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Abstract

In this paper, we solve a large class of non-linear rational expectations models with
regime switching, i.e. recurring shifts in parameters. The regime-switches and the shocks
may follow state-dependent probability distributions. Using a perturbation approach,
we first prove that sufficient determinacy conditions - conditions ensuring the existence
of a unique stable equilibrium - follow from the corresponding conditions in an exoge-
nous regime-switching model. We provide easily verifiable and sufficient determinacy
conditions and a first-order approximation of the solution for purely forward-looking
models. Finally, we illustrate our results with a Fisherian model of inflation determi-
nation in which monetary policy switches endogenously between a less-active (dovish)
and a more-active (hawkish) reaction against inflation. This example highlights that
the state-dependent fluctuations of transition probabilities can substantially alter the
equilibrium dynamics through economic agents’ expectations.
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1 Introduction

In this paper, we consider a class of non-linear discrete-time rational expectations models with
discrete jump processes, describing regime switching, and continuous stochastic processes, the
usual ”shocks”. Both processes can follow state-dependent probability distributions meaning
that the distribution of shocks as well as the probabilities of regime switches may depend on
the state of the economy. We find sufficient determinacy conditions, i.e. conditions ensuring
the existence of a unique stable solution, and provide the first-order Taylor expansion of
the solution. We apply our results to a Fisherian model of inflation determination with
endogenous regime switching across different monetary policy regimes and we show that the
state-dependent fluctuations of transition probabilities can substantially alter the equilibrium
dynamics through economic agents’ expectations.

A substantial line of empirical studies challenges the common assumption of economic
agents’ time-invariant behavior (Clarida et al., 2000). Recent papers (e.g., Svennson and
Williams, 2009; Farmer et al., 2009b) thus relax the assumption of time-invariant behavior
by introducing recurring shifts in structural parameters ; yet, a common approach remains
that changes in policy behavior are exogenous.

However, there is a wide range of empirical (Kim et al., 2003) and theoretical (e.g. Men-
doza and Yue, 2011, for defaults) reasons to believe that regimes switches may be influenced
by macroeconomic fluctuations or, more generally, are endogenous to the model’s economic
outcomes. Thus, this paper addresses this issue and considers models where shocks and
regime changes have state-dependent distributions.

To solve these models, we first extend the perturbation approach to state-dependent
probability distributions. By using the perturbation approach, Woodford (1986) infers the
stability properties of non-linear stochastic models from their linearized counterpart assum-
ing ”small” shocks. In the same way, we link the stability properties of the endogenous regime
switching to the exogenous regime switching assuming ”weak” endogeneity. Second, we find
sufficient determinacy conditions for exogenous regime switching models by generalizing re-
sults of Farmer et al. (2009a) to multivariate exogenous regime switching models.

Our contributions are threefold.
First, by applying the Implicit Function Theorem, we show that the existence and the

uniqueness of a bounded solution in this class of models rely both on the existence of a
unique solution for a simplified, linear model with exogenous regime switching. Furthermore,
we formulate the first-order Taylor expansion of the solution.

Second, we provide sufficient and easily verifiable determinacy conditions for linear mul-
tivariate exogenous Markov switching models when agents are purely forward-looking. To
our knowledge, determinacy results for this type of model do not exist in the literature and
we supply them by generalizing Farmer et al. (2009a). We base our conditions on eigenvalue
computations that can be thought of as a generalization of Blanchard and Kahn (1980) con-
ditions in a context of regime switching. These conditions also ensure determinacy for the
non-linear endogenous regime switching model.

The introduction of endogenous transition probabilities do not alter the determinacy con-
ditions, as we assume that these probabilities do not vary too much. However, the economic
dynamics differ substantially. As a consequence, one can expect that estimating a model
with endogenous regime switching may result in different point estimates and hence modify
our understanding of the business cycle. Our third contribution is to apply our method to
a Fisherian model of inflation determination in which the monetary policy rule may change
across regimes according to a state-dependent jump process. We find determinacy conditions
similar to Farmer et al. (2009a) which extend Davig and Leeper (2007) and we obtain the
first-order Taylor expansion of the solution.

We highlight two effects peculiar to the endogenous nature of regime switching.
First, the dynamics in each regime is modified compared to the one that would prevail
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if the transition probabilities were constant. Real interest rate shocks are less destabilizing,
especially for large shocks. The more likely a switch becomes -the larger a shock is-, the more
the expectations of future switches will affect agents’ contemporaneous decisions. Thus, the
standard inflationary effect of such a shock is weakened by the endogenous expectations
formation effect, which tends to decrease the immediate response of inflation. When the
real interest rate shock is considerable, the expectations formation effect is so large that
it dominates and leads to a hump-shaped Impulse Response Function. This illustrates the
importance of such mechanism and the potential bias introduced when assuming constant
transition probabilities.

Second, apart from these state-dependent expectations formation effects, there is an ad-
ditional mechanism since the endogenous fluctuations of probabilities alter the conditional
average response of the economy to shocks. We call this second phenomenon the endogenous
selection effect. This effect of state-dependent transition probabilities directly impacts the
likelihood of each regime. It introduces differences in the average response of the economy
to a shock, which could modify the forecasting performance of such models.

Related Literature Recent papers have challenged the empirical validity of models based
on time-invariant behavior of economic agents. For instance, several papers analyze the
sharp decreases in output and inflation volatility around the mid 80s, the so-called ”Great
Moderation”, by allowing for time-varying economic behavior. Among the competing sources
of parameter changes, some papers have allowed for breaks in the variance of structural shocks
(Sims and Zha, 2006; Justiniano and Primiceri, 2008; Fernández-Villaverde et al., 2010; Liu
et al., 2010), others for shifts in the parameters of monetary policy rules (Clarida et al., 2000;
Lubik and Schorfheide, 2004).

Within the context of forward looking economic agents, the possibility of future regimes
switches alters agents’ current decision rules (Sims, 1982) through what Leeper and Zha
(2003) call the expectations formation effects. In simple calibrated monetary models with
Markov switching monetary policy rules, Davig and Leeper (2007) show that these effects
can be relatively large and can substantially modify determinacy conditions (see also Farmer
et al., 2009a).

In most of the literature, the expectations formation effects are state-invariant as regime
switches are exogenous. However, allowing for endogenous regime switching appears useful
in many contexts: monetary policy regime (Davig and Leeper, 2008), financial crises (Coe,
2002), defaults (Mendoza and Yue, 2011), policy regimes (Rothert, 2009), occasionally bind-
ing constraints (Christiano and Fisher, 2000), and sudden stops (Calvo, 1998) among many
others. In such contexts, we expect the expectations formation effects to depend on the like-
lihood of future switches and, hence, on the current state of the economy. Davig and Leeper
(2008) show that a monetary policy rule that changes when certain endogenous variables in-
tersect specified thresholds leads to substantial and state-dependent expectations formation
effects. However, Davig and Leeper’s approach relies on numerical methods which imply both
a high computational cost and the lack of analytical results.

Foerster et al. (2011) propose a solution technique to solve exogenous Markov switching
models by applying a perturbation approach. Davig and Doh (2008) also solve a non-linear
Markov switching rational expectations model by linearizing it and then using the undeter-
mined coefficient approach. Nevertheless, none of these papers give explicit arguments to
apply the Implicit Function Theorem and prove that there exists a unique ”stable” solution
of the original non-linear model.

