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1 Introduction

In the United States, financial institutions keep reserve balances at the Federal Reserve Banks

to meet requirements, earn interest, or to clear financial transactions. The market for federal

funds is an interbank over-the-counter market for unsecured, mostly overnight loans of dollar

reserves held at Federal Reserve Banks. This market allows institutions with excess reserve

balances to lend reserves to institutions with reserve deficiencies. A particular average measure

of the market interest rate on these loans is commonly referred to as the fed funds rate.

The fed funds market is primarily a mechanism that reallocates reserves among banks.

As such, it is a crucial market from the standpoint of the economics of payments, and the

branch of banking theory that studies the role of interbank markets in helping banks manage

reserves and offset liquidity or payment shocks.1 The fed funds market is the setting where

the interest rate on the shortest maturity, most liquid instrument in the term structure is

determined. This makes it an important market from the standpoint of Finance. The fed funds

rate affects commercial bank decisions concerning loans to businesses and individuals, and

has important implications for the loan and investment policies of financial institutions more

generally. This makes the fed funds market critical to macroeconomists. The fed funds market

is the epicenter of monetary policy implementation: The Federal Open Market Committee

(FOMC) communicates monetary policy by choosing the fed funds rate it wishes to prevail in

this market, and implements monetary policy by instructing the trading desk at the Federal

Reserve Bank of New York to “create conditions in reserve markets” that will encourage fed

funds to trade at the target level. As such, the fed funds market is of first-order importance for

economists interested in monetary theory and policy. For these reasons, we feel it is crucial to

pry into the micro mechanics of trade in the market for federal funds, in order to understand

the mechanism by which this market reallocates liquidity among banks, and the determination

of the market price for this liquidity provision—the fed funds rate.

To this end, we develop a dynamic equilibrium model of trade in the fed funds market

that explicitly accounts for the two distinctive features of the over-the-counter structure of the

actual fed funds market: search for counterparties, and bilateral negotiations. In the theory,

banks are required to hold a certain level of end-of-day reserve balances and participate in the

fed funds market to achieve this target. We model the fed funds market as an over-the-counter

1The recent financial crisis has underscored the importance of having well-functioning interbank markets. See
Acharya and Merrouche (2009) and Afonso, Kovner and Schoar (2011).
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market in which banks randomly contact other banks, and once they meet, bargain over the

terms of the loans. The model is presented in Section 2 and its key building blocks are related

to the main institutional features of the market for federal funds in Section 3. In Sections 4

and 5 we define and characterize the equilibrium, and we put the theory to work by providing

theoretical answers to a number of elementary positive and normative questions: What are the

determinants of the fed funds rate? What accounts for the dispersion in observed rates? How

does the market reallocate funds? Is the over-the-counter market structure able to achieve an

efficient reallocation of funds?

In Section 6 we use the theory to identify the determinants of commonly used empirical

measures of trade volume, trading delays, and the fed funds rate. We also describe the equilib-

rium dynamics of the fed fund balances of individual banks, and propose theory-based measures

of the importance of bank-provided intermediation in the process of reallocation of fed funds

among banks. The baseline model has banks that only differ in their initial holdings of reserve

balances. In Section 7 we develop extensions that allow for ex-ante heterogeneity in bank types.

Each extension is motivated by a particular aspect of the fed funds market that our baseline

model has abstracted from. One extension allows banks to differ in their bargaining strengths.

Another allows for heterogeneity in the rate at which banks contact potential trading part-

ners. A third extension allows for the fact that policy may induce heterogeneity in the fed

fund participants’ payoffs from holding end-of-day balances. For example, the Federal Reserve

remunerates the reserve balances of some participants, e.g., depository institutions, but not

others, e.g., Government Sponsored Enterprises (GSEs).

Section 8 proves a number of propositions in the context of a small-dimensional version of

the theory that can be analyzed using paper-and-pencil methods. In Section 9 we calibrate the

theory and use it to conduct several quantitative exercises. First, we compute the equilibrium

of a small-scale example and carry out comparative dynamic experiments to illustrate and

complement the analytical results of Section 8. Second, we simulate a large-scale version of the

model and use it to assess the ability of the theory to capture the salient empirical regularities

of the market for federal funds in the United States, such as the intraday evolution of the

distribution of reserve balances, the dispersion in loan sizes and fed funds rates, the skewness in

the distributions of the numbers of transactions per bank, the intraday patterns of trade volume,

and the skewness of the distribution of the proportion of traded funds that are intermediated

by the banking sector. Finally, we use the large-scale calibrated model as a laboratory to study
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a key issue in modern central banking, namely the effectiveness of policies that use the interest

rate on banks’ reserves as a tool to manage the fed funds rate.

This paper is related to the early theoretical research on the federal funds market which

includes the micro model of Ho and Saunders (1985) and the equilibrium model of Coleman,

Christian and Labadie (1996). The over-the-counter nature of the fed funds market was stressed

by Ashcraft and Duffie (2007) in their empirical investigation, and is also used by Bech and Klee

(2009) and Ennis andWeinberg (2009) to try to rationalize certain features of interbank markets,

such as apparent limits to arbitrage, and stigma. Relative to the existing literature on the fed

funds market, our contribution is to model the intraday allocation and pricing of overnight

loans of federal funds using a dynamic equilibrium search-theoretic framework that captures

the salient features of the decentralized interbank market in which these loans are traded.

Recently, the search-theoretic techniques introduced in labor economics by Diamond (1982a,

1982b), Mortensen (1982) and Pissarides (1985) have been extended and applied to other fields.

Our work is related to a young literature that studies search and bargaining frictions in financial

markets. To date, this literature consists of two subfields: one that deals with macro issues,

and another that focuses on micro considerations in the market microstructure tradition.

On the macro side, for instance, Lagos (2010a, 2010b, 2010c) uses versions of the Lagos and

Wright (2005) search-based model of exchange to study the effect of liquidity and monetary

policy on asset prices. On the micro side, the influential work of Duffie, Gârleanu and Pedersen

(2005) was the first to use search-theoretic techniques to model the trading frictions charac-

teristic of real-world over-the-counter markets. Their work has been extended by Lagos and

Rocheteau (2007, 2009) to allow for general preferences and unrestricted long positions, and by

Vayanos and Wang (2007) and Weill (2008) to allow investors to trade multiple assets. Duffie,

Gârleanu and Pedersen (2007) incorporate risk aversion and risk limits, and Afonso (2011) en-

dogenizes investors’ entry decision to the market. Relative to this particular micro branch of the

literature, our contribution is twofold. First, our model of the fed funds market provides a the-

oretical framework to interpret and rationalize the findings of existing empirical investigations

of this market, such as Furfine (1999), Ashcraft and Duffie (2007), Bech and Atalay (2008), and

Afonso, Kovner and Schoar (2011). Our second contribution is methodological: we offer the

first analytically tractable formulation of a search-based model of an over-the-counter market

in which all trade is bilateral, and agents can hold essentially unrestricted asset positions.2

2In contrast, the tractability of the model of Lagos and Rocheteau (2009) (the only other tractable formulation
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2 The model

There is a large population of agents that we refer to as banks, each represented by a point in

the interval [0, 1]. Banks hold integer amounts of an asset that we interpret as reserve balances,

and can negotiate these balances during a trading session set in continuous time that starts at

time 0 and ends at time T . Let τ denote the time remaining until the end of the trading session,

so τ = T − t if the current time is t ∈ [0, T ]. The reserve balance that a bank holds (e.g., at

its Federal Reserve account) at time T − τ is denoted by k (τ) ∈ K, with K = {0, 1, ...,K},
where K ∈ Z and 1 ≤ K. The measure of banks with balance k at time T − τ is denoted

nk (τ). A bank starts the trading session with some balance k (T ) ∈ K. The initial distribution

of balances, {nk (T )}k∈K, is given. Let uk ∈ R denote the flow payoff to a bank from holding k

balances during the trading session, and let Uk ∈ R be the payoff from holding k balances at

the end of the trading session. All banks discount payoffs at rate r.

Banks can trade balances with each other in an over-the-counter market where trading

opportunities are bilateral and random, and represented by a Poisson process with arrival rate

α > 0. We model these bilateral transactions as loans of reserve balances. Once two banks have

made contact, they bargain over the size of the loan and the quantity of reserve balances to be

repaid by the borrower. After the terms of the transaction have been agreed upon, the banks

part ways. We assume that (signed) loan sizes are elements of the set K̄ = K ∪ {−K, ...,−1},
and that every loan gets repayed at time T+∆ in the following trading day, where ∆ ∈ R+. Let

x ∈ R denote the net credit position (of federal funds due at T+∆) that has resulted from some

history of trades. We assume that the payoff to a bank with a net credit position x who makes

a new loan at time T − τ with repayment R at time T + ∆, is equal to the post-transaction

discounted net credit position, e−r(τ+∆) (x+R).

3 Institutional features of the market for federal funds

The market for federal funds is a market for unsecured loans of reserve balances at the Federal

Reserve Banks, that allows participants with excess reserve balances to lend balances (or sell

funds) to those with reserve balance shortages. These unsecured loans, commonly referred to

of a search-based over-the-counter market with unrestricted asset holdings) relies on the assumption that all trade
among investors is intermediated by dealers who have continuous access to a competitive interdealer market.
While there are several instances of such pure dealer markets, the market for federal funds is not one of them.
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as fed(eral) funds, are delivered on the same day and their duration is typically overnight.3 The

interest rate on these loans is known as the fed funds rate. Participants include commercial

banks, thrift institutions, agencies and branches of foreign banks in the United States, govern-

ment securities dealers, government agencies such as federal or state governments, and GSEs

(e.g., Freddie Mac, Fannie Mae, and Federal Home Loan Banks). The market for fed funds is

an over-the-counter market: in order to trade, a financial institution must first find a willing

counterparty, and then bilaterally negotiate the size and rate of the loan. We use a search-based

model to capture the over-the-counter nature of this market.4

In practice, there are two ways of trading federal funds. Two participants can contact

each other directly and negotiate the terms of a loan, or they can be matched by a fed funds

broker. Non-brokered transactions represent the bulk of the volume of fed funds loans, so we

abstract from brokers in our baseline model.5 Most Fed funds loans are settled through Fedwire

Funds Services, a large-value real-time gross settlement system operated by the Federal Reserve

Banks. More than 7,000 Fedwire participants can lend and borrow in the fed funds market

including commercial banks, thrift institutions, government securities dealers, federal agencies,

and agencies and branches of foreign banks in the United States. In 2008, the average daily

number of borrowers and lenders was 164 and 255, respectively.6

Fedwire operates 21.5 hours each business day, from 9.00 pm Eastern Time (ET) on the

preceding calendar day to 6.30 pm ET. On a typical day, institutions receive the repayments

corresponding to the fed funds loans sold the previous day, before they send out the new loans.

In 2006, the average value-weighted time of repayment was 3.09 pm ± 9 minutes, while the

average time of delivery was 4.30 pm ± 7 minutes. The average duration of a loan was 22 hours

and 39 minutes.7 For simplicity, in our theory we take as given that every loan gets repaid after

3There is a “term” federal funds market where maturities range from a few days to more than a year, with
most loans having a maturity of no more than six months. The amount of term federal funds outstanding has
been estimated to be on the order of one-tenth of the amount of overnight loans traded on a given day (see
Meulendyke, 1998).

4There is a growing search-theoretic literature on financial markets which includes Afonso (2011), Duffie,
Gârleanu, and Pedersen (2005, 2007), Gârleanu (2009), Lagos and Rocheteau (2007, 2009), Lagos, Rocheteau,
and Weill (2011), Miao (2006), Rust and Hall (2003), Spulber (1996), Vayanos and Wang (2007), Vayanos and
Weill (2008), and Weill (2007, 2008), just to name a few. See Ashcraft and Duffie (2007) for more on the
over-the-counter nature of the fed funds market.

5Ashcraft and Duffie (2007) report that non-brokered transactions represented 73 percent of the volume of
federal funds traded in 2005. Federal fund brokers do not take positions themselves; they only act as matchmakers,
bringing buyers and sellers together.

6See Afonso, Kovner and Schoar (2011).
7This is documented in Bech and Atalay (2008).
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the end of the operating day, at a fixed time T +∆.

Fed funds activity is concentrated in the last two hours of the operating day. For a typical

bank, for example, until mid afternoon transactions reflect its primary business activities. Later

in the day, the trading and payment activity is orchestrated by the fed funds trading desk and

aimed at achieving a target balance of fed funds. In 2008, more than 75 percent of the value

of fed funds traded among banks was traded after 4:00 pm.8 By this time, each bank has a

balance of reserves resulting from previous activities which is taken as given by the bank’s fed

funds trading desk.9 We think of t = 0 as standing in for 4:00 pm and model the distribution

of actual reserve balances given to the bank’s fed funds trading desk at this time, with the

initial condition {nk (T )}k∈K. Fed funds transactions are usually made in round lots of over

$1 million.10 In 2008, the average loan size was $148.5 million while the median loan was $50

million. The most common loan sizes were $50 million, $100 million and $25 million. To keep

the analytics tractable, we assume discrete loan sizes in our model.

The motives for trading federal funds may vary across participants and their specific cir-

cumstances on any given day. In general, however, there are two main reasons why institutions

borrow and lend federal funds. First, some institutions such as commercial banks use the fed

funds market to offset the effects on their fed funds balances of transactions (either initiated

by their clients or by profit centers within the banks themselves) that would otherwise leave

them with a reserve position that does not meet Federal Reserve regulations. Also, some par-

ticipants regard fed funds loans as an investment vehicle; an interest-yielding asset that can

be used to “park” balances overnight. In our model, all payoff-relevant policy and regulatory

considerations are captured by the intraday and end-of-day payoffs, {uk, Uk}k∈K.
8In line with this observation, Bartolini et al. (2005) and Bech and Atalay (2008) report very high fed funds

loan activity during the latter part of the trading session. (See, for example, the illustrations of intraday loan
networks for each half hour in a trading day in their Figure 6.)

9For example, as reported by Ashcraft and Duffie (2007), at some large banks, federal funds traders responsible
for managing the bank’s fed funds balance ask other profit centers of their bank to avoid large unscheduled
transactions (e.g., currency trades) near the end of the day. Toward the end of the trading session, once the fed
funds trading desk has a good estimate of the send and receive transactions pending until the end of the day,
it begins adjusting its trading negotiations to push the bank’s balances in the desired direction. Also in line
with this observation, Bartolini et al. (2005) attribute the late afternoon rise in fed funds trading activity to the
clustering of institutional deadlines, e.g., the settlement of securities transactions ends at 15:00, causing some
institutions to defer much of their money market trading until after that time, once their security-related balance
sheet position becomes certain. Uncertainty about client transactions and other payment flows diminishes in
the hour or two before Fedwire closes at 18:30, which also contributes to the concentration of fed funds trading
activity late in the day.

10See Furfine (1999) and Stigum (1990).
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4 Equilibrium

Let Jk (x, τ) be the maximum attainable payoff to a bank that holds k units of reserve balances

and whose net credit position is x, when the time until the end of the trading session is τ . Let

s = (k, x) ∈ K× R denote the bank’s individual state, then

Jk (x, τ) = E

{∫ min(τα,τ)

0
e−rzukdz + I{τα>τ}e

−rτ
(
Uk + e−r∆x

)
(1)

+ I{τα≤τ}e
−rτα

∫
Jk−bss′ (τ−τα) (x+Rs′s (τ − τα) , τ − τα)µ

(
ds′, τ − τα

)}
,

where E is an expectation operator over the exponentially distributed random time until the

next trading opportunity, τα, and I{τα≤τ} is an indicator function that equals 1 if τα ≤ τ and 0

otherwise. For each time τ ∈ [0, T ] until the end of the trading session, µ (·, τ) is a probability

measure (on the Borel σ-field of the subsets of K×R) that describes the heterogeneity of poten-

tial trading partners over individual states, s′ = (k′, x′). The pair (bss′ (τ − τα) , Rs′s (τ − τα))

denotes the bilateral terms of trade between a bank with state s and a (randomly drawn) bank

with state s′, when the remaining time is τ−τα. That is, bss′ (τ − τα) is the amount of balances

that the bank with state s lends to the bank with state s′, and Rs′s (τ − τα) is the amount of

balances that the latter commits to repay at time T +∆.

For all τ ∈ [0, T ] and any (s, s′) with s, s′ ∈ K × R, we take (bss′ (τ) , Rs′s (τ)) to be the

outcome corresponding to the symmetric Nash solution to a bargaining problem.11 For all

(k, k′) ∈ K×K, the set

Π
(
k, k′

)
=
{(
k + k′ − y, y

)
∈ K×K : y ∈

{
0, 1, . . . , k + k′

}}
contains all feasible pairs of post-trade balances that could result from the bilateral bargaining

between two banks with balances k and k′. This set embeds the restriction that an increase in

one bank’s balance must correspond to an equal decrease in the other bank’s balance, and that

no bank can transfer more balances than it currently holds. For every pair of banks that hold

(k, k′) ∈ K×K, the set Π (k, k′) induces the set of all feasible (signed) loan sizes,

Γ
(
k, k′

)
=
{
b ∈ K̄ :

(
k − b, k′ + b

)
∈ Π

(
k, k′

)}
.

11This axiomatic Nash solution can also be obtained from a strategic bargaining game in which, upon contact,
Nature selects one of the banks with probability a half to make a take-it-or-leave-it offer which the other bank
must either accept or reject on the spot. It is easy to verify that the expected equilibrium outcome of this game
coincides with the solution to the Nash bargaining problem, subject to the obvious reinterpretation of Rs′s (τ)
as an expected repayment, which is inconsequential. See Appendix C in Lagos and Rocheteau (2009).
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Notice that Π (k, k′) = Π (k′, k), and Γ (k, k′) = −Γ (k′, k) for all k, k′ ∈ K. The bargaining

outcome, (bss′ (τ) , Rs′s (τ)), is the pair (b,R) that solves

max
b∈Γ(k,k′),R∈R

[Jk−b (x+R, τ)− Jk (x, τ)]
1
2
[
Jk′+b

(
x′ −R, τ

)
− Jk′

(
x′, τ

)] 1
2 .

In the appendix (Lemma 2) we show that

Jk (x, τ) = Vk (τ) + e−r(τ+∆)x (2)

satisfies (1), if and only if Vk (τ) : K× [0, T ] → R satisfies

Vk (τ) = E

{∫ min(τα,τ)

0
e−rzukdz + I{τα>τ}e

−rτUk (3)

+ I{τα≤τ}e
−rτα

∑
k′∈K

nk′ (τ − τα)
[
Vk−bkk′ (τ−τα) (τ − τα) + e−r(τ+∆−τα)Rk′k (τ − τα)

]}
,

for all (k, τ) ∈ K× [0, T ], with

bkk′ (τ) ∈ arg max
b∈Γ(k,k′)

[Vk′+b (τ) + Vk−b (τ)− Vk′ (τ)− Vk (τ)] (4)

e−r(τ+∆)Rk′k (τ) =
1

2

[
Vk′+bkk′ (τ)

(τ)− Vk′ (τ)
]
+

1

2

[
Vk (τ)− Vk−bkk′ (τ)

(τ)
]
. (5)

In (4) and (5), we use (bkk′ (τ) , Rk′k (τ)) (rather than (bss′ (τ) , Rs′s (τ))) to denote the bar-

gaining outcome between a bank with individual state s ∈ K × R and a bank with individual

state s′ ∈ K × R, in order to stress that this outcome is independent of the banks’ net credit

positions, x and x′. Hereafter, we use V ≡ [V (τ)]τ∈[0,T ], with V (τ) ≡ {Vk (τ)}k∈K, to denote

the value function in (3).

When a pair of banks meet, they jointly decide on the size of the loan and the size of the

repayment. The loan size determines the gain from trade, and the repayment implements a

division of this gain between the borrower and the lender. For example, suppose that a bank

with i ∈ K balances and a bank with j ∈ K balances meet with time τ until the end of the

trading session, and negotiate a loan of size bij (τ) = i− k = s− j ∈ Γ (i, j). Then the implied

joint gain from trade, the (match) surplus, corresponding to this transaction is

Sks
ij (τ) ≡ Vk (τ) + Vs (τ)− Vi (τ)− Vj (τ) . (6)

Thus, according to (4), the bargaining outcome always involves a loan size that maximizes the

surplus. According to (5), the size of the repayment is chosen such that each bank’s individual
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gain from trade equals a fraction of the joint gain from trade, with that fraction being equal

to the bank’s bargaining power. To see this more clearly, note that (2), (4) and (5) imply that

the gain from trade to a bank with balance k who trades with a bank with balance k′ when the

time remaining is τ , namely Jk−bkk′ (τ)
(x+Rk′k (τ) , τ)− Jk (x, τ), equals

Vk−bkk′ (τ)
(τ) + e−r(τ+∆)Rk′k (τ)− Vk (τ)

=
1

2

[
Vk′+bkk′ (τ)

(τ) + Vk−bkk′ (τ)
(τ)− Vk′ (τ)− Vk (τ)

]
. (7)

Consider a bank with i balances that contacts a bank with j balances when the time

until the end of the trading session is τ . Let ϕksij (τ) be the probability that the former and

the latter hold k and s balances after the meeting, respectively, i.e., ϕksij (τ) ∈ [0, 1], with∑
k∈K

∑
s∈K

ϕksij (τ) = 1. Feasibility requires that ϕksij (τ) = 0 if (k, s) /∈ Π(i, j). Given any feasible

path for the distribution of trading probabilities, ϕ (τ) = {ϕksij (τ)}i,j,k,s∈K, the distribution of

balances at time T − τ , i.e., n (τ) = {nk (τ)}k∈K, evolves according to

ṅk (τ) = f [n (τ) ,ϕ (τ)] for all k ∈ K, (8)

where

f [n (τ) ,ϕ (τ)] ≡ αnk (τ)
∑
i∈K

∑
j∈K

∑
s∈K

ni (τ)ϕ
sj
ki (τ)

− α
∑
i∈K

∑
j∈K

∑
s∈K

ni (τ)nj (τ)ϕ
ks
ij (τ) . (9)

The first term on the right side of (9) contains the total flow of banks that leave state k between

time t = T − τ and time t′ = T − (τ − ε) for a small ε > 0. The second term contains the total

flow of banks into state k over the same interval of time.

The following proposition provides a sharper representation of the value function and the

distribution of trading probabilities characterized in (3), (4) and (5).

