

+1 − 
1 (   ≤ ) + 1× 1 (  ) .

It is obvious that this is a nondecreasing continuous function. Now, for this utility func-

tion,

 (+1)−  () = 1 and  (+1)−  () = 0 for all  6= 

and therefore −P
=1  () =

P−1
=1 ( (+1)−  ()) =   0.

C. Proof of consistency for max entropy solution

Solution

0 = argmin


 () s.t.  ≥ 0„ 01 = 1 and
X
=1

 ≤ 0,  = 1  .
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Estimator

̂ = argmin


 () s.t.  ≥ 0„ 01 = 1 and
X
=1

̂ ≤ ,  = 1  ,

 → 0 and
√
 →∞.

Proof. For any  = 1  , since 00 ≤ 0,

Pr
¡
̂00 ≤ 

¢
= Pr

¡
(̂ − )

0 0 ≤  − 00
¢

= Pr
¡√

 (̂ − )
0 0 ≤

√
 +

√

¯̄
00

¯̄¢
→ 1, by hypothesis.

Next, for any   0, and for any  = 1  , since ̂0 ̂ ≤ ,

Pr
¡
0 ̂  

¢
= Pr

³¡
0 − ̂

¢0
̂  − ̂0 ̂

´
≤ Pr

³¡
0 − ̂

¢0
̂  − 

´
≤ Pr

³¯̄̄¡
0 − ̂

¢0
̂ + 

¯̄̄
 
´
→ 0

because
¡
0 − ̂

¢
=  (1), ̂ belongs to the unit simplex with probability 1 and  → 0,

by hypothesis. The two previous displays imply that for each ,

Pr
¡
̂00 ≤ 

¢→ 1 and Pr
¡
0 ̂ ≤ 0

¢→ 1.

Consider for some  ∈ (0 1), ̃ = ̂ + (1− ) 0. Then for each ,

̂0 ̃ = ̂0 ̂ + (1− ) ̂00 ≤  w.p.a.1, by first part of previous display, and

0 ̃ = 0 ̂ + (1− ) 00 ≤ 0 w.p.a.1, by second part of previous display.

These imply that ̃ belongs to the constraint set of both the population and the sample

problems w.p.a.1. But by strict convexity of ,

 (̃)  max { (0)   (̂)} .

Therefore, if ̂ stays away from 0, then ̃ will remain distinct from both ̂ and 0 and

therefore  (̃) will be smaller than at least one of  (0)   (̂), contradicting the defini-

tion of 0 or ̂.

Proof of proposition 3:
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Proof. Solution to the population problem is unique due to strict convexity of  (·)
so that first order conditions are necessary and sufficient.

 =  ()−
X

=1


¡
0
¢
+

X
=1

 + 

Ã
1−

X
=0



!

0 = 1 + ln ()−
X

=1

 − 

1 =
X


 =
X


(


=1 )+−1, 1− =
X





=1 

0 = 1 + ln (̂)−
X

=1

̂ ̂ − ̂.

This implies that

 =
(


=1 )P
=1 

(


=1 )
, ̂ =

(


=1 ̂ ̂)P
=1 

(


=1 ̂ ̂)
.

First consider the case where  = 1. Then 01 ≤ 0⇔  =
1

,  = 0. Then

Pr
³
̂ = 0

´
= Pr (̂01 ≤ )

= Pr
¡√

 (̂ − )0 1 ≤ √ −
√
01

¢
= Pr

¡√
 (̂ − )0 1 ≤ √ +

√
 |01|¢

which converges to 1 since
√
 → ∞. Conversely, when 01  0,   0 is defined viaP

 
 = 0 and  = 

P
 

 . Then

Pr
³
̂ = 0

´
= Pr (̂01 ≤ ) = Pr

¡
(̂ − )0 1−  ≤ −01

¢→ 0

since  → 0. So   0 implies ̂  0 w.p.a.1. So when   0, we have that ̂0̂ = 

w.p.a.1.

1 =
X
=1

̂ =
X
=1

̂̂+̂−1 =⇒ 1−̂ =
X
=1

̂̂ =⇒ ̂ =
̂̂P
=1 

̂̂
.
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Then

 =
X
=1

̂̂ =

P
=1 ̂

̂̂P
=1 

̂̂

=

P
=1 ̂

̂ +
P

=1 ̂
2


̂

³
̂− 

´
P

=1 
̂̂

, implying

³
̂− 

´
=


P

=1 
̂̂ −

³P
=1 ̂

̂ −P 


´
P

=1 ̂
2


̂ =  (1)
.

Rewriting,

√


⎛⎜⎜⎜⎝̂− − 

X
=1

| {z }


⎞⎟⎟⎟⎠ =

√


Ã
X
=1

̂
̂ −

X
=1




!
| {z }

=(1)P
=1 

2
 


+  (1) .

Finally,

̂ −  = ln

Ã
X
=1



!
− ln

Ã
X
=1

̂̂

!
.

Putting all of this together and applying the delta method,

√


⎧⎪⎪⎪⎨⎪⎪⎪⎩ln (̂)− ln ()− 1 (
0 = 0) 

X
=1

| {z }


⎫⎪⎪⎪⎬⎪⎪⎪⎭
= 

√

³P

=1 ̂
̂ −P

=1 


´
P

=1 
2
 


1 (0 = 0)

−1 (
0 = 0)P

=1 


"X
 6=

 (̂ − )
√


#
+  (1) .
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Applying the delta method,

√
 {̂1 − 1} = 1

√
 (ln (̂1)− ln (1)) + 1

2

√
 (ln (̂1)− ln (1))2 +  (1)

= 1
√


Ã
ln (̂1)− ln (1)− 1

X
=1



!