As our method relies on solving linear exogenous Markov switching models, this paper
is also closely related to the Markov switching literature. This literature distinguishes two
main solution techniques: the undetermined coefficient approach (Blake and Zampolli, 2006;
Davig and Leeper, 2007; Svennson and Williams, 2009) and a direct approach (Farmer et al.,
2010b). Our approach is closer to the undetermined coefficient approach since both methods
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are equivalent when models are linear.
In the context of exogenous Markov switching models, the characterization of the full

class of solutions (the existence, the uniqueness and the form of the solution) is already
a challenging task. Davig and Leeper (2007) propose a simple determinacy condition for
forward-looking Markov switching models. However, Farmer et al. (2010a) have casted doubts
on their methods. Because of this controversy, most of the literature has turned to the Mean
Square Stability concept (see Farmer et al., 2009b) following the influential book by Costa
et al. (2005). This definition of stability is, however, incompatible with the perturbation
approach1 and, hence, does not provide the adequate stability concept for solving non-linear
Markov Switching DSGE models with perturbation theory.

Disregarding rational expectations, endogenous changes have been well studied in purely
econometric frameworks. Following the seminal paper by Hamilton (1989), Filardo (1994)
and Filardo and Gordon (1998) estimate Markov switching regressions with time-varying
transition probabilities. More recently, Kim et al. (2003) propose a technique for estimating
multivariate models with endogenous regime switching, i.e. where transition probabilities
depend on endogenous variables. However, these significant progresses cannot be replicated
yet to estimate rational expectations models with endogenous regime switching.

The remainder of the paper is organized as follows. Section 2 presents the class of models
we study as well as some notations. Then, we provide our main theoretical results in Section 3.
Finally, Section 4 illustrates our findings through an endogenous regime switching Fisherian
model of inflation determination.

2 The setup

This section presents the class of models we consider and specifies some notations required
for our analysis.

Most of recent rational expectations macroeconomic models with regime switching can
be reduced to the following system:

Et[fst
(zt+1, zt, zt−1, γvt)] = 0 (1)

when z is a vector of endogenous variables evolving in a bounded closed set F of Rn, v is a
multi-dimensional stochastic process evolving in a bounded domain V of Rp and γ is a scalar.
The parameter γ will tend to zero when applying the perturbation approach. Let st denoting
the regime of the economy at date t and taking values in {1, · · ·N} where N is the number of
possible regimes. For any i, fi is a regular function and Et is the expectation operator given
the information available at time t, namely current and past shocks and regimes.

We denote by ut ∈ U the concatenation of the regime and the current shock (st, vt). The
set U∞ represents the set of infinite sequences2 ut = (ut, ut−1, · · · ). M(U) stands for the set
of measures on U and Σ is the sigma field of U generated by the product of the singletons
{i}i∈{1,··· ,N} and the Borel set of V . We consider a measure µγ in M(U), depending on a
policy function φ mapping U∞ to Rn and a sequence ut−1 ∈ U∞:

µγ(s, v, φ, ut−1) =
N∑
i=1

hi(v, φ, ut−1)piγ(φ, ut−1)δi(s) (2)

This measure is a combination of Lebesgue-continuous measures, hi, and mass-point mea-
sures. δi denotes the Dirac distribution in i. We suppose that for any i, piγ and hi are smooth.
We focus on this particular class of measures as they behave conveniently and encompass a
large class of economic models. We present some useful properties of this class of measures

1Applying the Implicit Function Theorem requires Banach spaces
2For more details about this formalism, see Woodford (1986).
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in appendix A. It is worth noticing that we allow the measure of v to vary across regimes as
its probability measure depends on i in the sum. We assume that hi is normalized:

∀i, ∀φ, ∀ut−1

∫
V

hi(v, φ, ut−1)dv = 1 (3)

In addition, we assume that for all i, pi0 does not depend on φ and we denote them by
pi0(ut−1).

We denote by Σ∞ the infinite product of sigma field Σ and we consider elements ut

representing infinite histories of a stochastic process such that the conditional probability of
ut conditional on the history ut−1 is given by:

ut|ut−1 ∼ µγ(·, φ, ut−1)

Then the process ut can be represented by a probability measure πγ(φ) acting on Σ∞:

πγ : φ 7→ µ(·, φ) =
∞∏
k=0

µγ(ut−k, φ, ut−k−1) (4)

When γ is equal to 0, the model corresponds to an exogenous regime switching model
without shocks. γ thus measures simultaneously the size of the shocks and the degree of
endogeneity of regime switching3 (the slope of the mass-point probabilities).

Now, we introduce the type of solutions we are looking for.

Definition 1. A stationary rational expectations equilibrium (s.r.e.e.) of model (1) is a
continuous function φ : U∞ → F such that:

1. ||φ||∞ = sup
U∞
‖φ(ut)‖ <∞

2. If u is a U valued stochastic process associated with the probability measure πγ(φ) then
zt = φ(ut) is solution of (1).

Furthermore, this solution is a steady state if φ is constant.

We restrict our analysis to continuous and bounded functions. Thus, we introduce B, the
set of functions φ on U∞ such that, for all s, the map v 7→ φ(s, v) is continuous and such that
(s, v) 7→ φ(s, v) is bounded. This definition is more restrictive than the mean-square stability
required by Farmer et al. (2007) but necessary since our framework relies on a perturbation
approach. In addition, our space of solutions is very close to, but slightly tighter than, the
set of essentially bounded functions considered by Woodford (1986). This restriction arises
from the state-dependence of the measure µγ .

We will prove the existence and the uniqueness of a s.r.e.e. when the continuous shocks
are small enough and the regime switching is weakly endogenous by applying the Implicit
Function Theorem (IFT) to an operator acting on the Banach space of bounded and contin-
uous functions, B.

3 Solving Rational Expectations Models with perturba-
tion approach

In this section, we prove that there exists a unique s.r.e.e. of the model with small continu-
ous shocks and weakly endogenous regime switching (i.e. γ small enough) if the underlying
exogenous regime switching model admits a unique solution [Theorem 1]. In the absence of
regime switching, this result extends Woodford (1986) result by allowing shocks’ distribution

3We could have distinguished these two dimensions without any substantial modification
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to be state-dependent [section 3.2]. Then, we give sufficient existence and uniqueness condi-
tions for a non-linear endogenous regime switching model in a purely forward-looking context
[Proposition 1]. Finally, we illustrate this Proposition in the context of linear endogenous
regime-switching model and compute the first-order Taylor expansion [Proposition 2].

3.1 General result

Our first result is derived from the Implicit Function Theorem (IFT) in Banach Spaces (see
Abraham et al., 1988, and section B.1 in the appendix). To apply this latter, we define an
operator N , whose zeros correspond to a s.r.e.e of model (1). The operator N is acting on
B × R with values in B and is such that, for any ut:

N (φ, γ)(ut) =
∫
U

fst(φ(uut), φ(ut), φ(ut−1), γvt)µγ(u, φ, ut)du (5)

As explained in section 2, we assume that the mass-point probabilities do not depend on
φ when γ is equal to 0. Thus:

N (φ, 0)(ut) =
N∑
i=1

pi0(ut)
∫
V

fst
(φ(ist, vvt), φ(ut), φ(ut−1), 0)hi(v, φ, ut−1)dv, ∀ut ∈ U∞

(6)
This operator corresponds to a model with purely exogenous regime switching and the

shocks, v, are sunspot shocks (do not appear in the model, fst
). One may notice that

transition probabilities can depend on past regime and shocks. This thus encompasses Markov
Switching models. Besides, even if the shocks, v, are sunspots their probability distribution
functions can depend on the equilibrium, φ.

We will apply the Implicit Function Theorem to N to prove the existence of a unique
s.r.e.e. To apply this theorem, we have to know a particular solution when γ = 0. The
invertibility of DφN (φ0, 0) coincides with the existence of a unique bounded continuous
function, h, satisfying (for any bounded ψ):

DφN (φ0, 0)(h) = ψ (7)

In other words, the invertibility of DφN (φ0, 0) corresponds to the existence of a unique
s.r.e.e, for any bounded stochastic process, ψt, of the following ”linearized” regime switching
model:

Et[A(st+1)zt+1] +B(st)zt + C(st)zt−1 = ψt (8)

where the shocks ut follow the probability distribution µ0, i.e. the regime switches are
exogenous while the shocks may follow state dependent probability distributions. The ma-
trices A(st+1), B(st) and C(st) depend on the derivatives of fst

and on the regimes history.
The coincidence between the invertibility of DφN (φ0, 0) and the uniqueness of a solution of
model 8 leads to the following theorem.