Proposition 1 The value function V satisfies (3), with (4) and (5), if and only if it satisfies

Vi (τ) = vi (τ) + α

∫ τ

0
Vi (z) e

−(r+α)(τ−z)dz

+
α

2

∫ τ

0

∑
j∈K

∑
k∈K

∑
s∈K

nj (z)ϕ
ks
ij (z) [Vk(z) + Vs(z)− Vi(z)− Vj(z)] e

−(r+α)(τ−z)dz, (10)
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for all (i, τ) ∈ K× [0, T ], with

vi (τ) =
[
1− e−(r+α)τ

] ui
r + α

+ e−(r+α)τUi, (11)

for all i ∈ K, and

ϕksij (τ) =

{
ϕ̃ksij (τ) if (k, s) ∈ Ωij [V (τ)]

0 if (k, s) /∈ Ωij [V (τ)] ,
(12)

for all i, j, k, s ∈ K and all τ ∈ [0, T ], where ϕ̃ksij (τ) ≥ 0 and
∑
k∈K

∑
s∈K

ϕ̃ksij (τ) = 1, with

Ωij [V (τ)] ≡ arg max
(k′,s′)∈Π(i,j)

[Vk′ (τ) + Vs′ (τ)− Vi (τ)− Vj (τ)] . (13)

The set Ωij [V (τ)] contains all the feasible pairs of post-trade balances that maximize the

match surplus between a bank with i balances and a bank with j balances that is implied by

the value function V (τ) at time T − τ . For any pair of banks with balances i and j, ϕksij (τ)

defined in (12) is a probability distribution over the feasible pairs of post-trade portfolios that

maximize the bilateral gain from trade

Definition 1 An equilibrium is a value function, V , a path for the distribution of reserve

balances, n (τ), and a path for the distribution of trading probabilities, ϕ (τ), such that: (a)

given the value function and the distribution of trading probabilities, the distribution of balances

evolves according to (8); and (b) given the path for the distribution of balances, the value function

and the distribution of trading probabilities satisfy (10) and (12).

Assumption A. For any i, j ∈ K, and all (k, s) ∈ Π(i, j), the payoff functions satisfy:

u⌈ i+j
2 ⌉ + u⌊ i+j

2 ⌋ ≥ uk + us (DMC)

U⌈ i+j
2 ⌉ + U⌊ i+j

2 ⌋ ≥ Uk + Us, “ > ” unless k ∈
{⌊

i+j
2

⌋
,
⌈
i+j
2

⌉}
, (DMSC)

where ⌊x⌋ ≡ max {k ∈ Z : k ≤ x} and ⌈x⌉ ≡ min {k ∈ Z : x ≤ k} for any x ∈ R.

In the appendix (Lemma 3) we show that conditions (DMC) and (DMSC) are equivalent to

requiring that the payoff functions {uk}k∈K and {Uk}k∈K satisfy discrete midpoint concavity, and

discrete midpoint strict concavity, respectively. These are the natural discrete approximations
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to the notions of midpoint concavity and midpoint strict concavity of ordinary functions defined

on convex sets.12

The following result provides a full characterization of equilibrium under Assumption A.

Proposition 2 Let the payoff functions satisfy Assumption A. Then:

(i) An equilibrium exists, and the equilibrium paths for the maximum attainable payoffs, V (τ),

and the distribution of reserve balances, n (τ), are uniquely determined.

(ii) The equilibrium path for the distribution of trading probabilities, ϕ (τ) = {ϕksij (τ)}i,j,k,s∈K,
is given by

ϕksij (τ) =

{
ϕ̃ksij (τ) if (k, s) ∈ Ω∗

ij

0 if (k, s) /∈ Ω∗
ij

(14)

for all i, j, k, s ∈ K and all τ ∈ [0, T ], where ϕ̃ksij (τ) ≥ 0 and
∑

(k,s)∈Ω∗
ij

ϕ̃ksij (τ) = 1, where

Ω∗
ij =


{(

i+j
2 , i+j

2

)}
if i+ j is even{(⌊

i+j
2

⌋
,
⌈
i+j
2

⌉)
,
(⌈

i+j
2

⌉
,
⌊
i+j
2

⌋)}
if i+ j is odd.

(15)

(iii) V is the unique bounded real-valued function that satisfies

rVi (τ) + V̇i (τ) = ui +
α

2

∑
j∈K

∑
k∈K

∑
s∈K

nj (τ)ϕ
ks
ij (τ) [Vk (τ) + Vs (τ)− Vi (τ)− Vj (τ)] (16)

for all (i, τ) ∈ K× [0, T ], with

Vi (0) = Ui for all i ∈ K, (17)

and with the path for ϕ (τ) given by (14), and the path for n (τ) given by ṅ (τ) =

f [n (τ) ,ϕ (τ)].

(iv) Suppose that at time T − τ , a bank with balance j extends a loan of size j − s = k − i to

a bank with balance i. The present value of the equilibrium repayment from the latter to

the former is

e−r(τ+∆)Rks
ij (τ) =

1

2
[Vk (τ)− Vi (τ)] +

1

2
[Vj (τ)− Vs (τ)] . (18)

12Let X be a convex subset of Rn, then a function g : X → R is said to be concave if g (ϵx+ (1− ϵ) y) ≥
ϵg (x)+(1− ϵ) g (y) for all x, y ∈ X, and all ϵ ∈ [0, 1]. The function g ismidpoint concave if 2g

(
x+y
2

)
≥ g (x)+g (y)

for all x, y ∈ X. Clearly, if g is concave then it is midpoint concave. The converse is true provided g is continuous.
The function g : K → R satisfies the discrete midpoint concavity property if g

(⌈
i+j
2

⌉)
+ g

(⌊
i+j
2

⌋)
≥ ui + uj for

all i, j ∈ K. See Murota (2003) for more on the midpoint concavity/convexity property and the role that it plays
in the modern theory of discrete convex analysis.
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The equilibrium distribution of trading probabilities (14) can be described intuitively as follows.

At any point during the trading session, if a bank with balance i contacts a bank with balance

j, then the post-transaction balance will necessarily be
⌊
i+j
2

⌋
for one of the banks, and

⌈
i+j
2

⌉
for the other. This property, and the uniqueness of the equilibrium paths for the distribution of

reserve balances and maximum payoffs, hold under Assumption A. In the appendix (Corollary

1) we show that if we instead assume that u satisfies discrete midpoint strict concavity and U

satisfies discrete midpoint concavity, then the existence and uniqueness results in Proposition 2

still hold.

5 Efficiency

In this section we use our theory to characterize the optimal process of reallocation of reserve

balances in the fed funds market. The spirit of the exercise is to take as given the market

structure, including the contact rate α and the regulatory variables {uk, Uk}k∈K, and to ask

whether decentralized trade in the over-the-counter market structure reallocates reserve bal-

ances efficiently, given these institutions. To this end, we study the problem of a social planner

who solves

max
[χ(t)]Tt=0

[∫ T

0

∑
k∈K

mk (t)uke
−rtdt+ e−rT

∑
k∈K

mk (T )Uk

]
s.t. ṁk (t) = −f [m (t) ,χ (t)] , (19)

χks
ij (t) ∈ [0, 1] , with χks

ij (t) = 0 if (k, s) /∈ Π(i, j) ,

χks
ij (t) = χsk

ji (t) , and
∑
k∈K

∑
s∈K

χks
ij (t) = 1,

for all t ∈ [0, T ], and all i, j, k, s ∈ K. We have formulated the planner’s problem in chronological

time, so mk (t) denotes the measure of banks with balance k at time t. Since τ ≡ T − t, we

have mk (t) = mk (T − τ) ≡ nk (τ), and therefore ṁk (t) = −ṅk (τ). Hence the flow constraint

is the real-time law of motion for the distribution of balances implied by the bilateral stochastic

trading process. The control variable, χ (t) = {χks
ij (t)}i,j,k,s∈K, represents the planner’s choice

of reallocation of balances between any pair of banks that have contacted each other at time

t. The first, second, and fourth constraints on χ (t) ensure that {χks
ij (t)}k,s∈K is a probability

distribution for each i, j ∈ K, and that the planner only chooses among feasible reallocations of

balances between a pair of banks. We look for a solution that does not depend on the identities
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or “names” of banks, so the third constraint on χ (t) recognizes the fact that χks
ij (t) and χsk

ji (t)

represent the same decision for the planner. That is, χks
ij (t) and χsk

ji (t) both represent the

probability that a pair of banks with balances i and j who contact each other at time t, exit

the meeting with balances k and s, respectively.

Proposition 3 A solution to the planner’s problem is a path for the distribution of balances,

n (τ), a path for the vector of co-states associated with the law of motion for the distribution of

balances, λ (τ) = {λk (τ)}k∈K, and a path for the distribution of trading probabilities, ψ (τ) =

{ψks
ij (τ)}i,j,k,s∈K. The necessary conditions for optimality are,

rλi (τ) + λ̇i (τ) = ui + α
∑
j∈K

∑
k∈K

∑
s∈K

nj (τ)ψ
ks
ij (τ) [λk (τ) + λs (τ)− λi (τ)− λj (τ)] (20)

for all (i, τ) ∈ K× [0, T ], with

λi (0) = Ui for all i ∈ K, (21)

with the path for n (τ) given by ṅ (τ) = f [n (τ) ,ψ (τ)], and with

ψks
ij (τ) =

{
ψ̃ks
ij (τ) if (k, s) ∈ Ωij [λ (τ)]

0 if (k, s) /∈ Ωij [λ (τ)] ,
(22)

for all i, j, k, s ∈ K and all τ ∈ [0, T ], where ψ̃ks
ij (τ) ≥ 0 and

∑
k∈K

∑
s∈K

ψ̃ks
ij (τ) = 1.

The following result provides a full characterization of solution to the planner’s problem

under Assumption A.

Proposition 4 Let the payoff functions satisfy Assumption A. Then:

(i) The optimal path for the distribution of trading probabilities, ψ (τ) = {ψks
ij (τ)}i,j,k,s∈K, is

given by

ψks
ij (τ) =

{
ψ̃ks
ij (τ) if (k, s) ∈ Ω∗

ij

0 if (k, s) /∈ Ω∗
ij

(23)

for all i, j, k, s ∈ K and all τ ∈ [0, T ], where ψ̃ks
ij (τ) ≥ 0 and

∑
(k,s)∈Ω∗

ij

ψ̃ks
ij (τ) = 1.

(ii) Along the optimal path, the shadow value of a bank with i reserve balances is given by

(20) and (21), with the path for ψ (t) given by (23), and the path for n (τ) given by

ṅ (τ) = f [n (τ) ,ψ (τ)].
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Notice the similarity between the equilibrium conditions and planner’s optimality conditions.

First, from (12) and (22), we see that the equilibrium loan sizes are privately efficient. That is,

given the value function V , the equilibrium distribution of trading probabilities is the one that

would be chosen by the planner. Second, the path for the equilibrium values, V (τ), satisfies

(16) and (17), while the path for the planner’s shadow prices satisfies (20) and (21). These

pairs of conditions would be identical were it not for the fact that the planner imputes to each

agent gains from trade with frequency 2α, rather α, which is the frequency with which the

agent generates gains from trade for himself in the equilibrium. This reflects a composition

externality typical of random matching environments. The planner’s calculation of the value of

a marginal agent in state i includes not only the expected gain from trade to this agent, but

also the expected gains from trade that having this marginal agent in state i generates for all

other agents, by increasing their contact rates with agents in state i. In the equilibrium, the

individual agent in state i internalizes the former, but not the latter.13

Under Assumption A, however, condition (14) is identical to (23), so the equilibrium paths

for the distribution of balances and trading probabilities coincide with the optimal paths. This

observation is summarized in the following proposition.

Proposition 5 Let the payoff functions satisfy Assumption A. Then, the equilibrium supports

an efficient allocation of reserve balances.

6 Positive implications

The performance of the fed funds market as a system that reallocates liquidity among banks, can

be appraised by the behavior of empirical measures of the fed funds rate and of the effectiveness

of the market to channel funds from banks with excess balances to those with shortages. In

this section we derive the theoretical counterparts to these empirical measures, and argue that

the theory is consistent with the most salient features of the actual fed funds market. We

use the theory to identify the determinants of the fed funds rate, trade volume, and trading

delays. We also describe the equilibrium dynamics of the fed fund balances of individual banks,

and propose theory-based measures of the importance of bank-provided intermediation in the

process of reallocation of fed funds among banks.

13In a labor market context, a similar composition externality arises in the competitive matching equilibrium
of Kiyotaki and Lagos (2007).
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6.1 Trade volume and trading delays

The flow volume of trade at time T − τ is

ῡ (τ) =
∑
i∈K

∑
j∈K

∑
k∈K

∑
s∈K

υksij (τ) ,

where

υksij (τ) = αni (τ)nj (τ)ϕ
ks
ij (τ) |k − i| ,

and the total volume traded during the whole trading session is

ῡ =

∫ T

0
ῡ (τ) dτ.

Notice that the arrival rate of specific trading opportunities is endogenous, as it depends on the

equilibrium distribution of balances. For example, αnj (τ)ϕ
ks
ij (τ) is the rate at which agents

with balance i trade a balance equal to k−i with agents with balance j at time T−τ . Therefore,
even though the contact rate, α, is exogenous in our baseline formulation, trading delays—a key

distinctive feature of over-the-counter markets—are determined by agents’ trading strategies.

6.2 Fed funds rate

In our baseline formulation, banks negotiate loans and the present value of the loan repayment.

It is possible to reformulate the negotiation in terms of a loan size and an interest rate. For

example, consider a transaction between a bank with i balances and a bank with j balances

in which the former borrows k − i = j − s from the latter. We can think of the corresponding

repayment, Rks
ij (τ) in (18), as composed of the principal of the loan, augmented by continuously

compounded interest, ρ. That is, we can write Rks
ij (τ) = eρ(τ+∆) (k − i), and solve for the

transaction-specific interest rate,

ρksij (τ) =

ln

[
Rks

ij (τ)

k−i

]
τ +∆

= r +

ln

[
Vj(τ)−Vs(τ)

j−s +
1
2
Sks
ij (τ)

j−s

]
τ +∆

. (24)

According to (24), the interest on a loan of size j − s extended by a lender with balance j to a

borrower with balance i at time T − τ , is equal to the discount rate, r, plus a premium, which

increases with the size of the joint gain from trade, Sks
ij (τ), and with the lender’s bargaining

power (here equal to 1/2). Notice that according to the theory, there is no such thing as the

fed funds rate, rather there is a time-varying distribution of rates. That is, empirically, in
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order to “explain” the rate determination in over-the-counter fed fund transactions, one would

have to control for the opportunity cost of funds (r), the duration of the loan (τ + ∆), the

size of the loan (j − s in (24)), the bargaining power of the borrower and the lender (1/2

each in (24)), the present discounted value of the loss to the lender from giving up the funds

(Vj (τ) − Vs (τ)), and the present discounted value of the gain to the borrower from obtaining

the funds (Vk (τ)−Vi (τ)), both of which depend on the time until the end of the trading session

(τ).

In the theory,

ρ̄ (τ) =
∑
i∈K

∑
j∈K

∑
k∈K

∑
s∈K

ωks
ij (τ) ρksij (τ)

is a weighted average of rates at each point in time, and

ρ̄ =
1

T

∫ T

0
ρ̄ (τ) dτ

is a daily average rate, where ωks
ij (τ) is a weighting function with ωks

ij (τ) ≥ 0 and
∑

i,j,k,s∈K
ωks
ij (τ) =

1. For example, if ωks
ij (τ) = υksij (τ) /ῡ (τ), then ρ̄ (τ) is the value-weighted average fed funds

rate at time T − τ , and ρ̄ is a value-weighted daily average fed funds rate akin to the daily

effective federal funds rate published by the Federal Reserve.14

6.3 Equilibrium dynamics of fed fund balances

Consider a bank with balance a (t0) = i ∈ K at time t0 ∈ [0, T ), and let t1 ∈ (t0, T ) denote

the time at which the bank receives its first trading opportunity on [t0, T ]. The probability

distribution over post-trade balances at t1, a (t1) ∈ K, is given by

Pr [a (t1) = j | a (t0) = i] =
∑
q∈K

mq (t1)ϕ
jq′

iq (t1) ≡ πij (t1) ,

where q′ ≡ q + i − j and mq (t1) is the measure of banks with balance q at time t1. Given a

probability measure over a (t0) ∈ K, the (K + 1)× (K + 1) transition matrix Π (t1) = [πij (t1)]

records the probabilities of making a transition from any balance i ∈ K to any balance j ∈ K
at trading time t1. More generally, consider a bank with balance k0 ∈ K at t0 that has N

trading opportunities between time t0 and time t, e.g., at times t(N) = (t1, t2, . . . , tN ), with

14The actual daily effective federal funds rate is a volume-weighted average of rates on trades arranged by
major brokers. The Federal Reserve Bank of New York receives summary reports from the brokers, and every
morning publishes the effective federal funds rate for the previous day.
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0 ≤ t0 < t1 < t2 < · · · < tN < t ≤ T . (We adopt the convention t(0) = t0.) Then given

the initial balance k0 ∈ K and the realization of trading times t(N) ∈ [t0, t]
N , the probability

distribution over the sequence of post-trade balances at these trading times, i.e., a (tn) ∈ K for

all n = 1, ..., N , is given by

Pr
[
a (t1) = k1, . . . , a (tN ) = kN | a (t0) = k0, t

(N)
]
=

N∏
n=1

πkn−1kn (tn) . (25)

Given a probability measure over a (t0) ∈ K, the (K + 1)× (K + 1) transition matrix

Π(N)(t(N)) = Π (t1) · · ·Π (tN ) (26)

records the probabilities of making a transition from any balance i ∈ K to any other balance

j ∈ K in N trades carried out at the realized trading times t(N) = (t1, ..., tN ). Notice that

Π(1)(t(1)) = Π (t1), and by convention, Π(0)(t(0)) = I, where I denotes the (K + 1)× (K + 1)

identity matrix. The following proposition provides a complete characterization of the stochastic

process that rules the equilibrium dynamics of the balance held by an individual bank.

Proposition 6 For any t0 ∈ [0, T ), and any t ∈ [t0, T ], the transition function for the stochastic

process that rules the equilibrium dynamics of individual balances is

P (t|t0) =
∞∑

N=0

αNe−α(t−t0)

∫
T(N)

Π(N)(t(N))dt(N), (27)

where T(N) =
{
t(N) ∈ [t0, t]

N : t0 < t1 < · · · < tN < t
}
.

Let pij (t|t0) denote the (i, j) entry of the (K + 1)× (K + 1) matrix P (t|t0). Consider a bank

with balance i ∈ K at time t0, then pij (t|t0) is the probability the bank has balance j ∈ K at

time t.

6.4 Intermediation and speculative trades

The equilibrium characterized in Proposition 2 (and by Proposition 5, the efficient allocation

characterized in Proposition 4) exhibits endogenous intermediation in the sense that many

banks act as dealers, buying and selling funds on their own account and channeling them from

banks with larger balances to banks with smaller balances. To illustrate, consider a bank

that starts the trading session with balance a (0). Suppose, for example, that the bank in
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question only trades twice in the session, at times t1 and t2, with 0 < t1 < t2 < T , first

buying a (t1)− a (0), and then selling a (t1)− a (t2), so that it ends the session with a balance

a (t2), where a (0) < a (t2) < a (t1). Throughout the trading session, this bank effectively

intermediated a volume of funds equal to a (t1) − a (t2), buying at time t1 from a bank with

some balance at least as large as a (t1), and then selling at a later time t2 to a bank with some

balance no larger than a (t2). This type of intermediation among participants is an important

feature of the fed funds market. Next, we propose several theory-based empirical measures of

the importance of intermediation in the process of reallocation of fed funds among banks.

Consider a bank with N trading opportunities between time t0 and time t, e.g., at times

t(N) = (t1, t2, ..., tN ), with 0 ≤ t0 < t1 < t2 < · · · < tN < t ≤ T . Given the initial balance

k0 ∈ K and a realization t(N) ∈ [t0, t]
N , the time-path of the bank’s asset holdings during [t0, t]

is described by a function a[t0,t] : [t0, t] → K defined by

a[t0,t] (x) =


k0 for t0 ≤ x < t1
k1 for t1 ≤ x < t2
...

...
kN for tN ≤ x ≤ t,

where kn ∈ K is the post-trade balance at time tn for n = 1, ..., N . Given the initial balance

k0 at t0, the realized path for a bank’s balance during [t0, t] is completely described by the

number of contacts, N , the vector of contact times, t(N) ∈ [t0, t]
N , and the vector of post-trade

balances at those contact times, k(N) = (k1, k2, ..., kN ) ∈ KN . Given k0 and k(N), define the

bank’s accumulated volume of purchases during [t0, t],

Op(k0,k
(N)) =

N∑
n=1

max {kn − kn−1, 0} ,

the accumulated volume of sales,

Os(k0,k
(N)) = −

N∑
n=1

min {kn − kn−1, 0} ,

and the (signed) net trade, Op(k0,k
(N))−Os(k0,k

(N)) = kN − k0. Then

I(k0,k
(N)) = min

{
Op(k0,k

(N)), Os(k0,k
(N))

}
(28)

measures the volume of funds intermediated by the bank during the time interval [t0, t]. Al-

ternatively, Op(k0,k
(N)) + Os(k0,k

(N)) is the gross volume of funds traded by the bank, and
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|Op(k0,k
(N))−Os(k0,k

(N))| is the size of the bank’s net trade over the period [t0, t], so

X(k0,k
(N)) = Op(k0,k

(N)) +Os(k0,k
(N))−

∣∣∣Op(k0,k
(N))−Os(k0,k

(N))
∣∣∣ (29)

is a bank-level measure of excess funds reallocation, i.e., the volume of funds traded over and

above what is required to accommodate the net trade. The measure X(k0,k
(N)) is an index of

simultaneous buying and selling at the individual bank level during [t0, t]. This leads to

ι(k0,k
(N)) =

X(k0,k
(N))

Op(k0,k
(N)) +Os(k0,k

(N))

as a natural measure of the proportion of the total volume of funds traded by a bank during

[0, t], that the bank intermediated during the same time period.

Having described the intermediation behavior of a single bank along a typical sample path,

the next proposition shows how to calculate marketwide measures of intermediation.

Proposition 7 Let t0 ∈ [0, T ), and t ∈ (t0, T ]. During [t0, t]:

(i) The aggregate cumulative volume of purchases (for j = p, sales, for j = s) is

Ōj (t|t0) =
∑
k0∈K

mk0 (t0)

∞∑
N=0

αNe−α(t−t0)

∫
T(N)

Õj(k0, t
(N))dt(N), (30)

where

Õj(k0, t
(N)) =

∑
k(N)∈KN

(
N∏

n=1

πkn−1kn (tn)

)
Oj(k0,k

(N)).

(ii) The aggregate cumulative volume of intermediated funds is

Ī (t|t0) =
1

2
X̄ (t|t0) , (31)

and the proportion of intermediated funds in the aggregate volume of traded funds is

ῑ (t|t0) =
X̄ (t|t0)

Ōp (t|t0) + Ōs (t|t0)
,

where

X̄ (t|t0) =
∑
k0∈K

mk0 (t0)

∞∑
N=0

αNe−α(t−t0)

∫
T(N)

X̃(k0, t
(N))dt(N) (32)

is the aggregate excess reallocation of funds, with

X̃(k0, t
(N)) =

∑
k(N)∈KN

(
N∏

n=1

πkn−1kn (tn)

)
X(k0,k

(N)).
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Notice that our measure of excess funds reallocation, X̄ (t|t0), is a real-time analogue to the

notion of excess job reallocation used in empirical studies of job creation and destruction (e.g.,

Davis, Haltiwanger and Schuh, 1996).

