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ABSTRACT

Many time series are sampled at different frequencies. When we stuthovements between such series we usually analyze
the joint process sampled at a common low frequency. This has amrssep in terms of potentially mis-specifying the co-
movements and hence the analysis of impulse response functions -nacodynused tool for economic policy analysis.
We introduce a class of mixed frequency VAR models that allows us theurethe impact of high frequency data on low
frequency and vice versa. Our approach does not rely on laterggses/shocks representations. As a consequence, the mixed
frequency VAR is an alternative to commonly used state space modetsxed frequency data. State space models involve
latent processes, and therefore rely on filtering to extract hidden statesre used in order to predict future outcomes. We
also explicitly characterize the mis-specification of a traditional common teguiency VAR and its implied mis-specified
impulse response functions. The class of mixed frequency VAR madeisalso characterize the timing of information
releases for a mixture of sampling frequencies and the real-time upddfimgdictions caused by the flow of high frequency
information. Hence, they are parameter-driven models whereasl fteguency VAR models are observation-driven models
as they are formulated exclusively in terms of observable data andtdiovotre latent processes and thus avoid the need to
formulate measurement equations, filtering etc. We also propose sgr@msimonious parameterizations, in part inspired by
recent work on MIDAS regressions. Various estimation procedwrasifked frequency VAR models are also proposed, both
classical and Bayesian. Numerical and empirical examples quantifotisequences of ignoring mixed frequency data.
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1 Introduction

It is simply a fact of life that time series observations are sampled at diffelequencies. Some data
series - such as financial ones - are easy to collect and readily availdtile others are costly to
record and therefore not frequently sampled. When we study co-maoxsiinetween such series we
usually analyze the joint process sampled at a common low sampling frequirggical example,
following the seminal work of Sims (1980), is a vector autoregressiveRjMAodel with both real and
financial time series sampled quarterly - even though financial seriebseeved more frequently. We
introduce a mixed frequency data VAR model and analyze the consespiefignoring the availability
of high frequency data. Take a simple example: GDP growth observetedyand non-farm payroll
published monthly. We could look at the dynamics between the two series arterdy frequency
- ignoring the fact that we do have monthly data for the second series. ddew the shock to non-
farm payroll and its impact on future GDP growth produced by standaiR Model analysis relate
to the monthly surprises in the series? The quarterly VAR model shocks wslbime mixture of the
innovations in the underlying series. What type of mixture would this be? \afeahe costs in terms
of impulse response analysis when we mis-align the data by ignoring the kigheficy data? How
does the flow of high frequency data allow us to update predictions ofeflbwr and high frequency
data? We provide formal answers to all of these types of questions.

We introduce a relatively simple mixed sampling frequency VAR model. By simplenean, (1)
parsimonious, (2) one that can track the proper timing of low and highéremyudata - that may include
releases of quarterly data in the middle of the next quarter along with thesesled monthly data or
daily data, (3) a specification that allows us to measure the impact of higheiney data onto low
frequency ones and vice versa and perhaps most subtle (4) a spewifihat does not involve latent
shocks.

We characterize the mapping between the mixed frequency VAR model amaditiomal VAR
model where all the data are sampled at a common low frequency. This magloiwg us to study
the mis-specification of impulse response functions of traditional VAR moddis.VAR models we
propose can also handle time-varying mixed frequencies. Not all montiestha same number of
trading days, not all quarters have the same number of weeks, etanisgsa deterministic calendar
effect, which makes all variation in changing mixed frequencies perfeotigligtable, we are able to
write a VAR with time-varying high frequency data structures.

The mixed frequency VAR provides an alternative to commonly used state spadels involving
mixed frequency da@.State space models involve latent processes, and therefore rely onditrin
extract hidden states that are used in order to predict future outcotags sBace models are, using the
terminology of Cox (1981), parameter-driven models. The mixed frequ®AR models are, using
again the same terminology, observation-driven models as they are forchelatesively in terms of

1See for example, Harvey and Pierse (1984), Harvey (1989),aB&m Gertler, and Watson (1997), Zadrozny (1990),
Mariano and Murasawa (2003), Mittnik and Zadrozny (2004), ancemexently Aruoba, Diebold, and Scotti (2009), Ghysels
and Wright (2009), Kuzin, Marcellino, and Schumacher (2009),ddlino and Schumacher (2010), among others.



observable data. The fact we rely only on observable shocks has itipigavith respect to impulse
response functions. Namely, we formulate impulse response functiongria tdrobservable data -
high and low frequency - instead of shocks to some latent processedlyfHinixed frequency VAR
models, like MIDAS regressions, may be relatively frugal in terms of patarzation.

Technically speaking we adapt techniques typically used to study sesisomaeries with hidden
periodic structures, to multiple time series that have different sampling fnetege The techniques we
adapt relate to work by Gladyshev (1961), Pagano (1978), Tiao amgeG1980), Hansen and Sargent
(1990, Chap. 17), Hansen and Sargent (1993), Ghysels (1Bg#)ses (1996), among others. In
addition, the mixed frequency VAR model is a multivariate extension of MIDé&g@essions proposed
in recent work by Ghysels, Santa-Clara, and Valkanov (2006), &sysd Wright (2009), Andreou,
Ghysels, and Kourtellos (2010) and Chen and Ghysels (2011), antlogig 0

We study two classes of estimation procedures, classical and Bayesiamxéd frequency VAR
models. For the former we characterize how the mis-specification of traditifamodels translates
into pseudo-true VAR parameter and impulse response estimates. Pararolftenagion is an issue
in both mixed frequency and traditional VAR models. We therefore alsora®ayesian approach
which easily accommodates the potentially large set of parameters to be estimated.

The paper is organized as follows. Sectidn 2 introduces the structure efirfiequency VAR
models, discusses parsimony and impulse response functions. $éctitmo@a on structural VAR
models in the context of real-time updating of predictions and policy analysistidB[4 covers the
(mis-specified) traditional low frequency VAR process dynamics and irepeisponse functions im-
plied by a mixed frequency VAR and also characterizes the loss of informdtie to ignoring high
frequency data. Sectidn 5 discusses classical and Bayesian estimatiedymes. Sectidd 6 provides
numerical illustrative examples and finally Sectidn 7 reports empirical findindpsconclusions ap-
pearing in Sectiofl8.

2 Mixed Frequency Vector Autoregressive Models

Since the work of Sims (1980), it is now standard to characterize the cemes of macroeconomic
time series as a VAR model. This typically involves some real activity series [D€. ggowth), some
price series (i.e. inflation) and some monetary policy instrument (i.e. shortiteerest rates). This
means we actually do have a mixture of respectively quarterly, monthly alydséaes. Usually the
sampling frequencies are aligned, for example inflation is computed quaatedlynly end-of-the-
quarter interest rates are sampled. Since the purpose of VAR models guoectime series dynamics,

it is natural to wonder how much harm is done both in terms of specificati@mseand prediction
inaccuracy. Specification errors affect policy impulse response sinagd also have consequences as
far as the asymptotic properties of estimators goes.

When we think of mixed frequencies, we need to distinguish situations whetggh frequency



data are samplegh(7;) times more often than the low frequency series where eithet,) = m,

a constant o (77,) has a deterministic time path. For example quarterly/annual, monthly/quarterly,
daily/hourly amount to fixeeh, whereas of daily/quarterly or weekly/quarterly invotwér;, ) featuring
pre-determined calendar effects. We start with the case of fixathmely:

Assumption 2.1. We consider a K-dimensional process with the fik5t < K elements, collected
in the vector processy(71), are only observed eveny. fixed periods. The remaininffy = K -
K, series, represented by double-indexed vector proegds;,, k) which is observed at the (high)
frequency period&y = 1, ..., m during periodry,.