Theorem 1. If there exists a continuous function φ0 : {1, · · · , N}∞ → F such that

1. φ0 is a particular s.r.e.e. of the non-linear exogenous regime switching model without
shocks (N (φ0, 0) = 0)

2. The model (8) admits a unique s.r.e.e. for any bounded process ψt.
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Then there exists γ0 small enough such that, for any γ smaller than γ0, there exists a unique
s.r.e.e. of model (5) around φ0. Furthermore, the first-order Taylor expansion of the solution,
φ(γ) in γ is given by:

∀ut ∈ U, φ(γ)(ut) = φ0(st) + γDφN (φ0, 0)−1DγN (φ0, 0) + o(γ)

Proof. This theorem is a direct application of IFT in Banach Space. See appendix B.1 for
more details.

This result shows that the weakly endogenous regime switching model has the same
properties as the exogenous one, and that the solutions are close. It derives very general
conditions of determinacy from properties of the model with exogenous regime switching.

The first hypothesis can usually be checked by hand while the second hypothesis coincides
with Blanchard and Kahn conditions of the underlying linearized model. However, contrary
to Woodford (1986), this theorem only gives sufficient conditions of determinacy but is silent
on the reciprocal. In addition, the solution, φ(γ), is not necessarily recursive contrary to Jin
and Judd (2002).

In most cases, these conditions are difficult to verify. The remainder of this section gives
examples for which we can explicitly derive condition 2. of Theorem 1.

3.2 Case I: state-dependent probability distribution in the absence
of regime switching

We first consider the model (5) in the absence of regime switching:

Et[f(zt+1, zt, zt−1, γvt)] = 0 (9)

where vt follows a continuous law, h(v, φ, vt−1) (µγ = h). We assume that h is Lebesgue-
continuous and C1 according to its second component.

Let us assume that the model (9) admits a steady-state when γ = 0. We denote it by z̄
and call it the deterministic steady-state. Thus, z̄ satisfies f(z̄, z̄, z̄, 0) = 0. Unexpectedly,
the linearized model in φ0 = z̄ is a well-studied linear rational expectations model with
exogenous shocks (see Appendix B.3 for more details):(

∂2f(z̄, z̄, z̄, 0) ∂1f(z̄, z̄, z̄, 0)
In 0

)
︸ ︷︷ ︸

A

Zt =
(
−∂3f(z̄, z̄, z̄, 0) 0

0 In

)
︸ ︷︷ ︸

B

Zt−1 +
(

Ψt

0

)
(10)

where the shocks follow a state-invariant distribution, h(v, z̄, vt−1) and Zt = [z′t Etz′t+1]′.
As a consequence, the second condition of Theorem 1 reduces to the determinacy condi-

tions of model (10) for any ψt. Blanchard and Kahn (1980) give these determinacy condi-
tions4. If all the generalized eigenvalues of the pencil < A,B >5 lie inside the unit circle,
there exists a unique s.r.e.e. of model (10).

Then, from a direct application of Theorem 1, one can show that if the Blanchard and
Kahn conditions for the linearized model in z̄ are satisfied, there exists γ0 > 0 such that
for γ smaller than γ0 -i.e. for ”small” shocks —, the model (9) admits a unique s.r.e.e.
Furthermore, the first order expansion of this solution exactly coincides with the solution of
the linearized model when ψt = γ∂4f(z̄, z̄, z̄, 0)vt. We give some details in Appendix B.3.

This result generalizes Theorem 2 by Woodford (1986) to the case of shocks with state-
dependent probability distributions. Neither the underlying linearized model nor the first-
order Taylor expansion of the solution change compared to the exogenous case.

4Klein (2000) extends Blanchard and Kahn (1980) when the matrix ∂1f(z̄, z̄, z̄, 0) is singular.
5When A is invertible, the generalized eigenvalues of < A,B > coincide with the standard eigenvalues of

A−1B
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3.3 Case II: endogenous regime switching in a forward-looking en-
vironment

Let us turn to the regime switching model. We consider the following purely forward-looking
model:

Et[fst(zt+1, zt, γvt)] = 0. (11)

We assume that the transition probability from regime i to regime j only depends on the
past value of endogenous variables, φ(ut−1). Thus, there exists a function pij with values in
[0, 1] such that:

∀ut ∈ U∞, pjγ(φ, (ist−1, vt)) = pij(γ, φ(ut−1)) (12)

In addition, we assume that the probabilities pij are smooth (C1) and constant for γ = 0
(pij(0, .) = p̄ij). We can check that the implied measure, µγ , has all the needed properties
described in Section 2.

As in the absence of regime switching, we assume that there exists a solution of the model
when there is no shock, φ0. In addition, we suppose that this solution only depends on the
current regime, i.e., φ0(ist−1) = z̄i where (z̄1, · · · , z̄N ) is solution of the N × n following
equations, for any i ∈ {1, · · · , N}:

N∑
j=1

p̄ijfi(z̄j , z̄i, 0) = 0

In this context, the associated linearized model can be written as:

Et[Astst+1xt+1] +Bst
xt = ψt (13)

where Aij and Bi depend on the first derivatives of fi in (z̄j , z̄i, 0) and are explicitly defined
in Equation (24) in Appendix B.4. Finally, we impose that Bi is invertible for any i.

We need to find conditions ensuring the existence of a unique s.r.e.e. of model (13) to
apply Theorem 1. As in the fixed regime model, we can find such conditions by computing
eigenvalues of certain matrices. For a fixed operator norm onMn(R), |||.|||, we introduce the
matrix Sp defined for p > 1 by:

Sp =

 ∑
(k1,··· ,kp−1)∈{1,··· ,N}p−1

p̄ik1 · · · p̄kp−1j |||Aik1β−1
k1
· · ·Akp−1jβ

−1
j |||


ij

(14)

and, by convention for p = 1,
S1 =

(
p̄ij |||Aijβ−1

j |||
)
ij

We have the following sufficient condition for the existence of a unique s.r.e.e. of model
(13):

Proposition 1. If there exists an integer p such that all the eigenvalues of Sp lie inside the
unit circle, then the model (13) admits a unique s.r.e.e..

Proof. We construct the solution of model (13) (or the inverse of DφN (φ0, 0)) as the sum of
an infinite operator series. Then, if this operator series is absolutely convergent, the linearized
model admits a unique solution (DφN (φ0, 0) is invertible). Finally, it remains to prove that
if, for some p > 0, all the eigenvalues of Sp lie inside the unit circle, the series converges. See
appendix B.4 for the details.
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This proposition combined with Theorem 1 gives the condition for the existence of a
unique s.r.e.e. of the non-linear endogenous regime switching model, equations (11) and
(12).

This Proposition leads to several remarks. First of all, in the absence of regime switching
the condition that S1 has no explosive eigenvalue exactly corresponds to Blanchard and Kahn
(1980) conditions. Second, if the model is univariate (n = 1), then checking the eigenvalues of
S1 is enough as Sp = Sp1 . Third, the determinacy condition found by Farmer et al. (2009a) in
the Fisherian model of inflation determination coincides with our condition when p = 1 (more
details are provided in Section 4). Thus, this proposition is a generalization of conditions
found by Farmer et al. (2009a) to a multivariate Markov switching model. Loosely speaking,
we replace the absolute values they use in one-dimension by operator norms. Indeed, the sub-
multiplicative property of any operator norms overcomes the non-commutativity of matrices
products.

