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Abstract

Economic theory suggests that households should invest their financial wealth in a
combination of cash and a well-diversified equity portfolio. Yet, many households’ equity
investments are strongly concentrated in a few assets. Attempts to explain this discrep-
ancy have included low levels of cognitive skills and/or financial knowledge; and poor or
misguided financial advice. In order to investigate these claims empirically, I construct
detailed portfolios for the respondents to a Dutch household survey. The data allow me
to estimate the portfolios’ risk-return properties without resorting to assumptions about
characteristics of specific asset classes. Controlling for a large number of covariates, my
results show that the combination of low numerical-financial skills and not seeking advice
from other persons is strongly associated with the largest losses from underdiversification,
whereas financial knowledge does not seem to have much of an effect.
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1 Introduction

Going back to at least Markowitz (1952), the canonical model of portfolio choice predicts
(a) that households will hold a positive share in risky assets and (b) that the risky compo-
nent will consist of a well-diversified portfolio, optimising its risk-return characteristics. The
earlier empirical studies based on microeconomic data demonstrated that a large fraction
of households do not hold any risky assets (e.g. Guiso et al., 2002; Haliassos and Bertaut,
1995; Mankiw and Zeldes, 1991). This finding stimulated the development of a number of
theoretical models which can account for this fact. Popular explanations include transaction
costs (Vissing-Jørgensen, 2002), background risk (Heaton and Lucas, 2000), or behavioural
economic theories (Barberis et al., 2006). See Campbell (2006) for an overview.

Largely due to a lack of suitable data, the prediction of a well-diversified portfolio was
hardly challenged until recently. Deviations from this recommendation have been documented
first by Blume and Friend (1975), but most forcefully by Calvet et al. (2007). The latter
employ extraordinarily detailed administrative data, which is only available in very selected
countries. The first, minor, contribution of this paper is to demonstrate that their results
are replicable to a large degree with survey data when households are asked for the specific
items in their portfolios. Theoretical models that predict a low number of stocks in the
portfolio are still rare,1 so underdiversification would generally be considered an investment
mistake. The main contribution of this paper is to document the pattern of how losses from
underdiversification vary in the population. Compared to the administrative data of Calvet
et al. (2007) or Grinblatt et al. (forthcoming), I have much more information about households
and individuals, including various measures of financial literacy, the most important source
of financial advice, risk attitudes, education, income and wealth.

Recently, there has been an increased interest in the lack of financial skills as a driver
of poor financial decisions. The output measure has most often been undersaving (Bayer
et al., 2009; Cole and Shastry, 2009; Hilgert et al., 2003; Lusardi and Mitchell, 2007a,b),
although recent applications include stock market participation (van Rooij et al., forthcom-
ing), overindebtedness (Lusardi and Tufano, 2009), and mortgage delinquency (Gerardi et al.,
2010). Very recently, several authors have also connected financial literacy and portfolio di-
versification (e.g. Bilias et al., 2009; Graham et al., 2009; Guiso and Jappelli, 2009; Kimball
and Shumway, 2010), but the available data constrains their choice of portfolio measures. I
compare my results to some of those measures and show that there is a substantial benefit to
using the more detailed data.

My results indicate that the majority of households reaches reasonable levels of diversi-
fication. Compared to investing in the benchmark portfolio, the median loss from underdi-
versification on the financial portfolio is limited to 29 basis points per year. However, the
distribution has a fat right tail, where losses become very substantial. The worst outcomes are
associated most with the combination of low levels of financial skills and relying on one’s own
financial judgement (as opposed to seeking advice from professionals or family/friends). This
pattern holds regardless of the covariates controlled for. Financial knowledge does not appear
to have an effect at any part of the distribution. The pattern suggests that policies targeting

1Very recently, van Nieuwerburgh and Veldkamp (2010) provided a rationale for low diversification based
on information costs. My results show that such an explanation may justify some of the underdiversification
seen in the data. However, it is unlikely to stand behind the portfolios incurring the largest losses. The same
goes for the “beat the Jones” argument of Roussanov (2010).
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either numerical-financial skills or the availability of advice may be effective in ameliorating
the worst investment outcomes.

2 Data and empirical strategy

As discussed in the introduction, recent research has made clear that a significant fraction
of households hold widely under-diversified portfolios (Calvet et al., 2007). That and several
other studies (Calvet et al., 2009a,b; Massa and Simonov, 2006) are based on administrative
records for the Swedish population, where banks were required to report the details of indi-
viduals’ portfolios to the tax authorities. To a lesser extent, the same is true for Finland,
where detailed stock holdings and an indicator of mutual fund ownership are available (Grin-
blatt et al., 2011, forthcoming). To the best of my knowledge, such requirements are not
in place anywhere outside Scandinavia and even in Sweden they have ceased to exist with
the abolishment of the wealth tax in 2007. Since Sweden is unusual in a number of ways
– most importantly for the topic at hand, a very high stock market participation rate with
a stockholder pool that differs markedly from the one in other countries (Christelis et al.,
2010a) – it is important to find ways for conducting similar analyses in other regions. Fur-
thermore, the use of administrative data limits the range of covariates that can be used to
explain portfolio holdings to those collected by the government for administrative purposes.
While the number of variables is substantial in Sweden, the content often does not exactly
cover what a researcher would like to know.

A very popular alternative for investigating individual investment behaviour is to obtain
data from discount brokers (Barber and Odean, 2000, 2001; Goetzmann and Kumar, 2008;
Hackethal et al., 2011; Ivković et al., 2005, 2008; Korniotis and Kumar, forthcoming; Odean,
1998). An important advantage over the administrative data described before is that these
datasets not only contain the portfolio composition at a certain date per year, but all trades
in the observation period. Consequently, many of the just-cited studies have focused on the
implications of suboptimal trading behaviour for portfolios’ performance. These datasets are
arguably less than optimal to study diversification issues because often only directly held
stocks are observed in detail.2 Furthermore, it is unknown (a) how much of households’ port-
folios the individuals’ observed accounts cover and (b) to what extent holders of discount
brokerage accounts are representative of the population of interest. Tang et al. (2010) pur-
sue a related research strategy in comparing the actual performance of U.S. 401(k) pension
plans with the optimal strategy under the investment menu offered by the pension provider.
They demonstrate large losses from underdiversification, which almost exclusively stem from
participants’ choices. While the results are suggestive, one cannot know from such data
whether at least part of the inefficiencies might be undone outside the tax-deferred accounts:
Bergstresser and Poterba (2004) show that half of all individuals who own equity through
retirement accounts also own equity outside of these accounts.

The most widespread instrument of empirical social science research is the household
survey. The U.S. Survey of Consumer Finances has arguably been the most important
source of knowledge about household saving and portfolio choice since its inception more
than 3 decades ago (see, for example, the literature reviewed in Campbell, 2006). Important

2For example, Goetzmann and Kumar (2008) use a dummy for mutual fund holdings as an explanatory
variable in a regression explaining the underdiversification of the stock portfolio.
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recent contributions focussing on diversification issues include Christelis et al. (forthcom-
ing) or Polkovnichenko (2005). Arguably the main strength of the SCF and general-purpose
datasets with a strong module on financial matters3 is that they contain a wealth of back-
ground information in addition to diversification proxies such as the number of directly held
stocks, whether the household invests in mutual funds, and asset allocation shares. The main
drawback of such surveys is the quality of such diversification measures4 – some investors
achieve good diversification results with a low number of stocks while some mutual funds
concentrate their investments in very specific sectors. Calvet et al. (2009b, Online Appendix)
find that among several potential diversification measures that can be constructed with pro-
totypical survey data, the share of funds in the risky portfolio performs best. Whether the
correlation of 0.49 between the fund shares and their favoured measure of diversification (for
details on this measure, see Section 2.3 below) is high or low depends on the question at hand.
It might well be reasonable as a control variable when the focus is on other questions; but if
diversification issues play the central role in an analysis, one would hope for better measures.

In this study, I combine several strengths of the various approaches by constructing de-
tailed portfolios for the respondents of the Dutch Central Bank Household Survey (DHS). I
describe this survey in the first part of this section, emphasising measures of financial wealth.
Linking individual portfolio components to historical return series allows me to calculate
diversification statistics that are measured in meaningful economic quantities. After describ-
ing the linking procedure and the diversification measures, I sketch a production function
framework for explaining investment outcomes. Finally, I outline the variables that serve as
inputs into this function, most notably those regarding financial sophistication and advice for
financial decision-making.

2.1 Financial wealth variables in the CentERpanel / DHS

I use data from the CentERpanel, a Dutch household survey that is administered via the
Internet. In order to avoid selection problems due to lack of Internet access, respondents
without a computer are equipped with a set-top box for their television set (and with a TV if
they do not have one). Respondents are reimbursed for their costs of using the Internet. The
panel consists of more than 1,500 households who are representative of the Dutch population
in terms of observable characteristics. It has rich background information on important
demographic and socio-economic variables. The CentERpanel was the role model for the
RAND American Life Panel, which has emerged as another workhorse in the area of household
financial decision-making (Hung et al., 2009; Hung and Yoong, 2010; Lusardi and Mitchell,
2007b).

The CentERpanel hosts the Dutch Central Bank Household Survey (DHS), which contains
particularly detailed information on financial matters. For this reason, it has been used
extensively to describe the portfolio choice behaviour of Dutch households, excellent examples
are Alessie et al. (2002, 2004, 2006); Dimmock and Kouwenberg (2010); Korniotis and Kumar
(forthcoming). My analysis is cross-sectional, but in order to increase the sample size I make

3Some important examples are the HRS or PSID in the U.S. or the SHARE, ELSA, or ECHP datasets in
Europe. Bilias et al. (2010); Christelis et al. (2010a,b); Juster et al. (1999); or Lusardi and Mitchell (2007a)
are some exemplary studies using and describing these datasets for related questions.

4This characteristic is shared by other questionnaire-type approaches that I am aware of, such as tailor-
made surveys (Kimball and Shumway, 2010), commercial investor surveys (Graham et al., 2009), or hybrids
thereof (Guiso and Jappelli, 2006, 2009).
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use of the 2005 and 2006 waves, which contain information on the financial portfolios at the
end of the previous year. Because of this, I label them with the years 2004 and 2005 in the
remainder of the paper. Table A.1 in the Appendix contains an overview of the relevant
asset and debt categories. The 35 entries in the first column are clearly too many to analyse
for my purposes and the remaining columns show how I aggregate them into manageable
numbers. The most important distinctions are in the upper part of the columns labelled
“Level 2”, differentiating between risky and safe financial assets, and “Level 1”, which breaks
up risky financial assets into three categories: Mutual funds, directly held stocks, and bonds
and options. Throughout the analysis, I exclude households with less than 1,000 Euros in
financial assets (8.6% of the sample), leaving 2,661 observations on 1,607 households.

Figure 1: Ownership rates of and fractions invested in risky assets, by total net worth
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Source: CentERpanel, own calculations.

Figure 1 shows risky asset ownership along with unconditional and conditional shares by
total net worth.5 The left panel shows the standard pattern of rising ownership rates in wealth
(Guiso et al., 2002), starting from about 13% in the lowest wealth quintile to more than 50%
in the highest wealth quintile. As usual, the rise is most pronounced in the highest wealth
class. A similar pattern can be seen for the shares invested in risky assets, when averaging
over all households, including the non-participants. These rise from 6% in the lowest wealth
quintile over 10-11% in the upper-middle quintiles to 24% in the highest. The second line
in the right panel reveals that this pattern is mostly driven by ownership rates. Conditional
on ownership, risky asset holdings follow a U-shaped pattern with 45% in the two extreme
quintiles and 34-36% in the middle quantiles. This contrasts with the pattern of a steep
wealth gradient in the risky asset share among participants in Sweden (Calvet et al., 2007,
2009b) and highlights the importance of establishing results along those studies’ lines for
other countries.

2.2 Detailed portfolio components

A unique feature of the dataset is that individuals are not only asked for the number of
stocks and mutual funds they posses, but also to report the names and quantities held in each

5Total net worth is defined as total assets minus total debt in the last column of Table A.1.
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of those.6 In particular, they are asked for the details of their 10 (5, 5) largest positions of
stocks (mutual funds, growth funds7). These three items make up the largest share of all risky
assets, which furthermore consist of company or mortgage bonds and options (see Table A.1
for details).

Table 1: Descriptive statistics on coverage of risky portfolio by components with time series

Variable name # raw # obs Mean p5 Median p95

(1) Total number of households 2661 1607

(2) Owners of risky financial assets 837 528

(3) Owners of shares/funds 791 500

(4) Raw report of individual items 789 498 3.33 1 2 10

(5) Raw report (hh. in final sample) 648 408 3.69 1 2 11

(6) Matched report of individual items 648 408 2.96 1 2 9

(7) Fraction of shares/funds covered 648 408 .898 .278 .989 1

(8) Fraction of risky fin. assets covered 648 408 .842 .183 .989 1

(9) Fraction of quantities imputed 648 408 .081 0 0 .75

(10) Length of time series of returns 269 269 138 57 128 235

(11) Total expense ratio, mutual funds 170 170 1.3 .35 1.26 1.87

Source: CentERpanel, Datastream, Euroinvestor, own calculations. Numbers in column “# raw” refer to all
observations, those in column “# obs” are adjusted for clustering at the household level, as are the remaining
statistics. In the case of the time series of asset returns, the number of observations refers to the number
of different assets. Returns are observed at a monthly frequency. The total expense ratio is expressed as an
annual percentage of the asset value.