We will often refer tox(77,) as the low frequency (multivariate) process, and by, k)
process as the high frequency (multivariate) one. Note that, for thedaienplicity we consider
the combination of two sampling frequencies. More than two sampling frequeewoield amount to
more complex notation, but would be conceptually similar to the analysis with a catidrirof two
frequencies (see also sectldn 4 for further discussion).

2.1 Shocks: Latent versus observable

So far attempts to accommodate mixed frequency data involve latent proeeskéserefore latent
shocks. Zadrozny (1990) starts with a joint high frequency VAR(MA) eiags if high frequency
observations for:; (77,) were available. A state space representation is then used to match the latent
process with the mixture of data observed. This approach has receetlygameralized by Chiu,
Eraker, Foerster, Kim, and Seoane (2011) who develop a Bayegianaah to such mixed frequency
VAR models where the missing data are drawn via a Gibbs sampler. Note thathirasuapproach
the fundamental shocks are with respect to the hidden high frequenRy FActor models are also
commonly used to handle mixed frequency data. For example, Mariano aras&iva (2003) extract a
coincident factor using quarterly and monthly time series (see also Nud@5s)j2 Along similar lines,
Aruoba, Diebold, and Scotti (2009) describe a dynamic one-factor hewdéving on a daily basis to
construct a coincident business index. Here too, the system is dyMatelmt shocks - not shocks to a
high frequency VAR, but instead shocks that drive the latent factbighmeasured with error through
repeated high and low frequency data observations.

Our approach does not involve latent shocks. This means there is ddfaretering and the
impulse response functions are based on observable shocks. Taeamaked frequency vector pro-
cesses we use insights from periodic models and construct stackesbshkgted processes. We will
start with an example where all the low frequengyseries appear at the end of the (low frequency)



period. Namely, consider the following finite order VAR representationsibeked vector:

J,’H(TL,l) l’H(TL—j,l)
. P .
= 4+ Y4 C | e (2.)
vy (7L, M) j=1 vy (T, — j,m)
zr(7L) zr(tp — )

which is K, + m x Ky dimensional VAR model withP Iags@ Hence, with quarterly data we stack for
example the months of January, February and March together with thguater low frequency data.
Similarly we stack April, May and June with the second quarter, etc. For the mtomve focus on
predicting next quarter’s high and low frequency dgiteenprevious quarter’s high and low frequency
observations. Note however, that one may think of a specification similaructstal VAR models

where we pre-multiply the vectoe i (7, 1), ..., xg (7, m)’, xp(71)']" with a matrix A, :
vy (rr,1) ry(tr —j,1)
. P .
A, - = Ao+ A o + (1) (2.2)
:L'H(Tlnm) j=1 CL’H(TL _]7m)
rr(7r) TACTE)

where the matrix4. pertains to contemporaneous (in this case within quarter) relationships. §Vritin
the matrixA. explicitly, we have the left hand side ¢f(2.2) as:

Ix, ... A¥™ ALt rp(tp,1)
: : : (2.3)
AZ”’I .. IKH Avcn,m—H -rH(TLa m)
ALl et zr ()

Hence, elements below the diagonal pertain to downstream impacts, i.e. diglefcy data affect
subsequent withir, period observations. This will be relevant notably for intiaperiod prediction

updating - a topic discussed in sect[on]3.1. In contrast, elements above goealiavill be relevant

notably when we will discuss policy rules in sect[on]3.2. Obviously, withinvertible we can always
view equation[(2]1) as one obtained after pre-multiplying both sidds df (2.2).:8. Hence, for the

moment we will ignore the presence 4f.

One might think that the stacked system appearin@_id (2.1) could be proaeameter prolifera-
tion. That may not actually be the case as we will show later in the section. Waitbowot address
parameter proliferation issues for the moment, it is worth pointing out the reshijprvith MIDAS
regressions, in particular, by looking at a special case With= Ky =1. The last equation in the

2The assumption of a finite order VAR may appear somewhat restrittigavorth noting that much of our analysis could
be extended to VARMA models. Since VAR models are more widely useccansidering VARMA models significantly
complicates the estimation we forego the generalization of adding MA terms.



system then reads:

P P m
xL(TL) — AgH-l,l + Z A;ﬂ-ﬁ-l,m-ﬁ-l TL o ] + Z Z Am+1 k TL o j7 k) + €(TL)m+1,1 (24)
j=1 7j=1k=1

which is the ADL MIDAS regression model discussed in Andreou, Ghyseld Kourtellos (2010).
There are various parsimonious parameterizations suggested foregrelssions, see e.g. Ghysels,
Sinko, and Valkanov (2006), Andreou, Ghysels, and Kourtellos@patd Sinko, Sockin, and Ghysels
(2010), that will be discussed later.

Note that the aforementioned VAR model contains, besides MIDAS ragnsssalso the impact
of what one might call the low frequency shogkr;, )™ *1:! (the last element of the innovation vector
in this particular example) onto both future highdlow frequency series as well as high frequency
shockss(7)%! (i = 1, ..., m again in this particular example) onto future high and low frequency
series.

2.2 The constituents of the stacked vector

We adopt a general approach, and therefore analyze a genekiedstector systems. Yet, we also need
to keep in mind that the observations we stack into vectors may differ froficapipn to application
and in particular may depend on the focus of the application.

For example, let us consider two different scenarios involving a mixturethmyoand quarterly
data. The first scenario, one could refer to as economic time, seeks yatstudindamental dynamics
of the economy. Namely, there is a number of people employed during the miafdghuary, another
number for February, a third for March, and then there is a GDP nurobdhd first quarter. This yields
four numbers, three monthly employment figures and one GDP, which wayilthlty be collected in
a single stacked vector. An alternative scenario is news-release timex&wople, on January 6 the
Bureau of Labor Statistics (BLS) releases the December employment,repdanuary 27 the Bureau
of Economic Analysis (BEA) will release the GDP number for the fourth taranf the previous year,
on February 3 the BLS will release the employment report for Januatyaarevised value for the
employment number for December, on February 29 the BEA will releasdseedeestimate of previous
fourth quarter of GDP, on March 2 the BLS will release the employmentrtdpo February (and
revisions of the December and January counts), and on March 29 thenErelease yet another
estimate of the previous year GDP. Perhaps we want to collect all eighegd tiumbers in the vector
for the first quarter. Note also that in the first scenario we would takedata, not the real-time series.

Clearly, both scenarios are of interest and can be covered by oarigenixed frequency VAR
model. While throughout the paper we will try to provide a general discaos#iavill be clear that
some parts of our analysis will be more relevant for specific applicatiooseXxample, the mapping
from mixed frequency to traditional low frequency VAR models and the amalyf potentially mis-
specified impulse response functions appearing in sdction 4 is clearly edevant for aforementioned



economic time structural dynamic analysis. Likewise, the distinction between raixadgeriodic
stacked VAR representations appearing in subsettidn 2.3 will also mosthirptr the first scenario
type of research.