3.4 Case III: endogenous regime switching in a forward-looking and
linear environment

When a forward-looking regime switching model is linear, one may solve it for any size of the
shocks. Therefore, there is no necessity to assume small shocks. We thus present a refinement
of Theorem 1 in case of linear model (fi is linear for any i ∈ {1, · · ·N}). More explicitly, we
consider the following model:

Ast
Et(xt+1) +Bst

xt + σCst
vt = 0 (15)

where the probabilities of transitions from regime i to regime j are pij(γ, φ(ut−1)). For
simplicity, we assume that shocks, vt, follow a first order Vectorial Auto-Regressive process:

vt+1 = Λvt + µt

Where µ follows a centered standardized truncated gaussian (whose p.d.f. is h). In this
special case, we can perform a simple perturbation approach assuming weakly endogenous
probabilities around the exogenous regime switching model with shocks.

Proposition 2. If condition of Proposition 1 is satisfied, then, for γ small enough, the model
(15) admits a unique s.r.e.e., φ(γ), satisfying:

φ(γ)(st, vt) = B−1
st
Rst

vt + . . . (16)

. . . B−1
st

O

Ast

N∑
j=1

∫
V

γ∂1pstj(0, σB
−1
st
Rst

(Λvt + µ))B−1
j Rj(Λvt + µ)h(µ)dµ

+ o(γ)

where O is an operator acting on B defined in (31) and Rst
is a matrix given by (32)

(see Appendix B.5).

Proof. This Proposition follows from Proposition 1. Proof is given in Appendix B.5.

The determinacy condition is exactly the same as in Proposition 1. Equation (16) gives
the first-order Taylor expansion of the unique s.r.e.e. of the model (15). The first term,
B−1
st
Rvt, is the exact solution of the exogenous regime switching model (γ = 0). The second

term corresponds to the first-order wedge introduced by the state-dependence of transition
probabilities.

This second term can be interpreted as the (first-order) additional expectations formation
effect caused by expected fluctuations of transition probabilities. More precisely, for any
function Ψ ∈ B, OΨ corresponds to the expected cumulative effect of Ψ from t + 1 to ∞
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when (st, vt) follows the measure µ0. This operator is applied to the sum over the regimes of
the product between the marginal deviation of the considered transition probability (due to
its state-dependence) and the solution of the exogenous regime switching in the associated
regime. Thus, the second term in (16) corresponds to the contemporaneous impact of the
expected cumulative effect (O) of the marginal effect of changes in probability in p periods,
for p ∈ N.

Practically, the second term can be either computed by hands in simple examples or
numerically approximated when the probabilities are too complex (e.g. not polynomial). We
compute explicitly this term in the application described in Section 4.

4 A Fisherian model of inflation determination

We apply results of Proposition 2 to study a Fisherian model of inflation determination
with endogenous transition probabilities. In this model, the reaction to inflation in the
monetary policy rule may change across regimes. When the probabilities are exogenous,
Davig and Leeper (2007) and Farmer et al. (2009a) have established determinacy conditions
for this model - called the Long Run Taylor Principle - saying that a combination between
the transition probabilities and the central bank’s reaction to inflation parameters has to be
greater than one. Applying Proposition 2, we obtain that determinacy conditions are given
by the Long Run Taylor Principle, but the dynamics of the solution is slightly more complex.
We identify two mechanisms stemming from the state-dependence of transition probabilities:
the endogenous expectations formation effect and the endogenous selection effect. First, the
expectations formation effects due to the possibility of future switches are state contingent,
whereas these effects are constant in an exogenous Markov switching model. Second, the
endogenous fluctuations of transition probabilities lead to a state-dependent likelihood of
each regime after a shock. This selection effect triggers substantial modifications of Impulse
Response Functions compared to those obtained for exogenous regime switching.

4.1 The model

Consider a nominal bond that costs 1 at date t and pays off 1 + it at date t+ 1. Then, the
asset pricing equation for this bond can be written in log form as:

it = Et(πt+1) + rt (17)

where rt is the ex-ante equilibrium interest rate and evolves as

rt = ρrt−1 + vt

where ρ < 1 and vt is a zero-mean i.i.d bounded process. Monetary policy follows a simplified
Taylor rule, adjusting the nominal interest rate in response to inflation, where the reaction
to inflation evolves stochastically across regimes,

it = αstπt (18)

where st is the realized monetary policy regime and takes two values 1, 2. We use the
formalism introduced in section 3.4 and assume that the switching process follows a Markov
chain with transition probabilities pij = p(st = j|st−1 = i) depending on past inflation, πt−1.
To simplify the solution and the exposition, we focus on probabilities satisfying:

pij(πt−1) = p̄ij + γλijπ
2
t−1 (19)

Where λij is a parameter reflecting the sensitivity of the probability, pij , to inflation and
γ is the scale parameter. For consistency,

∑
i p̄ij = 1 and

∑
i λij = 0. Furthermore, we
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assume that γ is small enough to guarantee that the probabilities remain between 0 and 1
(this obviously requires that p̄ij ∈ (0, 1).).

As mentioned by Filardo (1994), endogenous regime switching as exemplified by equation
(19) allows for state-dependent duration of each regime. In our example, if λ11 is negative,
the average duration of regime 1 decreases when inflation deviates from its steady-state.

4.2 The solution

We assume that |α1| > p11 and |α2| > p22 and we apply Proposition 2 to find determinacy
conditions of the Fisherian model and the first-order Taylor expansion of the solution.

Proposition 3. If the policy parameters satisfy the following determinacy condition:

|α1|.|α2|+ p22(1− |α1|) + p11(1− |α2|) > 1 (20)

Then there exists a unique s.r.e.e. for γ small enough and the solution satisfies:

πt = −rtΛst

αt
+ ργ[cst

r3
t + dst

var(v)
1− ρ2

rt] + o(γ) (21)

Where cst , dst and Λst are regime-dependent scalars (see Appendix C for their expressions)

Proof. This Proposition is an application of Propositions 1 and 2. See appendix C for the
complete proof.

As emphasized by Theorem 1, the determinacy conditions coincide with those of the
exogenous Markov switching model. Thus, condition (20) is similar to determinacy conditions
by Farmer et al. (2009a) and extends those obtained by Davig and Leeper (2007). The
interpretation of equation (20) is similar to the long-run Taylor principle by Davig and
Leeper (2007) : there may exist a unique s.r.e.e. even if policy deviates from the Taylor
principle ”substantially for brief periods or modestly for prolonged periods”.

Equation (21) gives the first-order Taylor expansion of inflation with respect to the scale
parameter. The first term exactly coincides with the solution of the model when probabilities
are constant. The second term results from the expectations of the third raw moments of the
real interest rate shock. Generically, the higher the variance of the real interest rate shock
is, the larger the state-dependence of probabilities matters.

Let us consider a central bank that can switch between an active monetary policy regime
(α2 = 3) and a passive monetary regime in which monetary authority responds less than
one to one to inflation (α1 = 0.9). Furthermore, we assume the higher the deviation from
the steady-state inflation is, the more likely the central bank is to choose the active regime
(λ11 < 0). The parameters are calibrated for an illustrative purpose to deliver plausible
Impulse Response Functions (see Table 1 in Appendix D). In this calibration, a deviation of
1% (−1%) from the steady-state level of inflation decreases the probability of remaining in
regime 1 by −0.4%. In this case, the first-order Taylor expansion of inflation (in γ) is:

When st = 1, π̃t = (6.15− 0.15γ)r̃t − 75 ∗ 102γr̃3
t (22)

When st = 2, π̃t = (0.60− 0.004γ)r̃t −−1.4 ∗ 102γr̃3
t (23)

As we could expect, the responses to a real interest rate shock in both regimes are smaller
than in the exogenous regime-switching (γ = 0) as the probability of switching toward the
aggressive regime increasingly anchors the expectations. In what follows, we discuss two new
features of the state-dependent regime switching equilibrium in comparison with the standard
exogenous Markov switching model as studied in Davig and Leeper (2007): the endogenous
expectations formation effects and the endogenous selection effect.