The second and third row of Table 1 reveal that of the 528 households who own any risky
financial assets, 5% do not own any shares or mutual funds, but only bonds or options. Only
two of the remaining households did not provide the names of any of their assets. Several
reports were difficult to interpret, leaving 408 different households for whom I could match
return series to the larger part of the portfolios’ components. Row 5 in Table 1 shows that
the mean household in the final sample holds 3.7 different items. These numbers are close
to those found for the U.S. (e.g. Bilias et al., 2009; Polkovnichenko, 2005) or Sweden (Calvet
et al., 2007).

The next row shows that I can match close to 3 items on average to historical returns on
Datastream and Euroinvestor (not all funds were available on Datastream). The true rate of
matches is even higher than the 80% implied by these numbers because in some households,
multiple individuals answer the questionnaires and name the same portfolio items. These are

6The names of individual stocks and mutual funds are not part of the data that is available by default.
They may be obtained from CentERdata for a small administrative charge.

7Growth funds are essentially the same as mutual funds, except for the fact that they reinvest any dividends
and interest they receive from their investments. The distinction is made in the questionnaire due to different
tax treatments. I do not maintain this distinction and refer to both as mutual funds.
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consolidated in row 6, but not in rows 4 or 5. A similarly positive picture emerges when
inspecting the fraction of assets covered by the portfolio components for which a return series
is available. The average coverage rate is about 90% with a very left-skewed distribution –
the median is at 98.9%. Adding bonds and options to the denominator reduces average rates
by 5 percentage points and only affects the lower tail of the distribution. In the analysis
below, I assume that the unobserved part of the risky portfolio behaves the same way as
the observed part and exclude households with coverage rates below 30%, having checked
robustness to various levels. Some individuals stated the name of a portfolio component, but
did not provide information on the amount held. I imputed this information by assuming that
the difference between total portfolio holdings and portfolio holdings attributable to specific
assets is equally distributed among all reported assets. This implies that the coverage figures
mentioned before are potentially overstated. However, row 9 of Table 1 reveals that this
affects only 8% of the portfolio balances, and that it is concentrated among much less than
half of all households. Furthermore, half of those who do not provide quantity information
on an individual portfolio component have only this one item in their portfolio. Hence, no
bias of the diversification results, which are independent of portfolio size, would arise from
these households.

The bottom part of Table 1 shows that households reported ownership of 269 different
assets; of which 170 are mutual funds and 99 are shares. I use the maximum available period
for the returns from January 1990 to June 2009, or 235 months, for the analysis. Several assets
are observed for shorter periods of time, leading to an average (median) of 138 (128) months.
Calvet et al. (2007) abstract from mutual fund fees in their main analysis and explore the
robustness of their result to incorporating the exact mutual fund fees for the 10 most popular
mutual funds and applying average fees to the rest. I take the opposite path, incorporating
mutual fund fees in the main part of the paper and checking robustness to excluding them.
I could find information on the fees that 140 of these charge via Morningstar or a fund’s
prospectus. For another 20 mutual funds, I assigned the fee of similar funds managed by
the same company. I imputed the fees for the remaining 10 funds from the distribution of
available fees. The last line of Table 1 shows that fees are in the usual range with an annual
average of 130 basis points. In the estimations which contain mutual fund fees, I subtract 30
basis points from the benchmark index, which approximates the fees charged by index funds
replicating common benchmarks.

2.3 Construction of diversification measures

In order to reduce the return series data to single measures of portfolio efficiency, I follow
the strategy of Calvet et al. (2007) rather closely and merely sketch it here in order to keep
the paper self-contained. The interested reader is referred to Calvet et al. (2007), including
the corresponding Online Appendix, for further details. In a first step, I decompose total
portfolio risk into a systematic and an idiosyncratic component. All returns are framed as
excess returns over the risk-free rate, which is approximated by the money market rate. The
portfolio risk decomposition is based on a regression of the household portfolio’s excess return
reh,t on a benchmark’s excess return reb,t:

reh,t = αh + βh · reb,t + εh,t

I take the MSCI Europe index as the benchmark, the results are robust to using the excess
returns of the AEX or the (unhedged) MSCI World Index instead. The decomposition of the
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household’s total portfolio risk σ2h into a systematic σ2b and an idiosyncratic σ2h,idios. component
is then given by:

(1) σ2h = β2h · σ2b + σ2h,idios.

The advantage of this decomposition is that it is purely statistical, i.e. it does not involve
any assumptions about asset pricing. The main drawback is that while a large amount of
idiosyncratic risk-taking is a sign of inefficient investing, its magnitude is difficult to interpret.

Constructing diversification measures with a meaningful scale requires an estimate of
expected returns. Directly estimating expected returns in each dataset would be problematic
because of the short return histories for some assets; and because the time series cover different
time spans.8 Again, I follow Calvet et al. (2007) and assume that assets are priced according
to a CAPM, where I take the MSCI Europe to proxy the efficient market portfolio. This
choice seems natural for a member of the Eurozone. Net of the 30 basis points annual fee, the
benchmark has an annual excess return µb = 5.75% over the 1983-July 2009 period. Along
with the standard deviation σb = 16.7% this leads to a Sharpe ratio Sb = µb/σb of 35%.
Imposing the CAPM leads to the following regression for all assets a = 1, 2, . . . 269:

rea,t = βa · reb,t + εa,t.

Given the betas of all assets and the portfolio weights for each household, it is straightfor-
ward to calculate the expected returns µh of the household portfolios. A first measure of
diversification loss is the relative Sharpe ratio loss:

(2) RSLh = 1− Sh
Sb

The relative Sharpe ratio loss relates the Sharpe ratio of the household portfolio to that of
the benchmark. It equals zero for an efficient portfolio and one for a portfolio where all risk
is idiosyncratic.

While the relative Sharpe ratio loss has a number of attractive features (see Calvet et al.,
2007), its usefulness is confined to risky assets. A poorly diversified risky portfolio will not
lead an investor far astray from the efficient frontier if the share in risky assets is sufficiently
low. The independence of RSLh of the risky asset share thus is not necessarily desirable.
Calvet et al. (2007) therefore define the return loss, which is the average return a household
loses by not choosing a position on the efficient frontier with the same level of risk. I skip its
derivation and directly report a (slightly simplified) version that is useful for decomposing it
into various components:

(3) RLh = µb · ωh · βh ·
(

RSLh
1−RSLh

)
The return loss of the household portfolio is the product of the expected excess return on the
market portfolio (which does not vary in the population), the risky asset share ωh, the beta,

8To see this, assume that one observes two assets with identical moments. Data for the first is available in
the 2000-2005 period and for the second from 2002 to 2007. The first asset would likely have a much lower
estimated alpha because the market conditions were worse during the earlier period. Pricing assets via the
CAPM avoids this problem as long as the correlation with the index does not change with market conditions.
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and a nonlinear transformation of the relative Sharpe ratio loss.9 In the mean-variance plane,
the return loss is the vertical distance between the efficient frontier and the location of the
household portfolio.

2.4 An investment production function

One of the big advantages of the CentERpanel/DHS data is that it allows, for the first time,
to relate detailed diversification outcomes to covariates that are not typically available in
administrative data. For example, the Swedish administrative data of Calvet et al. (2007,
2009b) contain measures of wealth, income, employment, age, household size, education, and
immigration status. One of their main findings is that wealthier households invest both more
aggressively and more efficiently. The data do not allow to discern whether this is because
these households are able to buy better advice; or whether they take better financial decisions
by themselves. The policy conclusions would be very different: In the former case, one would
target the supply of investment advice. In case investor sophistication is the key, financial
education programs could be of help (Tang et al., 2010).

In order to clarify concepts, it is useful to think of the investment process in terms of a
simple production function. The output is a measure of efficient investment, e.g. one of those
considered in the previous subsection. A certainly non-exhaustive list of important inputs
identified in the literature are financial literacy/knowledge, cognitive abilities and education,
the source of financial advice, risk aversion, age, gender, and several others described below.
I approximate the production function by a linear equation

(4) Y = X ′b+ u.

The investment outcome Y is observed and relevant for the household as a whole, but many
of the inputs in the vector X concern individuals. The DHS contains a variable asking about
who takes financial decisions in the household on a five point-scale. If both partners agree on
a financial decider, I use the inputs for this person. In case of ties (e.g. both partners stating
that they have equal say), I use the inputs from the member identified as the household
head. The results of Smith et al. (2010) provide some evidence that this approach is sensible.
Analysing the correlation between cognitive skills and various economic outcomes for older
households, separately for each partner, they show that numeracy of the financial respondent
in the HRS data is by far the most important correlate.

Previewing the results, we shall see that the diversification loss is close to negligible for
a large part of its distribution. However, similar to the Swedish case, losses become rather
high in the upper tail. For this reason, I do not only estimate Equation (4) by OLS, but
also by means of quantile regressions. An additional benefit of quantile regression is that it
provides a direct way to incorporate non-participants in the estimations, provided that the
diversification measure is well-defined for non-participants. This is the case for the return
loss (3): ωh = 0 or RSLh = 0 imply RLh = 0. Note that the quantile under consideration
needs to be strictly positive for all population groups, otherwise the estimator is not well
defined. The typical way of including non-participants in a least squares regression would be
to model (4) as a two-part process of first deciding whether to invest in risky assets and then

9The value of RSLh
1−RSLh

becomes extremely high if the expected return on a household’s portfolio µh is close

to zero. I therefore winsorise RSLh
1−RSLh

in the decomposition exercises below.
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how to invest in them (see Pohlmeier and Ulrich (1995) for such a model in another context
and Calvet et al. (2007) for an application to portfolio choice). Given that the participation
decision has been studied extensively, including with the very data used here (van Rooij et al.,
forthcoming), such an approach seems to be an unnecessary complication.

My analysis identifies subgroups of the population who are at an increased risk of obtaining
inferior investment outcomes. It does not without further assumption follow that changing
a covariate would lead to a change in Y corresponding to b. Nevertheless, the analysis is an
important improvement over the state of the art because it permits to identify conditional
relationships. For example, in a related contribution Korniotis and Kumar (2009) first regress
cognitive skills in an auxiliary dataset on a number of covariates. They then use the estimated
coefficients to predict a smartness score in the dataset containing investment outcomes. Such
a procedure only permits the estimation of the bivariate relationship between “smartness”
and investment outcomes and does not allow for separate effects of covariates entering the
index. The analysis of Grinblatt et al. (forthcoming) shows the relation between a measure
of cognitive skills and some measures of diversification for Finnish males; but the authors
can neither condition on education at the individual level nor disentangle whether part of the
relationship is mediated through financial advice.

2.5 Inputs to investment production

As discussed in the introduction, there has been a huge upsurge in studies that aim to measure
the individual skills that enter the right hand side of (4). One reason for using the 2004 and
2005 portfolio data is that at that point in time, Maarten van Rooij, Annamaria Lusardi, and
Rob Alessie fielded a battery of questions aimed at estimating respondents’ financial literacy.
The data form the basis of van Rooij et al. (forthcoming) and the authors kindly provided me
with data and code. The questions are similar to those in Lusardi and Mitchell (2007b), they
are discussed in detail and compared to other measures in Hung et al. (2009). A first set of
questions, coined basic financial literacy, contains 5 quiz-like simple math problems. A good
example is the numeracy question: Suppose you had e100 in a savings account and the interest
rate was 2% per year. After 5 years, how much do you think you would have in the account
if you left the money to grow? (i) More than e102; (ii) Exactly e102; (iii) Less than e102;
(iv) Do not know; (v) Refusal. Table A.2 in the Appendix shows that 95% of respondents
correctly answer this question. The other questions have a similar structure of relatively
simple math problems, but correct response rates are lower. Similar to van Rooij et al.
(forthcoming), I assume that a single factor is underlying the five questions and normalise this
factor to have zero mean and unit variance. The only difference is how I treat “Do not know”
and “Refusal” answers. Instead of coding another variable, which will have a complicated
correlation structure with the “substantive” answer, I assign those answers the probability of
a random guess being correct, e.g. 1/3 for the question above. This can be rationalised by a
linear probability model and would be exactly correct if all factor loadings were equal to each
other. In the present case, it will be a reasonable approximation. All results are robust to using
the exact procedure of van Rooij et al. (forthcoming). The basic financial literacy measures
whether individuals possess the necessary cognitive abilities to perform simple numerical
computations, which will be important for informed financial decision-making. Indeed, the
survey instrument resembles to some extent the numeracy component of the cognitive ability
score used in Christelis et al. (2010b) to explain stockholding. The first row of Table 2 shows
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that participants in risky asset markets have a significantly higher basic financial literacy
score, confirming one of the main results of van Rooij et al. (forthcoming) and Christelis
et al. (2010b). The distribution of the index is left-skewed since 45% of respondents in the
entire sample answer all questions correctly, leading to a maximum index value of 0.63.