7 Extensions

In this section we develop several extensions of the theory to allow for ex-ante heterogeneity in

bank types. Each extension is motivated by a particular aspect of the fed funds market that our

baseline model has abstracted from. First, according to practitioners, some banks (e.g., large

banks) consistently exhibit a stronger bargaining position when trading against other (e.g.,

small) banks. Our first extension allows banks to differ in their bargaining power parameter.

Second, empirical studies of the fed funds market have emphasized that a few banks trade

with much higher intensity than others, and are consistently more likely to act as borrowers

and as lenders during the same trading session.15 Our second extension allows for banks to

differ in the rate at which they contact and are contacted by potential trading partners. Third,

in practice, in any given trading session institutions may value end-of-day reserve balances

differently. For example, some banks may have balance sheets that call for larger balances to

meet their reserve requirements. Policy considerations can also induce differences among fed

funds participants, as the Federal Reserve remunerates the reserve balances of some participants,

e.g., depository institutions, but not others, e.g., Government Sponsored Enterprises (GSEs).

Our third extension allows for heterogeneity in the fed fund participants’ payoffs from holding

end-of-day balances.

For each extension, we describe the evolution of the distribution of balances and the value

function, and the determination of the trading decisions, i.e., all the ingredients needed to define

equilibrium. In each case, we give the relevant variables a superscript that identifies the bank’s

type. The set of types, Y, is finite and ηy denotes the fraction of banks of type y ∈ Y, i.e.,
ηy ∈ [0, 1] and

∑
y∈Y η

y = 1. The measure of banks of type y with balance k at time T − τ , is

denoted nyk (τ), so
∑

k∈K n
y
k (τ) = ηy. In a meeting at time T −τ between a bank of type x with

i balances and a bank of type y with j balances, ϕksij,xy (τ) is used to denote the probability that

15See Bech and Atalay (2008). The intensity of a bank’s trading activity in the fed funds market is also
correlated with the interest rates that the bank charges when it lends, and the rates that it pays when it
borrows. Ashcraft and Duffie (2007) find that rates tend to be higher on loans that involve lenders who are more
active in the federal funds market relative to the borrower. They also document that rates tend to be lower on
loans that involve borrowers who are more active relative to the lender.
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the former and the latter hold k and s balances after the meeting, respectively. In this section,

n (τ) =
{
nyk (τ)

}
y∈Y,k∈K and V (τ) =

{
V y
k (τ)

}
y∈Y,k∈K denote the distribution of balances and

the value function, respectively, at time T − τ . The distribution of trading probabilities at time

T − τ , ϕ (τ) = {{ϕksij,xy (τ)}x,y∈Y}i,j,k,s∈K, satisfies ϕksij,xy (τ) ∈ [0, 1] with
∑
k∈K

∑
s∈K

ϕksij,xy (τ) = 1,

and is feasible if ϕksij,xy (τ) = 0 if (k, s) /∈ Π(i, j) for all i, j, k, s ∈ K and all x, y ∈ Y.

7.1 Heterogeneous bargaining powers

Let θxy ∈ [0, 1] be the bargaining power of a bank type x ∈ Y in negotiations with a bank

of type y ∈ Y, where θxy + θyx = 1.16 Given any feasible path for the distribution of trading

probabilities, ϕ (τ), the distribution of balances evolves according to

ṅxk (τ) = fx [n (τ) ,ϕ (τ)] for all k ∈ K and x ∈ Y, (33)

where

fx [n (τ) ,ϕ (τ)] ≡ αnxk (τ)
∑
y∈Y

∑
i∈K

∑
j∈K

∑
s∈K

nyi (τ)ϕ
sj
ki,xy (τ)

− α
∑
y∈Y

∑
i∈K

∑
j∈K

∑
s∈K

nxi (τ)n
y
j (τ)ϕ

ks
ij,xy (τ) . (34)

The value function satisfies

rV x
i (τ)+V̇ x

i (τ) = ui+α
∑
y∈Y

∑
j∈K

∑
k∈K

∑
s∈K

nyj (τ)ϕ
ks
ij,xy (τ) θxy

[
V x
k (τ) + V y

s (τ)− V x
i (τ)− V y

j (τ)
]

(35)

for all (x, i, τ) ∈ Y×K× [0, T ], with

V x
i (0) = Ui for all x ∈ Y and all i ∈ K. (36)

The path for ϕ (τ) is given by

ϕksij,xy (τ) =

{
ϕ̃ksij,xy (τ) if (k, s) ∈ Ωij,xy [V (τ)]

0 if (k, s) /∈ Ωij,xy [V (τ)] ,
(37)

for all x, y ∈ Y, all i, j, k, s ∈ K, and all τ ∈ [0, T ], where ϕ̃ksij,xy (τ) ≥ 0 and
∑
k∈K

∑
s∈K

ϕ̃ksij,xy (τ) = 1,

with

Ωij,xy [V (τ)] ≡ arg max
(k′,s′)∈Π(i,j)

[
V x
k′ (τ) + V y

s′ (τ)− V x
i (τ)− V y

j (τ)
]
. (38)

16For example, a natural specification would be Y = {1, . . . , N} with θxy ≤ θyx if x ≤ y. In this case, a higher
type corresponds to a stronger bargaining power.
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If at time T − τ , a bank of type y with balance j extends a loan of size j − s = k− i to a bank

of type x with balance i, the present value of the equilibrium repayment from the latter to the

former is

e−r(τ+∆)Rks
ij,x,y (τ) =

1

2
[V x

k (τ)− V x
i (τ)] +

1

2

[
V y
j (τ)− V y

s (τ)
]
. (39)

7.2 Heterogeneous contact rates

Let αx be the contact rate of a bank of type x ∈ Y. Notice that from the perspective of any

bank, the probability of finding a trading partner of type y ∈ Y with balance j ∈ K at time

T − τ , conditional on having contacted a random partner, is η̄ynyj (τ), where

η̄y ≡ αyηy∑
x∈Y α

xηx
.

Hence the rate at which a bank of type x contacts a bank of type y who holds balance j at time

T − τ , is αxη̄ynyj (τ), and α
xη̄ynyj (τ)n

x
i (τ) is the measure of banks of type x who hold balance

i, that meet a bank of type y who holds balance j. Therefore, given any feasible path for the

distribution of trading probabilities, ϕ (τ), the distribution of balances evolves according to

ṅxk (τ) = fx [n (τ) ,ϕ (τ)] for all k ∈ K and x ∈ Y, (40)

where

fx [n (τ) ,ϕ (τ)] ≡ αxnxk (τ)
∑
y∈Y

∑
i∈K

∑
j∈K

∑
s∈K

η̄ynyi (τ)ϕ
sj
ki,xy (τ)

− αx
∑
y∈Y

∑
i∈K

∑
j∈K

∑
s∈K

η̄ynxi (τ)n
y
j (τ)ϕ

ks
ij,xy (τ) . (41)

The value function satisfies

rV x
i (τ)+V̇ x

i (τ) = ui+
αx

2

∑
y∈Y

∑
j∈K

∑
k∈K

∑
s∈K

η̄ynyj (τ)ϕ
ks
ij,xy (τ)

[
V x
k (τ) + V y

s (τ)− V x
i (τ)− V y

j (τ)
]

for all (x, i, τ) ∈ Y × K × [0, T ], subject to (36). Given V (τ), the path for ϕ (τ) is as in (37),

and the repayment as in (39).

7.3 Payoff heterogeneity

Let Uy
k ∈ R be the payoff to a bank of type y ∈ Y from holding a balance k ∈ K at the end of

the trading session. Given any feasible path for the distribution of trading probabilities, ϕ (τ),
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the distribution of balances evolves according to (33) and (34). The value function satisfies

(35), but with terminal condition

V x
i (0) = Ux

i for all x ∈ Y and all i ∈ K,

and θxy = 1/2 for all x, y ∈ Y. Given V (τ), the path for ϕ (τ) is as in (37), and the repayment

as in (39).

On October 9, 2008, the Federal Reserve began to pay interest on the required reserve

balances and on the excess balances held by depository institutions, but not on the balances

held by non-depository institutions.17 This means that some large lenders in the federal funds

market which are non-depository institutions, such as the GSEs, do not receive interest on their

reserve balances.18 It has been argued (see Bech and Klee, 2009) that such institutions may

have an incentive to lend at rates below the rate that banks receive on reserve balances, which

might have contributed to an increase of their market share and to the effective federal funds

rate (a daily volume-weighted average of brokered transactions rates) being lower than the rate

of interest banks earn on reserve balances. In our extended model, this feature of GSEs, and

its implication for the determination of the distribution of fed fund rates, can be handled by

regarding GSEs as a particular type, y0 ∈ Y, with Uy0
k = 0 for all k ∈ K.

8 An analytical example

In this section we use the theory with K = {0, 1, 2} to study the effects that various institu-

tional considerations and policies have on the performance of the market for federal funds. We

interpret a bank with k = 1 as being “on target” (e.g., holding the level of required reserves), a

bank with k = 2 as being “above target” (e.g., holding excess reserves), and a bank with k = 0

as being “below target” (e.g., unable to meet the level of required reserves). In this setting the

quantity of federal funds in the market, Q, equals n1 (T ) + 2n2 (T ), so Q ≤ 1 if and only if

n2 (T ) ≤ n0 (T ). The feasible sets of post-trade balances are: Π (0, 2) = {(0, 2) , (1, 1) , (2, 0)},
17The Financial Services Regulatory Relief Act of 2006 gives the Federal Reserve authority to pay interest on

reserve balances only to depository institutions, including banks, savings associations, saving banks and credit
unions, trust companies, and U.S. agencies and branches of foreign banks.

18Fannie Mae and Freddie Mac are large lenders of fed funds because their business model involves using the
fed funds market as a short-term investment for incoming mortgage payments, before passing the funds on to
investors in the form of principal and/or interest payments. Similarly, the Federal Home Loan Banks use the fed
funds market to keep their funds readily available to meet unexpected borrowing demands from members.
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Π(1, j) = {(1, j) , (j, 1)} for j = 0, 2, and Π (i, i) = {(i, i)} for i = 0, 1, 2. Hence,

max
(k,s)∈Π(2,0)

Sks
20 (τ) = max

{
S11
20 (τ) , 0

}
, and

max
(k,s)∈Π(i,i)

Sks
ii (τ) = max

(k,s)∈Π(1,j)
Sks
1j (τ) = 0 for all i ∈ K, and j = 0, 2.

That is, in this special case there can only be profitable trade between a bank with i = 2 and a

bank with j = 0 balances.19 To simplify the notation, let S (τ) ≡ S11
20 (τ), and refer to a bank

with i = 2 and a bank with j = 0 as a lender, and borrower, respectively. Let θ ∈ [0, 1] be the

bargaining power of the borrower. We conjecture that S (τ) > 0 for all τ ∈ [0, T ], and will later

verify that this is indeed the case. In this case, the flows (8) and (9) lead to

ṅ0 (τ) = αn2 (τ)n0 (τ)

ṅ2 (τ) = αn2 (τ)n0 (τ) ,

given the initial conditions n0 (T ) and n2 (T ). This implies

n0 (τ) =

{
[n2(T )−n0(T )]n0(T )

n2(T )eα[n2(T )−n0(T )](T−τ)−n0(T )
if n2 (T ) ̸= n0 (T )

n0(T )
1+αn0(T )(T−τ) if n2 (T ) = n0 (T )

(42)

n1 (τ) = 1− n0 (τ)− n2 (τ) (43)

n2 (τ) = n0 (τ) + n2 (T )− n0 (T ) . (44)

The expression for the value function V in (16) and (17) (or (10)) leads to

rV0 (τ) + V̇0 (τ) = u0 + αn2 (τ) θS (τ) (45)

rV1 (τ) + V̇1 (τ) = u1 (46)

rV2 (τ) + V̇2 (τ) = u2 + αn0 (τ) (1− θ)S (τ) , (47)

for all τ ∈ [0, T ], given Vi (0) = Ui for i = 0, 1, 2. Conditions (45), (46) and (47) imply

Ṡ (τ) + δ (τ)S (τ) = ū (48)

where ū ≡ 2u1 − u2 − u0, and

δ (τ) ≡ {r + α [θn2 (τ) + (1− θ)n0 (τ)]} .
19Recall that from (6), we know that in general, Sks

ij (τ) = Sks
ji (τ) = Ssk

ij (τ) = Ssk
ji (τ) for all i, j, k, s ∈ K.
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Given the boundary condition S (0) = 2U1 − U2 − U0, the solution to (48) is

S (τ) =

(∫ τ

0
e−[δ̄(τ)−δ̄(z)]dz

)
ū+ e−δ̄(τ)S (0) , (49)

where δ̄ (τ) ≡
∫ τ
0 δ (x) dx.

Suppose that ū ≡ 2u1 − u2 − u0 ≥ 0 and S (0) = 2U1 − U2 − U0 > 0, so Assumption A

holds. Then it is clear from (49) that S (τ) > 0 as conjectured. Then, with S (τ) given by (49),

the unique equilibrium is simply the path for the distribution of reserve balances given by (42),

(43) and (44), together with the distribution of trading probabilities given by ϕksij (τ) = 1 if

(i, j, k, s) = (2, 0, 1, 1) or (i, j, k, s) = (0, 2, 1, 1) and ϕksij (τ) = 0 otherwise, and a value function

V that satisfies the system of ordinary differential equations (45), (46), (47) with the boundary

conditions Vi (0) = Ui for i = 0, 1, 2. In equilibrium, the present value of the repayment is

e−r(τ+∆)R (τ) = V2 (τ)− V1 (τ) + (1− θ)S (τ) = V1 (τ)− V0 (τ)− θS (τ) . (50)

The interest rate implicit in the typical loan that promises to repay R (τ) at time τ +∆ for one

unit borrowed at time T − τ is

ρ (τ) =
lnR (τ)

τ +∆
= r +

ln [V2 (τ)− V1 (τ) + (1− θ)S (τ)]

τ +∆
. (51)

The equilibrium in this example is a path for the distribution n (τ), described explicitly by (42),

(43) and (44); a path for the distribution of trading probabilities explicitly given by ϕks02 (τ) =

ϕks20 (τ) = I{(k,s)=(1,1)}, ϕ
ks
ii (τ) = 0 for all (k, s) ∈ Π(i, i), for i = 0, 1, 2, and ϕks1j (τ) ∈ [0, 1] for

all (k, s) ∈ Π(1, j), for j = 0, 2; and a path for the value function V (τ),

V0 (τ) =
(
1− e−rτ

) u0
r

+ e−rτU0 +

∫ τ

0
e−r(τ−z)αn2 (z) θS (z) dz (52)

V1 (τ) =
(
1− e−rτ

) u1
r

+ e−rτU1 (53)

V2 (τ) =
(
1− e−rτ

) u2
r

+ e−rτU2 +

∫ τ

0
e−r(τ−z)αn0 (z) (1− θ)S (z) dz, (54)

which are given explicitly up to the path for the equilibrium surplus, S (τ). Some properties

of the path for the equilibrium surplus are immediate from (49). For example, if ū is small,

then Ṡ (τ) < 0 (the gain from trade is increasing chronological time, i.e., as t approaches T ).

Conversely, Ṡ (τ) > 0 will be the case in parametrizations with ū large, and small enough α

and r. The following proposition reports the analytical expressions for the equilibrium surplus

and interest rate.

26



Proposition 8 The surplus of a match at time T − τ between a bank with balance i = 2 and a

bank with balance j = 0 is

S (τ) =


n2(T )eα[n2(T )−n0(T )](T−τ)−n0(T )

e{r−α(1−θ)[n2(T )−n0(T )]}τ [n2(T )−n0(T )]

[
ξ(τ)ū
n0(T ) +

[n2(T )−n0(T )]S(0)

n2(T )eα[n2(T )−n0(T )]T−n0(T )

]
if n2 (T ) ̸= n0 (T )

1+αn0(T )(T−τ)
erτ

[
ξ(τ)ū
n0(T ) +

S(0)
1+αn0(T )T

]
if n2 (T ) = n0 (T ) ,

where

ξ (τ) ≡



∞∑
k=1

[
n2(T )
n0(T )

]k−1

r
n0(T )−n2(T )

+α(k−θ)
e{r+α(k−θ)[n0(T )−n2(T )]}τ−1

eα(k−1)[n0(T )−n2(T )]T if n2 (T ) < n0 (T )

∞∑
k=0

(−r)k
{[

T+
1

αn0(T )

]k
−
[
T−τ+ 1

αn0(T )

]k}
αkk! e

r[T+ 1
αn0(T )

]
if n2 (T ) = n0 (T )

∞∑
k=0

[
n0(T )
n2(T )

]k+1

r
n2(T )−n0(T )

+α(k+θ)
e{r+α(k+θ)[n2(T )−n0(T )]}τ−1

eα(k+1)[n2(T )−n0(T )]T if n0 (T ) < n2 (T ) .

Given S (τ), the equilibrium repayment is given by (50), with

V1 (τ)−V0 (τ) = e−rτ (U1 − U0)+
(
1− e−rτ

) u1 − u0
r

−θe
α[n2(T )−n0(T )]Tn2 (T )

n0 (T )
e−rτζ [τ, ū, S (0)] ,

where ζ [τ, ū, S (0)] is a time-varying linear combination of ū and S (0).

8.1 Comparative dynamics

In this section we provide some analytical results on the effect that parameter changes have on

the equilibrium paths for the trade surplus and the fed funds rate.

Proposition 9 describes the behavior of S (τ), namely the value of executing a trade (or

the “value of a trade”) between a borrower and a lender when the remaining time is τ . With

ū = 0, (49) specializes to S (τ) = e−δ̄(τ)S (0), so S (τ) is a discounted version of S (0), with

effective discount rate given by δ̄ (τ). More generally, for ū ≥ 0, S (τ) is a linear combination

of ū and S (0). There are two reasons why S (0) appears discounted in the expression for S (τ).

First, the actual gains from trade accrue at the end of the trading session, so S (0) is discounted

by the pure rate of time preference, r. Second, consider a meeting between a borrower and a

lender when the remaining time is τ > 0. The value S (0) is discounted because both agents

might meet alternative trading partners before the end of the session, and this increases their

outside options. The borrower’s outside option, V0 (τ), is increasing in the average rate at

which he is able to contact a lender and reap gains from trade between time T − τ and T , i.e.,
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αθ
∫ τ
0 n2 (s) ds. Similarly, the lender’s outside option, V2 (τ), is increasing in the average rate

at which he is able to contact a borrower and reap gains from trade between time T − τ and

T , i.e., α (1− θ)
∫ τ
0 n0 (s) ds.

Proposition 9 Assume ū ≥ 0 and S(0) > 0. Then:

(i) The surplus at each point in time is decreasing in the discount rate, i.e., for all τ > 0,
∂S(τ)
∂r < 0.

(ii) If the initial population of lenders is larger (smaller) than that of borrowers, then the

surplus at each point in time during the trading session is decreasing (increasing) in the

borrower’s bargaining power. If the initial populations of lenders and borrowers are equal,

then changes in the bargaining power have no effect on the surplus, i.e., for all τ > 0,
∂S(τ)
∂θ is equal in sign to n0 (T )− n2 (T ).

(iii) The surplus at each point in time is increasing in the penalty for below-target end-of-day

balances, increasing in the payoff for on-target end-of-day balances, and decreasing in the

payoff for above-target end-of-day balances, i.e., for all τ , ∂S(τ)
∂U0

< 0, ∂S(τ)
∂U1

> 0, and
∂S(τ)
∂U2

< 0.

Part (i) follows from the fact that a larger value of r increases the effective discount rate, δ̄ (τ),

and also results in a deeper discount of the “dividend-flow gain from trade,” ū. The effect of θ

on S (τ) = 2V1 (τ) − V0 (τ) − V2 (τ) is more subtle because a higher θ tends to increase V0 (τ)

(benefits borrowers) and at the same time it tends to decrease V2 (τ) (hurts lenders). In part

(ii) we show that the former effect dominates if and only if n0 (T ) < n2 (T ), and in this case,

the effective discount rate decreases with θ, which implies S (τ) decreases with θ for all τ > 0.

Finally, making the penalty for below-target end-of-day balances more severe (lowering U0),

making the payoff for holding above-target end-of-day balances less attractive, or increasing

the payoff for holding on-target end-of-day balances, increases the terminal surplus S (0), and

consequently increases every surplus along the trading session, which explains part (iii).

The following proposition considers the case with ū = 0. For example, this would be the

case when banks are not remunerated for holding intraday balances and have access to intraday

credit from the central bank at no cost.

Proposition 10 Assume ū = 0 and S(0) > 0. Then:
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(i) The fed funds rate at each point in time is increasing in the discount rate, i.e., for all τ ,
∂ρ(τ)
∂r > 0.

(ii) The fed funds rate at each point in time is decreasing in the borrower’s bargaining power,

i.e., for all τ > 0, ∂ρ(τ)
∂θ < 0.

(iii) The fed funds rate at each point in time is increasing in the penalty for below-target

end-of-day balances, i.e., for all τ , ∂ρ(τ)
∂U0

< 0.

Proposition 10 describes the behavior of the fed funds rate at each point in time along the

trading session. Parts (i)–(iii) follow from (51) and the fact that the size of the loan repayment

R (τ) increases with r and U0, and decreases with the borrower’s bargaining power, θ.

8.2 Efficiency

Under Assumption A, the equilibrium paths for the distribution of balances and the distribution

of trading probabilities coincide with the efficient paths. The planner’s co-states satisfy

rλ0 (τ) + λ̇0 (τ) = u0 + αn2 (τ)S
∗ (τ) (55)

rλ1 (τ) + λ̇1 (τ) = u1 (56)

rλ2 (τ) + λ̇2 (τ) = u2 + αn0 (τ)S
∗ (τ) , (57)

for all τ ∈ [0, T ], given λi (0) = Ui for i = 0, 1, 2, where S∗ (τ) ≡ 2λ1 (τ)−λ2 (τ)−λ0 (τ) satisfies

Ṡ∗ (τ) + δ∗ (τ)S∗ (τ) = ū (58)

with

δ∗ (τ) ≡ {r + α [n2 (τ) + n0 (τ)]} .

Given the boundary condition S∗ (0) = 2U1 − U2 − U0, the solution to (58) is

S∗ (τ) =

(∫ τ

0
e−[δ̄

∗(τ)−δ̄∗(z)]dz

)
ū+ e−δ̄∗(τ)S (0) ,

where δ̄∗ (τ) ≡
∫ τ
0 δ

∗ (x) dx.