11



4.3 Endogenous Expectations Formation Effects

In this section, we analyze the impact of the state-dependence of transition probabilities on
expectations. In exogenous Markov switching models, Leeper and Zha (2003) and Davig
and Leeper (2007) show that the possibility of future switches alters the current decisions of
economic agents following the suggestion by Sims (1982). This mechanism is known as the
Expectations Formation Effects. Higher probabilities of switching from one regime to another
amplify these effects. Therefore, one may expect that these effects become state-dependent
in an endogenous regime switching framework.

To only focus on these endogenous expectations formation effects, we study Impulse Re-
sponse Functions of inflation to a real interest rate shock in each regime. We plot these
functions in figure 1. The left graph depicts the response to a one-standard deviation shock
while the right graph displays the inflation response to a ten-standard deviation shock. The
blue (red resp.) line represents the response when monetary policy is active (passive resp.).
In dashed thin line, we display the response of rt to a real interest shock vt. We gather all the
responses for different sizes of shock in figure 2. In the left graph, in blue (in the right graph,
in red resp.), we represent the ratio between the contemporaneous response to a shock and
the size of the shock in the active (passive resp.) regime. In dashed thick lines, we represent
the maximal response divided by the size of the shock in each regime. Finally, in dashed
thin line, we plot these multipliers when probabilities are constant. From figures 1 and 2, we
draw three stylized facts.

First, whatever the size of the shock, the multipliers in both regime are strictly lower than
those of the corresponding exogenous Markov switching model (see figure 2). This means
that the threat of switching toward a more aggressive regime when the inflation is higher
helps stabilizing the economy in both regimes.

Second, there is a wedge between the exogenous solution and the endogenous one due to
the uncertainty around the future values of shocks. This wedge is illustrated by the little
difference between the dashed line and the red line when shocks are close to zero and by the
variance term in equation (21). This constant difference between the exogenous multiplier
and the endogenous has a significant impact particularly when the shocks are small.

Third, the larger the shock (in absolute value), the lower the multiplier. In the exogenous
case, the size of the shock proportionally shifts the response of inflation as the solution is
linear (the multiplier is constant, see figure 2). In the endogenous regime switching, a larger
shock leads to a relatively smaller response of inflation. The initial response to a shock
divided by the size of the shock is quadratic in the size of the shock (figure 2). We notice
that the symmetric shape is a consequence of the quadratic term6 in (19), and stems from
the cubic term in equation (21). In other words, the impact of the expectations is higher
when the shock is larger. Indeed, a larger shock triggers larger expectations of future switches
toward the active monetary policy regime, and this tends to stabilize the expectations. This
endogenous expectations formation effect can be so huge that it also alters the inflation
responses in the active monetary policy regime itself. Indeed, in such a situation, even if the
probability of switching to the passive regime has not changed, economic agents internalize
that if the economy switches to the passive monetary regime, the probability of staying in
this regime has decreased. Consequently, the multiplier in the active regime also depends on
the size of the shocks.

Fourth, when the size of the shock is very large, it generates hump-shaped inflation
response (see figure 1). Actually, the cubic polynomial (22) admits a maximum, rM . If rt >
rM , the response to the shock first increases then decreases, leading to a hump-shape. The size
of this maximal response does not depend on the size of the shocks and this feature differs
from hump-shaped responses in linear rational expectations models where the maximum
depends on the size of the shock.

6Assuming linear probabilities leads to an asymmetric behavior
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The causes of the hump-shape and of the decreasing multiplier are the combination of
two mechanisms. First, in an exogenous regime switching, a fall in rt corresponds to an
exogenous decrease in inflation (due to less demand). Second, a fall in the shock, rt, leads
also to increase the probability of remaining in the passive monetary policy regime and thus
tends to increase inflationary pressures due to the expectations formation effects. While
the first impact is linear, the second is not. For small shocks, the first direct mechanism is
preeminent and explains the monotonic decrease of inflation in reaction to shocks. The larger
the shock, the more important the second mechanism. Hence, when the size of the shock
increases, their relative impact decreases. From a certain threshold, the second mechanism
- the threat to switch toward a more aggressive monetary policy - becomes predominant
explaining the hump-shape.

Finally, we argue that endogenous regime switches triggers endogenous expectations for-
mation effects which are absent in exogenous regime switching models. This new mechanism
seems particularly desirable in a large number of economic issues such as occasionally binding
constraints, zero lower bound or defaults.

4.4 Endogenous Selection Effect

We now turn to the direct implication of the state-dependence of transition probabilities. In
the exogenous Markov switching model, once computed the response in both regimes, the
simulation of trajectories is straightforward as probabilities are constant. In such a context,
the conditional average IRF is thus simply the weighted average of the IRF of each regime.
This is no more the case when probabilities are state dependent.

We represent in figure 3 the expected impulse response function to a real interest rate
shock (in red) for small and large shocks assuming that the initial regime is the passive one.
We also plot the expected response (in blue) considering a model in which inflation can switch
between the two values given by equations (22) and (23) according to a Markov process with
constant transition probabilities (p̄11 and p̄22). The difference between the two curves is only
a consequence of a selection effect due to endogenous fluctuations of transition probabilities.
In addition, we plot the relative difference between the cumulated IRF for fixed probabilities
and the one for endogenous probabilities (figure 4). Intuitively, this difference measures the
gap between the two areas described in figure 3 for different sizes of shock. We will refer to
this gap as the selection effect.

When shocks are small, the selection effect is negligible (figures 3 and 4). The larger the
shock, the larger this selection effect. This finding is consistent with the fact that transition
probabilities are quadratic and hence more sensitive to large inflation deviations and thus
to large shocks. After a large shock (but not too large), inflation increases in both regimes,
hence the likelihood of the active monetary policy regime increases and the expected response,
is thus closer to the response of this active regime than to the other. If the shock is very
large, since the maximal hump-shaped response does not depend on the size of the shock,
the selection effect is not increasing anymore, leading to a reversal in the evolution of this
effect. Figure 4 illustrates the cubic behavior of this effect.

Finally, in our application, we emphasize a direct implication of the state-dependence
on the likelihood of each regime; this leads to complex behavior of expected IRF through
what we call the selection effect. This mechanism is already observed in endogenous regime
switching model without rational expectations.

5 Conclusion

In this paper, we study non-linear rational expectations models with regime switching. We
allow both regime switches and shocks to follow state-dependent probability distributions.
In such models, we show how to use the perturbation approach and prove that determinacy
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conditions can be derived from the corresponding conditions in an exogenous regime switching
model. In addition, we provide new determinacy conditions for forward-looking rational
expectations models with exogenous Markov-switching. Combining these two results leads
to sufficient determinacy conditions for forward-looking models with endogenous regime-
switching.

We apply our findings to a model of inflation determination with monetary policy follow-
ing a Markov-switching process between a dovish regime and a hawkish regime. Furthermore,
we assume that the hawkish regime is more likely when inflation deviates from its targeted
level. The endogeneity does not matter for the determinacy conditions as we assume small
fluctuations of probabilities. However, as expectations of future switches vary across regimes,
they change the economic dynamics. The effects of the expectations increase with the like-
lihood of a switch. This mechanism tends to stabilize the economy, particularly in case of
large shocks.

Evidences on a state-dependent expectation effect highlight the theoretical importance of
endogenous regime switching.
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APPENDIX

A Preliminary: measures µγ

We consider a stochastic process, u = [s, v] with the following conditional probability distri-
bution:

µγ(s, v, φ, ut−1) =
N∑
i=1

hi(v, φ, ut−1)piγ(φ, ut−1)δi(s)

Where we assume that:

� piγ is C1 according to its first argument and γ 7→ piγ is C1.

