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Abstract

There are often intervals between price changes. This rigidity is usually modeled by an

explicit adjustment cost. I show that such dynamics of prices can also represent the optimal

actions of price-setters who have difficulty processing information about new shocks. This

paper presents a model of a rationally inattentive seller. The model generates a wide

spectrum of observed price series properties that sticky-price models cannot explain. The

one information constraint implies that prices move back and forth between a few rigid

values, sales are short-lasting, or that responses to persistent shocks are sluggish. This

is the first pricing model that fully implements rational inattention with no simplifying

assumptions on the functional forms of the processed signals.
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1 Introduction

Macroeconomists study nominal rigidities as sources of the real effects of monetary policy.

Models that are built to assess these effects are typically based on explicit assumptions of

price stickiness using Calvo-style adjustments or some form of menu cost. Bils and Klenow

(2004), however, cast doubts on these assumptions by finding that individual prices do

not stay fixed for long periods of time. When the models are calibrated to fit the observed

frequency of price changes, then the implied real effects of nominal shocks are very small.

Bils and Klenow (2004) thus motivated macroeconomists to focus on prices at the micro

level, too.

An alternative line of the modeling of nominal rigidities is based on the assumption that

agents cannot attend to all the available information about new shocks. This idea was pro-

posed by Christopher Sims, formulated in a framework called “rational inattention”(Sims,

1998, 2003). I show in this paper that information frictions in the form of rational inat-

tention can in fact generate nominal rigidities with several appealing properties that other

models cannot account for. The most important results of this paper are about prices at

the micro level.

I present a model where a rationally inattentive seller processes information about a

volatile unit input cost and sets the price to maximize his profit. The question is how

prices respond to cost shocks. The model generates the following results, which agree very

well with the recent empirical literature: (A) Prices do not change all the time, but they

do change frequently. (B) Prices tend to change back and forth between exactly the same

values. (C) Most price changes are sales-like short-term movements. (D) Prices respond

to persistent shocks with a delay.

These results are driven by how the seller processes information about the unit input

cost. If the seller was able to observe the input cost, then his pricing strategy would be

perfectly flexible. A profit-maximizing price would be set so that the mark-up over the

marginal cost would equal the optimal mark-up, which is constant in the model. However,

an inattentive agent does not observe the cost, and so might not achieve the optimal

mark-up, either. Different assumptions about how knowledge is formed generate different
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pricing strategies.

The virtue of this paper, and rational inattention, is its robustness. The model is not

based on any explicit assumptions about how the seller allocates his attention. Rationally

inattentive agents actively choose how to optimally allocate their limited attention; they

do not just passively acquire imperfect information of a given form. The choice then

determines the nature of posterior uncertainty. Simply put, such agents pay more attention

to exactly the pieces of information that are more important to maximize their objectives.

Different objectives can thus drive different allocations of attention and different dynamics

of the resulting actions.

Since the seller cannot acquire perfect information, his pricing actions are imperfect and

delayed. It turns out that misjudging the input cost when it is low is more costly to the

seller, so he pays more attention to shocks leading to low costs, which then implies more

flexible low prices and sales-like movements.

Perhaps most interestingly and surprisingly, the rationally inattentive seller chooses to

price discretely, i.e. he sets up a price plan consisting of a few prices and charges only

one of them even when the input cost is continuously distributed. This implies that

prices are likely to stay fixed when cost shocks are small. Although there are no explicit

adjustment costs and all functional forms in the model are continuous, the seller chooses

to price discretely in order to economize on his information capacity. In other words,

considering his cognitive limitations, the seller’s optimal strategy is a discretized price

plan. The less information the seller processes, the lower the number of different prices he

chooses to charge. In the model in this paper, I show the existence of isolated price points

analytically, under fairly restricting assumptions, and also observe it in a wide range of

numerical examples.

This result provides further evidence that nominal rigidity can, in fact, be driven by forces

that are quite different from the explicit adjustment costs in sticky-price models. This

distinction might be particularly important when modeling rigidity under non-standard

economic conditions. While, for instance, Calvo-style models fix the frequency of price

adjustments, the form of nominal rigidity based on rational inattention emerges endoge-

nously and is thus responsive to changes in economic conditions.
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The rest of the paper is organized as follows. The following section is devoted to the

related literature. Section 3 derives the basic model. Since the notion of attention allo-

cation is still novel, I formulate the model in this section with iid input cost only, which

makes the problem essentially a static one and its implications are easier to comprehend.

Solutions to the model are studied both analytically and numerically in Section 4. Section

5 then discusses an extension of the baseline model with two input cost shocks differing

in persistence, which allows studying the temporal effects of information frictions.

2 Related Literature

I build on Sims’ research on rational inattention, which applies the findings of information

theory (Shannon, 1948). Information theory is a celebrated concept that studies the

limitations of physical communication channels.3

My paper is not the first model of pricing that uses rational inattention. Maćkowiak and

Wiederholt (2009) were the first to do so. They show that in such a model nominal ag-

gregates do respond to money shocks sluggishly. Their model is more complex than the

one presented in this paper,4 but in order to solve the model they simplify the problem

of attention allocation slightly. Simply put, they assume that uncertainty about vari-

ables is always Gaussian5 and that information about different shocks has to be processed

separately.

My model differs from that in Maćkowiak and Wiederholt by not assuming any specific

form of posterior uncertainty. In fact, this paper addresses Sims (2006), who claims that

the nature, not just the quantity, of agents’ uncertainty is subject to choice. The model

of Maćkowiak and Wiederholt generates a very appealing result of price dynamics at the

aggregate level. However, individual prices in their model change too often, in fact, they

change all the time. The findings of my paper are thus important, because they show that

3See Cover and Thomas (2006) for a good review.
4They even solve a DSGE model in Maćkowiak and Wiederholt (2010).
5This approach is typical for other important contributions in the literature on rational inattention,

including studies of the consumption-savings problem (Luo, 2008) or portfolio choices (Van Nieuwerburgh

and Veldkamp, 2010; Mondria, 2010).
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when rational inattention is implemented in its unconstrained version, it can also account

for evidence at the micro level, unlike sticky-price models.

The discreteness result in this paper is very closely related to the findings in Matějka

and Sims (2010), which is a technical study. In that paper, we explore the discreteness

of actions under information constraints in a class of tracking problems.6 Discreteness

is a common feature of solutions to tracking problems. It emerges any time the tracked

variable has bounded support, but it does not emerge universally. This class does not,

however, include the seller’s pricing decision problem.

Finally, this study relates to the empirical literature, which follows the findings of Bils

and Klenow (2004). The implications of the model are particularly close to the empirical

findings in Eichenbaum et al. (2008). The striking feature of their data set is that all

prices, including sales, often switch back and forth between exactly the same values,7

just like in the presented model. The most quoted price of each quarter is often its top

price. They also infer that it is the rigidity of the “reference price”, the quarter’s most

frequently quoted price, that is the useful statistic for assessing aggregate nominal rigidity.

Eichenbaum et al. (2008) then propose a model with a price plan, which is a finite set of

prices between which adjustment is costless, while changing the plan is costly. My model’s

findings provide motivation for such a setup and also explain why the price plan’s rigidity

is more closely related to aggregate rigidity than the rigidity of single prices.

6With the objective of satisfying U(x, y) = Û(x− y).
7They use the weekly scanner data of a major U.S. retailer.
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3 Model

In this section, I first briefly introduce the model’s basic building blocks, then I formalize

the notion of “the processing of information”. After that I state the seller’s optimization

problem of choosing what information to process and what price to set, and finally I

formulate the model’s equilibrium in Definition 2.