On the other hand, if one is interested in a real-time forecasting exercigawthelearly consider
the second approach. For example, assume all low frequency dateleaser at the same time and
compare:

l’H(TL,l) :CL(TL) xH(TL, 1)
: xH(TL, 1)
X(1p) = : versus : or xr (1) (2.5)
ZCH(TL,m)
xr(mr) | | zg(1,m) | | zg(1,,m) |

where the release of low frequency appears at the end, beginniognertsne in the middle of;,. The
order of appearance in the vector therefore determines the timing ofrinfpariod releases and that
will be important later to understand the impact and timing of shocks as well aptiating of predic-
tions as new intras, period shocks occur. The high frequency releases of low freque@ta can be
scattered at variousy throughout period;, and therefore impact the structure of shocks and responses.
More specifically the;, low frequency serierH in z7,(77) are released at timey in periodr;, for
kp=1,...,m,with > " K! = K; 5 When we need to keep track of the high frequency releases on
low frequency data we use, (71, kg7 ), for the sub-vector releasedfat . All x 1 (1,, krr) combined for

kg =1,...,m,Yyield the time-stamped low frequency process. Hence, when all the loweney data

are released at the end of perigdthen X)) = (g (71,1), ..., 2y (1, m) , z1(71)’)’, otherwise it
contains(x (1, kg)', x g (1, ky)') for the sequencky =1,...,m

For many parts of the paper the details about the specific constituents tdi¢ckedvector will be
irrelevant, and we will put all the high frequency data first followed byltve frequency data. How-
ever, when the focus is real-time analysis, as in subsedtiohs 2[5 and 3uill deal more explicitly
with the specific order of the elements in the stacked vector.

3 Most releases are on a fixed schedule, with notable exceptions suchormas §OMC announce-
ments. In addition to the extensive academic literature, mostly studying tle@optenon of financial mar-
ket impact of announcements - one can find many details regardingpuacement schedules on finan-
cial news sites such ashttp://www.nasdag.com/markets/us-economic-calendar. aspx| or
http://biz.yahoo.com/c/e.html , among many others. The framework presented in this paper can, with
some modification handle announcements that may occur at randortectimécalities of it are clarified in subsectionl3.3.

4 &y (1o, kzr) is empty for somék g, we only stack the high frequency data.
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2.3 Mixed and Periodic Stacked VAR Representations

It will be convenient to use a more compact notation for&e+ m « Ky dimensional vector k),
namely we will write equatiori (211) as:

A(LL)(X(TL) — px) = e(7L) (2.6)

whereL, is the low frequency lag operator, i.8;Xx(7z,) = X(rz, — 1), and:

P
A(Ly) = T-) ALy
j=1
p
px = (I=> Aj) 4 2.7)
7j=1

where we assume that the VAR is covariance stationary to be able to writedkie auations (see
Assumptiori 2.2 below) and we 1&t[ (7 )e(7)'] = CC'.

We are also interested in a second representation which will be usegilfitying the relationship
between mixed frequency and traditional VAR models which ignores the bil#ylaof =y (77, kx).
To this end, we will introduce a joint procesér;) = (xy (1), z1(71)")’, where the first sub-vector
of low frequency observations is left unspecified for the moment - i.e.re@at going to be explicit
until the next section about how the high frequency data aggregate todqueincy observations. We
are interested in the VAR model:

B(LL)(Z(7z) — pz) = E(71) (2.8)

whereB(Ly) =1 - Z}’:l BjEJL, andE[e(r1)g(r)] = CC . Note that the lag length of the VAR may
not be finite, i.e? may be infinit@ Obviously, what also interests us is the relationships between the
(traditional) VAR characterized bj(£ ;) andC and the original mixed frequency dynami€g and

C. Itis one of our goals to characterize this relationship.

While the VAR model appearing in equatidn (2.6) looks standard, its simple agpyeais deceiv-
ing. Inherently, its structure shares features with so called periodic tinessaodels originated by
Gladyshev (1961). Yet, it does not quite fully resemble periodic modets wanwill need an aug-
mented version of (216) to achieve this. We will considékax m) x (K, + m * Ky) matrix H such
that:

i(r) = HX(r) (2.9)

One prominent example i) = (zg (71, 1),z (1), ..., 2u(mn,m)’, 21 (71))’". Note that the low
frequency series is repeated, capturing every high frequencydpiiearelationship between how and

SIncorrectly assuming one has a finite VAR will have consequences asieptotic properties of the parameter estima-
tors - a topic that will be discussed later.



high frequency data. Note that this is simply a reshuffling of the originabveeve are not constructing
a mapping involving a latent vector. Recall that we discussed two diffsoamtarios in subsection P.2.
The first scenario seeks to study the fundamental dynamics of the ecomtraseas the second is
oriented towards real-time analysis. It is mostly for the first type of analysisvile will need the
Z(11) representation. As discussed later, this will allow us to examine how mixedeneg impulse
responses will get scrambl@d.

Formally stated, we assume the following data generating process for the eriktoigh and low
frequency data:

Assumption 2.2. The vectori(r) = (zu (0, 1), 2 (11,1), ...,z (7, m) (1, m))" is of di-
mensionm x K and has a finite order covariance stationary VAR representation:

A(Lp)(E(L) — pa) = E(71L) (2.10)
whereA (L) = 1- 30 AL, s = (I -0 Aj) "L Ay and B[g(rp)é(rp)'] = €C'.

In the remainder of this section we will work mostly with the vectdr;x appearing in[(2]6)
rather thari (71 ). The latter will be useful when we derive the mapping between traditionafraxed
frequency VAR models, a topic which we will cover in sectidn 4.

2.4 Parsimony

The question of parsimony in VAR models has been much discussed as it isuanthst is partic-
ularly acute for large dimensional models and/or models involving many lagse. ndght think that
the acuteness of parameter proliferation is likely to be even more an issue miktuee of sampling
frequencies. It is the purpose of this section to show that this may notdmvase as one might think.
There are mainly two reasons why there may not be a parameter prolifepatiblem despite the po-
tentially large dimensional VAR systems. First, the stacking of high frequdatyy typically involves
repeating the same parametric structure across edplicas (unlike the periodic models which inspired
the structure of mixed frequency VAR models). Second, the key insighii[OAS regressions also
play a key role in keeping the parameter space low dimensional. We devedapexémples showing
how one could potentially write sparsely parameterized mixed frequencyriééels. These are not
per sethespecifications, but they provide a few leads on how one may go aboutgwitimveniently a
parametric structure. The common theme, however, is that we aim for sp#oiiiE with the appeal-
ing feature that the number of parameters does not depemd, d)¢. the number of high frequency
observations per low frequency time period.

bIf we were to consider the second scenario involving real-time applicatioa$ow frequency components of the vector
Z(7¢) will gradually update the data release throughauttogether with the high frequency observations(rr, kx ), in
chronological order. Hence, the difference between the veétor)andz(7z) is that the former simply stacks all the timed
releases of low and high frequency data, whereas the latter repeats elethents of the low frequency process with stale
values until intra-7., updates happen. For the sake of brevity we skip the details of suchianalys



For the purpose of streamlining the exposition we will start again with an exanipee all the
low frequencyr;, series appear at the end of the stacked vector as in equUation (2.1}litioradve set
K, = Ky =1 and assume that all the series are either demeaned or are assumedrm@éﬁrnerefore,
we rewrite equatiorf (211) as:

$H(7'L, 1) Ajl-’l .. A]l,m Ajl-’erl l’H(TL -7, 1)
P
_ : R : : + €(TL)
xp (T, m) jz; A;n’l s AT A;-n’mH xy (T, — j,m)

which ism + 1-dimensional VAR model withP lags. When we assume that the high frequency process
is ARX(1) with the impact of the low frequency series constant througti@uperiod, we have:

xp(Tn,1) 0 p a xp(tn —1,1)
: _ : : : L : (2.11)
h (7L, ™) 0 ... p" a4+ ) zp(t —1,m)
zr(7r) wY)m ... w(y) o1 xp(rp — 1)
0 0 0 xH(TL—j,l)
P . .
+ ) +E(TL)
= 0 0 0 xy(tp —j,m)
WY )jm - W) G-Dmi1 QY FACTA))

which involvesP parametersy;, two parameterp anda and a low dimensional MIDAS polynomial
parameter vectoy. When allo; = 0 for j > 1, and the dimension of is 2, which is not unreasonable
(see AppendiX_A for details), we end up with 5 parameters regardlesg ofithe ofm. Admittedly,
this is a tightly constrained model, yet it is not an unreasonable starting poanttinQing with the
system in[(Z.1]1), the innovation covariance matrix may also be sparselfiespe€ontinuing with the
above specification, we can write:

OHH POHH . P lopn OHL
porr  (1+pY)oun 5 OHL
Ele(rp)e(rn)] = : : PO b (212)
P togy  p"lopym ... (1+ Z:’:ll P2 omnn
| omL OHL oLL |

adding another three parameters, and therefore a total of eight agejpeimdent ofrn. Obviously,
for some of the high frequency applications, one may consider addingHAfge dynamics to the
innovations, or add announcement effects to some of the elements of tmgaocoes - which would
entail a richer, yet still moderate and independentgparameter structure.