The comparison between (45), (46) and (47), and (55), (56) and (57), illustrates the compo-

sition externality discussed in Section 5. For instance, since in this example meetings involving

at least one agent who holds one unit of reserves never entail gains from trade, (46) and (56)
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confirm that the equilibrium value of a bank with one unit of balances coincides with the shadow

price it is assigned by the planner. In contrast, comparing (45) to (55), and (47) to (57), reveals

that the equilibrium gains from trade as perceived by an individual borrower and lender at time

T − τ are θS (τ) and (1− θ)S (τ), respectively, while according to the planner each of their

marginal contributions equals S∗ (τ).

Notice that δ∗ (τ) ≥ δ (τ) for all τ ∈ [0, T ], with “=” only for τ = 0, so the planner

effectively “discounts” more heavily than the equilibrium. It is easy to show that this implies

S (τ) > S∗ (τ) for all τ ∈ (0, 1], with S∗ (0) = S (0) = 2U1 − U2 − U0. In words, due to the

matching externality, the social value of a loan (loans are always of size 1 in this example)

is smaller than the joint private value of a loan in the equilibrium. Intuitively, the planner

internalizes the fact that borrowers and lenders who are searching make it easier for other lenders

and borrowers to find trading partners, but these “liquidity provision services” to others receive

no compensation in the equilibrium, so individual agents ignore them when calculating their

equilibrium payoffs. Naturally, depending on the value of θ, the equilibrium payoff to lenders

may be too high or too low relative to their shadow price in the planner’s problem. It will be high

if (1− θ)S (τ) > S∗ (τ), as would be the case for example, if the borrower’s bargaining power,

θ, is small. As these considerations make clear, the efficiency proposition (Proposition 5) would

typically become an inefficiency proposition in contexts where banks make some additional

choices based on their private gains from trade (e.g., entry, search intensity decisions, etc.).

8.3 Frictionless limit

In this section we characterize the limit of the equilibrium as the contact rate, α, goes to infinity.

From (42), (43) and (44), it is immediate that

lim
α→∞

n0 (τ) = max {n0 (T )− n2 (T ) , 0}

lim
α→∞

n1 (τ) = 1−max {n0 (T )− n2 (T ) , n2 (T )− n0 (T )}

lim
α→∞

n2 (τ) = max {n2 (T )− n0 (T ) , 0} .

The value function V1 (τ) is independent of α (see (53)), so limα→∞ V1 (τ) = V1 (τ). In the

appendix (proof of Proposition 11) we show that for i, j = 0, 2 (with i ̸= j),

lim
α→∞

Vi (τ) =


(1− e−rτ ) ui+ū

r + e−rτ [Ui + S (0)] if ni (T ) < nj (T )

(1− e−rτ ) ui+ϖ(τ)θiū
r + e−rτ TUi+θiτS(0)

T if ni (T ) = nj (T )
(1− e−rτ ) ui

r + e−rτUi if nj (T ) < ni (T ) ,

(59)
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with 1− θ2 = θ0 ≡ θ, and

ϖ (τ) ≡ er(T−τ)

1−e−rτ

∞∑
k=0

r(−r)k
[
τTk−Tk+1−(T−τ)k+1

k+1

]
kk! .

The following proposition summarizes the frictionless limits of the equilibrium surplus, S∞ (τ) ≡
limα→∞ S (τ), and fed funds rate, ρ∞ (τ) ≡ limα→∞ ρ (τ).

Proposition 11 For τ ∈ (0, T ],

S∞ (τ) =


0 if n2 (T ) ̸= n0 (T )

(T − τ) e−rτ

[
erT

∞∑
k=0

(−r)k[Tk−(T−τ)k]
kk! ū+ 1

T S (0)

]
if n2 (T ) = n0 (T ) .

For τ ∈ [0, T ],

ρ∞ (τ) =


r +

ln
[
(1−e−rτ)u1−u0

r
+e−rτ (U1−U0)

]
τ+∆ if n2 (T ) < n0 (T )

r +
ln
[
(1−e−rτ)u1−u0−θū

r
+e−rτ (U1−U0−θS(0))

]
τ+∆ if n2 (T ) = n0 (T )

r +
ln
[
(1−e−rτ)u2−u1

r
+e−rτ (U2−U1)

]
τ+∆ if n0 (T ) < n2 (T ) .

(60)

9 Quantitative analysis

In this section we calibrate the theory and conduct several quantitative exercises. First, we

compute the equilibrium of a small-scale example, and carry out comparative dynamic exper-

iments to illustrate and complement the analytical results of Section 8. Second, we simulate

a large-scale version of the model and use it to assess the ability of the theory to capture the

salient empirical features of the market for federal funds in the United States. Finally, we use

the large-scale calibrated model as a laboratory, and conduct quantitative experiments to study

a key issue in modern central banking, namely the effectiveness of policies that use the interest

rate on banks’ reserves as a tool to manage the fed funds rate.

9.1 Calibration

The motives for trading, and the payoffs from holding fed funds positions are different for

different types of fed funds market participants. Since commercial banks account for the bulk

of the trade volume in the fed funds market, we will adopt their trading motives and payoffs as
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the baseline for our quantitative implementation.20 The Federal Reserve imposes a minimum

level of reserves on commercial banks and other depository institutions (all of whom we refer

to as banks, for brevity). This reserve balance requirement applies to the average level of

a bank’s end-of-day balances during a two-week maintenance period.21 End-of-day balances

within a maintenance period may vary but remain in general positive as overnight overdrafts

are considered unauthorized extensions of credit, and penalized.22 In practice, banks typically

target an average daily level of end-of-day balances and try to avoid overnight overdrafts. On

October 9, 2008, the Federal Reserve began remunerating banks’ positive end-of-day balances.

Since December 18, 2008, the interest rate paid on both, required reserve balances, and excess

balances, is 25 basis points (Federal Reserve, 2008). In the theory, all these policy considerations

are represented by the end-of-day payoffs {Uk}k∈K. Currently, the Fed does not pay interest on

intraday balances, but it charges interest on uncollateralized daylight overdrafts. In the theory,

the flow payoff to a bank from holding intraday balances during a trading session is captured

by the vector {uk}k∈K.
For the quantitative work we adopt the following formulation:

Uk = e−r∆f
(
k − k̄0

)
+ Fk (61)

with

Fk =


e−r∆r

f
[(
ei

r∆f − 1
)
k̄ +

(
ei

e∆f − 1
) (
k − k̄0 − k̄

)]
if k̄ ≤ k − k̄0

e−r∆r
f [−P r +

(
ei

r∆f − 1
) (
k − k̄0

)
] if 0 ≤ k − k̄0 < k̄

−e−r∆r
fP r − e−r∆o

f
[
P o +

(
ei

o∆f − 1
) (
k̄0 − k

)]
if k − k̄0 < 0,

(62)

and

uk =

{
e−r∆d

f
(
k − k̄0

)1−ϵ
id+ if 0 ≤ k − k̄0

−e−r∆d
f
(
k̄0 − k

)1+ϵ
id− if k − k̄0 < 0.

(63)

The parameter ∆f represents the length of the period between the end of the trading session

and the beginning of the following trading session, when the bank’s reserves held overnight at

20Ashcraft and Duffie (2007) report that commercial banks account for over 80 percent of the volume of federal
funds traded in 2005, while 15 percent involves GSEs, and 5 percent corresponds to special situations involving
nonbanks that hold reserve balances at the Federal Reserve. Their estimates are based on a sample of the top
100 institutions ranked by monthly volume of fed funds sent, including commercial banks, GSEs, and excluding
transactions involving accounts held by central banks, federal or state governments, or other settlement systems.

21For an explanation of how these required operating balances are calculated, see Bennett and Hilton (1997)
and Federal Reserve (2009, 2010b).

22The penalty fee charged on overnight overdrafts is generally 400 basis points over the effective fed funds rate,
and it is increased by 100 basis points if there have been more than three overnight overdrafts in a year.
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the Federal Reserve become available (in practice, this period consists of the 2.5 hours between

6:30 pm and 9 pm ET). The parameter k̄ ∈
{
1, ...,K − k̄0

}
represents the reserve requirement

imposed on every bank. The parameter k̄0 ∈ {0, . . . ,K − 1} indexes translations of the set

K, which afford us a more a flexible interpretation of the elements of K. Intuitively, k̄0 can

be thought of as the overdraft threshold.23 The overnight interest rate that a bank earns on

required reserves is denoted ir ≥ 0, while ie ∈ [0, ir] is the overnight interest rate on excess

reserves (ie = ir is the case currently in the United States), io ≥ 0 is the overnight overdraft

penalty rate, P r ≥ 0 is the pecuniary value of penalties for failing to meet reserve requirements,

and P o ≥ 0 represents additional penalties resulting from the use of unauthorized overnight

credit.24 The interest rate that a bank earns on positive intraday balances is id+ ≥ 0, and

id− ≥ 0 is the interest rate it pays on daylight overdraft.25 The parameter ϵ ∈ [0, 1) will be

set either to zero or to a negligible value.26 The parameter ∆r
f , with ∆r

f ≥ ∆f , represents

the length of the period between the end of the trading session and the time when the actual

23For example, in a parametrization with k̄0 = 0, K can be interpreted as the set of fed funds balances that can
be held by an individual bank. More generally, we can instead regard k ∈ K as an abstract index, and interpret
k′ ≡ k− k̄0 as a bank’s fed fund balance. Under this interpretation, fed fund balances (i.e., k′) held by banks are
in the set K′ ≡

{
k′ : k′ = k − k̄0 for some k ∈ K

}
. Then since K′ =

{
−k̄0, ...,K − k̄0

}
, this formulation allows

the payoff functions to accomodate the possibility of negative fed funds balances. In line with this more general
interpretation, k̄ represents the reserve requirement imposed on fed fund balances k′ ≡ k − k̄0. (The reserve
requirement stated in terms of the index k, would be k̄ + k̄0.)

24In practice, a bank whose end-of-day balances fall short, typically has the option of topping up its balances
by borrowing from the Fed’s discount window. For example, a bank that is ending the day with a balance k such
that 0 ≤ k − k̄0 < k̄, could choose not to borrow from the discount window and get payoff

e−r∆f
(
k − k̄0

)
+ e−r∆r

f [−P r + (ei
r∆f − 1)

(
k − k̄0

)
],

or to borrow k̄ − (k − k̄0) from the discount window to secure a payoff

e−r∆f
(
k − k̄0

)
+ e−r∆r

f [(ei
r∆f − 1)k̄]− e−r∆r

f {(ei
w∆f − 1)

[
k̄ −

(
k − k̄0

)]
+ P s},

where iw ≥ 0 is the interest rate at which the bank can borrow from the discount window, and P s ≥ 0 represents
additional costs, such as stigma associated from resorting to the discount window, and so on. The bank would
not find it profitable to resort to the discount window if

P r ≤ (ei
w∆f − ei

r∆f )
[
k̄ −

(
k − k̄0

)]
+ P s.

25In practice, when an institution has insufficient funds in its Federal Reserve account to cover its settlement
obligations during the operating day, it can incur in a daylight overdraft up to an individual maximum amount
known as net debit cap. (This cap is equal to zero for some institutions.) On March 24, 2011, the Federal Reserve
Board implemented major revisions to the Payment System Risk policy, which include a zero fee for collateralized
daylight overdrafts and an increased fee for uncollateralized daylight overdrafts to 50 basis points, annual rate
(from 36 basis points) (see Federal Reserve, 2010a).

26By setting ϵ to a negligible positive value, and id− large enough relative to id+, we can ensure that {uk}k∈K
satisfies the discrete midpoint strict concavity property.

33



interest payments on reserves (or deficiency charges for failing to meet reserve requirements) are

effectively made.27 The parameter ∆o
f represents the length of the period between the end of

the trading session and the time when the bank is required to pay the penalties resulting from

the use of unauthorized overnight credit. Similarly, ∆d
f represents the length of time between

the moment when the interest on intraday balances is earned, and the moment when it is paid.

We measure time in the model in days. The model is meant to capture trade dynamics in the

last 2.5 hours of the trading session, so we set T = 2.5/24. Since most transactions are settled

through Fedwire, and Fedwire does not operate between 6.30pm and 9.00pm ET, ∆f = 2.5/24.

As for the other three settlement lags, the baseline uses ∆d
f = 0, and ∆r

f = ∆o
f = ∆f . By setting

∆ = 22/24, we ensure that all interbank loans in the model have a maturity between 22 and 24.5

hours. The values of the policy rates id−, i
d
+, i

r, ie, and io, are all chosen to mimic current policies

in the United States. The interest rate charged on daylight overdrafts, id−, is set to 0.0036/360,

and the interest rate paid on positive intraday balances, id+, to 0.00001/360.28 The Federal

Reserve currently pays the same overnight interest on required and excess reserves, namely

0.25 percent (annualized). That is, a bank that ends the day with a positive reserve balance x,

will have accumulated (claims to) (1 + if )x reserves by the beginning of the following trading

day, with if = 0.0025/360.29 In the theory, this bank would start the following trading day

with (claims to) ei
r∆fx reserves. Therefore, we set ir = ie = (1/∆f ) ln (1 + if ) = 6.67× 10−5.

The interest penalty on overnight overdrafts is generally 400 basis points over the effective fed

funds rate. The average daily effective fed funds rate has been was 17 basis points (annualized)

during 2010, and 14 basis points during 2011, so we take 15 basis points as the reference effective

rate, and set io = (1/∆f ) ln (1 + 0.0415/360) = 0.0011. The pecuniary costs of the additional

penalties for failure to meet reserve requirements, P r, and of the use of unauthorized credit,

P o, are set to 0.000001.

We set α = 50, so that the equilibrium proportion of intermediated funds in the theory

(i.e., ῑ (T |0) as defined in Proposition 7) is 0.38, which is roughly the empirical average in the

United States during 2005-2010 of the proportion of all fed funds traded by commercial banks

27In practice, interest is credited to an institution’s Federal Reserve account fifteen days after the close of a
reserve maintenance period.

28The interest that a bank receives for holding positive intraday reserves is currently zero in the United States.
We set id+ to a small positive number (and ϵ = 10−6, a negligible positive number) only to ensure that {uk}k∈K
satisfies the discrete midpoint strict concavity property.

29The 360-day year is customary for interest rate calculation in money markets.
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between 4:30pm and 6:30pm ET which were intermediated by commercial banks.30 We set

r = 0.0001/365 so that the value-weighted daily average fed funds rate implied by the model

(i.e., the ρ̄ defined in Section 6.2) is near its current level, 0.0025/360. (The precise value of

ρ̄ will vary with the initial condition {nk (T )}k∈K, which we will be experimenting with.) The

choice of initial condition {nk (T )}k∈K will be guided by identifying nk (T ) with the empirical

proportion of commercial banks whose balances at the beginning of the trading session are k/k̄

times larger than their daily reserve requirement (prorated over the quarter). In our experiments

we work with k̄0 = 0, and will vary K, {nk (T )}k∈K and k̄ to simulate various scenarios regarding

the relative abundance or scarcity of reserve balances in the interbank market on any given day.

All banks have the same bargaining power in the baseline.

9.2 Trade dynamics

For the numerical exercises in this subsection we set K = {0, 1, 2}, k̄ = 1, and consider two

initial distributions of funds, {nk (T )}2k=0 = {0.6, 0.1, 0.3}, and {nk (T )}2k=0 = {0.3, 0.1, 0.6}.
All other parameter values are as in the baseline calibration described in Section 9.1.

9.2.1 Bargaining power

Figure 1 (with actual time, t = T − τ , on the horizontal axis) shows the time paths for the

trade surplus, the opportunity cost to a lender from giving up the second unit of reserves, and

the fed funds rate, for different values of the borrower’s bargaining power, θL = 0.1, θ = 0.5

(the baseline), and θH = 0.9. The top row of panels corresponds to the case in which the initial

number of lenders is smaller than the initial number of borrowers, i.e., n2 (T ) = 0.3 < n0 (T ) =

0.6. Notice that in this case, reserve balances are relatively scarce since Q = 0.7 < 1 = k̄. First

consider the left panel on the top row. Since S (0) = 2U1 − U2 − U0, the trade surplus at the

end of the session is the same for all values of θ. For all t < T , however, the time-path for the

trade surplus is shifted upward as the borrower’s bargaining power, θ, increases. The reason

is that while for each τ , an increase in θ increases the borrower’s outside option, V0 (τ), and

decreases the lender’s outside option, V2 (τ), the fact that n2 (τ) < n0 (τ) for all τ , implies that

30The choice of α = 50 also implies that on average banks have 5 meetings during the trading session, i.e., a
trading opportunity every 30 minutes, on average. The implied equilibrium mean and median numbers of trading
partners per bank during the session are 2.5 and 2, respectively. In the actual market for federal funds between
2009 and 2010, the mean and median numbers of fed funds counterparties that a commercial bank traded with
between 4:30pm and 6:30pm ET were equal to 3 and 2, respectively. These fed funds market facts are from
Afonso and Lagos (2011).
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the decrease in the lender’s outside option is larger than the increase in the borrower’s outside

option, so the resulting trade surplus is larger at each point in time along the trading session.

The middle panel shows that as θ increases, the path for the value of a lender is shifted down

for all τ ∈ (0, T ]. (Agents with one unit of balances do not trade in this example, so the path

for V1 (τ) is effectively exogenous.) The right panel confirms that the path for the fed funds

rate is shifted down as the bargaining power of the borrower increases, as was to be expected

from (51) and the effect of θ on V2 (τ)− V1 (τ) illustrated in the middle panel. Intuitively, the

borrower pays less for the loan when he has a stronger bargaining power in the negotiation of

the loan rate.

The panels on the bottom row correspond to the case in which reserve balances are abundant;

since the initial number of borrowers is smaller than the initial number of lenders, i.e., n0 (T ) =

0.3 < n2 (T ) = 0.6, we have k̄ = 1 < 1.3 = Q. In this case an increase in θ still increases V0 (τ)

and decreases V2 (τ) for each τ ∈ (0, T ], but the fact that n0 (τ) < n2 (τ) for all τ implies that

the decrease in the lender’s outside option is smaller than the increase in the borrower’s outside

option, so the resulting trade surplus is now smaller at each point during the trading session.

As in the top panel, the path for the value of a lender is shifted down for all τ ∈ (0, T ] as θ

increases, but notice that the size of this effect is smaller for smaller n0 (τ) (because in this case

the lender meets borrowers very infrequently, which makes his expected gain from trade small

to begin with). Again, the right panel confirms that the path for the fed funds rate is shifted

down as the bargaining power of the borrower increases.31

9.2.2 Deficiency charges

Figure 2 (with t = T −τ , on the horizontal axis) shows the time paths for the trade surplus, the

opportunity cost to a lender from giving up the second unit of reserves, and the fed funds rate,

for different values of the penalty fee, P r, charged on banks for having balances below the end-

of-day target. The different values considered are P r = 0 (PL in the figure), P r = 0.000001 (the

31By comparing the right panel on the top row with the right panel on the bottom row, we see that the time
path of the fed funds rate is similar in both parametrizations: it tends to increase over time as the end of the
trading session approaches. This is not always the case, however. More generally, the fed funds rate tends to
increase over time as the end of the trading session approaches when there are more lenders than borrowers, but
it tends to decrease over time when there are many more borrowers than lenders, provided θ is not too small.
In both cases S (τ) is increasing over time, which tends to make ρ (τ) increasing over time (see (51)). But when
the number of borrowers is large relative to the number of lenders, the difference V2 (τ) − V1 (τ) is large and
decreases steeply over time, and this effect can (e.g., for θ large enough) dominate the dynamics of the fed funds
rate, resulting in an equilibrium fed funds rate that decreases over time.
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baseline), and P r = 0.00001 (PH in the figure). The panels on the top row correspond to the

case in which reserve balances are scarce (the initial number of lenders is smaller than the initial

number of borrowers, i.e., n2 (T ) = 0.3 < n0 (T ) = 0.6), while the bottom row corresponds to

the case with n0 (T ) = 0.3 < n2 (T ) = 0.6, in which reserve balances are abundant. The left

panels on the top and bottom rows show that making the penalty more severe shifts up the

path of the surplus, an effect driven by the fact that the first-order effect of a larger penalty is

to reduce the borrower’s outside option, V0 (τ), making it more valuable for borrowers to trade

and avoid paying the end-of-period penalty. Naturally, this effect also causes the paths for the

interest rate to shift up in response to the increase in the penalty. The middle panels show that

an increase in P r leads to an increase in the value of lenders for all t ∈ [0, T ).

9.2.3 Trading delays

Figure 3 (with t = T − τ , on the horizontal axis) shows the time paths for the trade surplus,

the opportunity cost to a lender from giving up the second unit of reserves, and the fed funds

rate, for different values of the contact rate, αL = 25, α = 50 (the baseline), and αL = 100.

The panels on the top row correspond to the case in which reserve balances are scarce (the

initial number of lenders is smaller than the initial number of borrowers, i.e., n2 (T ) = 0.3 <

n0 (T ) = 0.6), while the bottom row corresponds to the case with abundant reserve balances,

n0 (T ) = 0.3 < n2 (T ) = 0.6. The middle panel on the top row shows that traders on the short

side of the market benefit from increases in the contact rate. In contrast, the middle panel on

the bottom row shows that in this example, increases in α decrease the expected payoffs of the

agents who are on the long side of the market. This is explained by the fact that, from the

standpoint of the agents on the short side, a faster contact rate has the undesirable effect of

taking scarce potential trading partners off the market, which can adversely affect the effective

rate at which they are able to trade.32

For all t < T the time-path for the trade surplus is shifted downward as α increases. In the

parametrization illustrated in the top row, an increase in α increases V2 (τ) for all τ ∈ (0, T ]

and decreases V0 (τ) for all τ ∈ (0, T ]. However, the former outweights the latter since n2 (τ)

32In general, the effect of changes in α on equilibrium payoffs can be subtle. For example, in some of our
numerical simulations we have found that, if n2 (T ) < n0 (T ), then V0 (τ) can be nonmonotonic in α: increasing
in α for small values of α, but decreasing in α for large values. If n2 (T ) < n0 (T ), however, V2 (τ) is typically
increasing in α. We have found the converse to be the case for n0 (T ) < n2 (T ), i.e., V0 (τ) is increasing in α,
while increases in α from relatively small values tend to shift V2 (τ) up, while increases in α at large values tend
to shift V2 (τ) down.
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is small relative to n0 (τ) for all τ . In the parametrization illustrated in the bottom row, an

increase in α increases V0 (τ) for all τ ∈ (0, T ] and decreases V2 (τ) for all τ ∈ (0, T ] and the

former effect outweights the latter since n0 (τ) is small relative to n2 (τ) for all τ .

Together, the dynamics of V2 (τ) − V1 (τ) and S (τ) account for the pattern of interest

rates displayed in the right panels of the top and bottom rows. In each case, the right panel

shows that traders on the short side of the market benefit from increases in the contact rate.