A monopolistic seller incurs a random unit input cost µ and sets the price p that maximizes

the expectation of his profit Π,

Π(µ, p) = d(p)(p− µ), (1)

where d(p) is a fixed demand curve the seller faces. The demand curve is a function of

price only; it is decreasing and convex.

The non-standard feature of the simple model is that the seller cannot observe the realized

unit input cost, but he first needs to process information about it. How the agent allocates

his attention influences the nature of his posterior uncertainty about the variable. If the

posterior knowledge is given by a perceived distribution with a pdf k(µ), then the seller

chooses the price maximizing the following expectation of profit:

p[k] = arg max
p̂

∫
Π(µ, p̂)k(µ)dµ. (2)

Different strategies of attention allocation generate different sets of k(µ). In this model,

we fix the amount of information the seller can process, but we allow him to choose exactly

how to process it, which is represented by choosing what “shapes” of posterior knowledge

k(µ) can be realized. This is the main distinction of this model from the earlier literature

on rational inattention, where the posterior uncertainty was assumed to be Gaussian. The

quantification of the amount of processed information is specified in Section 3.1. This

quantification defines constraints on the collections of {k(µ)} that are achievable by the

seller.

Naturally, the more information the seller processes the more precise knowledge about

µ he acquires, which helps him set the price closer to its optimum. However, in the

class of strategies that exhaust the seller’s information capacity, he chooses the one that

generates forms of posterior knowledge that are the most favorable with respect to his
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objective Π(µ, p). For some intuition on the attention allocation before the main model is

formulated, see an example in Appendix A.

Choosing what to pay attention to is in the rest of the section formalized as optimization

over the signaling devices that are available to the agent. Such devices are described by

the distributions of their signals s and the collections of posterior knowledge they generate

conditional on these signals {f(µ|s)}. Once some posterior knowledge is realized, then the

seller sets the price to p[f(µ|s)] according to (2). The seller thus chooses how to process

information, which is described by a joint distribution of s and µ, while considering what

profit outcomes it leads to, through (1) and (2).

Time is discrete. The unit input cost is i.i.d., it is drawn from the same distribution in each

period. When the cost is i.i.d., then no knowledge about the current input cost carries

over to the next period.8 Although the time series of prices is simulated, this model is

essentially static: it is a repetition of the one-period model. The timing of events within

each period is as follows.

1. The unit input cost µ is drawn.

2. The seller processes information about the realized µ.

3. The seller sets the price p to maximize the expectation of the profit given his knowl-

edge about µ.

4. The amount given by d(p) is sold.

3.1 Information processing

This part establishes what forms of uncertainty are achievable by the seller who processes

a given amount of information. The rational inattention framework applies the results of

information theory, which was introduced in Shannon (1948). Information theory provides

an understanding of what information can be passed through channels that transmit blocks

of symbols at a limited rate. Therefore, the theory describes what the rationally inattentive

seller is able to find out about the unit input cost if he can inspect only a limited number

8I discuss an extension with a serially correlated unit input cost in Section 5.
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of digits of various cost indicators in his store, or if he can ask his subordinates a limited

number of questions with answers of yes or no, or if he is constrained to read a text report

of a given limited length, etc.

The agent’s information processing mechanism is determined by the channel and the cod-

ing he uses. In other words, the mechanism describes what signaling devices the agent

pays attention to. Coding is the meaning assigned to each received symbol. For instance,

if the agent asks questions with answers of yes or no, then the code specifies what question

generates a particular symbol. The seller’s mechanism of information processing can thus

describe what specific questions the seller asks or what digits of what indicators he looks

at.

Ultimately, the information processing mechanism controls to what the agent pays atten-

tion. Appendix A provides an example of a seller who can ask only a single question. The

seller knows the unit input cost is drawn from a uniform distribution between $1.0 and

$2.0. Asking “Is the cost below $1.2?” pays more attention to low cost than asking “Is

the cost below $1.8?”.

One extremely useful implication of information theory is that we do not need to specify

which information channels the seller uses. It turns out that we can classify all of them

by a single quantity: information capacity. Given this quantity we can state exactly what

knowledge about the unit input cost is achievable and what is not. For such a classification,

information theory uses the concept of entropy.

The entropy of the distribution of a random variable is the fundamental measure of un-

certainty about the variable. Before the seller starts processing information about the

realized unit input cost, he possesses some prior knowledge about it. We assume the prior

knowledge coincides with the true distribution from which µ is drawn, let its pdf be g(µ).

Entropy H of the distribution is the following quantity :

H [g(µ)] = −
∫
g(µ) log g(µ)dµ. (3)

The more concentrated the distribution is, the lower the entropy and the better knowledge

the agent possesses. To further lower the distribution’s entropy, i.e. to improve the

knowledge, the seller needs to receive signals on the realized value of µ, i.e. he has to
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process some information.

The information content carried by a signal is the expected reduction of entropy due to an

observation of a signal. It is called the “mutual information” between the random variable

and the signal. Letting s be a signal, the mutual information is:

I[µ; s] = H [g(µ)]− EsH [f(µ|s)] , (4)

where H [f(µ|s)] is the entropy of the posterior distribution conditional on the observation

of s.

Any information processing mechanism can be formally defined by the resulting f(s|µ);

what signals are transmitted, and received, given the realized value of the random unit

input cost is µ. f(s|µ) together with the prior g(µ) form the posterior knowledge f(µ|s)

through Bayes law.

f(µ|s) =
f(s|µ)g(µ)∫
f(s|µ)g(µ)dµ

. (5)

Using these pdf’s9 we can express the mutual information (4) in the following form as a

functional of the joint distribution of µ and s.

I[f(µ, s)] =

∫
f(µ, s) log

(
f(µ, s)

g(µ)f(s)

)
dµds, (6)

where the joint pdf f(µ, s) = f(s|µ)g(µ).

It is the coding theorem, one of the cornerstones of information theory, that states the

sufficient and necessary conditions for what information can be passed through an informa-

tion channel. The theorem says that any information channel can transmit any message

with information content less than the channel’s capacity; the agent only needs to use

different codes, i.e. different sequences of questions. If the seller’s information capacity

per period is κ, then f(s|µ) is achievable with arbitrary precision by some mechanism of

processing information if and only if

I[f(µ, s)] ≤ κ. (7)

Summary: Choosing how to process information is equivalent to selecting the condi-

tional distribution f(s|µ). f(s|µ) together with the prior knowledge about the unit input

9To be mathematically precise, we should use probability measures instead of pdf’s. However, the only

difference would be the exposition.
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cost g(µ) form f(µ, s) = f(s|µ)g(µ), which in turn determines the posterior knowledge

f(µ|s) conditional on any received signal s. The seller observes the signal s and infers

µ. Typically, he would like to receive signals generating posteriors f(µ|s) that are Dirac

delta functions: that would represent perfect knowledge about µ. However, the channel’s

information capacity limits how tight the signals can on average be. Using the coding

theorem, we know that the average reduction of entropy of the seller’s knowledge in one

period cannot exceed the seller’s information capacity κ.

3.2 Choosing how to process information and what price to set

Now we are almost ready to state the seller’s problem. A rationally inattentive agent

chooses: 1. how to process information through a channel of a limited information capacity,

and 2. how to respond to the realized posterior knowledge.

1. There exists a mechanism of processing information for any f(s|µ) that the seller

chooses to achieve, as long as it satisfies (7).

2. Once a particular signal on µ is realized, the agent chooses an optimal response,

p = P̃ (s), maximizing the expected profit.

P̃ (s) = arg max
p

∫
Π(µ, p)f(µ|s)dµ, (8)

where the posterior knowledge f(µ|s) is given by Bayes law (5).

The two decisions, 1. and 2., are not independent. While deciding on the optimal mech-

anism of processing information, f(s|µ) , the agent is aware of his policy function, P̃ (s).