In subsectiofi 5]2 we cover the cases wifh low frequency ands;; high frequency series.



The specification of the MIDAS regressions, whi&n, > 1, deserves some attention as well.
Namely, consider the following:

[AT+1,1 o AT-%—l,mAgn-i-l,l ' ..A"P”Lm] —B® (2.13)

Z (w(v):)

=1

KHXP ]

with B a K, x Ky matrix and> %" (4 (v),) is ascalarMIDAS polynomial. Hence, we impose a
common decay pattern with a single polynomial lag structure Wittontaining the collection of slope
parameters identified as the sum of the polynomial lag weights add up to ometéd before, there
are various parsimonious parameterizations suggested for the weights that are briefly reviewed
AppendiXA. The above specification has the virtue of redu¢iig x Ky ) x P x m parameters to just
K1, x K + the dimension ofy which is2 in many of the examples discussed in the aforementioned
Appendix. Needless to say that this characterization of the polynomials meplbrestrictive - yet

as in the previous case, it may be a reasonable starting point in many graeticegs. Along the
same lines, one can consider a less parsimonious specification inspirezldty ¢hlled multiplicative
MIDAS (see equatiori (Al8) in AppendixIA):

(AL AT = B @

> (w(’y)i)] i=1,...,P (2.14)
=1

meaning that withins;, period high frequency weights remain invariant and yield a low frequency
parameterized process; (7, — 7)(vy) with lag coefficientsB;. The advantage of this specification is
that the impact of high frequency data on low frequency ones nestgisggons with ad hoc linear
time aggregation such as time averaging - taking the last withiperiod high frequency observation.
Bai, Ghysels, and Wright (2009) show that the above specification nsatcteady state Kalman filter
prediction equation obtained from a single factor state space model aridgg@ good approximation
for many more complex state space model specifications. Note that, at ledke fblock of low
frequency series, the above specification is quite similar to a traditional VitRlag coefficientsB;,
augmented by a small number of parameters used in the filtering scheme. ddarethe number of
parameters does not augment with

We adopt in the remainder of the paper a generic setting where all the pgararaee collected
into a vector¥. The above sparsely parameterized mixed frequency VAR model is a &xgaiple,
while more richly specified structures obviously will involve higher dimendipagameter vectors. In
general, we will write the finitely parameterized mixed frequency VAR modgieang in equations

(2.8) and[(2.110) respectively as:

Ag(Lr)(X(1L) — p
Ay (L) (E(rL) — p

) = e(m)
) = é&(rr) (2.15)

g X

with Ele(p)e(r1)] = C(¥)C(VY, and E[£(1,)é ()] = C()C (). Note that the parameter vector
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¥ governs both the stacked and periodic representations and that we doumd the unconditional
mean as part of the parameter space since we used demeaned seriesal\®is.

To streamline the notation, we will drop the parameter veétdor the remainder of this section,
although one has to keep in mind that the material we will present is subjecteotiad specification
errors resulting from parsimonious parameterizations - a subject we wiigasl in the next section.

2.5 Shocks and Choleski factorization

Much has been written about impulse response functions in VAR modelsttioytar with regards to
the interpretation of shocks. The class of mixed frequency VAR modetissiew light on this topic.
First of all, let us recall that the vector$»t ) andi(7;) have a natural order for the intra;, period
timing of shocks since their elements represent a sequence of time evemistelthan one series is
released at a specific time, then the order of associated shocks is saltffecsame considerations as
in traditional VAR models - or perhaps not. For example if during a day, oeaekwor month both
financial and macro series are released, we do not necessarily lovowoltorder them - except that
macro data are released before financial markets open, so there isaagaiural order despite the
contemporaneous time stamp in the vectory.

It is important to note that for the purpose of information accounting we willkweith x(77,)
appearing in[(216) rather tharir;, ), as the latter contains repetitive strings of stale low frequency data.
The stacked mixed frequency VAR model implies an impulse response function

p
(X(rp) —px) = (1= A;L)) " e(r)
j=1
= D Fyelr,—j) = F(Lr)e(mr) (2.16)
7=0

wherel = (A(Lr))F(Lr), which allows us to study the intrarz, period timing of shocks, both high
frequency as well as low frequency.

This means that shocksr;,) tell us something about the timed surprise of either type of series, and
therefore the impulse responses tell us what is the impact of say a mamoo@cannouncement of a
low frequency series onto future low and high frequency ones, amuises in high frequency series
on both future low and high frequency series. Compared to the impulsenssp from the VAR in
equation[(2.B), namelyz(r.) — pz) = (B(£L))~'&(7) we can see how intrar;, period shocks are
scrambled - something we will be more explicit about in the next section.

Since the order of the series is no long arbitrary, it is also the case thahithedki factorization of
the innovations is no longer arbitrary. In particular consider:

Ele(rp)e(rr)] = CC' = M QM (2.17)

11



where(2 is a diagonal matrix and,,,| is a lower triangular matrix. We add the indexto the latter
as it will be relevant for the material presented in the next subsection.e 8irecinverse of a lower
triangular matrix is again a lower triangular one, cons(d’e/r[m])*1 = N, and:

A(LL)(X(TL) —px) = e(11)
= Mmn(te)
N ALL)(X(1L) — px) = n(7L) (2.18)

whereFE[n(rz)n(rr)’] = 2, a diagonal matrix.

When we turn our attention again to the parsimonious examples in the previmsexton, and in
particular equatiori{2.12) we realize that the parameters governing thearme matrixt [ (77, )e(71,)’]
and thus its Choleski factorization, are tied to the parameters governingBRdyhamics, in particular
the parameter in equation[(2.111). This leaves us with the choice of either (1) estimate theifation
unconstrained, or (2) explore the common parameter restrictions and mamfore efficient estima-
tion of the impulse response functions. This issue is reminiscent of strU¥ARamodels as alluded
to in equation[(2.2). We will revisit the connection with traditional structuraRWhodels in the next
subsections. To summarize: while Choleski factorizations are typically amingin terms impulse
response analysis in traditional VAR models, they are a more natural tdoljpollse response analysis
for time-stamped mixed frequency VAR systems. In addition, there are pdtgaitis to be made from
considering common parameter restrictions between the mixed frequencgwifeRnics and the lower
triangular factorization.

3 Structural Mixed Frequency VAR Models

We turn our attention now to structural VAR models and consider variousifgagions for theA,
matrix appearing in equatioh (2.2). We will focus on two particular applicatioasely real-time
prediction updating and policy analysis. A subsection is devoted to each tépimal subsection
will deal with a generalization of mixed frequency VAR models relevant fihbreal-time and policy
analysis.

3.1 Real-time predictions

The potential mis-specification of shocks due to aggregation of mixeddragudata also leads us to
the question how much is lost by ignoring the real-time stream of high fregudata as one foregoes
the possibility to engage in withif, updates of forecasts. It turns out this will be an example of using
certain types of structural VAR matrices to update withininformation.

Continuing with the example in equatiofs (2.6) and (2.18) consider the follarangformations

12



fori= 1,....m—1 :Mi}A(EL)(X(TL) — Nl) =Mi]€(TL) or.