The second part of the financial literacy module, termed advanced financial literacy, con-
sists of questions relating to knowledge of financial instruments and concepts. For example,
the following question asks about the diversification properties of stocks and mutual funds:
Buying a company stock usually provides a safer return than a stock mutual fund. True or
false? (i) True; (ii) False; (iii) Do not know; (iv) Refusal. Only two thirds of all respondents
give the correct answer, but three quarters of those who participate in risky asset markets.
The advanced financial literacy index, constructed in the same way as the basic literacy in-
dex, also takes on higher values on average for holders of risky assets (see row 2 in Table 2) –
again as in van Rooij et al. (forthcoming). Conceptually, these financial knowledge questions
might be more problematic as inputs in (4) than the basic math skills in the basic module.
The reason is that they may be largely shaped by investor experience – one would expect an
increase in the probability of a correct answer to the example question for somebody who has
monitored the evolution of stock and mutual fund returns in his or her portfolio for a while.
This is less problematic for analysing efficiency of the risky portfolio than for studying the
participation decision, but it remains a concern. The same comment applies to self-assessed
financial knowledge, which is the third variable aimed at measuring financial literacy. I di-
chotomise the four-point rating into a dummy variable, which equals one for 19% (28%) of
all households (participants in risky asset markets).

Abstracting from agency problems and potential costs, rational households who realise
their lack of investment skills would seek external help.10 The most important source of
financial advice is directly asked for in the DHS questionnaire. The second part of Table 2
shows that about a quarter of respondents seek help from professional advisors and that
another quarter rely upon the advice of family and friends. The remaining half is made up of
a number of categories: Newspapers; financial magazines; guides; books; brochures from the
bank or mortgage advisor; advertisements; financial computer programs; the Internet; other.
I label the aggregate category “reliance on own financial judgement”.11 Their percentage
rises among participants in risky asset markets, entirely at the expense of those who turn to
their friends and family for financial advice. It is especially interesting to compare the level
of financial literacy among the different groups of advice-seeking. Among all respondents, it
is significantly lower among those who ask their friends and family compared to any of the
two other groups. The same pattern remains for those with risky assets, although the sample
size compromises statistical significance.

The remaining inputs to the production function are additional controls which serve to
sharpen the interpretation of the financial literacy and advice variables. First, the financial
literacy variables could merely be an approximation for education if it was not controlled
for. Another angle to look at the relation is that to extent that education signals cognitive
abilities, one would like to know whether specific (i.e. the basic literacy index) or general

10Hackethal et al. (2011) show that professional advice not necessarily leads to better outcomes, however.
11It is debatable whether those who cite brochures from financial institutions as their most important source

of advice should rather be added to the category of professional financial advisors. Presumably, a financial
institution’s advisors and brochures would recommend similar investment strategies. I prefer the classification
I chose because brochures seem to focus on advertising specific investments, while advisors would (hopefully)
make recommendations based on the entire portfolio. In any case, all results survive a reclassification.

11



Table 2: Descriptive statistics on the covariates

Variable name Entire sample Portf. returns avail.

Mean Std. dev. Mean Std. dev.

Basic fin. literacy index 0.000 1.000 0.249 0.765

Advanced fin. literacy index 0.000 1.000 0.563 0.756

High self-rated fin. knowledge 0.189 . 0.280 .

Financial advice: Professionals 0.230 . 0.247 .

Financial advice: Family/friends 0.238 . 0.131 .

Financial advice: Own judgement 0.533 . 0.622 .

Prof. advice ∗ bas. literacy 0.046 0.985 0.201 0.943

Advice fam./friends ∗ bas. literacy -0.184 1.040 0.143 0.691

Own fin. jugdement ∗ bas. literacy 0.071 0.978 0.297 0.712

No/elementary/secondary education 0.584 . 0.438 .

Higher vocal education 0.267 . 0.318 .

Academic education 0.149 . 0.244 .

Age 26-40 0.300 . 0.185 .

Age 41-64 0.481 . 0.538 .

Age 65+ 0.219 . 0.277 .

Female 0.208 . 0.159 .

High tolerance for risky investm. 0.000 1.000 0.461 0.951

Household size 2.365 1.301 2.386 1.330

Degree of urbanisation 0.000 1.000 -0.002 0.987

Net annual household income 31,711 37,499 40,174 63,195

Log net household income 10.215 0.492 10.413 0.513

Value of total financial assets 41,513 76,736 84,845 114,436

Log financial assets 9.700 1.399 10.713 1.185

Value of total non-financial assets 173,053 198,047 238,496 228,589

Log total non-fin. assets 10.222 2.931 11.036 2.608

Value of total debt 55,242 82,810 66,270 91,551

Log total debt 7.458 3.969 7.986 3.993

Source: CentERpanel, own calculations. All statistics are adjusted for sampling weights, standard deviations
of dummy variables are not shown. Variables relating to individuals rather than the household (i.e. all variables
except for the last section of the table) are for the financial decider, as defined in Section 2.4. The number
of observations where the covariates for the preferred specification (all covariates) are present is 958 (798) for
the entire sample and 270 (238) for participants in risky asset markets with detailed portfolio information.
For most covariates, the number is much closer to the relevant figures reported in column “# obs” of Table 1.
The interaction terms in the third part of the table give averages of financial literacy within each category of
financial advice.
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abilities matter more. I include education in three categories and as expected, it is higher
among those with risky assets in their portfolio. Second, cognitive functioning declines with
age. However, age may have a positive effect on investor performance through experience
(Korniotis and Kumar, forthcoming). Third, cognitive abilities have been shown to correlate
with risk aversion (Dohmen et al., 2010). On average, women are more risk averse than men
(Croson and Gneezy, 2009), so I include a gender dummy. Furthermore, I use a measure
of willingness to take financial risks derived from the degree of agreement with six different
statements, each measured on a 7-point scale (e.g. It is more important to have a safe
investment with guaranteed returns than taking risk. → Totally disagree / Disagree / Partly
disagree / Neither agree or disagree / Partly agree / Agree / Totally agree). I add up the
answers and standardise the resulting variable to have mean zero and unit variance. The
bivariate correlations with risky asset holdings both go in the expected direction, see Table 2
once more. Including these variables in the regression has the drawback of reducing the
sample size by about 15%. Hence, I do not include the risk aversion measures in my preferred
specification and relegate the tables with added variables to the Appendix.

In order to compare my results to those of Calvet et al. (2007), I furthermore include mea-
sures of household size, the degree of urbanisation, household income, wealth, and liabilities
in various additional specifications. The reason for not incorporating these variables in my
standard specification is that their interpretation in the production function framework (4)
is not obvious. Almost all explanations would go through abilities (e.g. smart individuals
would have higher labour earnings and better investment outcomes) or financial advice (e.g.
for rich households professional advice might be cheaper relative to asset volume). Again, I
discuss the results in the text and all corresponding tables can be found in the Appendix.

3 Results

3.1 The distribution of efficiency measures

For all participants in risky asset markets, Figure 2 contains plots of several measures for
each quintile of the distribution of total portfolio risk, as inferred from equation (1). Shown
in the left panel, total portfolio risk rises from less than 10% annually in the lowest quintile
to almost 40% in the top quintile, with the most pronounced rise at the top. The systematic
component moves almost in parallel for the first three quintiles, only then its slope becomes
much flatter. Accordingly, the idiosyncratic component shows its steepest increase at the top
of the portfolio risk distribution, suggesting that inefficient investing is by far the strongest
there. The numbers are remarkably close to those found by Calvet et al. (2007) for Swedish
households – they report 11% (19.5%, 36.4%) at the 10th (50th, 90th) percentiles for total
portfolio risk.12 They also find the same U-shaped pattern for the idiosyncratic risk share
displayed in the right panel, again with similar magnitudes. In both countries, the high values
at the lower end of the distribution are driven by bond mutual funds, which display a low
correlation with the benchmark index. This is also reflected in the average beta coefficient
inferred from (1), which rises strongly in total portfolio risk. Again, the magnitudes are very
close to those reported in Calvet et al. (2007).

12Given the huge sample size, Calvet et al. (2007) calculate averages around specific percentiles, which
enables them to go much further into the tails of the distribution. I compare their reports for the midpoint of
quintiles to the quintile-specific averages calculated in my analysis.
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Figure 2: Portfolio risk components by quintile of total portfolio risk
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Source: CentERpanel, Datastream, Euroinvestor, own calculations. See Section 2.3 for computational details.

In order to get an understanding of the basic characteristics of household portfolios, it
is useful to plot them in the mean-variance plane. Panel A of Figure 3 does this for the
pure stock portfolios and reveals a picture of strong underdiversification, which is similar to
the findings of Calvet et al. (2007) for Sweden and Goetzmann and Kumar (2008) for the
U.S.. The mutual fund component of households’ portfolios appears much better diversified,
even though the CAPM is applied after subtracting mutual fund fees. The major part of the
distribution lines up right below the efficient frontier (Panel B of Figure 3). Nevertheless, a
substantial fraction of mutual funds perform significantly worse than the market portfolio,
conditional on the level of risk. Panel C contains the aggregate of stocks and mutual funds and
shows that many households reduce the risk of their stock portfolios by additionally investing
in mutual funds (of all risky asset owners, 55% only own mutual funds, 18% only own stocks,
and 26% own both). The picture is yet more positive when holdings of safe assets are taken
into account in Panel D of Figure 3. Relatively few outliers with severe losses are left at
high levels of risk, but there is a number of households with a portfolio that is 1-2 percentage
points below the efficient frontier at relatively low levels of risk. Diversification losses of this
magnitude will be substantial when accumulated over the life-cycle (Calvet et al., 2007; Tang
et al., 2010).

In order to allow for an easier interpretation and to perform quantitative analyses, it is
useful to reduce the 2-dimensional information in Figure 3 to a single dimension. This is the
purpose of the relative Sharpe ratio loss (2) and the return loss (3) presented in Section 2.4.
Their quintile-specific values are plotted in Figure 4. The relative Sharpe ratio loss, shown in
the left panel, is limited to far less than 20% in the bottom three quintiles, before reaching
27% and 64% in the upper quintiles. Again, this pattern mirrors the findings of Calvet et al.
(2007) very closely: Most households largely avoid inefficient risk-taking, but almost two
thirds of all the risk the average household in the top quintile takes remains uncompensated.
The right panel of Figure 4 contains various measures of return loss. The solid black line
just considers the risky portfolio, i.e. it is the vertical distance between the location of a
household in Panel C of Figure 3 and the efficient frontier. Put differently, the risky asset
share ωh in (3) is set to one. The average return households lose on their risky portfolio
compared to an efficient investment equals 180 basis points per year, which is just above the
number reported by Calvet et al. (2007) for the unhedged world index as the benchmark. It
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Figure 3: The mean-variance characteristics of household portfolios
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A: Stocks portfolios
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B: Mutual funds portfolios
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C: Risky portfolios
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D: Financial portfolios

Source: CentERpanel, Datastream, Euroinvestor, own calculations. See Section 2.3 for computational details.
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is below 100 basis points for the bottom three quintiles and 585 basis points in the highest.
These return losses are far lower when the entire portfolio is taken as the basis – again, they
are very limited for the first four quintiles (56 basis points in the fourth), but reach the
substantial amount of more than 2% in the highest quintile. The average is about 59 basis
points, substantially less than the 180 basis points for the risky portfolio multiplied with the
risky asset share of .39 (see Figure 1). This implies a negative covariance between the risky
asset share and the losses from underdiversification multiplied with the household portfolio’s
beta.13 This illustrates the limited usefulness of the relative Sharpe ratio loss for assessing the
diversification losses incurred on the entire portfolio – on average, those with higher values of
RSLh have a smaller share in risky assets, so the losses are less important for them. Finally,
the third line in the right panel of Figure 4 demonstrates that, again as in Sweden, the losses
are by no means negligible in monetary terms for substantial parts of the population.

Figure 4: Mean-variance measures of diversification losses.
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Finally, I plot the various components of the return loss as exemplified by the right-
hand-side of (3) by its quintiles: The fraction in risky assets ωh, the beta coefficient on the
household portfolio, and the transformation of the relative Sharpe ratio loss RSLh

1−RSLh
. Of

course, the different components do not add up due to Jensen’s inequality, so the graphical
illustration does not qualify as a decomposition. Nevertheless, it remains useful to get a
rough idea of the underlying mechanisms. The beta coefficient rises almost linearly over
the quintiles, so inefficient and efficient risk-taking at least go hand in hand on average. The
risky asset share increases quickly until the middle of the return loss distribution and modestly
afterwards. The diversification loss is fairly constant in the lower quintiles (implying relative
Sharpe ratio losses between 24% and 30%) and increases strongly in the top quintile (implied
RSLh = .48). Compared to the lower quintiles, the prime driving force behind the highest
return losses thus seems to be uncompensated risk taking.