Choosing how to process information thus takes the following form:

f(s|µ) = arg max
f̂(S|µ)

E[Π] = arg max
f̂(s|µ)

∫
Π
(
µ, P̃ (s)

)
f̂(s|µ)g(µ)dµds, (9)

subject to (7) and (8). Notice that f(s|µ)g(µ) is the perceived probability density of a

realization of Π
(
µ, P̃ (s)

)
.

Since the demand function d(p) is a decreasing and convex function of price, then the

profit function is single-peaked and (8) has a unique solution. Given a signal, there is
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only one optimal price. We can therefore equivalently describe the information processing

mechanism in terms of the resulting distribution of prices that the received signals lead

to, instead of in terms of the distribution of signals. We thus substitute f(s|µ) by f(p|µ),

where p = P̃ (s). The whole optimization problem can be formulated in terms of a joint

distribution of µ and p.

The seller’s rational inattention problem takes the following final form, which describes the

simultaneous choices of the information processing mechanism and the pricing response

to the posterior knowledge.

Definition 1. The decision strategy of a rationally inattentive seller. Let g(µ)

be the sellers’s prior knowledge about the unit input cost, κ be the seller’s information

capacity and Π(µ, p) be the profit function. His decision strategy f(µ, p) is a solution to

the following maximization problem:

f(µ, p) = arg max
f̂(·,·)

E[Π(µ, p)] = arg max
f̂(·,·)

∫
µ

∫
p

Π(µ, p)f̂(µ, p)dµdp, (10)

subject to ∫
p
f̂(µ, p)dp = g(µ) ∀µ (11)

f̂(µ, p) ≥ 0, ∀µ, p (12)

I[f̂(µ, p)] ≤ κ. (13)

(11) requires consistency with prior knowledge, (12) states the non-negativity of a proba-

bility distribution, and (13) is the information constraint.

Definition 2. Equilibrium. Let the unit input cost be i.i.d. In each period t, the unit

input cost is drawn from a distribution whose pdf is g(µ). The equilibrium of the model is

the joint distribution f(µ, p) and stochastic processes {µt} and {pt}, such that:

1. f(µ, p) is a solution to (10)-(13),

2. unit input costs {µt} are drawn from g(µ),

3. prices {pt} are drawn from f(p|µt), and

4. amounts sold are {d(pt)}.
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4 Solving the model

This section starts with a couple of analytical insights into the solution’s properties. The

optimal strategies of a rationally inattentive seller are dispersed about the perfect in-

formation strategy: the higher the seller’s information capacity, the more concentrated

the strategies are. These insights are based on the first order conditions for the optimal

achievable form of posterior knowledge.

Then I show, under relatively strong assumptions, that the support of the resulting distri-

bution of prices consists of isolated points. This feature of the solution generates rigidity

of prices at the micro level. Finally, I express how profit losses from misjudging the real-

ized µ vary with the level of µ, and I find that the seller faces higher losses when the unit

input cost is low. The seller thus allocates more of his information capacity to lower input

costs, which results in finer responses to such realizations of shocks. The second part of

this section is devoted to numerical solutions, which allow us to study the quantitative

properties of the seller’s pricing strategies and the resulting time series of prices.

The seller chooses the optimal strategy, which is a solution to (10)-(13). The demand

function takes the following form

d(p) = p−θ, (14)

where θ is price elasticity. The unit input cost is continuously distributed, typically uni-

formly, over a bounded interval. The solution to the seller’s problem (10)-(13) takes the

form of a joint distribution f(µ, p), which summarizes both the decisions on how to process

information and how to respond to signals.

The information constraint (13) is binding whenever the seller’s information capacity is

finite. Finite information capacity does not suffice for the seller to perfectly observe the

unit input cost, since the cost is continuously distributed over an interval. If κ = ∞,

(13) is not binding and the realized µ is known with certainty. Observing the cost is

equivalent to acquiring posterior knowledge with all probability mass concentrated at the

true value of µ. The conditional f(p|µ) is degenerate at the profit-maximizing optimal

price p = popt(µ),

popt(µ) =
θ

θ − 1
µ. (15)
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On the other hand, if κ <∞, then the seller acquires only imperfect posterior knowledge,

upon which he makes the pricing decision.

First, we can derive the first order condition for the posterior distribution.

Proposition 1. If κ <∞ and if f(p) > 0, then the first order condition states:

f(µ|p) = h(µ)eΠ(µ,p)/λ, (16)

where h(µ) = e−ν(µ)/λg(µ) is independent of p, ν(µ) ∈ L∞(RN ) is the Lagrange multiplier

on the consistency with the prior (11), and λ ∈ R is the multiplier on the information

constraint (13).

Proof: Appendix B.

Multiplying by f(p), the first order condition (16) also implies the following for the joint

pdf of µ and p:

f(µ, p) = h(µ)f(p)eΠ(µ,p)/λ. (17)

It is not possible to solve for h(µ) and f(p) in general. However, (17) is useful to grasp

some understanding of the properties of the optimal strategy.10 The seller chooses what

pieces of information about cost µ to process based on: i) what he knew in advance, which

is given by g(µ) and ii) the relative importance of various pieces of information given by

the shape of the profit function Π(µ, p). Exploring (17), we find:

Corollary 1. The seller’s strategy f(µ, p) is concentrated in the regions of high profit

Π(µ, p), the more so the lower λ is, which is when the information capacity κ is high.

High κ allows the seller to form more precise posterior knowledge. When λ goes to zero,

then f(µ, p) collapses on p = popt(µ), which is given by (15).

Moreover, since Proposition 1 implies that h(µ) > 0 whenever g(µ) > 0, then we can infer

from (17) that the optimal strategies are not deterministic.

10Using this formula, we could infer that quadratic objectives together with Gaussian priors generate

Gaussian posteriors as the optimal ones. The rational inattention problem simplifies significantly. More-

over, the variance of all posteriors equals 2−2κσ2
prior. See Sims (2003) and Maćkowiak and Wiederholt

(2009).
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Corollary 2. If κ <∞, then

A) the posterior knowledge f(µ|p) has the same support as the prior g(µ),

B) the support of the conditional distribution of prices f(p|µ) is the same as the support

of the overall distribution of prices f(p).

This corollary states that to allocate his information capacity efficiently, the seller never

acquires signals that rule out some values of input cost with certainty. As long as the

information constraint is binding, all posterior distributions overlap completely and all

prices in the unconditional support can be realized for all input costs, but with different

conditional probabilities. This can also be seen by expressing a variation of the entropy

of the posterior, −
∫
f(µ|p) log f(µ|p)dµ. It is infinite if f(µ|p) = 0 on a set of positive

measure, since the derivative of d(−x log x)/dx = ∞ at x = 0. The marginal change of

the entropy is infinite, and therefore the marginal value of the unit of such information

completely ruling some values of µ is for a bounded profit function zero.

The next proposition states that even though the unit input cost is continuously dis-

tributed, the resulting distribution of prices can consist of isolated points only.

Proposition 2. If the unit input cost is uniformly distributed in [µmin, µmin + ∆], where

∆ < µmin/(1 + θ), then there exists κ0 > 0 such that for all κ < κ0 the distribution of

prices is discrete.

Proof: Appendix D.

The discreteness of prices is a striking feature that arises despite the fact that all functional

forms appearing in the model are purely continuous. It turns out that the first order

condition, (16), can hold in isolated points only. Under the assumptions above, I actually

show that there exists κ that generates at most two price points. It is quite possible that a

stronger claim regarding the discreteness existence could hold, such that the price points

are isolated whenever the prior distribution is bounded. In fact, the discreteness emerges

in all numerical solutions.