Specifically, when lenders are on the short side, increases in the contact rate take scarce lenders

off the market which makes borrowers willing to pay higher rates for the loans. Similarly, when

borrowers are on the short side, a faster contact rate takes scarce borrowers off the market

making lenders more willing to accept lower rates for the loans.

9.3 Simulation results

For the numerical simulations in this section we set K = {0, 1, 2, . . . , 49}, k̄ = 1, and

nk (T ) =
λke−λ

k!
∑49

j=0 nj (T )
(64)

with λ = 10. Notice that Q =
∑49

j=0 knk (T ) ≈ 10, so reserves are relatively abundant in

this parametrization, in the sense that the consolidated banking sector holds reserve balances

that amount to ten times its reserve requirement. All other parameter values are as in the

baseline calibration described in Section 9.1. We simulate the equilibrium paths of 1000 banks,

and report the quantitative performance of the model in three figures. Figure 4 displays the

equilibrium behavior of the distribution of fed funds balances and of the fed funds rate. Figure

5 reports several dimensions of trade volume, such as the distribution of transactions per bank,

the distribution of loan sizes, and the intraday time path of the volume of trade. Figure 6

focuses on intermediation.

In Figure 4, the top row describes the evolution of the distribution of balances. The left

panel shows the opening and the end-of-day distribution of balances across banks. The middle

panel describes the intraday evolution of the distribution of balances by depicting a box plot of

the distribution at fifteen-minute intervals throughout the day.33 The right panel shows that

the standard deviation of the cross-sectional distribution of balances falls as the trading session

unfolds—an indication that the market is continuously reallocating balances from banks with

33Empirical versions of this box plot can be found in Afonso and Lagos (2011) and Ashcraft and Duffie (2007).
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larger reserves to banks with smaller reserves. The bottom row describes the behavior of the

(distribution of) fed funds rate(s). The left panel plots in chronological time, t = T −τ , at each
minute during the trading session, the value-weighted average value of ρf (τ) ≡ eρ(τ)(τ+∆) − 1,

which is the fed funds rate on a bilateral loan at time T−τ as it is usually calculated from Fedwire

data. The middle panel shows the histogram of the values of ρf (τ) on all daily transactions.

The right panel exhibits a box plot every 15 minutes of the spread between the theoretical rates

on loans traded at minute t = T − τ (measured by ρ (τ)) and the value-weighted average of

these rates on all transactions traded in that minute.

In Figure 5, the top left panel shows the proportion of the daily volume (the solid line)

and the proportion of the daily number of loans (the dashed line) traded by time t = T − τ .

Notice that neither the volume of trade nor the number of trades are distributed uniformly

throughout the day; rather, trading activity tends to be higher earlier in the session. The top

middle panel shows the daily distribution of loan sizes, and the top left panel uses box plots

every 15 minutes to describe the evolution of the distribution of loan sizes during the day. On

the bottom row, from left to right, are the distribution of the number of counterparties per

bank, the distribution of the number of borrowers that a bank lends to, and the distribution

of the number of lenders that a bank borrows from. As in the data, the distribution of loan

sizes is skewed, with a few large trades and many small trades, and so is the distributions of

counterparties, with a few banks that have many and many that have a few.34

In Figure 6, the left panel shows box plots of the distribution of fed funds purchased through-

out the trading day (every 15 minutes) by banks whose adjusted balances, k − k̄, at the time

of the trade are in the top 70 percent of the distribution of nonnegative adjusted balances.

The figure shows that it is common for banks with relatively large balances to borrow, which

can be interpreted as prima facie evidence of the presence of over-the-counter trading frictions

in the fed funds market.35 The middle and left panels show the distribution of excess funds

reallocation, and the distribution of the proportion of intermediated funds, respectively, i.e., the

two measures of intermediation introduced in Section 6.4. As in the data, these distributions

are very skewed, with a few banks doing most of the intermediation.36

34Empirical versions of these figures can be found in Afonso and Lagos (2011).
35This point was first made by Ashcraft and Duffie (2007). See Afonso and Lagos (2011) for more evidence.
36See Afonso and Lagos (2011) for versions of these figures constructed using data from the fed funds market.
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9.4 Policy evaluation: interest on reserves and fed funds rate targets

During the five years prior to the onset of the 2008-2009 financial crisis, total reserve balances

held by depository institutions in the United States fluctuated between $38 billion and $56

billion, and required reserves stood between 80 percent and 99 percent of total reserves.37

The quantity of reserves increased dramatically from about $41.5 billion in the months prior

to September 2008 to more than $900 billion in January 2009.38 Most of the increase was

accounted for by a sharp rise in excess reserves, which represented more than 93 percent of

total reserves in January 2009 (up from less than 3 percent in the months prior to September

2008). This situation persisted throughout 2010, with required reserves accounting for less than

7 percent of total reserves, which typically remained above $1 trillion.39

On the policy front, the Emergency Economic Stabilization Act of 2008 authorized the Fed-

eral Reserve to begin paying interest on reserve balances held by or on behalf of depository

institutions beginning October 1, 2008. With this authority, the Federal Reserve Board ap-

proved a rule to amend its Regulation D (Reserve Requirements of Depository Institutions) to

direct the Federal Reserve Banks to pay interest on required reserve balances and on excess

balances.40

Together, the unprecedented scale of excess reserve balances and the new policy instruments

at the disposal of the Federal Reserve raise important and interesting questions regarding the

Federal Reserve’s ability to adjust its policy stance. For example, how large an open market

operation would be necessary to increase the fed funds rate by 25 basis points in a market with

excess reserves standing at about $930 billion—i.e., more than 93 percent of total reserves? Is

it possible to uncouple the quantity of reserves from the implementation of the interest rate

target? And if so, what will be the elasticity of the fed funds rate to changes in the interest

on reserves? These issues are crucial for the conduct of monetary policy, and as such they are

receiving much attention in policy circles.41 Consequently, there is a growing need for models

that can be used to explore quantitatively, the effectiveness of the interest rate on reserves as

37Required reserve balances are those held to satisfy depository institutions’ reserve requirements.
38Lehman Brothers filed for bankruptcy on September 15, 2008.
39Keister and McAndrews (2009) discuss why banks are holding so many excess reserves.
40The Financial Services Regulatory Relief Act of 2006 had originally authorized the Federal Reserve to begin

paying interest on balances held by or on behalf of depository institutions beginning October 1, 2011. The
Emergency Economic Stabilization Act of 2008 accelerated the effective date to October 1, 2008. The Federal
Reserve began paying interest on reserve balances held by depository institutions on October 9, 2008.

41See Ennis and Wolman (2010), Goodfriend (2002), and Keister, Martin and McAndrews (2008).
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a tool to actively manage the fed funds rate.42 In this section we take steps toward fulfilling

this need by conducting policy experiments in a large-scale calibrated version of the model

developed in the previous sections.

For the experiments that follow, we set K = {0, 1, 2, . . . , 49} and use (64) to parametrize the

initial distribution of balances (as in the simulations of Section 9.3). The policy experiments

consist of varying the policy rates irf and ief for different values of k̄. All other parameters

are as in the baseline calibration described in Section 9.1. Notice that in the theory, Q =∑K
k=0 knk (T ) is the quantity of reserves held by the banking system as a whole, while k̄ is the

reserve requirement of the consolidated banking system. Hence Q/k̄ indicates whether total

reserve balances are scarce or abundant relative to the quantity of required reserves, and we

can represent different market conditions by varying k̄.43 For example, a market situation in

which Q/k̄ is small, could have resulted from an open market sale at the onset of the trading

session, or from some other portfolio decisions made by banks. By considering different values

of Q/k̄ we can explore the effect that the interest paid on reserves has on the equilibrium fed

funds rate, for different market conditions determined by quantity of total reserves (Q) relative

to the quantity of required reserves (k̄).

We consider five scenarios depending on the value of Q/k̄. In each, the policy experiment

consists of increasing either irf or ief by 25 basis points (bps) from 0 to 100 bps, while leaving

the other rate at its baseline value (25 bps in every case). The implied values of the equilibrium

(value-weighted) daily average fed funds rate, ρ̄f , are summarized in Table 1. In the first

scenario, k̄ = 40 so Q/k̄ = 0.25, i.e., this scenario represents a day in which reserves are very

scarce in the sense that the consolidated banking system holds reserves that are only one fourth

of the (average) required reserves. In this case, the fed funds rate essentially varies one-for-one

with the rate paid on required reserves, and is insensitive to the interest rate paid on excess

reserves. Conversely, if the quantity of reserves in the system is large relative to the quantity

of required reserves, e.g., when Q/k̄ = 10/6, then the fed funds rate is insensitive with respect

42Keister, Martin and McAndrews (2008), for example, conclude that “While the floor system has received
a fair amount of attention in policy circles recently, there are important open questions about how well such
a system will work in practice. Going forward, it will be useful to develop theoretical models of the monetary
policy implementation process that can adress these questions...”. Ennis and Wolman (2010) point out that “In
contrast to the predictions of simple theories, the interest on reserves (IOR) rate has not acted as a floor on the
federal funds rate. It is now well-understood why certain institutional features of the fed funds market and the
IOR program should prevent the IOR rate from acting as a floor, but the precise determination of the fed funds
rate in this environment remains poorly understood.”

43In every case, λ = 10, which implies Q = 10. Alternatively, we could leave k̄ fixed and vary λ.
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to the policy rate on required reserves, and varies one-for-one with the rate paid on excess

reserves. The fed funds rate is, however, sensitive to both policy rates when market conditions

are less extreme (in terms of the size of the total reserves relative to required reserves). For

example, if the market is “balanced”, e.g., if Q/k̄ = 1, then a 1 bp increase in either policy

rate, increases the fed funds rate by 0.5 bp.44 Other moderate market conditions also give

intermediate results, for example, if Q/k̄ = 10/8, then a 25 bps increase in the rate paid on

required reserves increases the fed funds rate by 1 bp, while a 25 bps increase in the rate paid

on excess reserves would increase the fed funds rate by 24 bps.

9.4.1 Discussion

In order to explain the impact that changes in the interest rate that the Federal Reserve pays

banks for holding reserves has on the equilibrium distribution of fed funds rates negotiated

between banks throughout the day, consider the analytical example studied in Section 8.

Assume that {Uk} is given by (61)–(63), a specification that captures the essential insti-

tutional arrangements currently in place in the United States, and set k̄0 = 0 and k̄ = 1. As

explained in Section 9.1, if the policy rates as quoted by the Federal Reserve on required reserves

and excess reserves are irf and ief , their theoretical counterparts are i
r = (1/∆f ) ln(1 + irf ) and

ie = (1/∆f ) ln(1 + ief ). Similarly, using ρf (τ) to denote the fed funds rate on a bilateral loan

at time T − τ as it is usually calculated from Fedwire data, ρ (τ) = [1/ (τ +∆)] ln [1 + ρf (τ)].

In the appendix (Lemma 6) we show that

ln [1 + ρf (τ)] = (∆−∆r
f )r + ln

[
β (τ) ief + [1− β (τ)] (irf + P r)

+ er∆
r
f (erτ − 1)

u2 − u1 + c (τ) (1− θ) ū

r
+ er(∆

r
f−∆f )

]
, (65)

where

β (τ) ≡ 1− (1− θ)

[∫ τ

0
αn0 (z) e

−[δ̄(z)−rz]dz + e−[δ̄(τ)−rτ ]

]
(66)

c (τ) ≡
∫ τ
0 e

−r(τ−z)αn0 (z)
∫ z
0 e

−[δ̄(z)−δ̄(x)]dxdz +
∫ τ
0 e

−[δ̄(τ)−δ̄(z)]dz

(1− e−rτ ) r−1
. (67)

The first term on the right side of (65) reflects the fact that the interest on a loan made to

another bank is received at time T +∆, while the interest on required reserves at the Federal

44As we explain below, this quantiative result is due to the fact that in our baseline calibration, the bargaining
power of all banks is the same—one half.
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Reserve is received at time T +∆r
f . If r or this maturity difference is small, then it is clear from

(65) that ρf (τ) ≥ ief , i.e., at no point during the trading session will a bank with two units

of reserves lend the second (excess) unit to another bank for an interest rate smaller than the

interest it can earn on this second unit from the Fed. The premium that the lender can charge

over the interest it can earn on reserves, will depend on the size of the current gain from trade

as well as on the bargaining strength of the lender (captured both by the lender’s alternative

search prospects, and by his bargaining power parameter, 1− θ).

To explain the effect of policy on the fed funds rate, focus on the case in which ∆ −∆r
f is

negligible, so (65) simplifies to

ρf (τ) = β (τ) ief + [1− β (τ)] (irf + P r)

+ er∆ (erτ − 1)
u2 − u1 + c (τ) (1− θ) ū

r
+ er(∆−∆f ) − 1. (68)

For this case, we have the following characterization of the effects of the policy rates on the

equilibrium path of the fed funds rate.

Proposition 12 Suppose that either r ≈ 0 or ∆ − ∆r
f ≈ 0. A one percent increase in the

overnight interest rate that the Fed pays on excess reserves, ief , causes a β (τ) percent increase

in the fed funds rate at time T − τ . A one percent increase in the overnight interest rate that

the Fed pays on required reserves, irf , causes an 1− β (τ) percent increase in the fed funds rate

at time T − τ . If n2 (T ) = n0 (T ), then β (τ) = θ. If n2 (T ) ̸= n0 (T ), then

1− β (τ) = (1− θ)
e−α[n2(T )−n0(T )]θτ

{
n2 (T )− n0 (T ) e

−α[n2(T )−n0(T )](T−τ)
}

n2 (T )− n0 (T ) e−α[n2(T )−n0(T )]T

+
n0 (T ) e

−α[n2(T )−n0(T )]T
{
eα[n2(T )−n0(T )](1−θ)τ − 1

}
n2 (T )− n0 (T ) e−α[n2(T )−n0(T )]T

,

with β (0) = θ and β (τ) ∈ [0, 1] for all τ . Moreover, 0 ≤ β (τ) ≤ θ and β′ (τ) < 0 if n2 (T ) <

n0 (T ), and θ ≤ β (τ) ≤ 1 and β′ (τ) > 0 if n0 (T ) < n2 (T ).

Intuitively, 1 − β (τ) can be thought of a lender’s effective bargaining power at time T − τ . It

is determined by the lenders’ fundamental bargaining power, 1 − θ, as well as by their ability

to realize gains from trade in the time remaining until the end of the trading session, which

depends on the evolution of the endogenous distribution of balances across banks. For example,

if n0 (T ) < n2 (T ), it is relatively difficult for banks with excess balances to find potential
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borrowers, and 1− β (τ) is smaller than 1− θ throughout the trading session. In this case the

lenders’ effective bargaining power, 1 − β (τ), increases toward their fundamental bargaining

power, 1− θ, as the trading session progresses, reflecting the fact that although borrowers face

a favorable distribution of potential trading partners throughout the session, their chances to

execute the desired trade diminish as the end of the session draws closer.

The mechanism is most transparent if in addition to r ≈ 0, we set ui ≈ 0 (as is currently

the case in the United States) since in this case

ρf (τ) = β (τ) ief + [1− β (τ)] (irf + P r). (69)

Recall that ρf (τ) in this example is the rate that a bank with two units of reserves charges a

bank with no reserves for a loan of size one. Since required reserves equal one unit, the bank

with two units has excess reserves, and a bank with zero units needs to purchase one unit to

comply with the reserve requirement. According to (69), the fed funds rate is a time-varying

weighted average of the lender’s return on the second unit of balances, ief , and the borrower’s

return on the first unit of balances, irf + P r. The weight on the former is β (τ), the borrower’s

effective bargaining power at time T − τ . Notice that if in addition, as is currently the case in

the United States, the policy specifies ief = irf ≡ if , then an x% increase in the policy rate, if ,

will shift the whole schedule of fed funds rates, [ρf (τ)]τ∈[0,T ], up by x%.

To conclude this discussion, we illustrate the importance of basing policy recommendations

on a theory that is explicit about the over-the-counter nature of the fed funds market. Let

ρ∞f (τ) denote the fed funds rate (measured as it is usually calculated from Fedwire data) that

would prevail in the frictionless economy of Section 8.3; i.e., 1 + ρ∞f (τ) = eρ
∞(τ)(τ+∆). In the

appendix (Lemma 7), we show that ρ∞f (τ) is independent of τ , so here we denote it ρ∞f . For

the special case with ∆−∆f = ui = 0 for all i, and either r ≈ 0 or ∆−∆r
f ≈ 0,

ρ∞f =


irf + P r if n2 (T ) < n0 (T )

θief + (1− θ) (irf + P r) if n2 (T ) = n0 (T )

ief if n0 (T ) < n2 (T )

(70)

is the frictionless analogue of the over-the-counter fed funds rate in (69). Generically, the fed

funds rate in the frictional market is time-dependent and continuous in the quantity of fed

funds in the market (in this case, Q = n1 (T ) + 2n2 (T )). In contrast, the frictionless rate ρ∞f

is independent of τ and discontinuous in Q; ρ∞f jumps from ief up to θief + (1− θ) (irf + P r)

as Q approaches 1 from below, and jumps from irf + P r down to θief + (1− θ) (irf + P r) as Q
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approaches 1 from above. In general,

ρ∞f − ρf (τ) =


β (τ) (irf + P r − ief ) if n2 (T ) < n0 (T )

0 if n2 (T ) = n0 (T )
− [1− β (τ)] (irf + P r − ief ) if n0 (T ) < n2 (T ) .

Notice that ρf (τ) = ρ∞f in the non-generic case of a “balanced market”, i.e., if n2 (T ) = n0 (T )

(or equivalently, if Q = 1), for in this case the distribution of balances is neutral with respect

to borrowers and lenders, and hence their effective bargaining powers, β (τ) and 1 − β (τ)

coincide with their fundamental bargaining powers, θ and 1−θ. But generically, the frictionless
approximation overestimates the true frictional rate if fed funds are relatively scarce (i.e., if

Q < 1 or equivalently, n2 (T ) < n0 (T ) in this example), and underestimates the true rate

if fed funds are relatively abundant (i.e., if Q > 1). Interestingly, these biases which are nil

when the market is perfectly balanced, will also tend to be relatively small if the market is

very unbalanced. For example, if n2 (T ) is very large relative to n0 (T ), then according to

Proposition 12, the equilibrium path for β (τ) will be very close to 1 throughout most of the

trading session (β (τ) will fall sharply toward θ over a very short interval of time right before

the end of the trading session).
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A Proofs

Lemma 1 For any (k, k′) ∈ K×K and any τ ∈ [0, T ], consider the following problem:

max
b∈Γ(k,k′),R∈R

[
Vk−b (τ)− Vk (τ) + e−r(τ+∆)R

]θkk′ [
Vk′+b (τ)− Vk′ (τ)− e−r(τ+∆)R

]1−θkk′
(71)

where θkk′ = 1− θk′k ∈ [0, 1], and Vk (τ) : K× [0, T ] → R is bounded. The correspondence

H∗ (k, k′, τ ;V ) = arg max
b∈Γ(k,k′),R∈R

{[
Vk−b (τ)− Vk (τ) + e−r(τ+∆)R

]θkk′
[
Vk′+b (τ)− Vk′ (τ)− e−r(τ+∆)R

]1−θkk′
}

is nonempty. Moreover, (bkk′ (τ) , Rk′k (τ)) ∈ H∗ (k, k′, τ ;V ) if and only if

bkk′ (τ) ∈ arg max
b∈Γ(k,k′)

[Vk′+b (τ) + Vk−b (τ)− Vk′ (τ)− Vk (τ)] , and (72)

e−r(τ+∆)Rk′k (τ) = θkk′
[
Vk′+bkk′ (τ)

(τ)− Vk′ (τ)
]
+ (1− θkk′)

[
Vk (τ)− Vk−bkk′ (τ)

(τ)
]
. (73)

Proof of Lemma 1. Consider

max
(b,R)∈Γ̃(k,k′)

[
Vk−b (τ)− Vk (τ) + e−r(τ+∆)R

]θkk′ [
Vk′+b (τ)− Vk′ (τ)− e−r(τ+∆)R

]1−θkk′
(74)

where Γ̃ (k, k′) = {(b,R) ∈ Γ (k, k′)× [−B,B]} for some arbitrary real number B > 0. Clearly,

this problem has at least one solution. Let (b∗, R∗) denote a solution to (74). If the constraints

−B ≤ R ≤ B are slack at (b∗, R∗), then (b∗, R∗) is also a solution to (71), and (b∗, R∗) must

satisfy the following first-order condition

e−r(τ+∆)R∗ = θkk′ [Vk′+b∗ (τ)− Vk′ (τ)] + (1− θkk′) [Vk (τ)− Vk−b∗ (τ)] . (75)

Suppose that (b∗, R∗) with R∗ given by (75) is a solution to (74) with −B ≤ R∗ ≤ B (given

(75), these inequalities can be guaranteed by choosing B large enough), but such that

b∗ /∈ arg max
b∈Γ(k,k′)

[Vk′+b (τ) + Vk−b (τ)− Vk′ (τ)− Vk (τ)] . (76)

Condition (75) implies

Vk−b∗ (τ)− Vk (τ) + e−r(τ+∆)R∗ = θkk′ [Vk′+b∗ (τ) + Vk−b∗ (τ)− Vk′ (τ)− Vk (τ)]

Vk′+b∗ (τ)− Vk′ (τ)− e−r(τ+∆)R∗ = (1− θkk′) [Vk′+b∗ (τ) + Vk−b∗ (τ)− Vk′ (τ)− Vk (τ)] ,
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so the value of (74) achieved by (b∗, R∗) is

θ
θkk′
kk′ (1− θkk′)

1−θkk′ [Vk′+b∗ (τ) + Vk−b∗ (τ)− Vk′ (τ)− Vk (τ)] ≡ ξ∗.

But (76) implies that there exists b′ ∈ Γ (k, k′) such that

ξ∗ < θ
θkk′
kk′ (1− θkk′)

1−θkk′ [Vk′+b′ (τ) + Vk−b′ (τ)− Vk′ (τ)− Vk (τ)] .

Then since B can be chosen large enough so that

R′ = er(τ+∆) {θkk′ [Vk′+b′ (τ)− Vk′ (τ)] + (1− θkk′) [Vk (τ)− Vk−b′ (τ)]} ∈ (−B,B) ,

it follows that (b′, R′) achieves a higher value than (b∗, R∗), so (b∗, R∗) is not a solution to (74);

a contradiction. Hence, a solution (b∗, R∗) to (74) with −B ≤ R∗ ≤ B must satisfy (75) and

b∗ ∈ arg max
b∈Γ(k,k′)

[Vk′+b (τ) + Vk−b (τ)− Vk′ (τ)− Vk (τ)] . (77)

Since the right side of (75) is bounded, R∗ is finite and B can be chosen large enough such that

R∗ ∈ (−B,B), so (71) has at least one solution, and any solution to (71) must satisfy (75) and

(77). To conclude, we show that any (b∗, R∗) that satisfies (75) and (77) is a solution to (71).