3.2 How do investment outcomes vary in the population?

The previous section has shown that the descriptive results of Calvet et al. (2007) can be
replicated to a large extent for another country and, more relevantly, on a dataset that is

13This finding is confirmed by statistical analysis; and it is also true for the covariance between the relative
Sharpe ratio loss and ωh.
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Figure 5: Return loss and its components by quintile
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Source: CentERpanel, Datastream, Euroinvestor, own calculations. See Section 2.3 for computational details.

fairly easy to collect anywhere. While this is an important step, the big advantage of the
CentERpanel data is the availability of inputs to the investment production function (4) that
have been of particular interest in the literature. Figure 6 once more plots the quintile-specific
averages of the return loss, adding non-participants in risky asset markets (for whom RLh = 0
since wh = 0 and RSLh

1−RSLh
= 0). For each return loss quintile, the figure furthermore adds

the average values of the basic financial literacy index and the share of households relying on
their own financial judgement. The financial literacy index shows an inverse U-shaped pattern
– it is lowest for the non-participants (previously shown by van Rooij et al. (forthcoming)
and Christelis et al. (2010b)), rises monotonously until the fourth return loss quintile, before
dropping to its second-lowest value in the top quintile. In conjunction with the fact that
diversification losses seem to be the driving force behind the largest return losses (Figure 5),
this suggests that low investment skills may play an important role in determining the worst
outcomes. The same inverse U-shaped pattern is found for the amount of idiosyncratic risk
or the relative Sharpe ratio loss, see Figure B.1 in the Appendix. The fraction of individuals
relying on their own financial judgements is generally rising in the return loss, although the
high value in the second quintile is an exception to the rule. While the bivariate relations are
suggestive, a more formal analysis is required to shed light on potential mechanisms.

The first column of Table 3 shows the results for an OLS regression of my preferred set of
covariates on the sample of participants. The first three rows, containing the basic financial
literacy index, the advice variable, and their interaction, already contain the basic result of
my analysis.14 Financial literacy does not have an effect for those who seek external advice
– the coefficient in the first row is close to zero (2.4 basis points per year) and precisely
estimated (the 95% confidence interval ranges from -7.2bp to 12bp). The dummy for deciding
on the basis of self-collected information takes on a large and significantly positive value –
those relying on their own judgement with a financial literacy score of zero on average incur
a return loss that is 48 basis points higher than those who rely on external advice. The
interaction term shows that this effect is much worse for those with negative values of the
financial literacy index and that it almost exactly cancels out for those who achieve the highest
financial literacy score. These households are estimated to incur an insignificant extra return

14The other financial literacy measures did not turn out to have an effect and results for the two left-out
groups of financial advice were very similar. More extended specifications are discussed below.
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Figure 6: Financial literacy, financial advice, and diversification losses
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Source: CentERpanel, Datastream, Euroinvestor, own calculations. See Section 2.3 for computational details.
The return loss quintile value “NP” stands for non-participants.

loss of 48.4bp − 73.7bp × .63 = 1.9bp on average, compared to those seeking advice from
professionals or family/friends with the same level of financial literacy. The coefficients on
all other covariates are insignificant and much smaller than those for financial literacy and
advice.

The results of the quantile regressions shown in the remaining columns of Table 3 are
yet more interesting because they show that the averages are entirely driven by effects in the
top third of the return loss distribution. None of the percentiles varies much with the level
of financial literacy among those seeking external advice. All else equal, the 90th percentile
of the return loss is 148 basis points higher among those who rely on their own financial
judgement and have a financial literacy index of zero. Again, the effect becomes much worse
for negative values of the financial literacy index and reduces to 40bp for those with the
maximum financial literacy score. The same pattern holds for the 70th percentile, although the
magnitudes are substantially smaller. The variation of the coefficients across the quantiles is
significant because it shows that (a) most households achieve reasonable investment outcomes
regardless of their characteristics and (b) the worst outcomes are concentrated among those
who neither seek advice from other individuals nor have a high level of numerical skills.

Finally, one should note that there appears to be an age effect that is hidden in the OLS
estimates. Return losses are significantly higher around the middle of the distribution for the
oldest age group (age 65+) and there is a large negative coefficient for the 90th percentile,
although it is not significant. The same pattern prevails in the middle age group, but all
coefficients are insignificant. The coefficients on education are either tiny or point in the
expected direction with none of them being significant. Last, females incur larger return
losses at the higher quintiles, although they are significant only at one quantile.

The estimates reported in Table 3 are valid for the sample of participants in risky asset
markets, but they may be different in the general population. To see this, assume there are
two groups in the population. One group’s members mostly stay out of risky assets and the
remaining members invest very inefficiently. The second group fully participates and invests
quite efficiently. Conditioning on participation will lead to all quantiles being higher for the
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Table 3: Contributors to return loss

OLS p10 p30 p50 p70 p90

Basic fin. literacy index 0.0335 -0.0156∗ 0.0151 0.0522∗ 0.0631 0.216
(0.67) (-1.70) (0.36) (1.69) (1.20) (0.89)

Financial advice: Own judgement 0.507∗∗ 0.00600 0.0443 0.0482 0.389∗∗∗ 1.541∗∗∗

(2.35) (0.38) (0.94) (1.15) (4.67) (2.72)

Own fin. jugdement ∗ bas. literacy -0.733∗ 0.0148 -0.0146 -0.0154 -0.496∗∗∗ -1.789∗∗∗

(-1.91) (1.04) (-0.26) (-0.36) (-5.38) (-2.95)

Higher vocal education 0.0716 0.00293 -0.0144 -0.00195 -0.0949 -0.330
(0.48) (0.16) (-0.30) (-0.05) (-1.12) (-0.58)

Academic education -0.0244 0.000249 -0.00647 -0.0886∗ -0.0305 -0.248
(-0.18) (0.01) (-0.11) (-1.71) (-0.30) (-0.37)

Age 41-64 -0.156 0.00470 0.0375 0.0656 -0.0556 -0.519
(-0.77) (0.20) (0.63) (1.20) (-0.53) (-0.72)

Age 65+ -0.0640 0.0341 0.131∗∗ 0.262∗∗∗ 0.158 -0.413
(-0.29) (1.38) (2.03) (4.33) (1.40) (-0.53)

Female 0.230 0.0304 0.0214 0.158∗∗∗ 0.180 0.705
(1.21) (1.39) (0.35) (2.75) (1.54) (0.82)

Constant 0.453∗∗ 0.0147 0.0734 0.141∗∗ 0.382∗∗∗ 1.252∗

(2.21) (0.73) (1.13) (2.35) (3.42) (1.94)

Observations 441 270 270 270 270 270
Adjusted R2 0.114

Source: CentERpanel, Datastream, Euroinvestor, own calculations. See Section 2.3 for computational details.
The OLS regression has been estimated on both waves of data and standard errors are clustered at the
household level; the quantile estimates are based on a pure cross-section. All regressions use sampling weights.

first group compared to the second group. Not doing so will reverse the order except for
the highest quantiles. Table 4 presents the results of including the non-participants in the
estimation sample, who have a return loss of zero. Remember from Section 2.4 that the
quantiles under consideration need to be strictly positive for the estimator to be well-defined,
so results of this exercise are presented in for every fifth percentile starting with the 75th.

Except for the female dummy, the estimates in the lower quantiles are all positive, albeit
relatively small. This is an almost mechanical consequence of the different characteristics of
participants and non-participants (compare the first and third column of Table 2). Unless
someone invested in the efficient market portfolio directly, the return loss will be positive
for participants. There does not seem to be any effect of financial literacy for those seeking
others’ advice. The “self-deciders” with a financial literacy score of zero have consistently
higher return losses at every quantile considered, reaching magnitudes of more than 100 basis
points at the 95th percentile. The interaction effect is small and mostly insignificant over the
first 4 quantiles considered. It is back to the previous interpretation for the highest quintile.
Interestingly, the education variables are positive over the entire distribution and significantly
so in the lower part. The more educated invest more aggressively, but education does not
lead to very efficient risk-taking. The same comment applies to the highest age group – at
each quantile under consideration, their return loss is substantially higher than that of the
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Table 4: Contributors to return loss, including non-participants

p75 p80 p85 p90 p95

Basic fin. literacy index 0.00900 0.0134 0.0223 0.0522 0.106
(0.70) (0.86) (0.76) (0.88) (0.56)

Financial advice: Own judgement 0.103∗∗∗ 0.116∗∗∗ 0.180∗∗∗ 0.199∗∗ 1.045∗∗∗

(6.04) (4.48) (3.52) (2.06) (2.96)

Own fin. jugdement ∗ bas. literacy 0.0336∗ 0.0380 0.0603 0.0459 -1.210∗∗∗

(1.86) (1.55) (1.30) (0.55) (-3.60)

Higher vocal education 0.116∗∗∗ 0.153∗∗∗ 0.127∗∗ 0.188∗ 0.336
(6.02) (5.33) (2.25) (1.73) (0.86)

Academic education 0.0980∗∗∗ 0.200∗∗∗ 0.173∗∗ 0.158 0.438
(4.00) (5.44) (2.35) (1.13) (0.84)

Age 41-64 0.0247 0.0298 0.0750 0.0984 0.0609
(1.15) (0.93) (1.20) (0.88) (0.14)

Age 65+ 0.183∗∗∗ 0.210∗∗∗ 0.335∗∗∗ 0.427∗∗∗ 0.405
(7.38) (5.63) (4.60) (3.27) (0.85)

Female -0.0183 -0.0381 -0.0428 -0.0800 -0.0356
(-0.87) (-1.17) (-0.67) (-0.67) (-0.08)

Constant 0.0146 0.0400 0.0664 0.156 0.355
(0.69) (1.26) (1.05) (1.39) (0.92)

Observations 875 875 875 875 875

Source: CentERpanel, Datastream, Euroinvestor, own calculations. See Section 2.3 for computational details.
All estimates are based on a cross-section of households, including those who do not own any risky assets. For
this reason, the coefficients are only estimated at higher quantiles where the return losses are strictly positive
for all groups. All regressions use sampling weights.

youngest age group. Females are estimated to have lower return losses than males at each
quantile of the distribution, although the coefficients are small and none of them is significant.
Nevertheless, it nicely illustrates the differences that may arise from estimations on the two
samples. Taken at face value, the coefficients in Table 3 imply that participating females
incur a higher return loss conditional on the other covariates. But the results in Table 4 show
that in the entire population another effect dominates: Many stay out of risky asset markets,
potentially because they realise their lack of skills. This is well in line with overconfidence
being stronger among men (Barber and Odean, 2001).

3.3 Robustness of the previous results

In appendices A.2 (regressions on the sample of participants) and A.3 (regressions on all
households), I consider robustness to including a number of additional covariates in regressions
similar to those underlying Tables 3 and Tables 4. In Tables A.3 and A.7, I add the advanced
financial literacy index, self-rated financial knowledge, and the willingness to take financial
risk. None of the extra financial literacy variables has an effect for the selected sample,
which is also true for their interactions with financial advice in an unreported regression. In
the entire sample (Table A.7), the previously mentioned “mechanical” effect occurs for the
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advanced literacy index as well. In any case, as mentioned in Section 2.5, the coefficients
are difficult to interpret when the participation decision is involved because knowledge about
assets’ characteristics likely comes from experience with these assets.

As expected, higher risk appetite goes hand in hand with higher return losses across the
distribution in both samples. The variable is strongly significant and leads to a doubling of
the adjusted R2 in OLS the specification of Table A.3 compared to Table 3 (leaving out the
other extra variables does not seriously change the adjusted R2). It is insignificant at the
highest quintiles, which may be a sign that the most inferior outcomes are driven to a larger
extent by mistakes than by more aggressive and relatively efficient investing. The magnitude
of the coefficients remains non-negligible, however, so one should not interpret too much into
this. Including the additional variables sharpens the age effect in both samples and does the
same for the female dummy in the sample of participants. The coefficients on education do
not change in the selected sample. Interestingly, they become much smaller and even reverse
for the higher quantiles of the overall population – much of the added return loss in Table 4
appears to be driven by increased risk tolerance of the more educated. Most importantly,
though, none of the main results regarding financial literacy and advice is altered by adding
the covariates.

The same is true for the specification in Tables A.4 and A.8, which adds only the question
on diversification from the advanced financial literacy battery to the variables used in Tables 3
and 4, since I expect this to have the strongest relation with my outcome. As expected, all
coefficients are negative, they are significant for the OLS regression and at the 70th percentile.
The picture reverses for the general population, where all coefficients are positive and signifi-
cantly so up to the 85th percentile. This suggest that staying out of risky asset markets may
largely be a rational decision: Little knowledge is associated with worse outcomes conditional
on participation; more of the uninformed households staying out leads to smaller return losses
for that group in the lower part of the unconditional distribution.

Tables A.5 and A.9 show that separating the groups relying on advice from professionals
and family/friends does not make a difference. The basic financial literacy index matters only
for for the “self-deciders” (left-out category) in the first row – for the other two groups it can-
cels out with the interaction terms. Both dummies are negative with comparable magnitudes.
My main results also continue to hold when adding household size, urbanisation, and financial
variables to the preferred specification in Tables A.6 and A.10. The only noteworthy feature
is that the wealth-gradient in risky asset ownership (Figure 1) is reflected in higher return
losses across the distribution in Table A.10. Conditional on participation, nothing remains,
except for a tiny effect at the lowest decile (Table A.6).

As in Calvet et al. (2007), the treatment of mutual fund fees does not lead to different con-
clusions. Tables A.11 and A.12 in Appendix A.4 show that only minor numerical differences
arise when re-doing the analysis without subtracting those fees.