The discreteness result is related to the findings in the technical study Matějka and Sims

(2010). That study proves the existence of discreteness under constraints on information
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capacity in a wide class of tracking problems, where the objective has the following form:

U(x, y) = Ũ(x − y). Matějka and Sims (2010) show that if the prior distribution of x

is bounded, or has sufficiently thin tails, then the distribution of the action variable y is

always discrete. This class of tracking problems does not, however, include the seller’s

pricing decision problem presented here.11

Discreteness occurs as the optimal response to the shape of prior distribution. The agent

would like to acquire the posterior with a specific form of noise, given by the first order

condition (16). The form of noise depends on the shape of the profit function. However, if

the prior distribution is bounded, signals close to the bounds have a very different form of

noise from those in the middle of the range of input costs. The agent knows the bounds a

priori, so no noise carries over outside of the range of costs. Such signals with no noise in

some regions are more costly. The agent therefore chooses signals leading to prices further

away from the optimal limiting prices.

The first order condition (16) cannot hold on an interval of prices. It would be too costly

to choose continuously changing posteriors and make them consistent with the prior.12

Since entropy is a concave function of the underlying distribution, collapsing together two

posterior distributions leading to nearby prices generates higher posterior entropy and

thus lower information flow. The discreteness occurs when the gain from this economizing

on information outweighs the loss from a further departure from the optimal prices. The

seller saves on information capacity, which he can use elsewhere, by simplifying his decision

problem through considering only a finite number of price points.

The final proposition of this section is concerned with the optimal allocation of attention

across the levels of the unit input cost. The seller improves his knowledge in regions

where the marginal profit from processing extra information is the highest and the seller’s

11The discreteness of prices can also be proven in another setup, which is close to the seller’s problem.

It can be shown analytically that if the seller maximizes the expectation of the logarithm of the profit,

log(Π(µ, p)), instead of pure Π(µ, p), then complete discreteness occurs even without any additional as-

sumptions. The logarithm together with the exponentials in (16) turn the first order condition into an

equation with polynomials, which makes the proof simpler.
12This discussion does not apply, for instance, to quadratic objectives together with normally distributed

priors. The optimal posteriors given by (16) are Gaussian, and they sum up to the prior for the Gaussian

f(p).
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responses to µ in these regions are therefore relatively more precise. Losses in profit due

to a small departure of ∆p from the optimal price are equal to 1/2d
2Π(µ,p)
dp2

∆p2, where the

price deviation ∆p equals
dpopt(µ)
dµ ε, if the seller misjudges the unit input cost only by a

small amount ε.

Proposition 3. The loss in profit due to misjudging the unit input cost µ by a small

amount ε is equal to L(µ)ε2/2, where the loss factor L(µ) is the following quantity:

L(µ) = −
(
dpopt(µ)

dµ

)2 d2Π(µ, p)

dp2

∣∣∣∣∣
p=popt(µ)

. (18)

To maximize expected profit. The seller processes more information about the regions of

µ, where L(µ) is relatively high.

Proof: Appendix C.

Corollary 3. For the profit function p−θ(p− µ), the loss factor (18) takes the form:

L(µ) = θ

(
θ

θ − 1

)−θ
µ−θ−1, (19)

which is proportional to µ(−θ−1). Given the demand elasticity θ and the amount of error

ε, profit losses are larger for lower µ. The seller chooses to pay more attention to low unit

input costs.

When the unit input cost is low, then the seller has a chance to generate high profit by

selling a high amount. Moreover, charging a low price is relatively riskier, since the seller

could end up selling a high amount at a small or even a negative margin. The seller could

thus lose relatively more of his potential profit by deviating from the optimal prices when

the cost is low. In the following section, we discuss that this result drives the fact that the

highest price (regular price) is more rigid than the low prices (sales). It is not efficient for

the seller to pay much attention to small variations in the unit input cost when it is high.

The presented model is intentionally very simple in order to be as little stylized as possible.

It is only the unit input cost that influences the changes of the optimal price. However,

most of the paper’s results would hold at least qualitatively even for various other shock

specifications. The seller processes information to target the stochastic optimal price.

Pricing would most likely be imperfect, discrete, and asymmetric even when the shock
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Figure 1: Joint distribution: θ = 3, κ = 1 bit, uniformly distributed unit input cost

specification was selected differently or if, for instance, the optimal price varied due to the

desire to discriminate among consumers.13

4.1 Numerical solutions

Complete solutions to (10)-(13) can be obtained numerically, since the problem is a maxi-

mization of a linear objective on a convex set.14 The 2D domain of µ and p was discretized

by introducing 70×70 grid points.

Figure 1 shows the optimal joint distribution f(µ, p) plotted in two different ways. It is a

solution to a setup with θ = 3, κ = 1 bit, and the unit input cost uniformly distributed

over (0.8, 1.2). Figure 2 a) presents the corresponding simulated time series of the resulting

prices, with i.i.d. unit input cost drawn from the prior distribution in each period. Exhibit

b) shows the time series for θ = 10, κ = 0.5

Let us first inspect the basic properties of the solution presented in Figure 1. The dashed

line in the graph on the left of the figure represents the optimal pricing strategy popt(µ) =

3
2µ arising under perfect information, (15).

13See an earlier version of this paper at http://iweb.cerge-ei.cz/pdf/wp/Wp408.pdf, with a section on

demand shocks.
14I used a solver called LOQO, Vanderbei (1999), which is based on interior point methods. These

methods are efficient for large scale convex optimization problems such as this one. However, standard

descend-based methods would work, too.
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Figure 2: Simulated time series of prices: a) θ = 3, κ = 1, b) θ = 10, κ = 0.5
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Figure 3: Joint distribution: θ = 3, κ = 2 bits

The joint distribution is somewhat concentrated about the optimal pricing strategy, as

Corollary 1 suggests. Figure 3 shows the solution for κ = 2; the higher the information

capacity, the closer the pricing is to the optimal strategy, i.e. to the case when µ is

observed by the seller.

The humped-shaped curves on the right of Figure 1 represent various realizations of poste-

rior knowledge f(µ|p). The knowledge is imperfect. In fact, Corollary 2 states that these

distributions overlap completely, which also implies that all prices that are realizable for

one unit input cost can be set when another unit input cost is drawn.
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Rigid price values: What we can also see in Figure 1 is that the seller chooses to process

information in such a way that only three different forms of posterior knowledge f(µ|p)

are realized. Although the unit input cost is continuously distributed, the seller always

charges a price in only three narrow regions. It is probably just a feature of the numerical

solutions, which are not exact, that some of these regions consist of two grid-points and not

just one. This is the pure discreteness that is claimed in Proposition 2. The distribution

of prices is shown in Figure 4; it is the marginal of f(µ, p). For low input costs, the seller

is most likely to realize the posterior knowledge on the left in the right exhibit of Figure 1.

That input cost is most probably somewhere between 0.8 and 0.95. This posterior leads

to a choice of p = 1.28. Higher input costs are likely to generate one of the two other

signals, which lead to p = 1.43 and p = 1.64.

Rationally inattentive agents have complete freedom in acquiring signals they find useful

as long as their information capacity is not exceeded. The seller can, for instance, choose

to receive a signal with Gaussian noise, which would generate continuously distributed

prices. Or he can observe the first digit of the unit input cost of a related product. The

first digit of another product’s unit input cost takes a finite number of values. Such an

information processing mechanism would thus form a finite number of distinct posteriors,

just like in Figure 1. The seller in our model endogenously decides to process information

in a way that is more similar to this second example.
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Figure 5: Bifurcation diagram of prices, θ = 3

Figure 6: Distribution of prices for triangular distribution of costs, θ = 3, a) κ = 1 bit, b)

κ = 0.5 bit

The more information the seller processes, the finer the discretization. The bifurcation

diagram in Figure 5 shows price distributions as a function of information capacity. When

the capacity increases, new price points emerge. There is one price only when κ = 0, the

second price emerges immediately as κ > 0, the third price at about κ = 0.7, etc.