� For any φ ∈ B and ut−1 ∈ U∞, hi(·, φ, ut−1) is an integrable function on V . hi is also
C1 according to its second argument.

� For any ut ∈ U∞, φ 7→ hi(v, φ, ut−1) is C1.

The measure µγ(·, φ, ut−1) can be seen as a continuous linear form on B and we write abu-
sively

∫
U
µγ(u, φ, ut−1)Ψ(u)du =< Ψ, µγ > even if this measure is not Lebesgue-continuous

in general.

Lemma 1. 1. For any Ψ ∈ B, for any γ ∈ [0, 1] and for any ut−1 ∈ U∞, φ 7→
∫
U

Ψ(u)µγ(u, φ, ut−1)du
is C1.
We abusively denote by

∫
U

Ψ(u)Dφµγ(u, φ, ut−1)(φ̂)du its differential at φ applied to φ̂.

2. It exists C > 0, such that for any Ψ in B for any γ ∈ [0, 1], for any ut−1 ∈ U∞, for
any φ and φ̂ of norm equal to 1,

|
∫
U

Ψ(u)Dφµγ(u, φ, ut−1)(φ̂)du| ≤ C‖Ψ‖∞

3. For any Ψ ∈ B, for any φ and for any ut−1 ∈ U∞, γ 7→
∫
U

Ψ(u)µγ(u, φ, ut−1)du is
C1([0, 1]).

Proof. We first check that µγ satisfies 1. Fix Ψ ∈ B, γ ∈ [0, 1] and ut−1 ∈ U∞, we compute:

< Ψ, µγ(u, φ, ut−1) >= γ

N∑
i=1

piγ(φ, ut−1)
∫
V

hi(v, φ, ut−1)Ψ([i v])dv

φ 7→< Ψ, µγ(u, φ, ut−1) > is derivable; indeed, this function is the sum of the product of
derivable function and an integral which is C1 by dominated convergence theorem.
Then, we check that 2. is satisfied.

< Ψ, Dφµγ(u, φ, ut−1)(φ̂) >= γ

N∑
i=1

Dφp
i
γ(φ, ut−1)(φ̂)

∫
V

Dφh
i(v, φ, ut−1)(φ̂)Ψ([i v])dv

and

| < Ψ, Dφµγ(u, φ, ut−1)(φ̂) > | ≤ (
N∑
i=1

N∑
i=1

sup |||Dφp
i
γ(., .)||| sup ‖||Dφhγ(., ., .)|||)‖Ψ‖∞

Finally, we verify 3.

< Ψ, µγ(u, φ, ut−1) >= γ

N∑
i=1

piγ(φ, ut−1)
∫
V

hi(v, φ, ut−1)Ψ([i v])dv

As we suppose that for any i ∈ [1, N ], γ 7→ piγ is C1 then γ 7→< Ψ, µγ(u, φ, ut−1) > is
also C1.
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These properties imply that the model as a whole is smooth enough to apply Implicit
Function Theorem. Obviously, when measures are state-invariant, these two properties are
immediate for any measures. We notice that point 2. can be interpreted as the fact that
Dφµγ(u, φ, ut−1)(φ̂) is a distribution of order 0 uniformly bounded. Point 3. guarantees that
the measures µγ are a C1 path between µ0 and µ1 and hence we can apply perturbation
method around γ = 0.

B Proof of Theorem 1 and Propositions 1 and 2

B.1 Proof of Theorem 1

In this part, we prove Theorem 1. The proof is a consequence of implicit function theorem
applied to operator N . First, we recall the Implicit Function Theorem(IFT).

Theorem 2. [Abraham et al. (1988)] Let E,F,G be 3 Banach spaces, let U ⊂ E, V ⊂ F
be open and f : U × V → G be Cr, r ≥ 1. For some x0 ∈ U , y0 ∈ V assume Dyf(x0, y0) :
F → G is an isomorphism. Then there are neighborhoods U0 of x0 and W0 of f(x0, y0) and
a unique Cr map g : U0 ×W0 → V such that, for all (x,w) ∈ U0 ×W0

f(x, g(x,w)) = w

Thus, we check that:

1. B with the norm ‖‖∞, and R with || are Banach spaces.

2. N is C1 on B×]−M,M [.

3. φ0 satisfies N (φ0, 0) = 0.

4. DφN (φ0, 0) is invertible.

The first point is immediate, B with the norm ‖‖∞ is a Banach space as a product of Banach
spaces. Point 2. results from the following lemma.

Lemma 2. (φ, γ) 7→ N (φ, γ) is C1 for φ ∈ B and γ ∈]−M,M [

Proof. For any φ ∈ B, the function γ 7→ N (φ, γ) is C1 by regularity of piγ and f . For the
differentiability in φ, we check that Φ 7→ N (φ, γ) is differentiable, with continuous differential:

N (φ, γ) =
N∑
i=1

piγ(φ, ut−1)
∫
V

f(φ(ist, vvt), φ(st, vt), φ(st−1, vt−1), st, γvt)hi(v, φ)dv

φ 7→
∫
V
f(φ(ist, vvt), φ(st, vt), φ(st−1, vt−1), st, γvt)hi(v, φ)dv is differentiable by regularity of

f , hi, and Lebesgue’s dominated convergence Theorem. It results from the differentiability
of φ 7→ piγ(φ, ut−1) that φ 7→ N (φ, γ) is differentiable and moreover:

DφN (φ, γ)H =
N∑
i=1

∂1p
i
γ(φ, ut−1)H(st−1, vt−1)

∫
V

f(φ(ist, vvt), φ(st, vt), φ(st−1, vt−1), st, γvt)hi(v, φ)dv

+
N∑
i=1

piγ(φ, ut−1)
∫
V

∂1f(φ(ist, vvt), φ(st, vt), φ(st−1, vt−1), st, γvt)H(ist, vvt)hi(v, φ)dv

+
N∑
i=1

piγ(φ, ut−1)
∫
V

∂2f(φ(ist, vvt), φ(st, vt), φ(st−1, vt−1), st, γvt)H(st, vt)hi(v, φ)dv
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+
N∑
i=1

piγ(φ, ut−1)
∫
V

∂3f(φ(ist, vvt), φ(st, vt), φ(st−1, vt−1), st, γvt)H(st−1, vt−1)hi(v, φ)dv

+
N∑
i=1

piγ(φ, ut−1)
∫
V

f(φ(ist, vvt), φ(st, vt), φ(st−1, vt−1), st, γvt)H(st−1, vt−1)∂2hi(v, φ)H(st−1, vt−1)dv

Thus, (φ, γ) 7→ DφN (φ, γ)H is continuous on B×]−M,M [.

Points 3. and 4. result from assumptions of Theorem 1. We end the section with the
following result, showing that the regularity of µγ implies that the differential of the operator
behaves as the differential of an operator where the probabilities are exogenous.

Lemma 3. Under assumptions of Theorem 1, the differential DφN (φ0, 0) satisfies:

DφN (φ0, 0)H =< ∂1f(φ0(·st, ·vt), φ0(st, vt), φ0(st−1, vt−1), 0)H(·St, ·vt), µ0(·, φ0, u
t−1) > +

< ∂2f(φ0(·st, ·vt), φ0(st, vt), φ0(st−1, vt−1), 0)H(st, vt), µ0(·, φ0, u
t−1) > +

< ∂3f(φ0(·st, ·vt), φ0(st, vt), φ0(st−1, vt−1), 0)H(st−1, vt−1), µ0(·, φ0, u
t−1) >

Proof. We compute:

DφN (φ0, 0)H =< ∂1f(φ0(·st, ·vt), φ0(st, vt), φ0(st−1, vt−1), 0)H(·St, ·vt), µ0(·, φ0, u
t−1) > +

< ∂2f(φ0(·st, ·vt), φ0(st, vt), φ0(st−1, vt−1), 0)H(st, vt), µ0(·, φ0, u
t−1) > +

< ∂3f(φ0(·st, ·vt), φ0(st, vt), φ0(st−1, vt−1), 0)H(st−1, vt−1), µ0(·, φ0, u
t−1) >

+ < f(φ0(·st, ·vt), φ0(st, vt), φ0(st−1, vt−1), 0), Dφµ0(u, φ0, u
t−1)H(st−1, vt−1) >

Since φ0 does not depend on v, the last term is zero.