Calvet et al. (2007) take the logarithm of (3) as the dependent variable in their regression
analyses, which allows them to decompose the OLS regression coefficients into the average
contributions of risky asset share, portfolio beta, and diversification loss. So far, I have
not used the same approach. The first reason is that the decomposition is only valid for
OLS and does not carry over to the quantile regressions. Arguably, the latter yielded the
more interesting results: We have seen that the most important effects happen at the top
of the distribution of the return loss, whereas the outcomes in the lower-middle parts of the
distribution do not vary much with observable characteristics. Secondly, I believe that the
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scaling of the logarithmic regressions is less useful than a direct estimate. As is clear from
Figure 4, the return loss on the financial portfolio is limited to very low numbers for large
parts of the population, which are of little concern in welfare terms. On the logarithmic scale,
however, the return losses of 4bp at the 10th percentile and of 10bp at the 25th percentile
are almost as far apart from each other as the 61bp at the 75th percentile and the 149bp
at the 90th percentile. The latter are much more relevant and should have a greater impact
on the regression results. Nevertheless, the logarithmic decompositions are interesting for a
comparison of results and the estimates are presented in Appendix A.5.

Table A.13 contains the results from a regression model that mirrors Table 5 in Calvet
et al. (2007) as closely as possible. Only the age coefficient in the first column is significant
and positive. The lack of significance of most coefficients does not come as a surprise when
comparing the sample sizes and the fact that the R2 is the same. The maximum t-statistic
reported in Table 5 of Calvet et al. (2007) is 29.3. For a sample size of 373 (the reported
589 adjusted for clustering), this would reduce to 1.79. The remaining coefficients on age
show that the increased return loss seems to be a combination of a larger risky share and
inefficient investing. Finally, the significantly negative coefficient on the log of financial assets
in column 4 confirms the result of Calvet et al. (2007) that wealthier households invest more
efficiently on average – although in the Netherlands, there is no hard evidence that they
invest more aggressively conditional on participation. Given the plots in Figure 1, this does
not come as a surprise. Table A.14 contains the results for the preferred set of covariates. The
basic message from the regression in levels holds up, although financial literacy now appears
to have an effect also for those who turn to other persons for financial advice.

As a last robustness check, I consider a number of different measures of diversification loss
as dependent variables in Appendix A.6. All results are broadly similar to those from Table 3.
In particular, reliance on one’s own financial judgement clearly leads to more uncompensated
risk-taking, regardless of the diversification measure. When using the share of idiosyncratic
risk as the dependent variable (Table A.15), the effect of financial literacy appears to be
present for all households at the 90th percentile. At the 70th percentile, the coefficients are
the same as before, although only borderline significant. Tables A.16 and A.17 contain the
results for the return loss measured as the fraction of risky financial assets (i.e. setting wh = 1)
and the relative Sharpe ratio loss. As mentioned before, the right tails of both distributions
are strongly affected by portfolios that are almost riskless but have a low correlation with
the index on the risky part. I therefore exclude households whose portfolios have an annual
standard deviation below 2% from the analysis. The results show the same pattern as before,
although some coefficients are not significant.

Finally, Calvet et al. (2009b, see particularly the Online Appendix) consider a number of
different measures of diversification which can be constructed using typically available survey
data. The fraction of risky assets invested in shares as compared to mutual funds emerges
as their preferred measure. Table A.18 contains the results of a set of regressions with this
dependent variable. The OLS estimates only pick up a larger share of direct stock holdings
among the “self-deciders”, basic financial literacy is insignificant regardless of the main source
of financial advice. The quantile regressions are meaningless except for the 7th decile, again
only the advice dummy emerges as significant. In my data, the correlation between the
relative Sharpe ratio loss and the share of direct stockholdings is only .22 compared to .49
reported by (Calvet et al., 2009b).15 Less detailed diversification measures might thus be

15Calvet et al. (2009a) consider the share of funds and the Sharpe ratio, which leads to exactly the same
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helpful proxy variables in some cases, but when portfolio diversification is the outcome of
interest, they do not permit to go into nearly as much detail as the measures employed by
Calvet et al. (2007, 2009b) and in this paper.

A very similar index is constructed by Guiso and Jappelli (2009). In order to keep the
dependent variable increasing in the degree of underdiversification, I take the inverse of their
index and define it as 1−αh

min {1,Nh,shares} , where αh is the fraction of the risky portfolio invested

in mutual funds; and Nh,shares is the number of shares held directly by the household. This
index has a correlation of .34 with the relative Sharpe ratio loss and the results are displayed
in Table A.19. Again, the OLS coefficient only picks up the higher diversification losses of
those relying on their own judgement. However, the results at the 70th percentile now show
the same effects as for the more general measures: Higher diversification losses for the “self-
deciders”, which get much worse with below-average financial literacy and almost disappear
for those with the highest level of financial literacy.

4 Discussion and conclusions

My analysis has shown that detailed portfolio information can be obtained fairly easily from
survey respondents. Although the merging of names to ISIN numbers and the corresponding
return series is rather tedious, the resulting information is well worth the effort. The graphs
in Section 3.1 show that the distributions of various diversification measures track those in
Sweden very closely – which were obtained by Calvet et al. (2007) based on a dataset of
unprecedented quality. As Sweden has abolished its wealth tax in the meantime, the data
will not be updated anymore and the need for alternatives has become even more important.
I have shown such an alternative, which is easily replicated anywhere in the world.

On the substantive side, my results show that the largest losses resulting from underdi-
versification are incurred by those who neither turn to external help with their investments
nor have good skills in basic numerical operations and concepts. These effects are strong
enough to drive average coefficients and they are robust to controlling for a number of covari-
ates, including education level, age, financial knowledge in various forms, attitude to financial
risk-taking, measures of wealth, and household income. These results are consistent with and
refine those of Guiso and Jappelli (2009), who consider a financial literacy index that is a
mixture of financial knowledge and numeracy skills and find a positive impact on portfolio
diversification. Quantile regression analyses of the entire sample – including non-participants
in risky asset markets – show that the main results hold up and suggest that non-participation
is a response to a perceived lack of investment skill. This is consistent with Christelis et al.
(2010b) and Grinblatt et al. (forthcoming), who find that cognitive abilities are an important
contributor to participation in risky asset markets.

My results help to inform two related literatures. First, they provide a new angle to look
at the question posed by Korniotis and Kumar (2009), whether portfolio distortions reflect su-
perior information or psychological biases. Recently, van Nieuwerburgh and Veldkamp (2010)
provided a theoretical rationale for the former in the sense that if information about returns
is specific to a stock (industry), investors will hold a less than perfectly diversified portfo-
lio. My results are consistent with such an explanation for portfolios in the middle-upper
region of the return loss distribution. However, the fact that the highest return losses are

figures as using the inverse share and the relative Sharpe ratio loss.
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incurred by households without high financial skills relying on their own financial judgement
makes it unlikely that superior information was the driving force behind the choice of port-
folios. Rather, as suggested by Kimball and Shumway (2010), they are more likely to reflect
investment mistakes.

This directly leads to the issue of financial literacy, which has received a lot of attention
recently, especially from the policy side (e.g Lusardi, 2010). My results suggest that the
majority of Dutch household reach reasonably effective investment outcomes in terms of the
risk-return trade-off, regardless of their level of financial literacy. Many of them achieve this
by choosing a very low level of risk, others by turning to external help. Both strategies are
consistent with a rational response to poor self-perceived investment skill. Corroborative evi-
dence comes from Choi et al. (2010), who show that the (self-reported) likelihood of changing
one’s mind after consulting an investment advisor decreases in the quality of an experimental
investment decision. The one group where the most severe investment mistakes occur are
those individuals who neither seek external advice nor have a high level of financial-numerical
skills. In other words, the overconfident: Consistent with Guiso and Jappelli (2006), these
individuals trust their own capabilities more than those of others and seem to overestimate
the former. The fact that two factors (low level of skills and deciding by oneself) seem to be
present also suggests two potential starting points for policy interventions aiming to prevent
the most inferior investment outcomes.

That the factor measuring financial-numerical skill turned out to be much more important
than financial knowledge suggests that increasing the latter would not help much for portfolio
outcomes. The nature of the questions in in van Rooij et al.’s (forthcoming) basic financial
literacy index – very simple math quizzes worded in financial terms – suggests an interpre-
tation as a subcomponent of cognitive functioning, which has also been shown to correlate
strongly with the stock market participation decision (Christelis et al., 2010b). It becomes
increasingly difficult to compensate for low levels of cognitive skills after reaching adolescence
(e.g. Cunha et al., 2010, and the references therein), so it seems difficult to influence current
generations through this channel. However, it suggests another reason why early interven-
tions to foster the skills of disadvantaged children may be hugely beneficial. This assessment
is also in line with the findings of Agarwal and Mazumder (2010); Grinblatt et al. (2011,
forthcoming), who show that various financial mistakes are correlated with broad measures
of cognitive functioning drawn from military qualifications tests.

This leaves the second channel, namely helping individuals get competent financial advice.
This is more difficult than it seems at first sight because my estimates do not necessarily
yield the causal effect of mandating advice. Indeed, in the experiments of Hung and Yoong
(2010), only solicited advice had an effect on portfolio performance – unsolicited did not.
Nevertheless, expanding the availability of external guidance seems to be the most promising
route. Academic economist’s typical advice of investing in low-fee index funds competes with
many attempts to guide household’s behaviour where the form of the message is designed
by professional marketing forces, but the content is likely to suit to the needs of consumers
less than optimally (Inderst and Ottaviani, 2009). Further research in that direction – how
regulation can help shape correctly incentivised marketing forces – seems very promising
in this light (also see Campbell et al. (2011) for an elaboration of this point and Suvorov
and Tsybuleva (2010) for a first theoretical contribution in this direction). The point is
reinforced by Hackethal et al.’s 2011 finding that reliance on professional advisors leads to
higher portfolio turnover, consistent with typical incentive structures. While my analysis
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controls for annual fees charged by mutual funds, my cross-sectional data does not permit me
to estimate the costs associated with portfolio rebalancing. Analogously to the interaction
effects of financial advice and numerical-financial skills found for cross-sectional diversification
measures in this paper, an important step for future research would be to collect a dataset
that contains both inputs and detailed trading behaviour.
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Table A.2: Detailed documentation of the financial literacy modules

Variable name Entire sample Portf. returns avail.

Mean Std. dev. Mean Std. dev.

Simplest Numeracy (Dk = 1/3) 0.943 0.220 0.969 0.163

Interest Compounding (Dk = 1/3) 0.814 0.383 0.863 0.340

Inflation (Dk = 1/3) 0.889 0.291 0.948 0.210

Time Value Of Money (Dk = 1/3) 0.783 0.404 0.884 0.315

Money Illusion (Dk = 1/3) 0.721 0.441 0.745 0.432

What Does The Stock Market? (Dk = 1/4) 0.753 0.397 0.865 0.329

What Does Stock Ownerwhip Mean? (Dk = 1/4) 0.697 0.441 0.795 0.401

What Do Mutual Funds Do? (Dk = 1/4) 0.781 0.376 0.901 0.284

What Does A Company Bond Do? (Dk = 1/4) 0.681 0.421 0.809 0.371

Bond Prices After Int. Rate Change? (Dk = 1/4) 0.375 0.420 0.530 0.473

Diversification Stock Vs. Mut. Fund (Dk = 1/2) 0.658 0.414 0.767 0.400

Bonds Or Stocks More Risky? (Dk = 1/2) 0.771 0.355 0.884 0.295

Equity Premium (Dk = 1/3) 0.576 0.450 0.749 0.421

Volatility Different Assets (Dk = 1/3) 0.792 0.362 0.917 0.268

Diversification, Direct Question (Dk = 1/3) 0.746 0.396 0.870 0.324

Bond Liquidity (Dk = 1/2) 0.552 0.401 0.674 0.416

Source: CentERpanel, own calculations. All statistics are adjusted for sampling weights. The number of
observations where the covariates for the preferred specification are present is 958 for the entire sample and
270 for participants in risky asset markets with detailed portfolio information. The exact wording of the
questions can be found in ?.
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A.2 Alternative specifications for contributors to return loss

Table A.3: Contributors to return loss, adding advanced financial literacy and risk tolerance

OLS p10 p30 p50 p70 p90

Basic fin. literacy index 0.00669 -0.0166 0.0176 0.0535 0.105∗∗ 0.207
(0.10) (-1.61) (0.53) (1.28) (2.07) (0.74)

Advanced fin. literacy index 0.0597 0.0219∗ 0.0190 0.0424 -0.0652 0.0812
(0.39) (1.95) (0.76) (0.95) (-1.05) (0.17)

High self-rated fin. knowledge 0.0205 -0.0178 -0.0157 -0.0236 0.0558 -0.153
(0.18) (-0.66) (-0.42) (-0.38) (0.68) (-0.27)

Financial advice: Own judgement 0.539∗∗ -0.00705 -0.0123 0.155∗∗ 0.681∗∗∗ 1.709∗∗∗

(2.31) (-0.32) (-0.33) (2.55) (8.07) (2.68)

Own fin. jugdement ∗ bas. literacy -1.004∗∗ 0.0148 0.00243 -0.252∗∗∗ -1.201∗∗∗ -2.337∗∗∗

(-2.35) (0.88) (0.06) (-3.72) (-11.93) (-2.94)