Nax(1) = Njy Ao + i-/\/[i]AjX(TL —J) +Npe(rr) (3.19)
j=1
involving the matrices/,\/m, 1=1,...,m — 1, which can be written as:
o . -
NG 0 - 0 0
Aﬁﬂ - /VE%1J o /Vérli I ; 6 (3.20)
i _/\/'[;T:Jrl’l e _/\/'Z:+17i 0 I |

where the matrice:A/[%’b are of dimensionKy; x Ky except fora = m + 1. Matrices/\/ﬁf“’b are

of dimensionKy x Kp. These matrices are related to the inverse of the Choleski lower triangular
decomposition, namely recall from equatién (2.18) tm'v([m])*l = N and define the matrices,
NJ; as the partial triangular decompositions orthogonalizing only theifsisocks.

To clarify the role played by the transformation appearing in (3.20), leoumsétance take a look
at NV}, which applies to a first high frequency data point becoming available, andptécial case
considered before &k, = Ky =1, i.e.:

1 0
NZE T
Ny = [.H .
: 0 :
m+1,1
| My O I
Then the last equation in the system reads:
P
_ m+1,1 m+1,1 m+1,m+1 .
xL(TL) = AO — Ny HJH((T)L,l)-‘r;Aj .%'L(TL—])
New Info
P m
3D AT (- k) + ()" (321)

j=1k=1

which is the ADL MIDAS regression model with (one) lead(s) discussedndréou, Ghysels, and
Kourtellos (2010). Alternatively, we can also write the last equation,asehe inversion of tha/;;
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matrix as:

l‘L(TL) — (Am—l-l,l _N’[T]-V]L-‘rl,lA[l),l) -/V‘[Tlfi/-‘rl 1 (TL)I,l

+ (A;%+1,m+1 Nm+1 1A1 )

i w(rz = J)

IV

I
—

J

S (AT N A g (k) 4 () (3.22)
1 k=1

M~

_'_

J

The latter representation is closer to a Kalman filter approach as it adds dnmation innovation
e(r)b, which equalsey (7)1, 1) - E;, [zu((7)r,1)], to the equation and re-weights all the old
information accordingly.

Note, the simplicity of the updating scheme: (1) we estimate a mixed frequencymédrl, (2)
compute the Choleski factorization of the errors and then takenthd lower triangular truncations of
the original factorization. It is also worth recalling that we may or may not iregasnmon parameter
restrictions between the parameters of the mixed frequency VAR and taeéammse matrix of the full
system as noted at the end of the previous section.

3.2 Policy response functions

The analysis in the previous subsection is one example of mixed frequéftynddels with a particu-
lar choice ofA. matrix appearing in equation (2.2). In the present subsection we studyusailvVAR
models with mixed frequency data for the purpose of studying policy analysido so, we consider
a high frequency vector that contains some monetary policy instrumentasuble Federal funds rate
(henceforth FFR). In fact, to simplify the presentation, let us only foeuEIER in combination with
some low frequency series. In particular:

FFR(rp,1) FFR(tr —3,1)
: . o
FFR k FFR -5,k
A, @J = Ao+ A @ L [ (3.23)
: = :
FFR(TL,m) FFR(TL—j,m)
zr(tr) | TG A ))

14



with

B 1,m 1,m+1 7]
Ik, ... . b A
Ac=| AR AR I A Ak (3.24)
AL o Iy, AT
m+1,1 m+1,m
| Ac .o Ag Ik, |

Let us focus on the equation fétF' R (7, k). For simplicity, we setdfI =0 forj <k —1andk <
j < m. Moreover, we leave unspecified the regressors appearing on théaigt side of the above
equation, and therefore we have:

FFR(rp,k) = Ap' — AMYEFR(rp k— 1) — AF™ ey ()

+ regressors prior toy, + (7 )*! (3.25)

Note that the above equation fBiF' R (7, k) features the low frequenay;, (77.) (as well as lagged low

and high frequency data). This means that policy may respond to cemeditions - although:; (1,)

may not yet be observed at periédf 7. This raised some interesting issues. To address these, let
us define the information sétr;, k) as all the information available at periédf ;. Therefore, one
may interpret equation (3.25) as:

FFR(rp, k) = At — AR YPFR(rp, k — 1) — AR Elwy (rp) |1 (p, k)] + . .. (3.26)

involving real-time estimates of, (71, ). Therefore, we may think of cross-equation restrictions since
Elzr(rp)I(7r, k)] involves the rows of\;x(7z) pertaining to the concurrent estimatesof(7z).
Recall that in equatiof (2.112) we noted that the parameters governing/#gestwe matrix | (71, )e(7)’]
and thus its Choleski factorization, are tied to the parameters governinghlRel¥hamics. Imposing
such restrictions - while feasible - may be convoluted. Fortunately, thenedasy shortcut. It is worth
recalling that the instruments used in the estimation_of {3.25), arfdfalk equations across atl, are
orthogonal to the errat(71) - Elzr(7r)|I(71, k)]. Therefore, using an argument often invoked in
the estimation of rational expectations models (see e.g. McCallum (1976panvebtain consistent
estimates oft*™ " in equation[(3.25) using ex post realizations of low frequency seriesalgzmthe
real-time policy decision rules.

3.3 Time-varying mixed frequencies and randomly timed evets

We started the section with Assumptlon]2.1 where assumed asfixfed the balance between low and
high frequency data. In many applications this is not the case. For exathelaumber of trading
days varies from month to month, and therefore also from quarter to quadtest often, however,
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this variation is deterministic and driven by pure calendar effects thateafeqply predictable. In this
subsection we relax Assumptibn 2.1 and replace it by:

Assumption 3.1. We consider a K-dimensional process with the fist < K elements, collected in
the vector process (1), only observed every:, periods. The remainind(y = K - K|, series,
represented by double-indexed vector proceg$rr, krr) which is observed at the (high) frequency
periodsky = 1, ..., m, during periodr;. The sequencém,, }, 7 =1, ..., is deterministic and takes
values in a finite sed/ (m).

The above assumption deals with perfectly predictable calendar effeath wiakes{m.} typ-
ically vary over a small set of values. For example, the number of tradigg itkaa month can be
between 20 and 23, depending on the month and holidays. Since the miyedrfoies scheme is time
varying we also have time variation in the system dynamics. Namely, we consider

AT (Lp)(X(rz) — py ™) = e(7p) (3.27)

with E[e(1)e(r1)'] = C™(¥)C™ (¥), which is of dimensionn2, with ., = K, + m, * Ky, and the
matrix polynomialAj, (L) is of dimensionn.,, x m._y),, and the vectop)‘l(”“ is of dimensionmn,;.
Note that these matrices are no longer the typical squared ones eneolintgaditional VAR models

or the mixed frequency VAR models with fixed we have seen so far. Note that we use the same
parameter vectow as before. Indeed, one might think that we need to enlarge again thegtara
space as we deal with time varying mixed frequencies. Say wéflat) is of dimension four, to take
again the daily trading day example. Now we have potentially sixteen systemesafdar covariance
matrices - and thus associated Choleski factorizations for real-time updet@gell as four vectors for
the mean. Yet, it is easy to see that equations sudh as (2.11) and (2.1R) tigittdy parameterized if
we do two things: (1) replace: by m,, , and (2) accommodate time varying mixed frequencies with
the same MIDAS polynomials. On the latter subject we refer to the Matlab MID8@bbx (Sinko,
Sockin, and Ghysels (2010, Sec. 2.8)) where various schemes anssiig for MIDAS polynomials
that handle time varying mixed frequencies within the same framework as/fixgokcifications that
are characterized by unequal number of MIDAS lags over time that ¢bgeesame time span - say a
month. Hence, we typically still have the same small number of parameter#edbsatiime variation

in mixed frequencies. As long as the mixture is perfectly predictable, we smthe right dimensions
of system matrices as well as the suitable Choleski factorizations to do estiraatlarpdating.