B.2 Notations

We introduce some notations, useful for the following. Fix a function φ0 ∈ B, we define the
operators Fi, for i ∈ {1, · · ·N} and L on B.

Fi : H 7→ ((st, vt) 7→
∫
V

H(ist, vvt)hi(v, φ0, s
t, vt)dv)

L : H 7→ ((st, vt) 7→ H(st−1, vt−1)

Equation (3) imply that Fi and L have the following straightforward properties.

1. FiL = 1

2. ‖|Fi‖| = 1 and ‖|L‖| = 1

Point 1. and point 2. are classical results in theory of operators on sequences. The first
result is obtained by straightforward computation. The second follows from the fact that:

∀H ∈ B, ‖LH‖ = ‖H‖, ‖FiH‖ ≤ ‖H‖

and the last inequality is an equality if H is constant.
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B.3 State-dependent probability distribution in the absence of regime
switching: some details

This part is devoted to the study of model (9). We show that N satisfies points 1. and 2.
of Theorem 1. Here, there is no discrete part, thus we omit the dependence in st and the
indexation in i. The function φ0 is the constant φ0(vt) = z̄. By construction, φ0 satisfies:

N (φ0, 0) = f(z̄, z̄, z̄, 0) = 0

We introduce the operator F associated to φ0. Due to Lemma 2, N is differentiable and
according to Lemma 3, we compute:

DφN (φ0, 0)h = ∂1f(z̄, z̄, z̄, 0)Fh+ ∂2f(z̄, z̄, z̄, 0)h+ ∂3f(z̄, z̄, z̄, 0)Lh

Thus, the model is exactly similar to the models studied in Woodford (1986) and Klein
(2000). Assume that Blanchard and Kahn conditions are satisfied for the linearized model
(see section 3.2), then DφN (φ0, 0) is invertible. Precisely, we consider the pencil (A,B)
defined in equation (10) and introduce its real generalized Schur decomposition, following
Klein (2000): there exist unitary matrices Q and Z, quasi triangular matrices T and S such
that:

A = QTZ and B = QSZ

Furthermore, we rank the generalized eigenvalues such that |Tii| > |Sii| for i ∈ [1, n] and
|Sii| > |Tii| for i ∈ [n+ 1, 2n] which is possible if and only if the number of explosive gener-
alized eigenvalues is n (Blanchard and Kahn, 1980; Klein, 2000). In this case, DφN (φ0, 0) is
invertible and

DφN (φ0, 0)−1 = (1 + Z−1
22 Z21L)−1Z−1

22 (1− S−1
22 T22P )−1S−1

22 Q
′
12

where, for a matrix M ∈M2n(R), we write M by blocks of Mn(R):

M =
[
M11 M12

M21 M22

]

B.4 Proof of Proposition 1

In this section, we prove Proposition 1. We compute:

N (φ, 0)(st, vt) =
N∑
j=1

p̄stj

∫
V

fst(φ(jst, vvt), φ(st, vt), 0)hst(v, φ, u
t)dv

We define the function φ0 such that:

∀i ∈ {1, · · ·N}, φ0(st, vt) = z̄st

According to assumption 3., the function φ0 satisfies :

N (φ0, 0) = 0

We compute now DφN (φ0, 0), using Lemma 3, we have:

DφN (φ0, 0)h(st) =
N∑
j=1

p̄stj∂1fst(z̄j , z̄st , 0)Fjh
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+(
N∑
j=1

p̄stj∂2fst
(z̄j , z̄st

, 0))h

Introducing Aij and βi defined for (i, j) ∈ {1, · · · , N}2 by:

βi =
N∑
j=1

p̄ij∂2fi(z̄j , z̄i, 0) and Aij = ∂1fi(z̄j , z̄i, 0) (24)

We get that:

DφN (φ0, 0)h =
N∑
j=1

p̄stjAstjFj + βst

Let Ψ a function in B(U∞) and consider the equation DφN (φ0, 0)h = Ψ. Then, for all
i ∈ {1, · · ·N},

DφN (φ0, 0)h =
N∑
j=1

p̄stjAstjFjh+ βsth = Ψ

This relation implies that for any P ≥ 2

h = β−1
st

Ψ− β−1
st

P∑
p=2

(−1)p
∑

{s2,··· ,sp}∈{1,··· ,N}p−1

p̄sts2Asts2β
−1
s2 · · · p̄sp−1sp

Asp−1sp
β−1
sp
Fs2Fs3 · · · Fsp

Ψ

+ (−1)Pβ−1
st

∑
{s2,··· ,sP+1}∈{1,··· ,N}P

p̄sts2Asts2β
−1
s2 · · · p̄sp−1spAsp−1spβ

−1
sp
Fs2 · · · FsP

FsP+1h (25)

We then define the operator series of general term, Ap:

Ap : φ 7→

(st, vt) 7→
∑

s2,··· ,sp

(−p̄sts1Asts1)β−1
s1 · · · (−p̄sp−1spAsp−1sp)β−1

sp
Fs2 · · · Fsp−1Fspφ


(26)

and by convention A1 = 1.
If
∑
Ap converges, then, the third member of equation (25) tends to 0 when p tends to

∞ and the second member converges in B. Thus, h is uniquely defined for any ψ ∈ B by:

h(st, vt) = β−1
st
FstΨ− β−1

st

∞∑
p=2

ApΨ = β−1
st

∑
p=1

ApΨ (27)

This results proves that for any Ψ ∈ B(U∞), we have found a unique solution h such that:

DφN (φ0, 0)h = Ψ

Thus, DφN (φ0, 0) is invertible and moreover,

DφN (φ0, 0)−1Ψ = β−1
st

∑
p=1

ApΨ (28)

Now, we consider the matrix Sp defined by

Sp =

 ∑
(k1,··· ,kp−1)∈{1,··· ,N}p−1

|||p̄ik1Aik1β−1
k1
· · · p̄kp−1jAkp−1jβ

−1
j |||


ij
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Fix p such that the eigenvalues of Sp lie inside the unit circle ; we will show that
∑
Ap is

absolutely convergent. We define :
Ãij = p̄ijAij

For any (q, r) ∈ N× {0, · · · , p− 1}, we use sub-multiplicativity of norm ||| · ||| and compute,
for n = pq + r : ∑

{s2,··· ,sn}∈{1,··· ,N}n−1

‖|Ãik1β−1
k1
· · · Ãkp−1jβ

−1
j ‖| ≤

∑
{s2,··· ,spq}∈{1,··· ,N}pq−1

|||Ãis2β−1
s2 · · · Ãsp−1sp

β−1
sp
||| · · · |||Ãsp(q−1)sp(q−1)+1β

−1
sp(q−1)

· · · Ãspq−1spq
β−1
spq
|||×

∑
{s2,··· ,sr}∈{1,··· ,N}r−1

|||Ãspqs2β
−1
s2 · · · Ãsr−1sr

β−1
sr
|||

We find an upper bound for both terms of the previous inequality. Concerning the second
term, there exists C > 0,such that for any r ∈ {0, · · · , p− 1},

sup
i∈{1,··· ,N}

∑
{s2,··· ,sr}∈{1,··· ,N}r−1

|||Ãsis2β
−1
s2 · Ãsr−1srβ

−1
sr
||| < C (29)

We rewrite the first term as:

∑
{s2,··· ,spq}∈{1,··· ,N}pq−1

|||Ãis2β−1
s2 · · · Ãsp−1spβ

−1
sp
||| · · · |||Ãsp(q−1)sp(q−1)+1β

−1
sp(q−1)

· · · Ãspq−1spqβ
−1
spq
|||

=
∑

spq∈{1,··· ,N}

(Sqp)ispq
(30)

Combining (29) and (30) leads to

|||An||| < sup
i

N∑
j=1

(Sqp)ij

Then, denoting by [x] the integer part of a real number x, we obtain7 :

|||An||| ≤ C|||(Sp)[
n
p ]|||∞

Since all the eigenvalues of Sp lie inside the unit circle, due to the Gelfand’s formula (Gelfand,
1941), for any matrix norm,

lim
q→∞

|||Sqp |||1/q = ρ < 1

This implies that lim
n→+∞

|||S[ n
p ]
p |||1/n = p

√
ρ < 1. Finally, using the Cauchy rule, the series∑

|||(Sp)[
n
p ]|||∞ is convergent and thus

∑
An is absolutely convergent.