Higher vocal education -0.0542 -0.0300 -0.0271 0.00832 -0.0719 -0.457
(-0.42) (-1.28) (-0.73) (0.13) (-0.87) (-0.83)

Academic education -0.0936 -0.00607 -0.0209 -0.0280 0.00210 -0.402
(-0.72) (-0.22) (-0.51) (-0.38) (0.02) (-0.62)

Age 41-64 -0.165 0.00648 0.0606 0.110 -0.0574 -0.411
(-0.80) (0.25) (1.38) (1.43) (-0.56) (-0.55)

Age 65+ 0.0390 0.0381 0.164∗∗∗ 0.292∗∗∗ 0.244∗∗ -0.189
(0.18) (1.25) (3.35) (3.37) (2.12) (-0.21)

Female 0.382∗ 0.0531∗ 0.0756 0.240∗∗∗ 0.219∗ 0.809
(1.73) (1.73) (1.47) (2.75) (1.92) (0.94)

High tolerance for risky investm. 0.141∗∗ 0.0291∗∗∗ 0.0461∗∗∗ 0.0602∗∗ 0.109∗∗∗ 0.101
(2.23) (3.42) (2.92) (2.11) (2.79) (0.35)

Constant 0.398∗ 0.0269 0.0493 0.0231 0.382∗∗∗ 1.160
(1.77) (1.19) (1.02) (0.27) (3.12) (1.49)

Observations 405 239 239 239 239 239
Adjusted R2 0.200

Source: CentERpanel, Datastream, Euroinvestor, own calculations. See Section 2.3 for computational details.
The OLS regression has been estimated on both waves of data and standard errors are clustered at the
household level; the quantile estimates are based on a pure cross-section. All regressions use sampling weights.
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Table A.4: Contributors to return loss, adding diversification questions

OLS p10 p30 p50 p70 p90

Basic fin. literacy index 0.0761 -0.00972 0.0264 0.0667∗ 0.142∗∗∗ 0.131
(1.30) (-0.88) (0.54) (1.89) (3.25) (0.43)

Fin. lit. - diversification, direct question -0.526∗∗ -0.0270 -0.0817 -0.0864 -0.433∗∗∗ -0.882
(-2.20) (-1.10) (-1.08) (-1.26) (-4.36) (-1.39)

Financial advice: Own judgement 0.524∗∗ 0.00813 0.0158 0.0432 0.452∗∗∗ 1.410∗∗∗

(2.46) (0.46) (0.30) (0.93) (6.96) (2.63)

Own fin. jugdement ∗ bas. literacy -0.742∗ 0.0145 -0.00632 -0.0318 -0.578∗∗∗ -1.524∗∗

(-1.97) (0.88) (-0.10) (-0.67) (-8.08) (-2.49)

Higher vocal education 0.0803 0.00506 0.00491 -0.00772 -0.0948 0.0709
(0.55) (0.23) (0.09) (-0.16) (-1.44) (0.14)

Academic education 0.0388 -0.00110 -0.00711 -0.0822 -0.0168 -0.0341
(0.29) (-0.04) (-0.11) (-1.42) (-0.21) (-0.05)

Age 41-64 -0.148 0.00985 0.0203 0.0607 -0.0604 -0.0694
(-0.76) (0.35) (0.31) (0.98) (-0.72) (-0.12)

Age 65+ -0.0636 0.0365 0.149∗∗ 0.262∗∗∗ 0.154∗ -0.0215
(-0.29) (1.26) (2.07) (3.87) (1.69) (-0.03)

Female 0.207 0.0285 0.0105 0.149∗∗ 0.171∗ 0.556
(1.12) (1.11) (0.15) (2.21) (1.84) (0.95)

Constant 0.876∗∗∗ 0.0360 0.152∗ 0.226∗∗∗ 0.756∗∗∗ 1.485∗

(2.98) (1.01) (1.69) (2.60) (5.88) (1.86)

Observations 441 270 270 270 270 270
Adjusted R2 0.137

Source: CentERpanel, Datastream, Euroinvestor, own calculations. See Section 2.3 for computational details.
The OLS regression has been estimated on both waves of data and standard errors are clustered at the
household level; the quantile estimates are based on a pure cross-section. All regressions use sampling weights.
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Table A.5: Contributors to return loss, separate measures of financial advice

OLS p10 p30 p50 p70 p90

Basic fin. literacy index -0.699∗ 0.00195 -0.0126 0.0421∗ -0.452∗∗∗ -1.574∗∗∗

(-1.78) (0.15) (-0.46) (1.79) (-5.48) (-3.14)

Financial advice: Professionals -0.529∗∗ -0.00532 -0.0510 -0.0302 -0.417∗∗∗ -1.573∗∗∗

(-2.39) (-0.26) (-1.29) (-0.85) (-4.21) (-2.90)

Prof. advice ∗ bas. literacy 0.710∗ -0.0159 0.0130 0.0103 0.512∗∗∗ 1.783∗∗∗

(1.82) (-1.02) (0.34) (0.34) (5.25) (3.28)

Financial advice: Family/friends -0.465∗ 0.00531 -0.0350 -0.0837∗ -0.372∗∗∗ -1.264∗

(-1.89) (0.18) (-0.80) (-1.94) (-3.07) (-1.88)

Advice fam./friends ∗ bas. literacy 0.802∗∗ 0.0562∗ 0.0810 0.0919∗ 0.667∗∗∗ 2.063∗∗

(2.07) (1.67) (1.65) (1.93) (4.39) (2.59)

Higher vocal education 0.0720 0.0127 0.00724 -0.0159 -0.0725 -0.327
(0.48) (0.62) (0.21) (-0.48) (-0.80) (-0.65)

Academic education -0.0219 0.00151 -0.00478 -0.0949∗∗ -0.00814 -0.248
(-0.16) (0.06) (-0.11) (-2.38) (-0.08) (-0.41)

Age 41-64 -0.149 0.00532 0.0160 0.0552 -0.0381 -0.249
(-0.71) (0.22) (0.37) (1.30) (-0.33) (-0.39)

Age 65+ -0.0495 0.0353 0.178∗∗∗ 0.269∗∗∗ 0.158 -0.147
(-0.21) (1.29) (3.65) (5.72) (1.26) (-0.21)

Female 0.224 0.0285 0.0490 0.157∗∗∗ 0.162 0.705
(1.16) (1.15) (0.99) (3.59) (1.26) (0.92)

Constant 0.952∗∗∗ 0.0190 0.105∗∗ 0.197∗∗∗ 0.762∗∗∗ 2.523∗∗∗

(3.22) (0.92) (2.30) (4.37) (6.37) (3.40)

Observations 441 270 270 270 270 270
Adjusted R2 0.111

Source: CentERpanel, Datastream, Euroinvestor, own calculations. See Section 2.3 for computational details.
The OLS regression has been estimated on both waves of data and standard errors are clustered at the
household level; the quantile estimates are based on a pure cross-section. All regressions use sampling weights.
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Table A.6: Contributors to return loss, adding household size, urbanisation, and financial
variables to the preferred specification

OLS p10 p30 p50 p70 p90

Basic fin. literacy index 0.0511 -0.0120 0.0197 0.0470 0.0877 0.189
(0.75) (-1.08) (0.58) (1.00) (1.42) (0.43)

Financial advice: Own judgement 0.489∗∗ 0.00903 0.0400 0.0297 0.318∗∗∗ 1.454∗

(2.21) (0.45) (1.06) (0.50) (3.60) (1.96)

Own fin. jugdement ∗ bas. literacy -0.736∗ 0.0186 0.0148 -0.0200 -0.416∗∗∗ -1.720∗∗

(-1.91) (1.02) (0.33) (-0.32) (-4.14) (-2.03)

Higher vocal education 0.0935 -0.00437 -0.00887 -0.0196 -0.0497 -0.133
(0.68) (-0.18) (-0.24) (-0.31) (-0.54) (-0.17)

Academic education 0.0161 -0.0270 -0.0473 -0.0996 0.0657 -0.0737
(0.11) (-0.98) (-1.01) (-1.34) (0.57) (-0.08)

Age 41-64 -0.104 -0.00963 0.0168 0.0681 0.0139 -0.169
(-0.44) (-0.33) (0.33) (0.83) (0.12) (-0.18)

Age 65+ -0.0943 0.0172 0.118∗∗ 0.226∗∗ 0.235∗ -0.0584
(-0.38) (0.50) (1.99) (2.32) (1.75) (-0.06)

Female 0.131 0.0545∗∗ 0.0230 0.0763 0.0719 0.353
(0.50) (2.10) (0.45) (0.86) (0.52) (0.29)

Household size -0.0269 -0.00606 -0.0166 -0.0209 0.00560 0.0213
(-0.52) (-0.68) (-1.20) (-0.90) (0.16) (0.07)

Degree of urbanisation 0.0165 -0.00298 0.00214 0.0221 -0.00532 -0.0366
(0.21) (-0.25) (0.11) (0.73) (-0.12) (-0.10)

Log net household income -0.221 -0.0137 0.0296 0.0216 -0.0589 -0.220
(-1.02) (-0.49) (0.76) (0.34) (-0.58) (-0.22)

Log financial assets 0.00443 0.000489 -0.00661 -0.0463∗ -0.0148 0.00366
(0.05) (0.05) (-0.43) (-1.68) (-0.33) (0.01)

Log total non-fin. assets -0.000841 0.0137∗∗∗ -0.00479 0.0138 -0.0167 -0.0968
(-0.02) (2.78) (-0.56) (0.87) (-0.62) (-0.42)

Log total debt 0.000556 -0.00336 0.000710 -0.00751 0.00125 -0.00640
(0.03) (-1.15) (0.13) (-0.81) (0.09) (-0.05)

Constant 2.778 0.0700 -0.0546 0.403 1.277 4.259
(1.48) (0.31) (-0.15) (0.67) (1.29) (0.48)

Observations 439 269 269 269 269 269
Adjusted R2 0.112

Source: CentERpanel, Datastream, Euroinvestor, own calculations. See Section 2.3 for computational details.
The OLS regression has been estimated on both waves of data and standard errors are clustered at the
household level; the quantile estimates are based on a pure cross-section. All regressions use sampling weights.
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A.3 Alternative specifications for contributors to return loss, including
non-participants

Table A.7: Contributors to return loss, adding advanced financial literacy and risk tolerance,
including non-participants

p75 p80 p85 p90 p95

Basic fin. literacy index 0.00717 0.0140 0.0149 0.0231 0.0656
(0.39) (0.77) (0.58) (0.42) (0.40)

Advanced fin. literacy index 0.0524∗∗∗ 0.0594∗∗∗ 0.0815∗∗∗ 0.101∗∗ 0.162
(3.56) (4.33) (3.53) (2.39) (0.93)

High self-rated fin. knowledge 0.0282 0.0219 -0.0150 -0.00427 0.101
(1.01) (0.82) (-0.35) (-0.06) (0.30)

Financial advice: Own judgement 0.00761 0.0558∗∗ 0.0806∗∗ 0.230∗∗∗ 1.008∗∗∗

(0.29) (2.25) (2.04) (3.25) (2.68)

Own fin. jugdement ∗ bas. literacy 0.0210 0.0247 -0.00406 -0.352∗∗∗ -1.760∗∗∗

(0.83) (1.02) (-0.11) (-4.71) (-6.42)

Higher vocal education 0.0185 0.0273 -0.0312 0.0323 -0.0940
(0.63) (0.98) (-0.71) (0.42) (-0.29)

Academic education 0.0355 0.0753∗∗ -0.0208 -0.0439 -0.234
(0.95) (2.15) (-0.36) (-0.44) (-0.52)

Age 41-64 0.0383 0.0617∗∗ 0.0493 0.0273 -0.131
(1.17) (2.01) (1.00) (0.31) (-0.31)

Age 65+ 0.137∗∗∗ 0.178∗∗∗ 0.228∗∗∗ 0.333∗∗∗ 0.0830
(3.60) (4.90) (3.83) (3.19) (0.17)

Female 0.0311 0.0422 0.0635 0.150 0.126
(0.88) (1.20) (1.17) (1.46) (0.27)

High tolerance for risky investm. 0.0758∗∗∗ 0.0984∗∗∗ 0.123∗∗∗ 0.181∗∗∗ 0.238
(5.80) (7.78) (6.03) (4.72) (1.46)

Constant 0.0848∗∗ 0.108∗∗∗ 0.209∗∗∗ 0.322∗∗∗ 0.779∗

(2.48) (3.23) (3.86) (3.34) (1.92)

Observations 737 737 737 737 737

Source: CentERpanel, Datastream, Euroinvestor, own calculations. See Section 2.3 for computational details.
All estimates are based on a cross-section of households, including those who do not own any risky assets. For
this reason, the coefficients are only estimated at higher quantiles where the return losses are strictly positive
for all groups. All regressions use sampling weights.
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Table A.8: Contributors to return loss, adding diversification questions, including non-
participants

p75 p80 p85 p90 p95

Basic fin. literacy index 0.00591 0.00782 0.0100 0.0406 0.101
(0.44) (0.43) (0.37) (0.66) (0.47)

Fin. lit. - diversification, direct question 0.0644∗∗ 0.0702∗∗ 0.137∗∗∗ 0.0925 0.0198
(2.58) (2.12) (2.87) (0.68) (0.04)