To see this, notice that for all (b,R) ∈ Γ (k, k′)× R,[
Vk−b (τ)− Vk (τ) + e−r(τ+∆)R

]θkk′ [
Vk′+b (τ)− Vk′ (τ)− e−r(τ+∆)R

]1−θkk′

≤ max
R∈R

[
Vk−b (τ)− Vk (τ) + e−r(τ+∆)R

]θkk′ [
Vk′+b (τ)− Vk′ (τ)− e−r(τ+∆)R

]1−θkk′

= θ
θkk′
kk′ (1− θkk′)

1−θkk′ [Vk′+b (τ) + Vk−b (τ)− Vk′ (τ)− Vk (τ)]

≤ θ
θkk′
kk′ (1− θkk′)

1−θkk′ max
b∈Γ(k,k′)

[Vk′+b (τ) + Vk−b (τ)− Vk′ (τ)− Vk (τ)] = ξ∗.

Lemma 2 The function Jk (x, τ) given in (2) satisfies (1) if and only if Vk (τ) satisfies (3),

given (4) and (5).

Proof of Lemma 2. Let B denote the space of bounded real-valued functions defined on

K× [0, T ]. Let B′ denote the space of functions obtained by adding e−r(τ+∆)x for some x ∈ R,
to each element of B. That is,

B′ =
{
g : S → R | g (k, x, τ) = w (k, τ) + e−r(τ+∆)x for some w ∈ B

}
,
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where S = K × R × [0, T ]. Let s = (k, x) and s′ = (k′, x′) denote two elements of K × R. For

any g ∈ B′ and any (s, s′, τ) ∈ K× R× S, let

H̃
(
s, s′, τ ; g

)
= arg max

b∈Γ(k,k′),R∈R

{
[g (k − b, x+R, τ)− g (k, x, τ)]θkk′[

g(k′ + b, x′ −R, τ)− g(k′, x′, τ)
]1−θkk′

}
,

where θkk′ = 1 − θk′k ∈ [0, 1] for any k, k′ ∈ K. Since g ∈ B′, H̃ (s, s′, τ ; g) = H∗ (k, k′, τ ;w),

where

H∗ (k, k′, τ ;w) = arg max
b∈Γ(k,k′),R∈R

{[
w (k − b, τ)− w (k, τ) + e−r(τ+∆)R

]θkk′
[
w(k′ + b, τ)− w(k′, τ)− e−r(τ+∆)R

]1−θkk′
}

for some w ∈ B, as defined in Lemma 1. By Lemma 1, H∗ (k, k′, τ ;w) is nonempty, and

(b(k, k′, τ), R(k′, k, τ)) ∈ H∗ (k, k′, τ ;w) if and only if

b(k, k′, τ) ∈ arg max
b∈Γ(k,k′)

[
w(k′ + b, τ) + w (k − b, τ)− w(k′, τ)− w (k, τ)

]
(78)

and

e−r(τ+∆)R(k′, k, τ) = θkk′
{
w
[
k′ + b(k, k′, τ), τ

]
− w(k′, τ)

}
+ (1− θkk′)

{
w(k, τ)− w

[
k − b(k, k′, τ), τ

]}
. (79)

The right side of (1) defines a mapping T on B′. That is, for any g ∈ B′ and all (k, x, τ) ∈ S,

(T g) (k, x, τ) = E
[∫ min(τα,τ)

0
e−rzukdz + I{τα>τ}e

−rτ
(
Uk + e−r∆x

)
+ I{τα≤τ}e

−rτα

∫
g
[
k − b(k, k′, τ − τα), x+R(k′, k, τ − τα), τ − τα

]
µ
(
ds′, τ − τα

)]
where b(k, k′, τ) satisfies (78) and R(k′, k, τ) satisfies (79) (for the special case θkk′ = 1/2 for

all k, k′ ∈ K), for w ∈ B defined by w (k, τ) = g (k, x, τ)− e−r(τ+∆)x for all (k, τ) ∈ K× [0, T ].

Substitute g (k, x, τ) = w (k, τ) + e−r(τ+∆)x on the right side of (T g) (k, x, τ) to obtain

(T g) (k, x, τ) = (Mw) (k, τ) + e−r(τ+∆)x, (80)
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where M is a mapping on B defined by

(Mw) (k, τ) = E
[∫ min(τα,τ)

0
e−rzukdz + I{τα>τ}e

−rτUk

+ I{τα≤τ}e
−rτα

∫
w
[
k − b(k, k′, τ − τα), τ − τα

]
µ
(
ds′, τ − τα

)
+ I{τα≤τ}e

−rτα

∫
e−r(τ+∆−τα)R(k′, k, τ − τα)µ

(
ds′, τ − τα

)]
, (81)

for all (k, τ) ∈ K× [0, T ]. Since the right side of (81) is independent of the net credit position

x, after recognizing that µ ({(k′, x) ∈ K× R : k′ = k} , τ) = nk (τ), (81) can be written as

(Mw) (k, τ) = E

[∫ min(τα,τ)

0
e−rzukdz + I{τα>τ}e

−rτUk

]

+ E
[
I{τα≤τ}e

−rτα
∑
k′∈K

nk′ (τ − τα)w
[
k − b(k, k′, τ − τα), τ − τα

]
+ I{τα≤τ}e

−rτα
∑
k′∈K

nk′ (τ − τα) e
−r(τ+∆−τα)R(k′, k, τ − τα)

]
, (82)

for all (k, τ) ∈ K×[0, T ]. From (82), it is clear thatM is the mapping defined by the right side of

(3). Since w ∈ B, and (b(k, k′, τ), R(k′, k, τ)) satisfy (78) and (79), it follows that M : B → B,

and together with (80), this implies T : B′ → B′. Notice that g∗ = w∗ + e−r(τ+∆)x ∈ B′ is a

fixed point of T if and only if w∗ ∈ B is a fixed point of M. In the statement of the lemma

and in the body of the paper, the fixed points g∗ (k, x, τ) and w∗ (k, τ) are denoted Jk (x, τ)

and Vk (τ), respectively.

Proof of Proposition 1. Start with the mapping (82), and notice that after writing out the

expectation explicitly and performing a change of variable, it becomes

(Mw) (k, τ) = vk (τ)+α

∫ τ

0

∑
k′∈K

nk′ (z)
{
w
[
k − b(k, k′, z), z

]
+ e−r(z+∆)R(k′, k, z)

}
e−(r+α)(τ−z)dz,

for all (k, τ) ∈ K× [0, T ], where

vk (τ) ≡ E

[∫ min(τα,τ)

0
e−rzukdz + I{τα>τ}e

−rτUk

]
,

which can be integrated to obtain the expression in (11). Since b(k, k′, τ) and R(k′, k, τ) satisfy
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(78) and (79), the previous expression for the mapping M can be written as

(Mw) (k, τ) = vk (τ) + α

∫ τ

0
w (k, z) e−(r+α)(τ−z)dz

+ α

∫ τ

0

[∑
k′∈K

nk′ (z) θkk′{w
[
k′ + b(k, k′, z), z

]
+ w

[
k − b(k, k′, z), z

]
− w(k′, z)− w(k, z)}

]
e−(r+α)(τ−z)dz.

In turn, since

w
[
k′ + b(k, k′, z), z

]
+ w

[
k − b(k, k′, z), z

]
− w(k′, z)− w(k, z)

= max
b∈Γ(k,k′)

[
w(k′ + b, z) + w(k − b, z)− w(k′, z)− w(k, z)

]
= max

(i,j)∈Π(k,k′)

[
w(j, z) + w(i, z)− w(k′, z)− w(k, z)

]
,

we have

(Mw) (k, τ) = vk (τ) + α

∫ τ

0
w (k, z) e−(r+α)(τ−z)dz

+ α

∫ τ

0

∑
k′∈K

nk′ (z) θkk′ max
(i,j)∈Π(k,k′)

[
w(i, z) + w(j, z)− w(k, z)− w(k′, z)

]
e−(r+α)(τ−z)dz,

for all (k, τ) ∈ K× [0, T ]. With a relabeling, this mapping can be rewritten as

(Mw) (i, τ) = vi (τ) + α

∫ τ

0
w (i, z) e−(r+α)(τ−z)dz (83)

+ α

∫ τ

0

∑
j∈K

∑
k∈K

∑
s∈K

nj (z) θijϕ
ks
ij (z) [w(k, z) + w(s, z)− w(i, z)− w(j, z)] e−(r+α)(τ−z)dz,

for all (i, τ) ∈ K× [0, T ], with

ϕksij (z) =

{
ϕ̃ksij (z) if (k, s) ∈ Ωij [w (·, z)]
0 if (k, s) /∈ Ωij [w (·, z)] ,

for all i, j, k, s ∈ K and all z ∈ [0, T ], where ϕ̃ksij (z) ≥ 0 and
∑
k∈K

∑
s∈K

ϕ̃ksij (z) = 1, and

Ωij [w (·, z)] ≡ arg max
(k′,s′)∈Π(i,j)

[
w(k′, z) + w(s′, z)− w (i, z)− w (j, z)

]
.

From (83) (with θkk′ = 1/2), it is clear that (10) is just V = MV .

The following lemma establishes the equivalence between property (DMC) and discrete

midpoint concavity.
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Lemma 3 Let g be a real-valued function on K. Then g satisfies

g
(⌈

i+j
2

⌉)
+ g

(⌊
i+j
2

⌋)
≥ g (k) + g (s) (84)

for any i, j ∈ K and all (k, s) ∈ Π(i, j), if and only if it satisfies the discrete midpoint concavity

property,

g
(⌈

i+j
2

⌉)
+ g

(⌊
i+j
2

⌋)
≥ g (i) + g (j) (85)

for all i, j ∈ K.

Proof of Lemma 3. Suppose that g satisfies (84). Since the condition holds for all (k, s) ∈
Π(i, j), and we know that (i, j) ∈ Π(i, j), it holds for the special case (k, s) = (i, j), so g

satisfies (85). To show the converse, notice that since (85) holds for all i, j ∈ K, it also holds

for all i, j ∈ K such that (i, j) ∈ Π(k, s) for any k, s ∈ K. But for any such (i, j), we know that

i+ j = k + s, so (85) implies

g
(⌈

k+s
2

⌉)
+ g

(⌊
k+s
2

⌋)
≥ g (i) + g (j)

for any k, s ∈ K and all (i, j) ∈ Π(k, s), which is the same as (84) up to a relabeling.

The following two lemmas are used in the proof of Proposition 2.

Lemma 4 For any given path n (τ), there exists a unique w∗ ∈ B that satisfies w∗ = Mw∗,

and a unique g∗ ∈ B′ that satisfies g∗ = T g∗, defined by g∗ (k, x, τ) = w∗ (k, τ) + e−r(τ+∆)x for

all (k, x, τ) ∈ S.

Proof of Lemma 4. Write the mapping M defined in the proof of Proposition 1 (with

θkk′ = 1/2), as

(Mw) (i, τ) = vi (τ) + α

∫ τ

0
w (i, z) e−(r+α)(τ−z)dz

+
α

2

∫ τ

0

∑
j∈K

nj (z) max
(k,s)∈Π(i,j)

[w(k, z) + w(s, z)− w(i, z)− w(j, z)] e−(r+α)(τ−z)dz,

for all (i, τ) ∈ K× [0, T ]. For any w,w′ ∈ B, define the metric D : B ×B → R, by

D
(
w,w′) = sup

(i,τ)∈K×[0,T ]

[
e−βτ

∣∣w (i, τ)− w′ (i, τ)
∣∣] ,
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where β ∈ R satisfies

max {0, 2α− r} < β <∞. (86)

For the case with β = 0, D reduces to the standard sup metric, d∞. The metric space (B, d∞)

is complete, and since (B, D) and (B, d∞) are strongly equivalent, it follows that (B, D) is

also a complete metric space (see Ok, 2007, p. 136 and 167). For any w,w′ ∈ B, and any

(i, τ) ∈ K× [0, T ],

e−βτ |(Mw) (i, τ)− (Mw′) (i, τ)| =

= e−βτ

∣∣∣∣α ∫ τ

0
w (i, z) e−(r+α)(τ−z)dz − α

∫ τ

0
w′ (i, z) e−(r+α)(τ−z)dz

+
α

2

∫ τ

0

∑
j∈K

nj (z) max
(k,s)∈Π(i,j)

[w (k, z) + w (s, z)− w (i, z)− w (j, z)] e−(r+α)(τ−z)dz

− α

2

∫ τ

0

∑
j∈K

nj (z) max
(k,s)∈Π(i,j)

[
w′ (k, z) + w′ (s, z)− w′ (i, z)− w′ (j, z)

]
e−(r+α)(τ−z)dz

∣∣∣∣
≤ αe−βτ

∫ τ

0

∣∣∣∣w (i, z)− w′ (i, z)

∣∣∣∣e−(r+α)(τ−z)dz

+
α

2
e−βτ

∫ τ

0

∑
j∈K

nj (z)

∣∣∣∣ max
(k,s)∈Π(i,j)

[w (k, z) + w (s, z)− w (i, z)− w (j, z)]

− max
(k,s)∈Π(i,j)

[
w′ (k, z) + w′ (s, z)− w′ (i, z)− w′ (j, z)

]∣∣∣∣e−(r+α)(τ−z)dz.

Use (k∗ij (z) , s
∗
ij (z)) to denote a solution to the maximization on the right side of Mw, that is,(
k∗ij (z) , s

∗
ij (z)

)
∈ max

(k,s)∈Π(i,j)
[w(k, z) + w(s, z)− w(i, z)− w(j, z)] .

A solution exists because w ∈ B, and Π (i, j) is a finite set for all (i, j) ∈ K×K. Then

e−βτ |(Mw) (i, τ)− (Mw′) (i, τ)| ≤

≤ α

∫ τ

0
e−βz

∣∣∣∣w (i, z)− w′ (i, z)

∣∣∣∣e−(r+α+β)(τ−z)dz

+
α

2

∫ τ

0

∑
j∈K

nj (z)

{
e−βz

∣∣∣∣w (k∗ij (z) , z)− w′ (k∗ij (z) , z)∣∣∣∣+ e−βz

∣∣∣∣w (s∗ij (z) , z)− w′ (s∗ij (z) , z)∣∣∣∣
+e−βz

∣∣∣∣w′ (i, z)− w (i, z)

∣∣∣∣+ e−βz

∣∣∣∣w′ (j, z)− w (j, z)

∣∣∣∣} e−(r+α+β)(τ−z)dz

≤ 3α

r + α+ β

[
1− e−(r+α+β)τ

]
D
(
w,w′)

≤ 3α

r + α+ β
D
(
w,w′) .
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Since this last inequality holds for all (i, τ) ∈ K× [0, T ], and w and w′ are arbitrary,

D
(
Mw,Mw′) ≤ 3α

r + α+ β
D
(
w,w′) , for all w,w′ ∈ B. (87)

Notice that (86) implies 3α
r+α+β ∈ (0, 1), so M is a contraction mapping on the complete metric

space (B, D). By the Contraction Mapping Theorem (Theorem 3.2 in Stokey and Lucas,

1989), for any given path n (τ), there exists a unique w∗ ∈ B that satisfies w∗ = Mw∗, and

therefore, by (80), there exists a unique g∗ ∈ B′ that satisfies g∗ = T g∗, and it is defined by

g∗ (k, x, τ) = w∗ (k, τ) + e−r(τ+∆)x for all (k, x, τ) ∈ S.

Lemma 5 Let i, j, q ∈ K, and (k, s) ∈ Π(i, j).

(i) If either i+ j or s+ q is even, then(⌈
k+q
2

⌉
,
⌊ s+q

2

⌋)
∈ Π

(⌈
i+j
2

⌉
, q
)

and
(⌊

k+q
2

⌋
,
⌈ s+q

2

⌉)
∈ Π

(⌊
i+j
2

⌋
, q
)
.

(ii) If i+ j and s+ q are odd, then(⌊
k+q
2

⌋
,
⌈ s+q

2

⌉)
∈ Π

(⌈
i+j
2

⌉
, q
)

and
(⌈

k+q
2

⌉
,
⌊ s+q

2

⌋)
∈ Π

(⌊
i+j
2

⌋
, q
)
.

Proof of Lemma 5. Notice that for any i, j, q ∈ K,

Π (i, j) = {(i+ j − y, y) ∈ K×K : y ∈ {0, 1, . . . , i+ j}} ,

so

Π
(⌈

i+j
2

⌉
, q
)
=
{(⌈

i+j
2

⌉
+ q − y, y

)
∈ K×K : y ∈

{
0, 1, . . . ,

⌈
i+j
2

⌉
+ q
}}

(88)

Π
(⌊

i+j
2

⌋
, q
)
=
{(⌊

i+j
2

⌋
+ q − y, y

)
∈ K×K : y ∈

{
0, 1, . . . ,

⌊
i+j
2

⌋
+ q
}}

. (89)

For any i, j, q ∈ K, define

Π̃ (i, j, q) =
{(⌈

k+q
2

⌉
,
⌊ s+q

2

⌋)
∈ K×K : (k, s) ∈ Π(i, j)

}
Π̂ (i, j, q) =

{(⌊
k+q
2

⌋
,
⌈ s+q

2

⌉)
∈ K×K : (k, s) ∈ Π(i, j)

}
,

and recall that (k, s) ∈ Π(i, j) implies k + s = i+ j.
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(i) Assume that either i+ j or s+ q is even. We first show that given any i, j, q ∈ K, (k, s) ∈
Π(i, j) implies

(⌈
k+q
2

⌉
,
⌊ s+q

2

⌋)
∈ Π

(⌈
i+j
2

⌉
, q
)
. Notice that if either i+ j or s+ q is even, then⌈

k + q

2

⌉
+

⌊
s+ q

2

⌋
=

⌈
i+ j

2

⌉
+ q. (90)

With (90),

Π̃ (i, j, q) =
{(⌈

k+q
2

⌉
,
⌈
i+j
2

⌉
+ q −

⌈
k+q
2

⌉)
∈ K×K : (k, i+ j − k) ∈ Π(i, j)

}
=
{(
y,
⌈
i+j
2

⌉
+ q − y

)
∈ K×K : y ∈

{⌈ q
2

⌉
,
⌈
q+1
2

⌉
, . . . ,

⌈
q+i+j

2

⌉}}
≡ Π̃e

(⌈
i+j
2

⌉
, q
)
. (91)

By construction, given any i, j, q ∈ K,
(⌈

k+q
2

⌉
,
⌊ s+q

2

⌋)
∈ Π̃e

(⌈
i+j
2

⌉
, q
)
for all (k, s) ∈ Π(i, j).

Since 0 ≤
⌈ q
2

⌉
, and

⌈
q+i+j

2

⌉
≤
⌈
i+j
2

⌉
+ q, it follows from (88) and (91) that Π̃e

(⌈
i+j
2

⌉
, q
)
⊆

Π
(⌈

i+j
2

⌉
, q
)
for all i, j, q ∈ K, which implies

(⌈
k+q
2

⌉
,
⌊ s+q

2

⌋)
∈ Π

(⌈
i+j
2

⌉
, q
)
for all (k, s) ∈

Π(i, j), and any i, j, q ∈ K.

Next, we show that given any i, j, q ∈ K, (k, s) ∈ Π(i, j) implies
(⌊

k+q
2

⌋
,
⌈ s+q

2

⌉)
∈

Π
(⌊

i+j
2

⌋
, q
)
. Notice that if either i+ j or s+ q is even, then⌊

k + q

2

⌋
+

⌈
s+ q

2

⌉
=

⌊
i+ j

2

⌋
+ q. (92)

With (92),

Π̂ (i, j, q) =
{(⌊

k+q
2

⌋
,
⌊
i+j
2

⌋
+ q −

⌊
k+q
2

⌋)
∈ K×K : (k, i+ j − k) ∈ Π(i, j)

}
=
{(
y,
⌊
i+j
2

⌋
+ q − y

)
∈ K×K : y ∈

{⌊ q
2

⌋
,
⌊
q+1
2

⌋
, . . . ,

⌊
q+i+j

2

⌋}}
≡ Π̂e

(⌊
i+j
2

⌋
, q
)
. (93)

By construction, given any i, j, q ∈ K,
(⌊

k+q
2

⌋
,
⌈ s+q

2

⌉)
∈ Π̂e

(⌊
i+j
2

⌋
, q
)
for all (k, s) ∈ Π(i, j).

Since 0 ≤
⌊ q
2

⌋
, and

⌊
q+i+j

2

⌋
≤
⌊
i+j
2

⌋
+ q, it follows from (89) and (93) that Π̂e

(⌊
i+j
2

⌋
, q
)
⊆

Π
(⌊

i+j
2

⌋
, q
)
for all i, j, q ∈ K, which implies

(⌊
k+q
2

⌋
,
⌈ s+q

2

⌉)
∈ Π

(⌊
i+j
2

⌋
, q
)
for all (k, s) ∈

Π(i, j), and any i, j, q ∈ K.

(ii) Suppose that i+j and s+q are odd. We first show that given any i, j, q ∈ K, (k, s) ∈ Π(i, j)

implies
(⌊

k+q
2

⌋
,
⌈ s+q

2

⌉)
∈ Π

(⌈
i+j
2

⌉
, q
)
. Notice that if i+ j and s+ q are odd, then⌊

k + q

2

⌋
+

⌈
s+ q

2

⌉
=

⌈
i+ j

2

⌉
+ q. (94)
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With (94),

Π̂ (i, j, q) =
{(⌈

i+j
2

⌉
+ q −

⌈ s+q
2

⌉
,
⌈ s+q

2

⌉)
∈ K×K : (k, s) ∈ Π(i, j)

}
=
{(⌈

i+j
2

⌉
+ q − y, y

)
∈ K×K : y ∈

{⌈ q
2

⌉
,
⌈
q+1
2

⌉
, . . . ,

⌈
q+i+j

2

⌉}}
≡ Π̂o

(⌈
i+j
2

⌉
, q
)
. (95)

By construction, given any i, j, q ∈ K,
(⌊

k+q
2

⌋
,
⌈ s+q

2

⌉)
∈ Π̂o

(⌈
i+j
2

⌉
, q
)
for all (k, s) ∈ Π(i, j).

Since 0 ≤
⌈ q
2

⌉
, and

⌈
q+i+j

2

⌉
≤
⌈
i+j
2

⌉
+ q, it follows from (88) and (95) that Π̂o

(⌈
i+j
2

⌉
, q
)
⊆

Π
(⌈

i+j
2

⌉
, q
)
for all i, j, q ∈ K, which implies

(⌊
k+q
2

⌋
,
⌈ s+q

2

⌉)
∈ Π

(⌈
i+j
2

⌉
, q
)
for all (k, s) ∈

Π(i, j), and any i, j, q ∈ K.