Next, we consider randomly timed events. In footridte 3 we touched on théhteaata release
schemes or events like FOMC meetings may change acroés particular, let us consider a sequence
E =|(17,k%),e = 1,...,T¢. Hence, the sequence is a set of time stamps for events. This may be
in the context of fixedn, as in Assumption Assumptidn 2.1, or time varying mixed frequencies as in
Assumptior 3.1L. To keep notation simple, it will be easier to look at the fixedse. Associated with
the sequencé& is a sequenc&— which gives all the time stamps prior to the eventginTypically,
(7, k% ) will be (77,k$, — 1), but it may be(ry — 1,m) if k%, = 1. We will take advantage of
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the real-time updating to handle randomly timed events. In particular, for theesegE we pre-
multiply x(77 ™) by N[ki;] - to have the pre-event predictions - and pre-multiglyy» by/\/[k;{] using
the suitable matrices appearing in equation (3.20). These computations willred¢hs impact of
the event sequenck on predictions of both low and high frequency data. As noted beforejshis
reminiscent of a Kalman filter update without going through a latent propes#fication, measurement
equations, etc. An example is the timing of FOMC meetings. Francis, Ghysdl©wpang (2011)
use arguments that are conceptually similar in the context of a single MIDdgt8sson - hence not
a complete mixed frequency VAR - to study the low frequency impact of mongalicy shocks
identified via the occurrence of FOMC meetings.

4 Implied Low Frequency VAR Models

In this section we characterize the relationship between the mixed freqdateyAR appearing in
(2.8) and the aggregated series VARIN[2.8). Recall that in the preveéatisls we mostly worked with
vector X77,) appearing in[(216) rather thai{r;,), while in this section we will work with the latter.

We need to be more specific about how the low frequency VAR model is @otamterms of
aggregation. Throughout the section we will work with fixed mixed sampliaguencies, as stated in
Assumptior 2.11. Moreover, we will start with a simple skip-sampling schemeentherlow frequency
VAR model is obtained from picking every last high frequency obsermatidhe low frequency time
period. The latter will be relaxed in subsequent analysis. We notedeb#dfat we assume that all
the processes are covariance stationary and therefore have akpgmtesentation. Indeed, it will
be convenient to characterize the mapping between the mixed frequedynadlel in [2.6) and the
aggregated series VAR if_(2.8) via their spectral domain representatiban fiie following result
holds:

Theorem 4.1. Let the process(7r,) satisfy Assumptioris 2.1 ahdR.2. Moreoveret;) andz(7z,)
have spectral densities equal to respectivély) and S(z), for z = exp (—iw) with w € [0, 7], which
can be written as:

S(z) = A(z)'CC(A(z"YH)~YY
S(z) = B(x)7'CC Bz~ (4.1)

then the low frequency VAR model is determined by the following relationship:

m—1

1 z—|—27r] 24277, z+2m)
C QI (I ymg

) (4.2)

_t
m
7=0
whereQ(z) = [I zI...z™ 1]
Proof: See AppendixIB
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The result in equation_(4.2) is a combination of two operations: (1) the giveraf high frequency
covariances as in a typical Tiao and Grupe (1980) formula and (2) thesaknpling of the aforemen-
tioned process. Intuitively, what drives the result is the following: treeessi(77,) contains all the
covariance relationships among the high frequency series and betigéesnia low frequency series.
The formula in[(4.R) averages these covariances withito produce a low frequency covariance struc-
ture of the repeated stacked vector process. The latter provides thiegkegients of the traditional
VAR impulse response functions.

To handle more general aggregation schemes, we introdicdianensional latent high frequency
processzy (71, ki), used to construct(rz). We will focus on linear aggregation schemes - that in-
cludes the two most common cases, stock and flow aggregation. In gemeralill consider the
m* K-dimensional stacked vectpry (71, 1) ... zg (71, m)']', and generically denote the aggregation
filter as:

ZH(TL,I)
i(r) = D(Lw)
zp(Tp,m)
D(Ly) = diag(Di(Ly),-..,Dn(Lh)) (4.3)

where the aggregation scheme may involve long spansPj.enay be larger tham. For example,
the K¢ elements of the low frequency vector released at different times may &lipéo (7 — 1),
realizations ofz;. Stock and flow sampling schemes are special (%3B$ect|o@ we will provide
some specific examples of filters. For general aggregation schemeswebaracterize the result in
equation[[ZR) in terms &¥.,, which is the spectral density & (1,1)" ...z (12, m)']’, namely:

1 24275 - z2 4275 ., z 4 2mj
()8 (e

) (4.4)

whereQp(z) = Q(z)D(z). Hence, one can think of the low frequency VAR model in terms of skip-
sampled filteredy, which may represent a combination of flow and stock variables - througtirfite
with D(L ), which also may capture a mixture of releases involving publication delay®{ed im the
discussion below equatioh (4.3)). Naturally, the aggregation scheme fgilt &low the low frequency
VAR model will look like. Publication delays, i.e. one of the low frequencyesepertains taz, — j, will
shape differently the low frequency VAR dynamics. In secfibn 6 we willjat® numerical illustrative
examples of such delay effects.

8For more discussion of general linear aggregation schemes, ségitkgpohl (1987).
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5 Specification and Estimation

Empirical work involves critical choices of model specification and pardpaiton. In the context of
VAR models this amounts to selecting: (1) the variables that are included in tRe (ZA\the sampling
frequency of the model, (3) the number of lags to be included and (4)ctésts on the parameter
space. Choices of the second type - namely sampling frequency - areunbtdiscussed in the litera-
ture and are the focus of this section. Obviously, the choice of sampliggdrey is not detached from
all the other aforementioned model selection choices. For instance, latj@els very much related
to sampling frequency and so are the parameterizations of the VAR.

To formulate a maximum likelihood based estimator of mixed frequency VAR mad#isjder the
conditional density of thet" observation:

FEL)IX(r, = 1), X(rp = P ®) = (2m) ™7 |(CTH(W)CTH(2)) M2 x
exp (e(7z) (C™(W)CT(¥)') "'e(1z))

which yields the sample log likelihood function for a sample of dize

Tr, 1
LX(rp)14[®) = (=1/2) D ity log (27) + (1/2) ) log |(C™()C™(¥)) | (5.1)
T,=1 T,=1
1L
—(1/2) Y [e(rn) (CTH(W)CTH(¥)') e (7p)]
T7,=1

which form fixed, i.e. under Assumptidn 2.1, specializes to the usual sample log likelinoctdn:

LX) ) = (=To(Kr+m* Kn)/2)log (2m) + (T1/2) log |(C(¥)C(¥)) 7| (5.2)
T
—(1/2) Y [e(r) (C(®)C(P)) e(r)]
T,=1
The asymptotic analysis of VAR models is well known, see e.g. Hamilton (1894} applies in the
current setting without any modifications. This also covers the case of tipggamixed sampling
frequencies under Assumptibn3.1.