Reference prices: We also find that the optimal pricing is asymmetric. These frequencies

of the occurrence of different prices are not the same. The top price is usually quoted most

often, while lower prices appear to be more flexible. Eichenbaum et al. (2008) call the most

quoted price the “reference price”. In Figure 4 we see that the top price is quoted 50% of

the time, while the probability of the other two prices is about 25%. Corollary 3 states that
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Figure 7: Asymmetry of pricing

the seller chooses to process the least amount of information in the region of high costs.

This induces him to discretize high prices more coarsely. The highest price is charged to a

wide range of different unit input costs and is thus realized relatively more often. Figure 6

shows that the distribution of prices is discrete and asymmetric even for non-uniform cost

distributions. The presented result is a solution to a problem with a triangular distribution

of unit input cost of the form: g(µ) ∝ (0.2− |µ− 1|) for µ ∈ (0.8, 1.2). When κ = 1, then

the top price is not the most frequent, but the asymmetry is still apparent.

For the uniform distribution of the input costs, the probability of the highest price as a

function of θ is shown in Figure 7. Numerical solutions suggest that higher θ increases the

asymmetry of pricing, and so does Corollary 3. We already discussed that the asymmetry

is driven by the negative derivative of the loss factor L(µ), (19), with respect to µ. More

specifically, the attention allocation depends on the relative magnitudes of L(µ) at different

levels of µ. The ratio is L(µ1)/L(µ2) = (µ1/µ2)−θ−1. Higher θ increases the attention’s

sensitivity to µ.

Conjecture 4. For the uniform distribution of unit input costs, the top price in the

sample is the most probable to be realized in each period. The effect is stronger for a

higher elasticity of demand θ.

4.2 How the results agree with data

The model generates time series of prices that are appealing in various aspects. The whole

distribution of prices forms a price plan. In each period, the seller charges one of the plan’s
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prices, but chooses not to select any values in between. There is no cost of switching from

one price value within the plan to another. These findings correspond perfectly to the

price-plan model that was proposed in the empirical study of Eichenbaum et al. (2008).

In agreement with the data, prices in my model change frequently and switch back and

forth between a few different values, and most price movements appear to be sales-like

movements (Nakamura and Steinsson, 2008). The most quoted price is often the highest

price.

The results of the presented model rest on the selection of parameters. The parameters

are: a distribution of unit input cost g(µ), the price elasticity of demand θ, and the

information capacity κ. Unfortunately, the cost data used in Eichenbaum et al. (2008)

is proprietary. What the authors do report is the median standard deviation of log-unit

input cost, which equals 0.12. I assume µ to be i.i.d. and uniformly distributed, and that

each realization corresponds to a weekly unit input cost. The width of the uniform g(µ)

is set to match the standard deviation of costs reported in Eichenbaum et al. (2008).

Regarding θ, estimates in the literature vary between 3 and 10.15 Picking the information

capacity κ is trickier. It is realistic that the price setters in large retail stores with more

than 10,000 products do not follow all the details of all cost movements, but the proper

level of κ is not obvious. In this paper, κ is the calibration parameter. Time series of

prices generated by the model are similar to the price series in scanner data for information

capacity that is less than 2 bits. Table 1 summarizes comparisons of the model’s results

with the findings in Eichenbaum et al. (2008). θ = 3 generates a markup distribution

much closer to the data than what is generated by θ = 10, for which markups are too

volatile. The standard deviation of prices does not depend on the parameters very much.

Finally, higher θ implies a higher asymmetry of pricing, but the differences are not striking.

Overall, {θ = 3, κ = 1} probably provides the best fit among the evaluated combinations

of parameters.

Distribution of markups: If the input cost can take an infinite number of values,

then the seller deviates from the optimal markup 1/(θ − 1) with probability 1. When

θ = 3, standard deviations of log-markup are 0.16 for κ = 1 and 0.08 for κ = 2. The

15Kehoe and Midrigan (2007) study a heterogeneous menu cost model generating flexible sales and

aggregate rigidity. They use θ = 3.
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st.dev. of st.dev. of profit % at ref.

log (markup) log (price) loss price

Eichenbaum et al. (2008) 0.11 0.14 n.a. 60%

θ = 3, κ = 0.5 0.27 0.09 1.8% 65%

θ = 3, κ = 1 0.16 0.10 0.8% 50%

θ = 3, κ = 2 0.08 0.11 0.2% 25%

θ = 10, κ = 0.5 0.93 0.09 18% 79%

θ = 10, κ = 1 0.7 0.10 8.2% 62%

θ = 10, κ = 2 0.33 0.11 1.8% 38%

Table 1: Comparative statics, st.dev. of log(unit input cost) is 0.12

median standard deviation of log-markup in Eichenbaum et al. (2008) is 0.11. The more

information that is processed, the less volatile the markups are, since prices are more

tightly distributed around the optimal price. Figure 8 shows the standard deviation of

markups and the resulting loss in profits as functions of the information capacity. The

profit loss is the difference between expected profit of the optimal pricing strategy (15)

and the expected profit of the informationally constrained strategy. We see the losses from

imperfect information are fairly low. For θ = 3 and 1 bit of information capacity, the seller

loses only 0.8% of profit and already 2 bits of information are sufficient to recover 99.8%

of expected profit under perfect information.

Reference prices: The model generates asymmetry in pricing, with the highest price

typically being the most quoted, which is in agreement with the data.16 Eichenbaum et al.

(2008) report that prices stay at the reference price about 60% of the time; such a fraction

is generated by the model for instance when {θ = 9, κ = 1} or {θ = 3, κ = 0.5}. If {θ = 3,

κ = 1}, then the probability of the highest price is about 50%.

State dependence: Eichenbaum et al. (2008) measure the probability of changing a

weekly price as a function of a percentage deviation from a hypothetical markup. Given

a realized input cost, a hypothetical markup is a markup that would be realized if the

price stayed constant. Their result together with the results of our model for θ = 3 are

16Figure 7 shows the probability of the highest (and most quoted) price as a function of θ, for κ = 1.
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Figure 8: Implications of information capacity for sub-optimality of pricing, θ = 3

presented in Figure 9. They are qualitatively similar. Pricing is highly state-dependent.

Quantitative agreement is better for κ = 2 than for κ = 1.

Volatility of prices: Eichenbaum et al. (2008) find that the standard deviation of logs

of prices is slightly higher than the deviation of logs of costs, 0.14 versus 0.12. In this

model, it is the other way around, about 0.10 versus 0.12. This unfavorable difference is

however smaller than for menu cost. For instance, marginal costs in the menu cost model

of Golosov and Lucas (2007) are 40% more volatile than prices.

5 Extension: serially correlated unit input cost and delayed

actions

This section discusses an extension of the original model (10)-(13) that makes the process-

ing of information a dynamic problem. I introduce a serially-correlated component to the

unit input cost, so knowledge acquired in one period forms the prior in the following one.

Similarly as in Sims (2003) or Maćkowiak and Wiederholt (2009), I study responses to

two distinct sources of shocks, which differ in their persistence. The other authors explore

dynamic problems with quadratic objectives and autoregressive Gaussian processes for

shocks, while I solve a case with a fully nonlinear objective. On the other hand, I choose
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Figure 9: State dependence, θ = 3

simpler stochastic properties of the shocks.

Solving fully-nonlinear dynamic problems under rational inattention is computationally

extremely demanding. The seller’s state variable is his current knowledge of the cost’s

components, which is an infinitely dimensional object if the components are continuously

distributed.