Finally, we show that given any i, j, q ∈ K, (k, s) ∈ Π(i, j) implies
(⌈

k+q
2

⌉
,
⌊ s+q

2

⌋)
∈

Π
(⌊

i+j
2

⌋
, q
)
. Notice that if i+ j and s+ q are odd, then⌈

k + q

2

⌉
+

⌊
s+ q

2

⌋
=

⌊
i+ j

2

⌋
+ q. (96)

With (96),

Π̃ (i, j, q) =
{(⌊

i+j
2

⌋
+ q −

⌊ s+q
2

⌋
,
⌊ s+q

2

⌋)
∈ K×K : (k, s) ∈ Π(i, j)

}
=
{(⌊

i+j
2

⌋
+ q − y, y

)
∈ K×K : y ∈

{⌊ q
2

⌋
,
⌊
q+1
2

⌋
, . . . ,

⌊
q+i+j

2

⌋}}
≡ Π̃o

(⌊
i+j
2

⌋
, q
)
. (97)

By construction, given any i, j, q ∈ K,
(⌈

k+q
2

⌉
,
⌊ s+q

2

⌋)
∈ Π̃o

(⌊
i+j
2

⌋
, q
)
for all (k, s) ∈ Π(i, j).

Since 0 ≤
⌊ q
2

⌋
, and

⌊
q+i+j

2

⌋
≤
⌊
i+j
2

⌋
+ q, it follows from (89) and (97) that Π̃o

(⌊
i+j
2

⌋
, q
)
⊆(⌊

i+j
2

⌋
, q
)

for all i, j, q ∈ K, which implies
(⌈

k+q
2

⌉
,
⌊ s+q

2

⌋)
∈ Π

(⌊
i+j
2

⌋
, q
)

for all (k, s) ∈
Π(i, j), and any i, j, q ∈ K.

Proof of Proposition 2. Consider the metric space (B, D) used in the proof of Lemma 4. A

function w ∈ B satisfies the bilateral-trade asset-holding Equalization Property (EP) if for all

(i, j, τ) ∈ K×K× [0, T ],

max
(k,s)∈Π(i,j)

[w (k, τ) + w (s, τ)− w (i, τ)− w (j, τ)]

= w
(⌈

i+j
2

⌉
, τ
)
+ w

(⌊
i+j
2

⌋
, τ
)
− w (i, τ)− w (j, τ) . (EP)
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A function w ∈ B satisfies the bilateral-trade asset-holding Strict Equalization Property (SEP)

if for all (i, j, τ) ∈ K×K× [0, T ],

arg max
(k,s)∈Π(i,j)

[w (k, τ) + w (s, τ)− w (i, τ)− w (j, τ)] = Ω∗
ij , (SEP)

where Ω∗
ij is defined in (15). Let

B′′ = {w ∈ B : w satisfies (EP)}

B′′′ = {w ∈ B : w satisfies (SEP)} .

Clearly, B′′′ ⊆ B′′ ⊆ B.

We first establish that B′′ is a closed subset of B. Let {wn}∞n=0 be a sequence of functions

in B′′, with limn→∞wn = w̄. If w̄ /∈ B′′, then there exists some (k, s) ∈ Π(i, j) and ς ∈ R such

that

0 < ς = w̄ (k, τ) + w̄ (s, τ)−
[
w̄
(⌈

i+j
2

⌉
, τ
)
+ w̄

(⌊
i+j
2

⌋
, τ
)]
,

for some (i, j, τ) ∈ K×K× [0, T ]. This implies

wn (k, τ) + wn (s, τ) = wn

(⌈
i+j
2

⌉
, τ
)
+ wn

(⌊
i+j
2

⌋
, τ
)
+ ς

− {w̄ (k, τ) + w̄ (s, τ)− [wn (k, τ) + wn (s, τ)]}

+ w̄
(⌈

i+j
2

⌉
, τ
)
+ w̄

(⌊
i+j
2

⌋
, τ
)
−
[
wn

(⌈
i+j
2

⌉
, τ
)
+ wn

(⌊
i+j
2

⌋
, τ
)]
.

For this particular (i, j, τ) ∈ K×K× [0, T ], for all n large enough we can ensure that

|w̄ (k, τ) + w̄ (s, τ)− [wn (k, τ) + wn (s, τ)]| <
ς

4

and ∣∣∣w̄ (⌈ i+j
2

⌉
, τ
)
+ w̄

(⌊
i+j
2

⌋
, τ
)
−
[
wn

(⌈
i+j
2

⌉
, τ
)
+ wn

(⌊
i+j
2

⌋
, τ
)]∣∣∣ < ς

4
,

but then

0 < ς/2 < wn (k, τ) + wn (s, τ)−
[
wn

(⌈
i+j
2

⌉
, τ
)
+ wn

(⌊
i+j
2

⌋
, τ
)]
,

which contradicts the fact that wn ∈ B′′. Thus, we conclude that w̄ ∈ B′′, so B′′ is closed.

The second step is to show that the mapping M defined in (81) preserves property (EP),

i.e., that M (B′′) ⊆ B′′. That is, we wish to show that for any w ∈ B′′, w′ = Mw ∈ B′′, or

equivalently, that

w
(⌈

i+j
2

⌉
, τ
)
+ w

(⌊
i+j
2

⌋
, τ
)
≥ w (k, τ) + w (s, τ) for all (k, s) ∈ Π(i, j) ,
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for any (i, j, τ) ∈ K×K× [0, T ], implies that

w′
(⌈

i+j
2

⌉
, τ
)
+ w′

(⌊
i+j
2

⌋
, τ
)
− w′ (k, τ)− w′ (s, τ) ≥ 0 for all (k, s) ∈ Π(i, j) , (98)

for any (i, j, τ) ∈ K×K× [0, T ]. Since w ∈ B′′, using (83) (with θkk′ = 1/2 for all k, k′ ∈ K),

(Mw) (i, τ) = vi (τ) + α

∫ τ

0
w (i, z) e−(r+α)(τ−z)dz

+
α

2

∫ τ

0

∑
q∈K

nq (z)
[
w
(⌈

i+q
2

⌉
, z
)
+ w

(⌊
i+q
2

⌋
, z
)
− w (i, z)− w (q, z)

]
e−(r+α)(τ−z)dz,

for all (i, τ) ∈ K× [0, T ]. For any (i, j, τ) ∈ K×K× [0, T ] and (k, s) ∈ Π(i, j), let G (i, j, k, s, τ)

denote the left side of inequality (98). Then,

G (i, j, k, s, τ) = v⌈ i+j
2 ⌉ (τ) + v⌊ i+j

2 ⌋ (τ)− vk (τ)− vs (τ)

+ α

∫ τ

0

[
w
(⌈

i+j
2

⌉
, z
)
+ w

(⌊
i+j
2

⌋
, z
)
− w (k, z)− w (s, z)

]
e−(r+α)(τ−z)dz

+
α

2

∫ τ

0

∑
q∈K

nq (z)

[
w


⌈
i+j
2

⌉
+q

2

 , z
+ w

⌈
i+j
2

⌉
+q

2

 , z


− w
(⌈

i+j
2

⌉
, z
)
− w (q, z)

]
e−(r+α)(τ−z)dz

+
α

2

∫ τ

0

∑
q∈K

nq (z)

[
w


⌊
i+j
2

⌋
+q

2

 , z
+ w

⌊
i+j
2

⌋
+q

2

 , z


− w
(⌊

i+j
2

⌋
, z
)
− w (q, z)

]
e−(r+α)(τ−z)dz

− α

2

∫ τ

0

∑
q∈K

nq (z)
[
w
(⌈

k+q
2

⌉
, z
)
+ w

(⌊
k+q
2

⌋
, z
)
− w (k, z)− w (q, z)

]
e−(r+α)(τ−z)dz

− α

2

∫ τ

0

∑
q∈K

nq (z)
[
w
(⌈ s+q

2

⌉
, z
)
+ w

(⌊ s+q
2

⌋
, z
)
− w (s, z)− w (q, z)

]
e−(r+α)(τ−z)dz.
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With (11) and after deleting redundant terms, this expression can be rearranged to yield

G (i, j, k, s, τ) =
1− e−(r+α)τ

r + α

(
u⌈ i+j

2 ⌉ + u⌊ i+j
2 ⌋ − uk − us

)
+ e−(r+α)τ

[
U⌈ i+j

2 ⌉ + U⌊ i+j
2 ⌋ − Uk − Us

]
+
α

2

∫ τ

0

[
w
(⌈

i+j
2

⌉
, z
)
+ w

(⌊
i+j
2

⌋
, z
)
− w (k, z)− w (s, z)

]
e−(r+α)(τ−z)dz

+
α

2

∫ τ

0

∑
q∈K

nq (z)

w


⌈
i+j
2

⌉
+q

2

 , z
+ w

⌈
i+j
2

⌉
+q

2

 , z


− w
(⌈

k+q
2

⌉
, z
)
− w

(⌊ s+q
2

⌋
, z
)

− w
(⌊

k+q
2

⌋
, z
)
− w

(⌈ s+q
2

⌉
, z
)

+w


⌊
i+j
2

⌋
+q

2

 , z
+ w

⌊
i+j
2

⌋
+q

2

 , z
 e−(r+α)(τ−z)dz.

What needs to be shown is that w ∈ B′′ implies that for any (i, j, τ) ∈ K × K × [0, T ],

G (i, j, k, s, τ) ≥ 0 for all (k, s) ∈ Π(i, j). The fact that w ∈ B′′ immediately implies that

the first integral in the last expression is nonnegative. By Lemma 5, w ∈ B′′ also implies that

the second integral in the last expression is nonnegative. Together with Assumption A, these

observations imply

0 <
1− e−(r+α)τ

r + α

(
u⌈ i+j

2 ⌉ + u⌊ i+j
2 ⌋ − uk − us

)
+ e−(r+α)τ

[
U⌈ i+j

2 ⌉ + U⌊ i+j
2 ⌋ − Uk − Us

]
(99)

≤ G (i, j, k, s, τ) ,

so we conclude that M (B′′) ⊆ B′′′ ⊆ B′′.

The third step is to show that (14) is the equilibrium distribution of trading probabilities.

From Lemma 4, we know thatM is a contraction mapping on the complete metric space (B, D),

so it has a unique fixed point w∗ (k, τ) ≡ Vk (τ) ∈ B. In addition, we have now established

that B′′ is a closed subset of B, and that M (B′′) ⊆ B′′′ ⊆ B′′. Therefore, by Corollary 1

in Stokey and Lucas (1989, p. 52) we conclude that Vk (τ) ∈ B′′′. This implies that the set

Ωij [V (τ)] defined in (13) reduces to Ω∗
ij for all (i, j, τ) ∈ K×K× [0, T ], and consequently, that

(12) reduces to (14) for all (i, j, τ) ∈ K×K× [0, T ]. This establishes part (ii) in the statement

of the proposition.

We can now show that the paths n (τ) and V (τ) are uniquely determined. Since (by

Lemma 4) the fixed point Vk (τ) ∈ B′′′ is unique given any path for the distribution of reserve
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balances, n (τ), all that has to be shown is that given the initial condition {nk (T )}k∈K, and
given that the path ϕ (τ) satisfies (14), the system of first-order ordinary differential equations,

ṅ (τ) = f [n (τ) ,ϕ (τ)], has a unique solution. But since f is continuously differentiable,

this follows from Propositions 6.3 and 7.6 in Amann (1990). This establishes part (i) in the

statement of the proposition.

By Proposition 1, the equilibrium value function, V , satisfies (10). Notice that (10) implies

(17). Differentiate both sides of (10) with respect to τ , and rearrange terms to obtain

V̇i (τ)+rVi (τ) = v̇i (τ)+(r + α) vi (τ)+
α

2

∑
j∈K

∑
k∈K

∑
s∈K

nj (τ)ϕ
ks
ij (τ) [Vk(τ) + Vs(τ)− Vi(τ)− Vj(τ)] ,

which together with the fact that v̇i (τ) = ui − (r + α) vi (τ) implies (16). This establishes part

(iii) in the statement of the proposition.

Suppose that at time T − τ , a bank with balance j extends a loan of size b to a bank with

balance i. Then (5) implies that the present discounted value of the repayment from the latter

to the former is
1

2
[Vi+b (τ)− Vi (τ)] +

1

2
[Vj (τ)− Vj−b (τ)] ,

which reduces to the right side of (18) if the loan size is b = j − s = k − i, as specified by part

(iv) in the statement of the proposition.

Corollary 1 Assume that {Uk}k∈K satisfies the discrete midpoint concavity property and {uk}k∈K
satisfies the discrete midpoint strict concavity property. An equilibrium exists, and the equilib-

rium paths for the distribution of reserve balances, n (τ), and maximum attainable payoffs,

V (τ), are uniquely determined, and identical to those in Proposition 2. The equilibrium dis-

tribution of trading probabilities is

ϕksij (τ) =

{
ϕ̃ksij (τ) if (k, s) ∈ Ω∗

ij (τ)

0 if (k, s) /∈ Ω∗
ij (τ)

(100)

for all i, j, k, s ∈ K and τ ∈ [0, T ], with ϕ̃ksij (τ) ≥ 0 and
∑

(k,s)∈Ω∗
ij(τ)

ϕ̃ksij (τ) = 1, and where

Ω∗
ij (τ) = Ω∗

ij, with Ω∗
ij given by (15) for all τ ∈ (0, T ], and Ω∗

ij (0) = Ω∗
ij ∪ Ω0

ij, where

Ω0
ij =

{
(k, s) ∈ Π(i, j) : Uk + Us = U⌈ i+j

2 ⌉ + U⌊ i+j
2 ⌋
}
.
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Proof of Corollary 1. The proof proceeds exactly as the proof of Proposition 2 up to (99).

Notice that under Assumption A, (99) holds for all τ ∈ [0, T ]. Instead, under the assumption

that {Uk}k∈K satisfies discrete midpoint concavity and {uk}k∈K satisfies discrete midpoint strict

concavity, the inequality in (99) holds as a strict inequality for all τ ∈ (0, T ], but only as a weak

inequality for τ = 0. As before, the unique fixed point Vk (τ) ∈ B′′, but now Vk (τ) /∈ B′′′, since

Vk (τ) satisfies (SEP) for all (i, j, τ) ∈ K×K× (0, T ], rather than for all (i, j, τ) ∈ K×K× [0, T ].

However, it is clear from (99) that in this case MVk (τ) = Vk (τ) ∈ B′′′
0 , where B

′′′
0 is the subset

of elements of B that satisfy (SEP) for all (i, j, τ) ∈ K × K × (0, T ]. This implies that the

set Ωij [V (τ)] defined in (13) now reduces to the set Ω∗
ij (τ) defined in the statement of the

corollary for all τ ∈ [0, T ], and consequently, that (12) reduces to (100) for all τ ∈ [0, T ]. Notice

that despite the potential multiplicity of optimal post-trade portfolios in bilateral meetings at

τ = 0 (which is the only difference between this case and the one treated in Proposition 2), as

can be seen from (83) and (100), the mapping M is unaffected by this multiplicity, and hence

so is its fixed point. Therefore, (by Lemma 2) the fixed point Vk (τ) ∈ B′′′
0 is unique given any

path for n (τ). Finally, if we cast (8) in integral equation form,

nk (τ) = nk (T )− α

∫ T

τ

∑
i∈K

∑
j∈K

∑
s∈K

ni (z)
[
nk (z)ϕ

sj
ki (z)− nj (z)ϕ

ks
ij (z)

]
dz (101)

for all k ∈ K, then it becomes clear that for all k ∈ K and all τ ∈ [0, T ], nk (τ) is independent

of ϕksij (0) (changing the integral at a single point leaves the right side of (101) unaffected).

Therefore, by the same arguments used in the final step of the proof of Proposition 2, there

exists a unique n (τ) that solves the system (101), and it is the same solution that obtains

under Assumption A.

Proof of Proposition 3. The planner’s current-value Hamiltonian can be written as

L =
∑
k∈K

mk (t)uk + α
∑
i∈K

∑
j∈K

∑
k∈K

∑
s∈K

mi (t)mj (t)χ
ks
ij (t) [µk (t)− µi (t)] ,

where µ (t) = {µk (t)}k∈K is the vector of co-states associated with the law of motion for the

distribution of banks across reserve balances. In an optimum, the co-states and the controls
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must satisfy ∂L
∂mi(t)

= rµi (t)− µ̇i (t), and

χks
ij (t)



= 1 if ∂L
∂χks

ij (t)

∣∣∣∣
χsk
ji (t)=χks

ij (t)

> 0

∈ [0, 1] if ∂L
∂χks

ij (t)

∣∣∣∣
χsk
ji (t)=χks

ij (t)

= 0

0 if ∂L
∂χks

ij (t)

∣∣∣∣
χsk
ji (t)=χks

ij (t)

< 0.

Notice that

∂L

∂χks
ij (t)

∣∣∣∣∣
χsk
ji (t)=χks

ij (t)

= αmi (t)mj (t) [µk (t) + µs (t)− µi (t)− µj (t)] ,

and that given χsk
ji (t) = χks

ij (t),

∂L

∂mi
= ui + α

∑
j∈K

∑
k∈K

∑
s∈K

mj (t)χ
ks
ij (t) [µk (t) + µs (t)− µi (t)− µj (t)] .

Thus the necessary conditions for optimality are:

χks
ij (t) =

{
χ̃ks
ij (t) if (k, s) ∈ Ωij [µ (t)]

0 if (k, s) /∈ Ωij [µ (t)] ,
(102)

for all i, j, k, s ∈ K and all t ∈ [0, T ], where χ̃ks
ij (t) ≥ 0 and

∑
k∈K

∑
s∈K

χ̃ks
ij (t) = 1, the Euler

equations,

rµi (t)− µ̇i (t) = ui + α
∑
j∈K

∑
k∈K

∑
s∈K

mj (t)χ
ks
ij (t) [µk (t) + µs (t)− µi (t)− µj (t)] (103)

for all i ∈ K, with the path for m (t) given by (19), and

µi (T ) = Ui for all i ∈ K. (104)

In summary, the necessary conditions are (19), (102), (103), and (104). Next, we use the

fact that τ ≡ T − t to define mk (t) = mk (T − τ) ≡ nk (τ), χ
ks
ij (t) = χks

ij (T − τ) ≡ ψks
ij (τ),

and µi (t) = µi (T − τ) ≡ λi (τ). With these new variables, (103) leads to (20), (19) leads to

ṅ (τ) = f [n (τ) ,ψ (τ)], (104) leads to (21), and (102) leads to (22).
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Proof of Proposition 4. The function λ ≡ [λ (τ)]τ∈[0,T ] satisfies (20) and (21) if and only if

it satisfies

λi (τ) = vi (τ) + α

∫ τ

0
λi (z) e

−(r+α)(τ−z)dz

+ α

∫ τ

0

∑
j∈K

∑
k∈K

∑
s∈K

nj (z)ψ
ks
ij (z) [λk (z) + λs (z)− λi (z)− λj (z)] e

−(r+α)(τ−z)dz.

The right side of this functional equation defines a mapping P : B → B, that is for any w ∈ B,

(Pw) (i, τ) = vi (τ) + α

∫ τ

0
w (i, z) e−(r+α)(τ−z)dz

+ α

∫ τ

0

∑
j∈K

∑
k∈K

∑
s∈K

nj (z)ψ
ks
ij (z) [w (k, z) + w (s, z)− w (i, z)− w (j, z)] e−(r+α)(τ−z)dz,

for all (i, τ) ∈ K × [0, T ]. Hence a function λ satisfies (20) and (21) if and only if it satisfies

λ = Pλ. Rewrite the mapping P as

(Pw) (i, τ) = vi (τ) + α

∫ τ

0
w (i, z) e−(r+α)(τ−z)dz (105)

+ α

∫ τ

0

∑
j∈K

nj (z) max
(k,s)∈Π(i,j)

[w (k, z) + w (s, z)− w (i, z)− w (j, z)] e−(r+α)(τ−z)dz,

and for any w,w′ ∈ B, define the metric D∗ : B ×B → R by

D∗ (w,w′) = sup
(i,τ)∈K×[0,T ]

[
e−κτ

∣∣w (i, τ)− w′ (i, τ)
∣∣] ,

where κ ∈ R satisfies

max {0, 5α− r} < κ <∞. (106)

The metric space (B, D∗) is complete (by the same argument used to argue that (B, D) is

complete, in the proof of Lemma 4). For any w,w′ ∈ B, and any (i, τ) ∈ K× [0, T ], the same

steps that led to (87), now lead to

D∗ (Pw,Pw′) ≤ 5α

r + α+ κ
D∗ (w,w′) , for all w,w′ ∈ B.

Notice that (106) implies 5α
r+α+κ ∈ (0, 1), so P is a contraction mapping on the complete metric

space (B, D∗). By the Contraction Mapping Theorem (Theorem 3.2 in Stokey and Lucas,

1989), for any given path n (τ), there exists a unique λ ∈ B that satisfies λ = Pλ.
Consider the sets B′′ and B′′′ defined in the proof of Proposition 2. By following the same

steps as in the first part of that proof, it can be shown that B′′ is closed under D∗. Next we
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show that the mapping P defined in (105) preserves property (EP), i.e., that P (B′′) ⊆ B′′.

That is, we wish to show that for any w ∈ B′′, w′ = Pw ∈ B′′, or equivalently, that

w
(⌈

i+j
2

⌉
, τ
)
+ w

(⌊
i+j
2

⌋
, τ
)
≥ w (k, τ) + w (s, τ) for all (k, s) ∈ Π(i, j) ,

for any (i, j, τ) ∈ K×K× [0, T ], implies that

w′
(⌈

i+j
2

⌉
, τ
)
+ w′

(⌊
i+j
2

⌋
, τ
)
− w′ (k, τ)− w′ (s, τ) ≥ 0 for all (k, s) ∈ Π(i, j) , (107)

for any (i, j, τ) ∈ K×K× [0, T ]. Since w ∈ B′′,

(Pw) (i, τ) = vi (τ) + α

∫ τ

0
w (i, z) e−(r+α)(τ−z)dz

+ α

∫ τ

0

∑
q∈K

nq (z)
[
w
(⌈

i+q
2

⌉
, z
)
+ w

(⌊
i+q
2

⌋
, z
)
− w (i, z)− w (q, z)

]
e−(r+α)(τ−z)dz,

for any (i, τ) ∈ K×[0, T ]. For any (i, j, τ) ∈ K×K×[0, T ] and (k, s) ∈ Π(i, j), let G′ (i, j, k, s, τ)

denote the left side of inequality (107). Then,

G′ (i, j, k, s, τ) =
1− e−(r+α)τ

r + α

(
u⌈ i+j

2 ⌉ + u⌊ i+j
2 ⌋ − uk − us

)
+ e−(r+α)τ

[
U⌈ i+j

2 ⌉ + U⌊ i+j
2 ⌋ − Uk − Us

]
+ α

∫ τ

0

∑
q∈K

nq (z)

w


⌈
i+j
2

⌉
+q

2

 , z
+ w

⌈
i+j
2

⌉
+q

2

 , z


− w
(⌈

k+q
2

⌉
, z
)
− w

(⌊ s+q
2

⌋
, z
)

− w
(⌊

k+q
2

⌋
, z
)
− w

(⌈ s+q
2

⌉
, z
)

+w


⌊
i+j
2

⌋
+q

2

 , z
+ w

⌊
i+j
2

⌋
+q

2

 , z
 e−(r+α)(τ−z)dz.