Financial advice: Own judgement 0.0670∗∗∗ 0.126∗∗∗ 0.151∗∗∗ 0.171∗ 1.042∗∗∗

(3.64) (5.31) (4.20) (1.81) (2.84)

Own fin. jugdement ∗ bas. literacy 0.0332∗ 0.0507∗∗ 0.0705∗ 0.0574 -1.206∗∗∗

(1.78) (2.00) (1.92) (0.70) (-3.48)

Higher vocal education 0.122∗∗∗ 0.139∗∗∗ 0.0872∗∗ 0.194∗ 0.336
(5.77) (5.06) (2.06) (1.81) (0.85)

Academic education 0.0852∗∗∗ 0.171∗∗∗ 0.143∗∗∗ 0.158 0.434
(3.11) (4.87) (2.69) (1.13) (0.81)

Age 41-64 0.0321 0.0321 0.0475 0.0867 0.0609
(1.40) (1.09) (1.09) (0.79) (0.14)

Age 65+ 0.148∗∗∗ 0.179∗∗∗ 0.309∗∗∗ 0.421∗∗∗ 0.405
(5.61) (5.19) (6.08) (3.23) (0.83)

Female -0.0421∗ -0.0353 0.00270 -0.0620 -0.0356
(-1.80) (-1.17) (0.06) (-0.53) (-0.07)

Constant -0.00382 -0.0000749 0.00272 0.0904 0.338
(-0.13) (-0.00) (0.05) (0.57) (0.56)

Observations 875 875 875 875 875

Source: CentERpanel, Datastream, Euroinvestor, own calculations. See Section 2.3 for computational details.
All estimates are based on a cross-section of households, including those who do not own any risky assets. For
this reason, the coefficients are only estimated at higher quantiles where the return losses are strictly positive
for all groups. All regressions use sampling weights.
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Table A.9: Contributors to return loss, separate measures of financial advice, including non-
participants

p75 p80 p85 p90 p95

Basic fin. literacy index 0.0431∗∗∗ 0.0526∗∗ 0.0854∗∗ 0.0981 -1.104∗∗∗

(2.75) (2.55) (2.47) (1.62) (-3.62)

Financial advice: Professionals -0.0935∗∗∗ -0.0867∗∗∗ -0.170∗∗∗ -0.152 -1.031∗∗∗

(-3.83) (-2.67) (-3.10) (-1.40) (-2.63)

Prof. advice ∗ bas. literacy -0.0347 -0.0401 -0.0634 -0.0381 1.189∗∗∗

(-1.22) (-1.42) (-1.37) (-0.40) (3.33)

Financial advice: Family/friends -0.106∗∗∗ -0.115∗∗∗ -0.196∗∗∗ -0.192 -1.066∗∗

(-4.10) (-3.30) (-3.18) (-1.54) (-2.10)

Advice fam./friends ∗ bas. literacy -0.0322 -0.0336 -0.0514 -0.0377 1.216∗∗

(-1.25) (-1.03) (-0.90) (-0.32) (2.11)

Higher vocal education 0.106∗∗∗ 0.120∗∗∗ 0.0983∗ 0.177∗ 0.336
(4.57) (3.91) (1.85) (1.65) (0.82)

Academic education 0.0871∗∗∗ 0.167∗∗∗ 0.163∗∗ 0.158 0.419
(2.96) (4.24) (2.47) (1.15) (0.77)

Age 41-64 0.0253 0.0322 0.0639 0.0951 0.0609
(0.99) (0.94) (1.09) (0.86) (0.14)

Age 65+ 0.182∗∗∗ 0.225∗∗∗ 0.323∗∗∗ 0.438∗∗∗ 0.405
(6.17) (5.60) (4.72) (3.33) (0.82)

Female -0.0197 -0.0425 -0.0337 -0.0767 -0.0356
(-0.78) (-1.21) (-0.55) (-0.65) (-0.07)

Constant 0.119∗∗∗ 0.158∗∗∗ 0.266∗∗∗ 0.354∗∗∗ 1.400∗∗∗

(4.25) (4.28) (4.15) (3.15) (2.98)

Observations 875 875 875 875 875

Source: CentERpanel, Datastream, Euroinvestor, own calculations. See Section 2.3 for computational details.
All estimates are based on a cross-section of households, including those who do not own any risky assets. For
this reason, the coefficients are only estimated at higher quantiles where the return losses are strictly positive
for all groups. All regressions use sampling weights.
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Table A.10: Contributors to return loss, adding household size, urbanisation, and financial
variables to the preferred specification. Non-participants are included in the estimation sam-
ple.

p75 p80 p85 p90 p95

Basic fin. literacy index 0.00178 -0.000384 -0.00156 0.0209 0.0916
(0.16) (-0.02) (-0.06) (0.39) (0.43)

Financial advice: Own judgement 0.0412∗∗ 0.104∗∗∗ 0.118∗∗∗ 0.200∗∗ 0.657
(2.49) (4.68) (3.08) (2.26) (1.65)

Own fin. jugdement ∗ bas. literacy 0.0213 0.0343 0.0487 0.0543 -0.663∗

(1.32) (1.52) (1.36) (0.69) (-1.73)

Higher vocal education 0.0493∗∗∗ 0.0498∗∗ 0.0581 0.0371 0.215
(2.70) (2.00) (1.39) (0.38) (0.49)

Academic education -0.0122 0.00784 0.0120 -0.0800 0.00247
(-0.51) (0.24) (0.22) (-0.60) (0.00)

Age 41-64 -0.0102 -0.0108 -0.0246 -0.00719 -0.0751
(-0.49) (-0.39) (-0.51) (-0.07) (-0.15)

Age 65+ 0.0923∗∗∗ 0.103∗∗∗ 0.142∗∗ 0.303∗∗ 0.330
(3.80) (3.12) (2.45) (2.30) (0.59)

Female -0.000979 -0.00744 0.00394 -0.0361 0.0115
(-0.04) (-0.24) (0.07) (-0.30) (0.02)

Household size -0.0000545 0.000641 0.00991 0.0162 0.00430
(-0.01) (0.06) (0.55) (0.39) (0.02)

Degree of urbanisation 0.0132 0.0218∗ 0.0189 0.0208 -0.0743
(1.52) (1.82) (0.95) (0.46) (-0.37)

Log net household income 0.00882 0.00131 0.00883 -0.00996 -0.157
(0.47) (0.05) (0.21) (-0.11) (-0.35)

Log financial assets 0.0597∗∗∗ 0.0800∗∗∗ 0.0907∗∗∗ 0.121∗∗∗ 0.221
(8.29) (8.25) (5.34) (2.93) (0.97)

Log total non-fin. assets -0.00237 -0.00299 -0.00377 -0.0108 -0.0297
(-0.55) (-0.50) (-0.36) (-0.45) (-0.26)

Log total debt 0.00307 0.00246 0.00309 0.000588 -0.000964
(1.12) (0.68) (0.50) (0.04) (-0.02)

Constant -0.557∗∗∗ -0.633∗∗∗ -0.790∗ -0.696 0.393
(-3.01) (-2.62) (-1.95) (-0.85) (0.10)

Observations 860 860 860 860 860

Source: CentERpanel, Datastream, Euroinvestor, own calculations. See Section 2.3 for computational details.
All estimates are based on a cross-section of households, including those who do not own any risky assets. For
this reason, the coefficients are only estimated at higher quantiles where the return losses are strictly positive
for all groups. All regressions use sampling weights.
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A.4 Contributors to return loss, excluding mutual fund fees

Table A.11: Contributors to return loss, excluding mutual fund fees.

OLS p10 p30 p50 p70 p90

Basic fin. literacy index 0.0354 -0.0165∗ 0.0157 0.0554∗ 0.0668 0.228
(0.67) (-1.71) (0.34) (1.69) (1.24) (0.90)

Financial advice: Own judgement 0.534∗∗ 0.00628 0.0474 0.0503 0.411∗∗∗ 1.619∗∗∗

(2.35) (0.38) (0.92) (1.14) (4.79) (2.73)

Own fin. jugdement ∗ bas. literacy -0.773∗ 0.0158 -0.0177 -0.0164 -0.524∗∗∗ -1.888∗∗∗

(-1.91) (1.05) (-0.29) (-0.36) (-5.51) (-2.98)

Higher vocal education 0.0751 0.00301 -0.0139 -0.00244 -0.1000 -0.347
(0.48) (0.16) (-0.27) (-0.05) (-1.15) (-0.58)

Academic education -0.0257 0.00141 -0.00564 -0.0943∗ -0.0331 -0.256
(-0.17) (0.06) (-0.09) (-1.72) (-0.32) (-0.36)

Age 41-64 -0.164 0.00487 0.0395 0.0706 -0.0580 -0.548
(-0.77) (0.20) (0.61) (1.22) (-0.54) (-0.72)

Age 65+ -0.0666 0.0361 0.139∗∗ 0.276∗∗∗ 0.166 -0.433
(-0.28) (1.39) (1.97) (4.32) (1.43) (-0.53)

Female 0.242 0.0312 0.0214 0.165∗∗∗ 0.190 0.747
(1.21) (1.35) (0.32) (2.73) (1.59) (0.83)

Constant 0.478∗∗ 0.0157 0.0773 0.150∗∗ 0.403∗∗∗ 1.320∗

(2.21) (0.73) (1.09) (2.35) (3.50) (1.96)

Observations 441 270 270 270 270 270
Adjusted R2 0.115

Source: CentERpanel, Datastream, Euroinvestor, own calculations. See Section 2.3 for computational details.
The OLS regression has been estimated on both waves of data and standard errors are clustered at the
household level; the quantile estimates are based on a pure cross-section. All regressions use sampling weights.
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Table A.12: Contributors to return loss, excluding mutual fund fees.

p75 p80 p85 p90 p95

Basic fin. literacy index 0.00943 0.0144 0.0236 0.0554 0.111
(0.71) (0.88) (0.78) (0.90) (0.56)

Financial advice: Own judgement 0.109∗∗∗ 0.123∗∗∗ 0.190∗∗∗ 0.208∗∗ 1.105∗∗∗

(6.19) (4.52) (3.58) (2.06) (2.97)

Own fin. jugdement ∗ bas. literacy 0.0354∗ 0.0400 0.0636 0.0479 -1.276∗∗∗

(1.90) (1.55) (1.32) (0.55) (-3.60)

Higher vocal education 0.124∗∗∗ 0.162∗∗∗ 0.133∗∗ 0.197∗ 0.355
(6.25) (5.38) (2.27) (1.72) (0.86)

Academic education 0.104∗∗∗ 0.210∗∗∗ 0.178∗∗ 0.168 0.465
(4.13) (5.44) (2.33) (1.15) (0.84)

Age 41-64 0.0258 0.0309 0.0799 0.106 0.0618
(1.17) (0.92) (1.23) (0.91) (0.14)

Age 65+ 0.192∗∗∗ 0.221∗∗∗ 0.354∗∗∗ 0.450∗∗∗ 0.424
(7.53) (5.66) (4.68) (3.29) (0.85)

Female -0.0192 -0.0403 -0.0454 -0.0845 -0.0325
(-0.88) (-1.18) (-0.68) (-0.68) (-0.07)

Constant 0.0153 0.0429 0.0705 0.165 0.374
(0.70) (1.29) (1.07) (1.41) (0.92)

Observations 875 875 875 875 875

Source: CentERpanel, Datastream, Euroinvestor, own calculations. See Section 2.3 for computational details.
The OLS regression has been estimated on both waves of data and standard errors are clustered at the
household level; the quantile estimates are based on a pure cross-section. All regressions use sampling weights.
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A.5 Contributors to return loss, log-decomposition of Calvet et al. (2007)

Table A.13: Contributors to return loss and its components in logarithms, covariates similar
to Calvet et al. (2007)

RLh ωh βh
RSLh

1−RSLh

Higher vocal education 0.0367 0.0564 0.0170 -0.0439
(0.22) (0.39) (0.14) (-0.34)

Academic education -0.0468 0.133 -0.0922 -0.0738
(-0.21) (0.71) (-0.52) (-0.44)

Age 41-64 0.188 0.212 -0.151 0.0935
(0.80) (1.14) (-1.24) (0.61)

Age 65+ 0.599∗∗ 0.614∗∗∗ -0.274∗ 0.172
(2.29) (2.81) (-1.72) (0.86)

Female 0.0601 0.212 -0.0691 -0.0617
(0.26) (1.17) (-0.53) (-0.36)

Household size -0.0702 -0.00642 -0.00857 -0.0452
(-1.12) (-0.11) (-0.17) (-0.92)

Degree of urbanisation 0.0432 0.00668 -0.0804 0.0870
(0.51) (0.10) (-1.13) (1.35)

Log net household income -0.187 -0.0860 -0.0613 -0.0477
(-1.08) (-0.56) (-0.57) (-0.44)

Log financial assets -0.0700 0.0641 0.0228 -0.134∗∗

(-0.81) (0.99) (0.44) (-2.19)

Log total non-fin. assets 0.0107 -0.00588 -0.00232 0.0101
(0.22) (-0.16) (-0.07) (0.28)

Log total debt -0.000265 0.00380 0.0120 -0.0145
(-0.01) (0.19) (0.66) (-0.84)

Constant -3.558∗∗ -1.596 0.161 0.612
(-2.18) (-1.04) (0.20) (0.58)

Observations 589 589 589 589
Adjusted R2 0.027 0.025 0.002 0.026

Source: CentERpanel, Datastream, Euroinvestor, own calculations. See Section 2.3 for computational details
and for the definitions of the dependent variables. The regressions have been estimated on both waves of data
and standard errors are clustered at the household level. All regressions use sampling weights.