Let the unit input cost be a product of the following two variables: a) the i.i.d. part

µ, and b) the Markov variable A, which switches between two levels: AL and AH with

the transition probability equal to τ . The advantage of this setup is that we can study

the implications of the persistent A while being able to solve the non-quadratic problem.

Knowledge about a binary variable is described by the probability of each of the two states.

It is therefore just a scalar, which is very convenient. Let the seller’s state variable x be

the probability of A = AH .

µ is supposed to represent the volatile part of the input cost specific to the seller, while

A plays the role of a slowly moving aggregate variable, e.g. the price level. A is an

index shifting the distribution of the nominal input cost Aµ. Due to the shocks’ con-

strained structure, this section’s results are useful for qualitative comparisons, but less so

for estimation of any realistic dynamics of aggregate variables.
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5.1 Formulation of the extended model

In each period t, the seller processes information about the two components of the unit

input cost. The profit function takes the following form:

Π(A,µ, p) = p−θ(p−Aµ). (20)

The seller starts the period with a prior on A and µ given by

gt(A,µ) = g1,t(A)g2(µ), (21)

where g2 is is the fixed pdf of the iid component, while the prior on A, g1,t, can vary across

periods. Shocks to the two components are independent of each other. The way the seller

chooses to processes information determines the collection of potential posteriors, and then

priors in the following period.

The seller’s decision strategy is again described by a joint pdf ft(A,µ, p). As in the iid

case, the pdf needs to be consistent with the prior distribution and the seller cannot in

one period process more information than κ.∫
f(A,µ, p)dp = g1(A)g2(µ) (22)

I [f(A,µ, p)] ≤ κ. (23)

Since A is persistent, the posterior knowledge ft(A|pt) translates into the next period’s

prior. Considering that the probability of transition to the opposing state is τ , we get

g1,t+1(AH) = ft(AH |pt)(1− τ) +
(

1− ft(AH |pt)
)
τ . (24)

Starting with a given prior g1,0 at t = 0, the seller sequentially chooses strategies {ft} to

maximize the discounted expected profits,
∞∑
t=0

βt
∫

Π(A,µ, p)ft(A,µ, p)dAdµdp, (25)

subject to (21)-(24).

This sequential problem can be formulated recursively. Let V be the maximum attainable

value of the objective above. It is a function of the prior in period zero, g1,0. The value

function V (x) satisfies the following Bellman equation.

V (xt) = max
ft

∫ [
Π(A,µ, p) + βV (xt+1)

]
ft(A,µ, p)dAdµdp, (26)
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subject to (21)-(24), where xt stands for the prior probability in period t that A is in the

high state, xt ≡ g1,t(AH).

Definition 3. Equilibrium of the extended model. The equilibrium of the model is

the value function V (x) and stochastic processes ft(A,µ, p), {µt}, {At}, {xt} and {pt},

such that:

1. V (x) is a solution to (26)-(23),

2. initial values A0 and g1,0(AH) are given,

3. indexes {At} are generated by a binary Markov process with a symmetric transition

probability τ ,

4. unit input costs {µt} are drawn from g2(µ),

5. for a given xt, ft(A,µ, p) is a solution to the right hand side of (26),

6. prices {pt} are drawn from ft(p|Atµt),

7. {xt} are generated by the low of motion (24),

8. amounts sold are {d(pt)}.

In each period, the seller maximizes the right hand side of (26). Not only does the seller

consider the current profit, but also the effects of the currently acquired knowledge on the

future profits.

5.2 Numerical solutions

The value function, the fixed point of (26), can be found by iterations, while the right

hand side of (26) is solved using the same techniques as in Section 4. Figure 10 shows

the results of simulations over 120 periods for κ = 1, θ = 3, µ uniformly distributed over

(0.8, 1.2), AL = 1, AH = 1.1, τ = 0.002, and β = 0.9992. One period represents one

week, which makes the annual discount factor equal to 0.96. τ = 0.002 implies that the

probability of changing the state (a 10% shock to the aggregate variable) at least once
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Figure 10: Two stochastic variables, abrupt transition, t = 0.002, κ = 1, (a) simulated

prices series, (b) simulated knowledge about A, (c) average prices, (d) average knowledge.
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during a year is about 10%. There is a simulated shock to A in period 1, when A switches

from AL = 1.0 to AH = 1.1.

The top series in the figure presents one realization of price series {pt}, and the second

one shows the corresponding time-series of knowledge {gt(AH)} in the same simulation.

The price setter targets the optimal price θ
θ−1Atµt. Although Atµt is distributed over a

continuous range in every period, prices again exhibit the rigidity of values. Given prior

knowledge about A, the distribution of prices forming a current price plan is discrete.

However, when knowledge about A changes, the distribution of prices determining the

seller’s price plan changes too.

The abrupt adjustments of knowledge and price plans are typical for all simulations with

the given parameters. What varies from one simulation to another is the period in which

the seller finds out that A has probably switched to a new value. Once the seller starts

realizing that A might have switched, then he endogenously allocates more of his infor-

mation capacity specifically to A, and his knowledge shifts quickly. When A stays at the

higher level, the agent is likely to acquire posterior knowledge that Aµ is high several

periods in a row, and the price plan’s top price is even more likely to be realized. At first,

Aµ is attributed to high µ rather than to a transition of A, since the transition is far less

likely. The seller starts adapting his knowledge about A and reallocating his attention

only after a streak of high Aµ is realized.17

On the other hand, Figure 11 shows that the adjustment of knowledge about the Markov

variable A can in other cases be gradual. This arises when A is less stable than before

and information capacity is lower, τ = 0.02 and κ = 0.5. Knowledge starts adjusting

almost immediately after the shock, but the rate of adjustment is much lower. Now, the

seller devotes less of his information capacity specifically to A, but a shock to Aµ is more

likely to be attributed to A. Price plans consist of two points only. The plans are fairly

rigid while A is stable, but become more flexible after the shock. The flexibility is only

17The described interdependence of shocks, knowledge and price responses rather resembles the impli-

cations of the signal extraction model in Lucas (1972), but some implications of rational inattention and

signal extraction go in the opposite directions, see Sims (2003). In signal extraction, highly volatile vari-

ables are tracked with the least amount of error, while in rational inattention it is the stable variables that

are easy to follow.
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Figure 11: Gradual adjustment of knowledge, (a) simulated prices series, (b) simulated

knowledge about A

in shifting the plan by an amount caused by the persistent aggregate shock, while no new

price points arise within the plan. If the persistent shock was small, then the range of

flexibility would be small too. Introducing a negligible menu cost in this model after all

would suffice to stabilize these plans, while prices would still move almost freely among

the plan’s points. However, with no explicit adjustment cost and, for instance, purely

deterministic A with an upward trend, the model would generate continuously shifting

plans.

The bottom two series in Figure 10 are prices and knowledge averaged over 10,000 simu-

lation runs. Their responses to the shock in period 1 are delayed. These series represent

average realizations in the population of sellers where noise in information processing is

not correlated across agents. Average price is the aggregate nominal level. The average

knowledge about A shifts slowly, as more and more agents find out about the switch. On

the other hand, the aggregate nominal level adjusts quite fast, although full adjustment is

still delayed. The source of the quick initial change is the adjustment in the frequency of

sales. We discuss this point below. This effect is not present in the model of Maćkowiak

and Wiederholt who assume that information about different shocks needs to be processed
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separately.

Joint signals: Since the rationally inattentive seller is allowed to process joint signals

about several variables, then resulting actions and also knowledge about the joint char-

acteristics typically adjust faster than knowledge about single slowly moving variables.