In a first subsection we cover the asymptotic properties of mis-specifiddl vadels with an
emphasis on mixed versus low frequency specifications. A final subseztiers Bayesian mixed
frequency VAR estimation.
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5.1 Asymptotic Properties of Mis-specified Low Frequency Dat&/AR Model Estima-
tors

Having specified some potentially parsimonious mixed frequency specificatrermow turn our atten-
tion to the comparison of a low frequency VAR model with a finite number of lagswth parameter
vector® compared with a mixed frequency VAR model with finite number of lags andhpetexr vector

U. More specifically, we assume the DGP is the K dimensional vectai (7, ) described by equation

(2.10):

A(Lp)(#(rr) — pz) = &)
with E[¢(1)é(r1)’] = CC'. Against the backdrop of this DGP we have on the one hand the mixed
frequency VAR specification appearing [In_(2.15) parameterized by

Ag(Lr)(E(rr) — py ) = &(71)

with Ele(71)e(r)'] = C(¥)C(¥)’, and on the other hand thé dimensional traditional low frequency
VAR parameterized by :

Bo(L1)(T(7) — pe) = &(11) (5.3)

whereB(Ly) =1 - Zle B;(®)L}, andE[g(r)e(r1)'] = C(®)T(®)'. Hence, we look at a researcher
who ignores the high frequency data, picks a finite set of lags and poBsifoses parameter restric-

tions on the VAR, versus a researcher who looks at the high frequiatay picks a finite set of lags -

not necessarily the right number - and possibly imposes restrictions to fzanidmeter proliferation.

The use of the DGP in equation_(2110) as the benchmark against whichetss agsproximation
errors may require some explanation. We think of the DGP as a descriptiba data series sampled
at their primitive sampling frequencies. It is against this backdrop thatomgpare parsimoniously
parameterized mixed frequency VAR models and traditional low frequeneg.d&ince the discussion
here essentially revolves around the estimation of mis-specified linear i@aysscesses, we will
be using a notion ofelative (rather than absolute) entropy - that is the Kullback and Leibler (1951)
measure to assess approximation errors. For the latter, the penalty fatitnghsional systems will
not appear as we have chosen it to be the benchmark against whichealhaitiels are compared.

Analogous to the equatiop (5.2) we also have the sample log likelihood function:
L@(r)1 @) = (=To(Kp+ Kp)/2)log (2m) + (T1/2) log |(C()C(®)) 7' (54)

Ty

—(1/2) Y [e(r) (C(2)T(®)) e (r1)]

T,=1

Using results from Hansen and Sargent (1993) we obtain the following:

Proposition 5.1. Let Assumptions 2.1 aind C.1 throUghlIC.4 hold and the DGP is describédIij).(2
Moreover, assume the low frequency process is constructed as aghibesl sequence analogous - as
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in TheoreniZ]1. Then the maximum likelihood estimator appearifigih (5Ated, minimizes

U = Argmin [El(S(\I/), $) + Bo(S(0), §) + E3(S(W), §)

Ei(S(0),5) = % _ﬂ log(det S(w, ¥))dw
Ea(3(0),8) — % " trace($(w, U) 18 (w))dw
E3(S(0),8) = (uz— p3) 'S0, 9) (1) (s — py) (5.5)

whereas the maximum likelihood estimator appearing (5.4), derbteninimizes

U = Argmin [E1(§(<1>),S)+E2(§(<1>),5)+E3(§(<1>),S)

E(5(®),5) = % /_7r log(det S(w, ®))dw
1 ™

Ey(S(®),8) = o | trace(S(w, ®) 7 Q(exp (iw))'S(w)Q(exp (—iw)))dw
Bs(5(®),8) = (s — Ln © 52)5(0,®)(1) iz — pe?) (5.6)
Proof see Appendix]C

Note that if the mixed frequency VAR model is correctly specified, then thmgéf, and F3 in
equation[(5.b) disappear and one has a standard MLE. Likewise, agaimag the mixed frequency
VAR model is correctly specified, one can replace all the terms involving tBE I equation[(2.10)
appearing inF, and E3 of equation[(5.6) with the parameterized mixed frequency VAR one. Note also
that the termk; in both cases refers to the mis-specification of the mean. The term is impohantitwv
comes to approximation errors in the context of periodic models, as empthlgitansen and Sargent
(1993). In our analysis, this play less of a role and we will typically handfes without specification
errors of the overall mean of the process - whether it is sampled at lowglofiequency.

Finally, we far we assumed a skip sampling scheme in the Propokitibn 5.1. Id Wweleasy to
adopt the general aggregation schemes we discussed in the previtiois.desuffices to replac€)(.)
with @p(z), and make the appropriate changes to the spectral representationsfraehere from
providing the details, as they are relatively straightforward.

5.2 Bayesian Mixed Frequency VAR

Recent work on MIDAS regressions includes Bayesian estimation agmsasee notably Rodriguez
and Puggioni (2010) and Ghysels and Owyang (2011). It is the parpbhthis section to expand these
recent developments to a mixed frequency VAR framework. We do so witbljeetive of staying as
close as possible to the standard Bayesian VAR approach.
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It will be convenient to start again with a simplified example. Namely, consigecakse where all
the low frequencyr;, series are release at the end of the period as in equatidn (2.1) with zeno mea
series, withK;, and Kz of any dimension (hence not necessarily one). To highlight the role of the
MIDAS regression parameters we write the last set of equations ast@ofunt-y :

$H(7'L, 1) Ajl-’l . A]l,m Ajl-’erl l’H(TL -7, 1)
P
_ : e : . +e(rz)
xp (T, m) jz; A;n’l c AT A;-n’mH xy (T, — j,m)
HJL(TL) A;’?‘Fl,l o A;ﬂ-ﬁ-l,m A;ﬂ-‘rl,m-ﬁ-l -:UL(TL o j)
. m+1m+1\ _ 1-2 . im—+1\ _ . . . a,b _
wheredim(A; )= K7, dim(A;") =Ky x Ky fori=1,...,mandfinallydim(A;", a,b =
L,...,m)=K%.

Since the MIDAS part of the VAR is novel in terms of Bayesian estimation, weaddirst on its
formulation. We therefore start with the matrioé?“"(fy) and make them explicitly functions of the
MIDAS polynomial parameters. We will suggest two approaches - ongdioeral MIDAS polynomial
specifications and a second using the MIDAS with step functions of GhyS&lko, and Valkanov
(2006) and U-MIDAS (unrestricted MIDAS polynomial) approach swgige by Foroni, Marcellino,
and Schumacher (2011) (see also Appefqdix A). We cover the geraesafirst.

Recall from subsection 2.4 that we considered two schemes, appeamugiations[(2.13) and
2.12):

(5.7)
[Bi ® [Z:il (w('Y)z)] yi=1,... vP]

B& [ (w())]
(AT () AT () AP () L AR ()] = {

Recall also thaB a K, x Ky matrix and in subsectidn 2.4 we assurrEéL’{XP (w(y):) is ascalar
MIDAS polynomial such that the weighting schemes are the same acrossfeéremifow frequency
equations. We can easily relax this, by assuming a scheme where all the\l@pnomials are driven
by a common prior, namelyA7" 1! () .. AT (1) AT () LA™ ()] can be expressed

as:
(Ba’b [Zfiqxp (w(’ya’b)i)] ,a = 1, ce ,KL;b = 1, ce ,KL)

{ (5.8)
(B4 (S0 (0] i =1, Pa=1, o Kyb =1, K]

We will consider the case of MIDAS Beta polynomials (see Appehndix A), thercases are similar and
therefore not covered. The prior both in the case of a single MIDASnaoiyal (5.T) or the common
prior in the case of many single MIDAS polynomials as[in [5.8), is a Gamma distmbut8ince
the MIDAS Beta polynomial involves two parameters, we draw each pararfneteran independent
Gamma. In the case df (5.8) thh€;, x Ky MIDAS polynomials each involve two parameters and they
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also have two independent Gamma distributions. We use a Gamma distributionvadutbe of the
Beta polynomial take on positive values. For simplicity we cover the single NAPAlynomial, then
the prior fory = (71, 72) is:

vi~ T (f9,Fy) i=1,2 (5.9)

wheref, = Fy = 1. This prior amounts to a flat weighting scheme that put equal weight on all high
frequency data. Yet, there are several variations that put furtegiateons. They are: (a) downward
sloping weights:y = (1,72) with v2 ~ I' (f5, F) andfy = Fy = 1, (b) hump-shaped weights =

(I 4+ 71,1+ v + 72), among others. The downward sloping scheme is particularly appealing as it
amount to a single parameter weighting scheme.