7We recall that for a matrix M ∈MN (R), |||M |||∞ = sup
i∈{1,··· ,n}

N∑
j=1
|Mij |
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B.5 Proof of Proposition 2

In this section, we prove Proposition 2. The proof relies on a refinement of the method used
in Proposition 1. We first compute the solution when γ = 0. Since the model is completely
linear, the solution is defined for any γ. Then we solve the model for a small γ by perturbation
around the model with exogenous probabilities.

We consider the following model:

Ast
Et(xt+1) +Bst

xt + σCst
vt = 0

We assume that for any i ∈ {1, · · · , N}, the matrices Bi are invertible.
In this case, the operators Ap defined in equation (26) satisfy, for p > 0:

Ap : φ 7→ ((st, vt) 7→
∑

s2,··· ,sp

(−p̄sts2Ast
)B−1

st
· · · (−p̄sp−1sp

Asp
)B−1

sp
Fs2 · · · Fsp−1Fsp

φ)

Defining Ψ0(st, vt) = σCst
vt and using the computations in section B.4, we get that the

solution of the model is given by :

φ(st, vt) = OΨ0

where:

O =
∞∑
p=1

Ap (31)

First, we compute

ApΨ0 = σ
∑

s2,··· ,sp

(−p̄sts2Ast
)B−1

st
· · · (−p̄sp−1sp

Asp
)B−1

sp
Csp

Λpvt

Defining the matrix P ∈MnN (R) by blocks as:

Pij = pijAj(Bj)−1

Apφ0 = (P p)st × C × Λp

where C =

 C1

...
CN

. This leads to:

∞∑
p=1

Apφ0 = σ(P p)st × C × Λp

Defining R =

 R1

...
RN

 such that Oφ0(st, vt) = Rst
vt, then R satisfies:

Vect(R) = (I − (Λ⊗ P ))−1Vect

 C1

...
CN

 (32)

Consequently, the solution of this linear model when γ = 0 satisfies:

φ(σ, 0)(st, vt) = σB−1
st
Rstvt
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We apply Theorem 1 and compute

DφN (φ(σ, 0), σ, 0)−1h(st, vt) = B−1
st

(Oh)(st, vt)

Moreover, we compute:

DγN (φ(σ, 0), σ, 0)(st, vt) = Ast

N∑
j=1

γ∂1pstj(0, σB
−1
st
Rstvt)σB

−1
j RjΛvt

and: This implies that:

φ(σ, γ)(st, vt) = σB−1
st
Rstvt+σB

−1
st
O

Ast

N∑
j=1

∫
V

γ∂1pstj(0, σB
−1
st
Rst(Λvt + µ))B−1

j Rj(Λvt + µ)h(µ)dµ


C Proof of Proposition 3

C.1 Existence and uniqueness of a s.r.e.e.

This results from Proposition 1.

S1 =

[
p11
|α1|

p12
|α2|

p21
|α1|

p22
|α2|

]
Here, Sp = Sp1 and we only need to check that all eigenvalues of S1 are smaller than 1.

This condition exactly coincides with Farmer et al. (2009a) determinacy condition.
Furthermore, when |α1| > p11 and |α2| > p22, Davig and Leeper (2007) proves that the

eigenvalues of S1 are smaller than one if and only if:

|α1|.|α2|+ p22(1− |α1|) + p11(1− |α2|) > 1.

C.2 The solution when probabilities are exogenous

We directly apply Proposition 15 and with the notations of section B.5, Λ = ρ and

P =

[
p11
α1

1−p11
α2

1−p22
α1

p22
α2

]
We know that:

πt =
Λtrt
αt

where [
Λ1

Λ2

]
= (I − ρP )−1

[
1
1

]
In particular, if ρ = 0, Λ1 = Λ2 = 1.

C.3 Computation of DγN (φ0, 0)

The expression of N (φ, γ) leads to:

DγN (φ0, 0) = ρ
Λst

αst

(
Λ1

α1
− Λ2

α2
)[

Λst

αst

λ2
st1rt]r

2
t

We thus define γi = Λ2
i

α2
i
(Λ1
α1
− Λ2

α2
)λ2
i1, to rewrite the differential as follows:

DγN (φ0, 0) = ργst
r3
t

22



C.4 Computation of DφN (φ0, 0)−1DγN (φ0, 0)

Computing :

DφN (φ0, 0)−1DγN (φ0, 0) = −rtΛst

αst

+ γρ

∞∑
k=0

Et
γt+k∏k
j=0 αt+j

r3
t+k

As rt is independent from the switching process,

DφN (Φ0, 0)−1DγN (φ0, 0) = −rtΛst

αst

+ γρ

∞∑
k=0

Et
γt+k∏k
j=0 αt+j

Etr3
t+k

We notice that:

Et
γt+k∏k
j=0 αt+j

=
1
αst

P̃ kst

[
γ1

γ2

]
Now we compute first and second raw moments of rt:

Etr3
t+k = 3var(v)Etrt+k−1 + ρ3Etr3

t+k−1

Etr3
t+k = 3var(v)rt

k∑
i=1

(ρ3)i−1ρk+1−i + (ρ3)kr3
t

Etr3
t+k = 3ρk

1− (ρ2)k

1− ρ2
var(v)rt + (ρ3)kr3

t

Etr3
t+k = 3

ρk

1− ρ2
var(v)rt + (ρ3)k[r3

t −
var(v)rt
1− ρ2

]

Thus,

γρ

∞∑
k=0

Et
γt+k∏k
j=0 αt+j

Etr3
t+k = γ

ρ

αst

var(v)rt
1− ρ2

∞∑
k=0

ρkP̃ kst

[
γ1

γ2

]
+(r3

t−
var(v)rt
1− ρ2

)
∞∑
k=0

ρ3kP̃ kst

[
γ1

γ2

]

γρ
∞∑
k=0

Et
γt+k∏k
j=0 αt+j

Etr3
t+k = γ

ρ

αst

var(v)rt
1− ρ2

(I−ρP̃ )−1

[
γ1

γ2

]
+(r3

t−
var(v)rt
1− ρ2

)(I−ρ3P̃ )−1

[
γ1

γ2

]
Finally by applying Proposition 2 we find:

πt = −rtΛst

αst

+ ργ(cst
r3
t + dst

var(v)
1− ρ2

rt) + o(γ)

Where [
c1
c2

]
= A−1(I − ρ3P̃ )−1

[
γ1

γ2

]
[
d1

d2

]
= A−1[(I − ρP̃ )−1 − (I − ρ3P̃ )−1]

[
γ1

γ2

]

D Calibration
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Parameter Calibration
p11 0.8
p22 0.95
ρ 0.9√

var(v) 0.25%
α1 0.9
α2 2
λ2

11 -40
λ2

22 0
γ 1

Table 1: Parameters calibration
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