After an aggregate shock to A, knowledge about A and thus the price plan do not change

at first, but the frequency of sales together with the aggregate nominal level partly adjust.

The seller can pay attention directly to changes of Aµ, not necessarily separately to its

components. Since µ is relatively more volatile, such changes are at first attributed to

shocks to µ rather than to A. If a rationally inattentive agent tracks some joint charac-

teristics of several variables, a dynamic path of knowledge about a single variable depends

on how unexpected a shock to the variable is, while the path of price responses to the

same shock depends on how unexpected is the resulting shock to the joint characteristics

of interest.

On the other hand, if the agents are assumed not to be able to process signals that are

informative about several variables, such as in Maćkowiak and Wiederholt (2009), then

knowledge about a variable is always perfectly in line with the responses to the variable.

Pricing responses to shocks to A would be as smoothed and as delayed as knowledge about

A.

Endogenous infrequent updating of knowledge: The emerging jumpy adjustment of

knowledge as in Figure 10 is often assumed in the literature on information frictions in the

form of infrequent reviews of economic conditions.18 Figure 12 presents solutions to the

dynamic problem with µ being fixed at 1, the only stochastic variable left is A, κ = 0.02.

The average price is fully smoothed and delayed, while single simulations display sudden

changes of knowledge and price. The seller’s knowledge does not change gradually. It stays

constant for a while and then suddenly switches at one specific moment. This moment of

transition is, however, not given deterministically.

Such a dynamics of knowledge resembles the one assumed in the sticky-information model

introduced in Mankiw and Reis (2002). They postulate that agents’ information updating

18See Mankiw and Reis (2002) and Alvarez et al. (2010), and Woodford (2008), who combines rational

inattention with acquisition of perfect knowledge before a price change.
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Figure 12: Responses to shocks to A, fixed µ
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is staggered, and when agents update they acquire perfect information. In each period, a

firm updates with a certain probability ν, i.e. only a fraction ν of firms update informa-

tion in that period. Figure 12 shows that a similar form of updating can emerge under

rational inattention, too. The observed dynamics is driven by the discussed discreteness

in responses: agents sometimes prefer to receive a few different signals only rather than

a complete spectrum of them. Receiving one signal instead of another then results in a

sudden and significant change of knowledge.

5.3 Implications for the Modeling of Aggregate Nominal Rigidities

I discussed above that a rationally inattentive seller chooses to follow a “price plan”,

which is described by a distribution of prices that can be realized in a given period. If

aggregate conditions are more persistent than idiosyncratic, then the idiosyncratic shocks

drive price movements looking like sales and aggregate shocks shift the whole price plans.

The price plan changes whenever the seller’s knowledge about the state of persistent

variables changes.

The source of aggregate nominal rigidity is that the seller’s price plan shifts after an

aggregate nominal shock with a delay. The delayed response is, however, partially offset

by an adjustment of sales frequency. This is due to the difference between seller’s perceived

and the true distribution of the unit input costs, when the aggregate shock is misjudged.

After a positive persistent shock, he at first mistakenly attributes the resulting deviation

in input cost to a transient shock, which is more likely to occur. The seller thus does not

alter his price plan, but he is less likely to charge its low prices. The reference price is

fixed for a while, but the frequency of sales decreases. The seller does not know about the

persistent shock, but his prices do partially reflect it. This effect is not present when he

cannot process information about different shocks jointly.

Eichenbaum et al. (2008) observe in the data that while prices change very frequently,

the value of the reference price stays quite rigid. The presented model generates similar

pricing patterns. However, the reference price in our model does not have any special

significance; it is just one of the characteristics of the whole generated distribution of

prices. Eichenbaum et al. claim that it is the rigidity of the reference price, not single
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prices, that is the useful statistics for macroeconomic analysis. Interestingly enough, the

dynamics of the reference does in our model indeed mimic the seller’s current knowledge

about the state of the slowly moving index A. Current knowledge uniquely determines

the selection of a price plan together with its reference price. However, knowledge about

the persistent shock does not need to be perfectly in line with dynamics of responses to

this shock, which we see in the bottom two series of Figure 10.

The degree of aggregate nominal rigidity depends on the price plan’s adjustment as well

as on the adjustment of sales frequency. Rational inattention thus does not provide sup-

port for a simple rule of removing sales from data for macroeconomic purposes. It does,

however, relate to the heterogeneous menu cost model in Kehoe and Midrigan (2007) with

low adjustment cost for sales prices and higher for regular prices, and even more to the

sticky-plan model in Eichenbaum et al. (2008), where movements between the plan’s prices

is costless, only changing the plan is costly. These models also generate aggregate nominal

rigidity despite the flexibility of sales.19

In rational inattention, it is more costly for the seller to pay attention purely to a persistent

shock, since such an activity provides low marginal profit due to the shock’s infrequent

occurrence. In general, models based on menu cost that were to mimic rational inattention

would need to assume a high cost of adjustments corresponding to shocks to the optimal

price that are not driven by the most likely shocks.

However, we should not expect that any simple menu cost model can fit the properties

of the pricing of rationally inattentive sellers in general. Adjustment frictions based ra-

tional inattention are not explicitly definable in the form of a constant menu cost, they

endogenously depend on current knowledge, stochastic properties of shocks, past shocks

realizations, etc. Naturally, it is the model presented in Maćkowiak and Wiederholt (2009)

that is the proper starting point from rational inattention’s point of view.

19Guimaraes and Sheedy (2008) is another model with flexible sales and monetary non-neutrality.
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6 Conclusion

This paper shows that rational inattention can account for several empirical findings about

nominal rigidities. Most importantly, I find that some stylized facts at the micro level that

constitute puzzles for sticky-price models can be accounted for by information frictions in

the form of rational inattention. Rational inattention can drive sluggish responses to new

shocks. Moreover, the rationally inattentive seller chooses to follow a price plan with a

finite number of distinct prices. Such a plan results in prices that do not always change,

but they do change frequently switching between a few values. This strategy emerges as

an optimal utilization of the agent’s limited cognitive abilities. The price plan itself is

typically asymmetric, with higher probabilities of realizing higher prices. This is due to

potentially higher losses in the case when the seller misjudges the input cost when it is low.

Such asymmetry leads to more rigid high prices, which closely resembles the “regular” or

“reference” prices discussed in the empirical literature.

Information frictions can result in dynamics of prices that could in some ways be confused

with the existence of explicit adjustment costs. It is, however, very important to distin-

guish what the true driver of nominal rigidity is. While, for instance, Calvo-style models

are calibrated to a fixed frequency of price changes, rigidity based on rational inattention

emerges endogenously and is thus responsive to changes in economic conditions.
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A Simple example of attention allocation

This example has a flavor of what is further generalized in the main model of this paper.

The example possesses an element of the selection of optimal attention allocation.

Let the profit-maximizing seller know that the input cost is uniformly distributed between

1 and 2, and let his mechanism of processing information be constrained to the observation

of a binary indicator set up in his store. The indicator lights up whenever the unit input

cost is above a certain threshold x. The seller can however set this level x himself. This

particular assumption on the specific form of the information processing mechanism is not

inherent to the true framework of rational inattention and it does not apply to the main

model.

The question is: what is the optimal x? Given x, the seller acquires only two different

forms of posterior knowledge: uniform distribution over (1, x) or over (x, 2). In the first

case, his profit maximizing price is θ
θ−1(1 + x)/2, while in the second it is θ

θ−1(x + 2)/2.