What needs to be shown is that w ∈ B′′ implies that for any (i, j, τ) ∈ K × K × [0, T ],

G′ (i, j, k, s, τ) ≥ 0 for all (k, s) ∈ Π(i, j). By Lemma 5, w ∈ B′′ implies that the integral

in the last expression is nonnegative. Together with Assumption A, this implies

0 <
1− e−(r+α)τ

r + α

(
u⌈ i+j

2 ⌉ + u⌊ i+j
2 ⌋ − uk − us

)
+ e−(r+α)τ

[
U⌈ i+j

2 ⌉ + U⌊ i+j
2 ⌋ − Uk − Us

]
≤ G′ (i, j, k, s, τ) ,

so M (B′′) ⊆ B′′′ ⊆ B′′.
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At this point, we have shown that P is a contraction mapping on the complete metric space

(B, D∗), so it has a unique fixed point λ ∈ B. We have also established that B′′ is a closed

subset of B, and that M (B′′) ⊆ B′′′ ⊆ B′′. Therefore, by Corollary 1 in Stokey and Lucas

(1989, p. 52), λ = Pλ ∈ B′′′, that is, the unique fixed point λ satisfies (SEP). This implies

that the set Ωij [λ (τ)] in (22) reduces to Ω∗
ij (as defined in (15)) for all (i, j, τ) ∈ K×K× [0, T ],

and consequently, that (22) reduces to (23). This establishes part (i) in the statement of the

proposition.

Given the initial condition {nk (T )}k∈K, and given that the path ψ (τ) satisfies (23), the

system of first-order ordinary differential equations, ṅ (τ) = f [n (τ) ,ψ (τ)] is identical to the

one in part (iii) of Proposition 2, and therefore also has a unique solution. Given the resulting

path n (τ), according to Proposition 3, the path for the vector of co-states must satisfy the

necessary condition λ = Pλ, or equivalently, (20) and (21), which establishes part (ii) in the

statement of the proposition.

Proof of Proposition 6. The (i, j) element of the transition matrix Π(N)(t(N)) as defined in

(26), denoted π
(N)
ij (t(N)), is the probability that a bank with balance i at time t0 has balance j

at time t, conditional on a realization of the number of trading opportunities, N ∈ {0, 1, 2, . . .},
and a realization of the corresponding trading times, t(N) ∈ T(N). Let n[t0,t] denote the random

number of trading opportunities that a bank encounters during the time interval [t0, t]. Since

trading opportunities follow a Poisson process with intensity α,

Pr
(
n[t0,t] = N

)
=

[α (t− t0)]
N e−α(t−t0)

N !
. (108)

Let h(t(N)|n[t0,t] = N) denote the probability density of t(N) ∈ T(N) conditional on N trading

opportunities in [t0, t], and notice that h(t(N)|n[t0,t] = N) = h′((T1, . . . , TN ) |n[t0,t] = N), where

h′((T1, . . . , TN ) |n[t0,t] = N) is the conditional probability density for the N interarrival times,

Tn ≡ tn − tn−1, for n = 1, . . . , N . Then, by the definition of conditional density,

h′(T1, . . . , TN |n[t0,t] = N) =

Pr
(
n[t0,t] = N | T1, . . . , TN

) N∏
n=1

(
αe−α(Tn−Tn−1)

)
Pr
(
n[t0,t] = N

)
=

Pr (TN+1 > t− tN )αNe−α(tN−t0)

Pr
(
n[t0,t] = N

)
=

N !

(t− t0)
N
. (109)
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Notice that the volume of [t0, t]
N is (t− t0)

N , but the volume of T(N) is (t− t0)
N /N !, since

for all possible draws of N -vectors from [t0, t]
N , the ascending ordering t(N) = (t1, t2, ..., tN ) is

only one of N ! possible orderings. Thus by (109), the conditional probability distribution for

the trading times t(N) given n[t0,t] = N , is uniform on T(N). For a bank holding any balance in

K at time t0, we can now use (108) and (109) to write the unconditional transition probabilities

to any balance at time t, as

P (t|t0) =
∞∑

N=0

[α (t− t0)]
N e−α(t−t0)

N !

∫
T(N)

Π(N)(t(N))
N !

(t− t0)
N
dt(N),

which simplifies to (27).

Proof of Proposition 7. Given an initial balance a (t0) = k0 ∈ K, and given the realization of

trading times t(N) ∈ [t0, t]
N , the probability distribution over the post-trade balances at these

trading times, i.e., over vectors (a (t1) , . . . , a (tN )) = k(N) ∈ KN , is given by (25). Hence,

E
[
Oj(k0,k

(N)) | k0, t(N)
]
=

∑
k(N)∈KN

(
N∏

n=1

πkn−1kn (tn)

)
Oj(k0,k

(N)) ≡ Õj(k0, t
(N))

is the expected cumulative volume of funds purchased (for j = p, or sold, for j = s) during

[t0, t] by banks that hold balance k0 at t0 and have N trading opportunities, at times t(N) =

(t1, . . . , tN ). By (108) and (109), the expected cumulative volume of funds purchased (for j = p,

or sold, for j = s) during [t0, t] by banks that hold balance k0 at t0 is

E
[
Õj(k0, t

(N)) | k0
]
=

∞∑
N=0

[α (t− t0)]
N e−α(t−t0)

N !

∫
T(N)

Õj(k0, t
(N))

N !

(t− t0)
N
dt(N).

Since the density of banks with balance k0 at time t0 is mk0 (t0),

E
[
E
[
Õj(k0, t

(N)) | k0
]]

=
∑
k0∈K

mk0 (t0)
∞∑

N=0

[α (t− t0)]
N e−α(t−t0)

N !

∫
T(N)

Õj(k0, t
(N))

N !

(t− t0)
N
dt(N)

is the expected cumulative volume of funds purchased (for j = p, or sold, for j = s) by all banks

during [t0, t], which after simplification reduces to Ōj (t|t0) in (30). An identical calculation but

replacing Ōj(k0,k
(N)) with X(k0,k

(N)) leads to (32). Finally, from (28) and (29) it is easy to

check that I(k0,k
(N)) = 1

2X(k0,k
(N)) for all (k0,k

(N)) ∈ KN+1, which implies (31).
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Proof of Proposition 8. The right side of (49) can be integrated to obtain the closed-form

expression for S (τ), where

ξ (τ) = [n2 (T )− n0 (T )]

∫ τ

0

e{r+θα[n2(T )−n0(T )]}zn0 (T )

n2 (T ) eα[n2(T )−n0(T )]T − eα[n2(T )−n0(T )]zn0 (T )
dz

can be integrated to yield the expression reported in the statement of the proposition. Condi-

tions (45), (46) and (47) imply

V̇1 (τ)− V̇0 (τ) + r [V1 (τ)− V0 (τ)] = u1 − u0 − θαn2 (τ)S (τ) ,

a differential equation in V1 (τ) − V0 (τ), with boundary condition V1 (0) − V0 (0) = U1 − U0.

The solution to this differential equation is

V1 (τ)− V0 (τ) = e−rτ (U1 − U0) +

∫ τ

0
[u1 − u0 − θαn2 (z)S (z)] e−r(τ−z)dz. (110)

With (44) and the closed-form expression for S (τ), the integral on the right side of (110) can

be calculated explicitly to yield

(
1− e−rτ

) u1 − u0
r

− e−rτ e
α[n2(T )−n0(T )]Tn2 (T )

n0 (T )
θζ [τ, ū, S (0)] ,

with

ζ [τ, ū, S (0)] =

∞∑
k=1

[
n2(T )
n0(T )

]k−1

r
α[n0(T )−n2(T )]+k−θ

e{r+αk[n0(T )−n2(T )]}τ−1
r+αk[n0(T )−n2(T )]

− eαθ[n0(T )−n2(T )]τ−1
αθ[n0(T )−n2(T )]

eα(k−1)[n0(T )−n2(T )]T ū

+
[eαθ[n0(T )−n2(T )]τ−1]n0(T )

θ[n0(T )−e−α[n0(T )−n2(T )]Tn2(T )]
S (0)

if n2 (T ) < n0 (T ),

ζ [τ, ū, S (0)] = e
r
[

1
αn0(T )

+T
] ∞∑
k=0

(−r)k

k!k

[ 1
αn0(T ) + T

]k
τ −

{[
1

αn0(T )
+T

]k+1
−
[

1
αn0(T )

+T−τ
]k+1

}
k+1

 ū

+ τ
1

αn0(T )
+T
S (0)

if n2 (T ) = n0 (T ), and

ζ [τ, ū, S (0)] =

∞∑
k=0

[
n0(T )
n2(T )

]k+1

r
α[n2(T )−n0(T )]

+θ+k

e{r+αk[n2(T )−n0(T )]}τ−1
r+αk[n2(T )−n0(T )]

− 1−e−αθ[n2(T )−n0(T )]τ

αθ[n2(T )−n0(T )]

eα(k+1)[n2(T )−n0(T )]T ū

+
[1−e−αθ[n2(T )−n0(T )]τ ]n0(T )

θ[eα[n2(T )−n0(T )]Tn2(T )−n0(T )]
S (0)
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if n0 (T ) < n2 (T ).

Proof of Proposition 9. From (49), since ū ≥ 0 and S (0) > 0, we have S (τ) > 0 for all

τ ∈ [0, T ].

(i) Differentiate (49) to obtain

∂S (τ)

∂r
= −

[(∫ τ

0
(τ − z) e−[δ̄(τ)−δ̄(z)]dz

)
ū+ τe−δ̄(τ)S (0)

]
,

which is clearly negative for τ > 0.

(ii) Differentiate (49) to obtain

∂S (τ)

∂θ
= −α

{
ū

∫ τ

0
(τ − z) e−[δ̄(τ)−δ̄(z)]dz + τe−δ̄(τ)S (0)

}
[n2 (T )− n0 (T )] ,

which has the sign of n0 (T )− n2 (T ).

(iii) Differentiate (49) to obtain ∂S(τ)
∂U0

= ∂S(τ)
∂U2

= −1
2
∂S(τ)
∂U1

= −S(τ)
S(0) < 0.

Proof of Proposition 10. For ū = 0, R (τ) is given by (50), but with S (τ) given by

S (τ) = e−
∫ τ
0 {r+α[θn2(s)+(1−θ)n0(s)]}dsS (0) ,

and with V1 (τ)− V0 (τ) given by

V1 (τ)− V0 (τ) = e−rτ (U1 − U0) +
(
1− e−rτ

) u1 − u0
r

− [e−rτ−e−{r+αθ[n2(T )−n0(T )]}τ ]n2(T )

n2(T )−e−α[n2(T )−n0(T )]Tn0(T )
S (0)

for the case n2 (T ) ̸= n0 (T ), and

V1 (τ)− V0 (τ) = e−rτ (U1 − U0) +
(
1− e−rτ

) u1 − u0
r

− τe−rτ

1
αn0(T ) + T

θS (0)

for the case n2 (T ) = n0 (T ). From (51),

∂ρ (τ)

∂x
=

1

τ +∆

1

R (τ)

∂R (τ)

∂x
,

for x = θ, r, U0.

(i) Differentiate (50) to obtain

∂R (τ)

∂r
= R (τ)∆− er(τ+∆)u1 − u0

r2
(
1− rτ − e−rτ

)
> 0,

since 1− rτ − e−rτ ≤ 0. Thus, ∂ρ(τ)
∂r > 0.
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(ii) For any τ > 0, differentiate (50) to obtain

∂R (τ)

∂θ
= −er(τ+∆)

[
1 +

{θeα[n2(T )−n0(T )]τn0(T )+(1−θ)eα[n2(T )−n0(T )]Tn2(T )}[n2(T )−n0(T )]ατ

eα[n2(T )−n0(T )]Tn2(T )−eα[n2(T )−n0(T )]τn0(T )

]
S(τ) < 0

for the case n2 (T ) ̸= n0 (T ), and

∂R (τ)

∂θ
= −er(τ+∆)

[
1 +

ατn0 (T )

1 + α (T − τ)n0 (T )

]
S(τ) < 0

for the case n2 (T ) = n0 (T ). Hence
∂ρ(τ)
∂θ < 0.

(iii) Differentiate (50) to obtain

∂R (τ)

∂U0
= −er(τ+∆) (1−θ)eα[n2(T )−n0(T )]Tn2(T )−[1−θeα(1−θ)[n2(T )−n0(T )]τ ]eαθ[n2(T )−n0(T )]τn0(T )

eα[n2(T )−n0(T )]Tn2(T )−eα[n2(T )−n0(T )]τn0(T )

S(τ)

S (0)

for the case n2 (T ) ̸= n0 (T ), and

∂R (τ)

∂U0
= −er(τ+∆) (1−θ)[1+αTn0(T )]

1+α(T−τ)n0(T )

S(τ)

S (0)

for the case n2 (T ) = n0 (T ). It can be verified that ∂R(τ)
∂U0

< 0 in both cases, so we conclude

that ∂ρ(τ)
∂U0

< 0.

Proof of Proposition 11. The expression for S∞ (τ) is obtained by letting α → ∞ in the

analytical expression for S (τ) reported in Proposition 8. To obtain ρ∞ (τ), proceed as follows.

Use (52), together with (44) and the expression for S (τ) reported in Proposition 8 to obtain

V0 (τ) =
(
1− e−rτ

) u0
r

+ e−rτU0

+ e−rτ n2 (T )

n0 (T )

∞∑
k=1

[
n2 (T )

n0 (T )

]k−1
θ

r
α[n0(T )−n2(T )]

+(k−θ)
erτ e−α[n0(T )−n2(T )]k(T−τ)−e−α[n0(T )−n2(T )]kT

r+α[n0(T )−n2(T )]k ū

− e−rτ n2 (T )

n0 (T )

∞∑
k=1

[
n2 (T )

n0 (T )

]k−1
e−α[n0(T )−n2(T )](kT−θτ)−e−α[n0(T )−n2(T )]kT

r+α[n0(T )−n2(T )](k−θ) ū

+ e−rτn2 (T )
1−e−α[n0(T )−n2(T )]θτ

n0(T )eα[n0(T )−n2(T )](T−θτ)− n2(T )

eα[n0(T )−n2(T )]θτ

S (0)
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if n2 (T ) < n0 (T ),

V0 (τ) =
(
1− e−rτ

) u0
r

+ e−rτU0

+ e−rτ n2 (T )

n0 (T )

∞∑
k=0

[
n0 (T )

n2 (T )

]k+1
θ

r
α[n2(T )−n0(T )]

+(θ+k)
erτ e−α[n2(T )−n0(T )]k(T−τ)−e−α[n2(T )−n0(T )]kT

r+α[n2(T )−n0(T )]k ū

− e−rτ n2 (T )

n0 (T )

∞∑
k=0

[
n0 (T )

n2 (T )

]k+1
e−α[n2(T )−n0(T )]kT−e−α[n2(T )−n0(T )](kT+θτ)

r+α[n2(T )−n0(T )](θ+k) ū

+ e−rτn2 (T )
1−e−α[n2(T )−n0(T )]θτ

n2(T )− n0(T )

eα[n2(T )−n0(T )]T

S (0)

if n0 (T ) < n2 (T ), and

V0 (τ) =
(
1− e−rτ

) u0
r

+ e−rτU0

+ e
r
[
T−τ+ 1

αn0(T )

]
θū

∞∑
k=0

(−r)k

kk!
τ

(
T +

1

αn0 (T )

)k

+ e
r
[
T−τ+ 1

αn0(T )

]
θū

∞∑
k=0

(−r)k

kk!

1

k + 1

[(
T − τ +

1

αn0 (T )

)k+1

−
(
T +

1

αn0 (T )

)k+1
]

+ e−rτθ
αn0 (T )

1 + αn0 (T )T
τS (0)

if n2 (T ) = n0 (T ). Then let α → ∞ to arrive at (59), for i = 0 (the derivation is similar for

i = 2). Next, recall that e−r(τ+∆)R (τ) = V1 (τ)− V0 (τ)− θS (τ), so

lim
α→∞

[
e−r(τ+∆)R (τ)

]
=
(
1− e−rτ

) u1
r

+ e−rτU1 − lim
α→∞

V0 (τ)− θS∞ (τ) .

Substitute (59) and S∞ (τ) to arrive at

limα→∞ R(τ)

er(τ+∆) =


(1− e−rτ ) u1−u0

r + e−rτ (U1 − U0) if n2 (T ) < n0 (T )

(1− e−rτ ) u1−u0−θū
r + e−rτ [U1 − U0 − θS (0)] if n2 (T ) = n0 (T )

(1− e−rτ ) u2−u1
r + e−rτ (U2 − U1) if n0 (T ) < n2 (T ) .

(111)

Since ρ (τ) = lnR(τ)
τ+∆ , we have

ρ∞ (τ) =
ln [limα→∞R (τ)]

τ +∆
,

which given (111), yields the expression in the statement of the proposition.
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Lemma 6 Consider the model of Section 8. Assume that {Uk} is given by (61)–(63) with

k̄0 = 0 and k̄ = 1, and define irf = ei
r∆f − 1, ief = ei

e∆
f − 1, and ρf (τ) = eρ(τ)(τ+∆) − 1. Then

ln [1 + ρf (τ)] is as in (65).

Proof of Lemma 6. Combine (49), (53) and (54) to obtain

V2 (τ)− V1 (τ) + (1− θ)S (τ) = e−rτ {U2 − U1 + [1− β (τ)]S (0)}

+ (1− e−rτ )
u2 − u1 + c (τ) (1− θ) ū

r
,

where β (τ) and c (τ) are given by (66) and (67), respectively. Then (51) implies

ρ (τ) (τ +∆) = ∆r + ln

[
U2 − U1 + [1− β (τ)]S (0) + (erτ − 1)

u2 − u1 + c (τ) (1− θ) ū

r

]
.

From (61)–(63) with k̄0 = 0 and k̄ = 1, we have U0 = −e−r∆r
fP r, U1 = e−r∆r

f (ei
r∆f −1)+e−r∆f ,

U2 = e−r∆r
f (ei

r∆f + ei
e∆f − 2) + 2e−r∆f , so U2 − U1 = e−r∆r

f (ei
e∆f − 1) + e−r∆f and S (0) =

e−r∆r
f (ei

r∆f −eie∆f )+e−r∆r
fP r. (The maintained assumption that ie ≤ ir together with P r > 0

guarantee that S (0) > 0.) Thus

ρ (τ) (τ +∆) = (∆−∆r
f )r + ln

[
ei

e∆f − 1 + e−r(∆f−∆r
f ) + [1− β (τ)]

(
ei

r∆f − ei
e∆f + P r

)
+ er∆

r
f (erτ − 1)

u2 − u1 + c (τ) (1− θ) ū

r

]
(112)

Substitute ir = (1/∆f ) ln(1+ irf ), i
e = (1/∆f ) ln(1+ ief ), and ρ (τ) = [1/ (τ +∆)] ln [1 + ρf (τ)]

in (112) to arrive at (65).

Proof of Proposition 12. Substitute the definition of δ̄ (τ), (42) and (44) in (66), and

integrate to arrive at the expression for 1− β (τ) reported in the statement of the proposition.

Differentiate to obtain

−β′ (τ) = θ (1− θ)
α [n0 (T )− n2 (T )] e

α[n0(T )−n2(T )]θτ

n0 (T ) eα[n0(T )−n2(T )]T − n2 (T )

[
n0 (T ) e

α[n0(T )−n2(T )](T−τ) − n2 (T )
]
.

Clearly, β′ (τ) has the same sign as n2 (T ) − n0 (T ). Since β (0) = θ, it follows that β (τ) ≤ θ

if n2 (T ) < n0 (T ), and that θ ≤ β (τ) if n0 (T ) < n2 (T ). To conclude, verify that 0 ≤ β (T ) if

n2 (T ) < n0 (T ), and that β (T ) ≤ 1 if n0 (T ) < n2 (T ), which respectively imply that 0 ≤ β (τ)
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if n2 (T ) < n0 (T ), and that β (τ) ≤ 1 if n0 (T ) < n2 (T ). Notice that

1− β (T ) =
e−α[n2(T )−n0(T )]θT

{
(1− θ) [n2 (T )− n0 (T )] + n0 (T )

[
1− e−α[n2(T )−n0(T )](1−θ)T

]}
n2 (T )− n0 (T ) e−α[n2(T )−n0(T )]T

= 1−
[
eα[n0(T )−n2(T )]θT − 1

]
n2 (T ) + θeα[n0(T )−n2(T )]θT [n0 (T )− n2 (T )]

n0 (T ) eα[n0(T )−n2(T )]T − n2 (T )
,

so it is immediate from the first expression, that 0 ≤ 1−β (T ) if n0 (T ) < n2 (T ) (with equality

only if θ = 1), and from the second expression, that 1 − β (T ) ≤ 1 if n2 (T ) < n0 (T ) (with

equality only if θ = 0).

Lemma 7 Consider the model of Section 8. Assume that {Uk} is given by (61)–(63) with

k̄0 = 0 and k̄ = 1, and define irf = ei
r∆f − 1, ief = ei

e∆f − 1, and ρ∞f (τ) = eρ
∞(τ)(τ+∆) − 1.

Then ρ∞f (τ) is independent of τ . If in addition, ∆−∆r
f ≈ 0 or r ≈ 0, and ∆−∆f = ui = 0,

then ρ∞f (τ) is given by (70).

Proof of Lemma 7. Start with (60) and replace the theoretical rates ir, ie, and ρ∞ (τ), with

their empirical counterparts, irf = ei
r∆f − 1, ief = ei

e∆f − 1, and ρ∞f (τ) = eρ
∞(τ)(τ+∆) − 1,

respectively, to obtain

ln
[
1 + ρ∞f (τ)

]
= (∆−∆r

f )r + ln

[
irf + P r + er∆

r
f (erτ − 1)

u1 − u0
r

+ er(∆
r
f−∆f )

]
if n2 (T ) < n0 (T ),

ln
[
1 + ρ∞f (τ)

]
= (∆−∆r

f )r

+ ln

[
θief + (1− θ) (irf + P r) + er∆

r
f (erτ − 1)

u2 − u1 + (1− θ) ū

r
+ er(∆

r
f−∆f )

]
if n2 (T ) = n0 (T ), and

ln
[
1 + ρ∞f (τ)

]
= (∆−∆r

f )r + ln

[
ief + er∆

r
f (erτ − 1)

u2 − u1
r

+ er(∆
r
f−∆f )

]
if n0 (T ) < n2 (T ). Set ∆−∆r

f ≈ 0 or r ≈ 0, and ∆−∆f = ui = 0 to obtain (70).
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