42



Table A.14: Contributors to return loss and its components in logarithms

RLh ωh βh
RSLh

1−RSLh

Basic fin. literacy index 0.223∗∗ 0.329 -0.0634 -0.0539
(2.30) (1.62) (-0.71) (-0.35)

Financial advice: Own judgement 0.339∗ 0.0992 0.127 0.130
(1.88) (0.59) (0.78) (0.85)

Own fin. jugdement ∗ bas. literacy -0.456∗∗ -0.530∗∗ 0.239 -0.106
(-1.97) (-2.17) (1.16) (-0.50)

Higher vocal education -0.0362 -0.0285 0.0789 -0.0804
(-0.18) (-0.18) (0.59) (-0.56)

Academic education -0.190 0.172 -0.209 -0.127
(-0.82) (0.89) (-0.86) (-0.68)

Age 41-64 0.0585 0.229 -0.184 -0.0159
(0.23) (1.14) (-1.16) (-0.09)

Age 65+ 0.600∗∗ 0.686∗∗∗ -0.263 0.101
(2.28) (3.18) (-1.46) (0.49)

Female 0.473∗ 0.319 -0.00710 0.171
(1.81) (1.57) (-0.04) (0.80)

Constant -6.435∗∗∗ -1.953∗∗∗ -0.282∗ -1.396∗∗∗

(-24.20) (-8.65) (-1.73) (-7.01)

Observations 441 441 441 441
Adjusted R2 0.047 0.057 0.013 -0.000

Source: CentERpanel, Datastream, Euroinvestor, own calculations. See Section 2.3 for computational details
and for the definitions of the dependent variables. The regressions have been estimated on both waves of data
and standard errors are clustered at the household level. All regressions use sampling weights.
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A.6 Contributors to alternative diversification measures

Table A.15: Contributors to idiosyncratic portfolio risk.

OLS p10 p30 p50 p70 p90

Basic fin. literacy index -1.323 -0.227 -0.927 -0.491 0.231 -7.873∗∗∗

(-0.72) (-0.45) (-1.20) (-1.01) (0.11) (-3.30)

Financial advice: Own judgement 3.917∗∗ 0.806∗ 0.748 2.225∗∗∗ 7.986∗∗∗ 11.76∗∗∗

(2.37) (1.82) (0.84) (3.28) (3.07) (2.77)

Own fin. jugdement ∗ bas. literacy -0.377 -0.304 0.533 -0.929 -4.984 -0.735
(-0.14) (-0.53) (0.56) (-1.23) (-1.65) (-0.21)

Higher vocal education 0.0219 0.390 1.412 0.306 0.801 0.165
(0.01) (0.79) (1.46) (0.44) (0.31) (0.03)

Academic education -3.346∗∗ -0.0129 0.760 -1.129 -2.933 -7.223
(-2.22) (-0.03) (0.67) (-1.35) (-0.96) (-1.33)

Age 41-64 -2.619 -0.523 0.729 0.882 -3.133 -3.264
(-1.26) (-0.86) (0.60) (1.01) (-0.95) (-0.61)

Age 65+ -3.199 -0.301 0.788 0.645 -3.586 -9.155
(-1.46) (-0.45) (0.60) (0.67) (-0.99) (-1.52)

Female 0.724 -0.179 -1.389 0.354 1.541 -3.683
(0.45) (-0.28) (-1.05) (0.37) (0.43) (-0.66)

Constant 13.63∗∗∗ 4.132∗∗∗ 5.170∗∗∗ 7.294∗∗∗ 12.92∗∗∗ 28.96∗∗∗

(5.79) (6.51) (4.01) (7.69) (3.52) (4.26)

Observations 441 270 270 270 270 270
Adjusted R2 0.042

Source: CentERpanel, Datastream, Euroinvestor, own calculations. See Section 2.3 for computational details.
The OLS regression has been estimated on both waves of data and standard errors are clustered at the
household level; the quantile estimates are based on a pure cross-section. All regressions use sampling weights.
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Table A.16: Contributors to return loss as a fraction of risky financial assets.

OLS p10 p30 p50 p70 p90

Basic fin. literacy index 0.0857 -0.121∗∗∗ -0.0898∗∗∗ -0.00550 0.0518 0.423
(0.62) (-2.86) (-2.80) (-0.08) (0.25) (0.80)

Financial advice: Own judgement 1.260∗∗∗ 0.0151 0.0872 0.318∗∗∗ 1.484∗∗∗ 3.724∗∗∗

(3.68) (0.19) (1.65) (2.63) (3.52) (3.25)

Own fin. jugdement ∗ bas. literacy -0.799 0.0750 0.143∗∗∗ 0.0326 -1.596∗∗∗ -2.059∗∗

(-1.54) (1.11) (3.18) (0.26) (-4.10) (-2.18)

Higher vocal education 0.114 0.0227 0.00505 -0.0239 -0.0615 0.343
(0.29) (0.25) (0.09) (-0.19) (-0.14) (0.24)

Academic education -0.538 -0.00718 -0.129∗∗ -0.246∗ -0.382 0.420
(-1.52) (-0.06) (-1.98) (-1.68) (-0.74) (0.27)

Age 41-64 -0.815 -0.0620 0.0826 -0.0135 -1.558∗∗ -1.055
(-1.52) (-0.44) (0.99) (-0.08) (-2.55) (-0.60)

Age 65+ -1.085∗∗ -0.0605 0.148∗ 0.132 -1.589∗∗ -2.315
(-2.00) (-0.39) (1.67) (0.69) (-2.38) (-1.28)

Female 0.317 -0.00392 -0.0314 0.283 0.107 -0.204
(0.86) (-0.03) (-0.43) (1.60) (0.19) (-0.15)

Constant 2.057∗∗∗ 0.473∗∗∗ 0.516∗∗∗ 0.711∗∗∗ 2.731∗∗∗ 3.829∗

(3.70) (3.21) (6.19) (3.87) (4.09) (1.67)

Observations 316 194 194 194 194 194
Adjusted R2 0.062

Source: CentERpanel, Datastream, Euroinvestor, own calculations. See Section 2.3 for computational details.
The OLS regression has been estimated on both waves of data and standard errors are clustered at the
household level; the quantile estimates are based on a pure cross-section. Households with an annual standard
deviation of the financial portfolio below 2% have been excluded. All regressions use sampling weights.
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Table A.17: Contributors to relative Sharpe ratio loss

OLS p10 p30 p50 p70 p90

Basic fin. literacy index 2.128 -1.093 0.0596 1.435 1.950 6.455
(1.09) (-1.37) (0.07) (1.53) (0.47) (1.37)

Financial advice: Own judgement 4.151 0.211 1.833 2.848∗ 11.07∗∗ 4.141
(1.29) (0.15) (1.29) (1.83) (2.10) (0.46)

Own fin. jugdement ∗ bas. literacy -6.525∗ 0.778 1.009 -1.757 -9.394∗ -14.88∗∗

(-1.73) (0.66) (0.81) (-1.08) (-1.72) (-2.44)

Higher vocal education -2.205 -0.322 -0.484 -0.397 -6.249 -4.473
(-0.72) (-0.22) (-0.33) (-0.25) (-1.08) (-0.49)

Academic education -3.797 -0.0403 -1.728 -0.829 -4.399 -10.59
(-0.99) (-0.02) (-0.94) (-0.44) (-0.69) (-0.95)

Age 41-64 -1.309 0.428 -1.548 -4.302∗ -5.154 16.07
(-0.36) (0.20) (-0.74) (-1.96) (-0.66) (1.30)

Age 65+ -0.490 0.831 -0.737 -1.212 -5.755 4.135
(-0.12) (0.36) (-0.33) (-0.51) (-0.70) (0.31)

Female 2.215 0.161 3.693∗ 7.738∗∗∗ 1.887 -11.31
(0.71) (0.07) (1.81) (3.70) (0.26) (-1.25)

Constant 23.32∗∗∗ 7.460∗∗∗ 11.34∗∗∗ 16.25∗∗∗ 31.20∗∗∗ 41.92∗∗

(6.25) (3.79) (5.29) (7.02) (3.51) (2.58)

Observations 316 194 194 194 194 194
Adjusted R2 0.005

Source: CentERpanel, Datastream, Euroinvestor, own calculations. See Section 2.3 for computational details.
The OLS regression has been estimated on both waves of data and standard errors are clustered at the
household level; the quantile estimates are based on a pure cross-section. Households with an annual standard
deviation of the financial portfolio below 2% have been excluded. All regressions use sampling weights.
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Table A.18: Contributors to fraction in shares.

OLS p10 p30 p50 p70 p90

Basic fin. literacy index -0.00361 0 0 2.73e-11 0.0682 2.21e-18
(-0.06) (0.00) (0.00) (0.00) (0.83) (0.00)

Financial advice: Own judgement 0.158∗∗∗ 0 0 0.156∗∗∗ 0.619∗∗∗ 1.62e-18
(2.75) (0.00) (0.00) (11.40) (6.03) (0.00)

Own fin. jugdement ∗ bas. literacy 0.00355 0 0 -0.00303 -0.127 -2.51e-18
(0.04) (0.00) (0.00) (-0.18) (-1.17) (-0.00)

Higher vocal education 0.0256 0 0 1.10e-10 0.00939 -5.40e-18
(0.41) (0.00) (0.00) (0.00) (0.09) (-0.00)

Academic education -0.0941 0 0 -3.66e-10 -0.177 -0.0459∗∗∗

(-1.40) (0.00) (0.00) (-0.00) (-1.46) (-2270126.15)

Age 41-64 -0.122 0 0 2.81e-10 0.0230 1.19e-18
(-1.47) (0.00) (0.00) (0.00) (0.17) (0.00)

Age 65+ -0.0727 0 0 6.81e-11 0.130 1.29e-18
(-0.82) (0.00) (0.00) (0.00) (0.87) (0.00)

Female 0.0495 0 0 2.09e-10 0.0832 -1.77e-19
(0.63) (0.00) (0.00) (0.00) (0.56) (-0.00)

Constant 0.329∗∗∗ 0 0 -1.66e-10 0.196 1∗∗∗

(3.62) (0.00) (0.00) (-0.00) (1.30) (88079974.66)

Observations 441 270 270 270 270 270
Adjusted R2 0.034

Source: CentERpanel, Datastream, Euroinvestor, own calculations. See Section 2.3 for computational details.
The OLS regression has been estimated on both waves of data and standard errors are clustered at the
household level; the quantile estimates are based on a pure cross-section. All regressions use sampling weights.
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Table A.19: Contributors to the inverse of the diversification indexD1 from Guiso and Jappelli
(2009)

OLS p10 p30 p50 p70 p90

Basic fin. literacy index -0.0367 0 0 3.20e-11 0.0211 -0.250∗∗

(-0.54) (0.00) (0.00) (0.00) (0.46) (-2.39)

Financial advice: Own judgement 0.0875∗ 0 0 0.0779∗∗∗ 0.227∗∗∗ 0.281∗

(1.74) (0.00) (0.00) (11.73) (4.21) (1.91)

Own fin. jugdement ∗ bas. literacy 0.00551 0 0 -0.0242∗∗∗ -0.163∗∗ 0.193
(0.07) (0.00) (0.00) (-2.91) (-2.51) (1.55)

Higher vocal education 0.0277 0 0 -4.01e-10 0.0274 0.218
(0.55) (0.00) (0.00) (-0.00) (0.50) (1.18)

Academic education -0.0499 0 0 -1.46e-10 -0.0378 0.0115
(-0.93) (0.00) (0.00) (-0.00) (-0.60) (0.06)

Age 41-64 -0.126∗ 0 0 3.14e-10 -0.0757 -0.330
(-1.82) (0.00) (0.00) (0.00) (-1.11) (-1.61)

Age 65+ -0.0769 0 0 2.40e-10 -0.0868 -0.270
(-1.06) (0.00) (0.00) (0.00) (-1.17) (-1.36)

Female 0.0711 0 0 -1.72e-11 0.0339 -3.93e-09
(0.99) (0.00) (0.00) (-0.00) (0.45) (-0.00)

Constant 0.231∗∗∗ 0 0 -5.85e-11 0.111 0.756∗∗∗

(3.08) (0.00) (0.00) (-0.00) (1.46) (3.30)

Observations 433 266 266 266 266 266
Adjusted R2 0.033

Source: CentERpanel, Datastream, Euroinvestor, own calculations. See Section 2.3 for computational details.
The OLS regression has been estimated on both waves of data and standard errors are clustered at the
household level; the quantile estimates are based on a pure cross-section. All regressions use sampling weights.
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B Additional graphs

Figure B.1: Financial literacy, financial advice, and diversification losses – alternative mea-
sures of diversification loss
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Source: CentERpanel, Datastream, Euroinvestor, own calculations. The return loss quintile value “NP” stands
for non-participants.
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