To find the optimal x, we maximize the ex ante expectation of profit before the binary

signal is received. It is:

E[Π] =

∫ x

1

(
θ

θ − 1
(1 + x)/2

)−θ ( θ

θ − 1
(1 + x)/2− µ

)
dµ+

+

∫ 2

x

(
θ

θ − 1
(x+ 2)/2

)−θ ( θ

θ − 1
(x+ 2)/2− µ

)
dµ. (27)

For θ = 2, the optimal x =
√

2. It is less then the midpoint of the unit input cost at

µ = 3/2. Numerical solutions for other values of θ are shown in Figure 13. The seller

chooses to pay more attention to lower input cost. If low cost is realized, then he attains

relatively more precise knowledge: µ ∈ (1, x). When the input cost is low, the optimal

price is also lower and the potential sales are higher, which also means higher potential

losses from deviating from the optimal price. It turns out that the seller charges the higher

price θ
θ−1(x+ 2)/2 with a probability higher than 0.5, because (x− 1) < (2− x).

Although the rational inattention setup does not restrict agents with such a choice of

signals, this simplistic model illustrates the mechanism how an asymmetric objective gen-

erates asymmetric actions through the choice of attention allocation.
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Figure 13: Attention allocation; Choosing optimal threshold level for a binary signal

B First order condition

The first order condition, equation (16), is derived here. The mutual information can be

written as

I(µ; p) =

∫
f(µ, p) log

f(µ|p)∫
f(p1)f(µ|p1)dp1

dµdp. (28)

The Lagrangian of (10)-(13) is:

L =

∫
Π(µ, p)f(µ, p)dµdp− λ

[∫
f(µ, p) log

f(µ|p)∫
f(p1)f(µ|p1)dp1

dµdp− κ
]

−
∫
ν(µ)

[∫
f(µ, p)dp− g(µ)

]
dµ,

where λ ∈ R and ν ∈ L∞(RN ) are Lagrange multipliers. The first order condition with

respect to f(µ|p) is

f(p)

(
Π(µ, p)− λ log

f(µ|p)
g(µ)

− ν(µ)

)
= 0.

If f(p) > 0 and λ > 0 we obtain the first order condition (16):

f(µ|p) = h(µ)eΠ(µ,p)/λ,

where h(µ) = e−ν(µ)/λg(µ).
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C Approximate losses

Here I express how the profit losses depend on the level of the realized unit input cost. Let

us assume that noise in the posterior knowledge is low, so that the certainty equivalence

holds; we ignore the 3rd order effects. Let the true realized value of the input cost be µ∗.

The seller acquires posterior knowledge with a mean µ′ = µ∗ + ε, where ε is the small

error. Due to the certainty equivalence, the agent chooses to charge a price p equal to

popt(µ
′), (15).

Let Πµ∗(µ
′) = Π(µ∗, popt(µ′)); its Taylor expansion about µ∗ is

Πµ∗(µ
′) = Πµ∗(µ

∗) +
dΠµ∗(µ

′)

dµ′
ε+

d2Πµ∗(µ
′)

dµ′2
ε2/2 +O(ε3)

= Π(µ∗, popt(µ
∗)) +

[d2popt(µ
′)

dµ′2
dΠ(µ∗, p)

dp

+
(dpopt(µ′)

dµ′

)2d2Π(µ∗, p)

dp2

]
ε2/2 +O(ε3)

∣∣∣∣
µ′=µ∗,p=popt(µ∗)

.

The linear term drops out since Πµ∗(µ
′) attains its maximum at µ′ = µ∗. Similarly,

dΠ(µ∗, p)/dp = 0 at the optimal response popt(µ
∗). The change in profit due to the signal

imperfection thus takes the form:

∆Π = Πµ∗(µ
′)−Πµ∗(µ

∗)

=
(dpopt(µ′)

dµ′

)2d2Π(µ∗, p)

dp2
ε2/2 +O(ε3)

∣∣∣∣
µ′=µ∗,p=popt(µ∗)

. (29)

The leading term is quadratic with a negative coefficient, profit is a concave function of

the perceived µ′ with the maximum at the true value µ∗. If the error ε is small, then the

change in profit can be approximated by −L(µ∗)ε2/2, where the approximative loss factor

L(µ∗) is

L(µ∗) = −
(dpopt(µ∗)

dµ∗

)2d2Π(µ∗, p)

dp2

∣∣∣∣
p=popt(µ∗)

. (30)

The formula recognizes that the loss depends on the curvature of the profit function and

also on how far away from the optimal price the realized price is. The more sensitively

prices change with posteriors on the unit input cost, the further away can the realized p

be from the optimal one.

Decreasing the error ε leads to profit gains that are proportional to L(µ). If the seller can

decide in what regions of µ to pay more attention and decrease the noise, then he does so
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for µ∗, where the loss factor L(µ∗) is higher.

D Discreteness

Proof of Proposition 2: If f(p) > 0, then the first order condition (16) holds. Since

f(µ|p) is a pdf, it integrates to 1,∫
h(µ)ep

−θ(p−µ)/λdµ = 1. (31)

If the distribution of prices is not discrete, then there exists a limit point p∗ of points,

where (31) holds. Therefore, all derivatives of the left hand side of (31) with respect to p

have to equal zero at p∗.

The condition on the second derivative of the right hand side of (31) equal to zero reads∫
h(µ)

λ2 e
p−θ(p−µ)

λ p−2(1+θ)
(
p2(θ − 1)2 − 2µp(θ − 1)θ+

+ λp1+θ(θ − 1)θ + µ2θ2 − λµpθθ(1 + θ)
)
dµ = 0. (32)

If the unit input cost is bounded by µmin from below and µmin + ∆ from above, then

prices certainly lie in
[

θ
θ−1µmin,

θ
θ−1(µmin + ∆)

]
. ∆ is the diameter of the prior’s support.

Therefore, all realizable µ and p satisfy

µ =
θ − 1

θ
p+ δ(µ, p), where |δ(µ, p)| ≤ ∆. (33)

Plugging (33) into (32), we get∫
h(µ)

λ2 e
p−θ(p−δ(µ,p)θ)

λθ p−2(1+θ)
[
−λpθ (p(θ − 1) + δ(µ, p)θ(1 + θ)) + δ(µ, p)2θ2

]
dµ = 0.

(34)

Let us focus on [
−λpθ (p(θ − 1) + δ(µ, p)θ(1 + θ)) + δ2(µ, p)θ2

]
. (35)

If this is negative, then the whole integrand in (34) is negative too.

Notice that p(θ − 1) ≥ θµmin. Since |δ(µ, p)| ≤ ∆, then ∆ < µmin/(1 + θ) implies that

(p(θ − 1) + δ(µ, p)θ(1 + θ)) > 0. For ∆ < µmin/(1 + θ), the first term of (35) is negative

and proportional to λ.
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δ(µ, p)2θ2 is bounded by ∆2θ2. If ∆ < µmin/(1 + θ), then there exists λ0 such that

(35) is negative for all λ > λ0. For a specific solution to the seller’s problem, the resulting

Lagrange multiplier λ depends on the specific choice of the model’s parameters. If we show

that there exists information capacity κ generating a large enough multiplier, λ > λ0, then

we prove the proposition.

The uniform distribution, among all distributions over the same support, maximizes the

entropy.20 The variation of the distribution’s entropy at the optimum is zero. When ap-

proaching the optimum, the shadow cost of information approaches infinity, limκ→0+ λ(κ) =

∞. Therefore, for all λ0 there exists κ0 > 0 such that for all κ < κ0 the Lagrange multi-

plier λ > λ0. In summary, for all ∆ < µmin/(1 + θ) there exists κ0 > 0 such that for all

κ < κ0 the left hand side of (34) is negative. The distribution of prices is discrete.

In fact, we showed that under the strong assumptions of Proposition 2, there are at most

two price points. The assumptions imply that the second derivative of (31) is negative,

the integral can therefore be equal to 1 at two points at most.

20See Cover and Thomas (2006).
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