+
1
2

√


Ã
ln (̂1)− ln (1)− 1

X
=1



!2
+  (1)

+1
√
1

X
=1

 +
¡√

2
¢
.

So if
√
2 → 0, then

√


(
̂ −  − 

X
=1



)
= 
√


Ã
ln (̂)− ln ()− 

X
=1



!
+  (1) .

By exactly analogous arguments, when  ≥ 2, and 0 = 0 for  = 1 1 and 0  0 for
 = 1 + 1  , we will get that

√


⎛⎜⎜⎝
⎡⎢⎢⎣

̂1 − 1



̂1 − 1

⎤⎥⎥⎦− 

Ã
X
=1


1

=1 

!
−111

⎞⎟⎟⎠

= −−1√

⎧⎪⎪⎨⎪⎪⎩
P

=1 ̂1
1

=1 ̂ −P
=1 1

1
=1 

P
=1 ̂1

1
=1 ̂ −P

=1 1
1

=1 

⎫⎪⎪⎬⎪⎪⎭+  (1)

= −−1√
X
=1

n
̂·

0̂· − ·
0·
o
+  (1) . (22)

where

1×1 =

⎡⎢⎢⎣
P

 
2
1

³

1

=1 

´


P
 11

³

1

=1 

´
  P

 11
³

1

=1 

´


P
 

2
1

³

1

=1 

´
⎤⎥⎥⎦ .
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From first-order conditions, we get that

√
 (ln ̂ − ln )

=
√


"
1X

=1

̂̂ −
1X

=1

 − ln
Ã

X
=1


1

=1 ̂̂

!
+ ln

Ã
X
=1


1

=1 

!#

= 0·
³
̂− 

´√
+ 0 (̂· − ·)

√
−

P
=1 

0·
n
0·
³
̂− 

´√
+ 0 (̂· − ·)

√

o

P
=1 

0·
+  (1)

=

(
· −

P
=1 

0··P
=1 

0·

)0 ³
̂− 

´√
+ 0

(
(̂· − ·)

√
−

P
=1 

0· (̂· − ·)
√
P

=1 
0·

)
+  (1) .

Plugging in (22), we get

√


Ã
ln ̂ − ln  − 

(
· −

P
=1 

0··P
=1 

0·

)0Ã X
=1


0·

!
−111

!

= −
(
· −

P
=1 

0··P
=1 

0·

)0
−1
√


X
=1

n
̂·

0̂· − ·
0·
o

+0
√


(
(̂· − ·)−

P
=1 

0· (̂· − ·)P
=1 

0·

)
+  (1)

Since 0· = 0 for  = 1 1, we have that


=1 
0··

=1 
0· = 0. Hence the result.

Inference: Consistency of test

0 : 
00 = 0 vs 1 : 

00  0. Reject if ̂0̂ ≤ . Then

Pr
¡
̂0̂ ≤ |00 = 0

¢
= Pr

¡√
 (̂ − )0 ̂ +

√
0 (̂ − 0) ≤ −

√
|00 = 0¢

= Pr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
 (̂ − )0 ̂ +

√
0

⎛⎜⎜⎝̂ − 0 −

⎛⎜⎜⎝
11





⎞⎟⎟⎠ 
P

=1 


⎞⎟⎟⎠
≤ 

√
−√0

⎛⎜⎜⎝
⎛⎜⎜⎝

11





⎞⎟⎟⎠P
=1 



⎞⎟⎟⎠ |00 = 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→ 0

if  =  (). So by choosing  to be of smaller order than , we will get a consistent

test of 00 = 0.
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D. Nonidentical distributions

Consider the possibility that the observational sample and the experimental sam-

ple were drawn from different subsets of the population. For example, sometimes it is

the case in medical trials that inherently sicker patients agree to be randomized. This

may be suspected in the CASS data where the incidence of prior heart attack and in-

cidence of diabetes are slightly larger (significant but with numerically small difference

in point-estimates) in the experimental group. In this case, it is reasonable to expect

that exp (0|) ≤  (0|) and exp (1|) ≤  (1|). Similarly, exp (0|) ≥
 (0|) and exp (1|) ≥  (1|). Using the same steps as those leading to (8),
one gets that

 (0| = 1 ) =
 (0|)−   ( = 0|)× (0| = 0 )

  ( = 1|)
≥ exp (0|)−   ( = 0|)× (0| = 0 )

  ( = 1|)
≡ ̄ (0| = 1 ) ,

and similarly,

 (1| = 0 ) =
 (1|)−   ( = 0|)× (1| = 0 )

  ( = 1|)
≥ exp (1|)−   ( = 0|)× (1| = 0 )

  ( = 1|)
≡ ̄ (1| = 0 ) .

The quantities ̄ (1| = 0 ) and ̄ (0| = 1 ) are clearly identified. An analogous

set of inequalities hold with  replaced by  and the inequality sign reversed (since the

experimental group, being sicker will be more expensive to treat). These bounds can still

be used to detect misallocation. For instance, if it is the case that

 (1| = 1)− ̄ (0| = 1)

 (1| = 1)− ̄ (0| = 1)

≤ ̄ (1| = 0 )− (0| = 0 )

̄ (1| = 0 )− (0| = 0 )
, (23)
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then it follows that

 (∆ | = 1)

 (∆| = 1)

≤  (1| = 1)− ̄ (0| = 1)

 (1| = 1)− ̄ (0| = 1)

≤ ̄ (1| = 0 )− (0| = 0 )

̄ (1| = 0 )− (0| = 0 )

≤  (∆ | = 0 )

 (∆| = 0 )
.

Thus, females are facing a larger threshold relative to males. However, since (23) implies

(11), it will be harder to detect misallocation here compared to when the experimental

and observational data came from identical populations.
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