Following Ghysels and Owyang (2011), we utilize a Metropolis-in-Gibbs &ispin Chib and
Greenberg (1995)) to sample the MIDAS hyperparameters. The Méisagtep is an accept-reject
step which requires a candidate drayw, from a proposal density; (y*|7), where47 is the last
accepted draw. The draw is then accepted with a probability that deparutstto the likelihood and
parameters’ prior distribution. In this case, the functional form of the t@ig polynomial motivates
our choice of the proposal density. Because we have chosen the digteting polynomial, a Gamma
proposal distribution provides a suitable candidate.

To formalize, for the(i + 1) iteration, we can draw a candidagé = (v}, ~;)' from

e (o () nll).

wherec is a tuning parameter chosen to achieve a reasonable acceptance rateandidate draw is
then accepted with probability = min {«, 1}, where

L(X(T2) 150, v*) dT (v*|f0, Fy) dT(v]e (v%)?, ev*)
L(X(7r)1 Wy, 7l1) dT (v £, Fo) dD(v*|e (y11)?, eylil)’

o =

whereL(g(TL)ipL |W_,,~*) is the conditional likelihood given the parametérs., - which are all the
parameters i excludingy anddI’ (.|.,.) is the Gamma density function. Obviously, whenever there
are multiple MIDAS polynomials the aforementioned Metropolis step is repeatezhfih weighting
scheme separately. Hence, in such case we essentially draw variotsimggiyofiles. For convenience
we will keep using the notatiomnfor a single as well as multiple MIDAS polynomial weighting schemes
to avoid further complicating the notation.

The Bayesian analysis of mixed frequency VAR and traditional VAR modetsimes quite similar
once the parameter draws for the MIDAS polynomial are given. First rite the VAR as a first order
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system (again assuming unconditional mean zero processes):

Al(qj—777)
A =7

X(rz) = [X(rp = 1) ... X(r — P)] x 2(\1’: D ) (5.10)
AP(‘I’—VW)

where we acknowledge that the lag matricegV_.,~v) depend on the parameter vector driving the
MIDAS polynomial weights as well as the remaining parametefs ip.

Equation [(5.10) looks like a regular’ regression framework associatttdVAR models. Hence,
from here on we can follow Doan, Litterman, and Sims (1984), Littermang}, 3&diyala and Karls-
son (1997), Sims and Zha (1998), among others, for the formulatioriapegardingV ., which is
partitioned into three blocks (dropping the dependence ett. for convenience):

e VU_ pg= ((A?’b, a=1,...,mb=1,...,m+1),j=1,..., P), the set parameters pertaining
to the high frequency components of the vector.

*V_ .1 =((B or Bji=1,...,P), the slope parameters pertaining to the MIDAS regres-
sions.

c U .y =((CCYp;a =1,...,m+1,b =1,...,m + 1), the parameters pertaining to the
covariance matrix of the errors.

In particular, the means and variances for the prior& in, ;7 are (dropping again the dependence on
~ etc.):

E[A}"] = O, V(A" = [(jfl)mﬁinfbm)]ﬂ,{% a=1,....mb=1,...,m—1
E[AT™] = diag(p®) 2, V[AT™] = ﬁlK%{ a=1,....m

E[A§™] = 0 , VIAS™) = cFerar i i>la=1,....m
E[AS"™ ] = 0k, ic,s VIAT™ ) =i i5meSue a=1,...,m

(5.11)
where the notatiofV/[ | stands for a matrix of variance8,and1 are matrices respectively of zeros
and ones, with the dimension as subscrifitg(z) is a diagonal matrix with elementsand again
the dimension as subscript, and finally ;, = [aﬁH/aj%L;i =1,...,Kyg,j=1,...,Kz]. The latter
captures the difference in scaling between high and low frequencyadstatypically done in Bayesian
VAR models (see above references). The hyperparamagererns the overall tightness of the prior
distributions around the AR(1) (including white noise) specification for tigh frequency process.
The hyperparametefy;, € (0,1) governs the extent to which the low frequency data affect high
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frequency data. Note that we leave within low frequency series prioiitaision uniform. Namely,
since we writéV[A?’b] is only scaled byj, « andb we essentially treat the dependence within the vector
of high frequency data as uniform. We can change this by replabjgr%gwith a matrix that would
involve another set of hyperparameters that would govern the extertith Vow frequency series are
mutually affected. This is an easy generalization which we do not considdrd sake of simplicity.

The prior in [5.11) is much inspired by the parsimonious representatiomapgd2.11). Namely,
it essentially says that all the high frequency processes are AR(1) withegressive parameteithat
is common among all the series. We typically pet 0, i.e. all high frequency processes are white
noise, or pup equal to some value between zero and one, and possibly equal to anearidnces of
the prior tell us that the precision on the parameters is tighter as lags incidé@ses typically done
in traditional Bayesian VAR models, and is shrinking at a rate that is the s@fidine lag length as in
Litterman (1986). Note, however, that the decay is not only governed byt also by(a, b) as they
represent the intray, period lag structure. Regarding the MIDAS regression#in, ;, we have the
following priors for the slope coefficients:

E[B] =0k, xky, VBl =9u 1k, xk,SLH
(5.12)

E[Bj] = O xry, V[Bj]= 0LH?;1KLXKHSLH

with ¢,z andSy g having interpretations similar to the ones considered for the high frequdatay
regressions in the VAR. Not that the prior [n(5.12) implies that we typically ftam a VAR that has
flat weights for the MIDAS polynomial and the high frequency data do awelran impact on the low
frequency data. Note also that the reverse is also true since we puiﬁhmptE[A?’m“] =0x, <K, -

Last but not least, we also need to formulate priorst¥or, y,. Here we refer to Kadiyala and
Karlsson (1997) who consider so called Minnesota priors with fixed wasicbvariance matrices, or
the Normal-Wishart and Diffuse priors, the Normal-Diffuse and Exterdgtdiral Conjugate priors. In
all cases they derive the posterior distributions which are summarized igdfadnd Karlsson (1997,
Table 1). The MCMC procedure therefore can rely on the explicitly édrposterior distributions -
conditional of draws ofy for the MIDAS weights.

It is important to note that one can also implement the estimation of mixed freq&itynod-
els using exclusively standard Bayesian VAR methods, that is avoid thefuke Metropolis step
described earlier in the subsection. This involves the step functions aghpto MIDAS of Ghy-
sels, Sinko, and Valkanov (2006) and the completely unrestricted spicifiavhere each weight is
estimated separately, i.e. the U-MIDAS approach suggested by FororéeNitao, and Schumacher
(2011) shown to work for small values of. Using the step function example, we can think of replacing
equation[(5.l7) with:

(AR At m AL ALY — By By By...By...Bs...Bs (5.13)



with s step matrices that imply fixed lag effects across subsets thati3pam IagsH The U MIDAS
case is one where= P x m, and therefore each matrix is unrestricted. Now, we are left with specifying
priors for the step functions. The easy case is where the steps are mufiplesas is usually the case.
Then we can use a prior similar to that appearing in (5.12]fd@;] andV[B;]. In particular in the U
MIDAS case one may also think of using the shrinkage methods for large diomah VAR models.
However, large VAR models in the traditional sense means a lot of individuwedss(sampled at the
same frequency), whereas here large dimensions result from théngtatkhe same series. There is
already a great amount of shrinkage explicitly taking into account via ibespappearing in equations

(611) and[(5.12).

6 Numerical Examples

In this section we provide some numerical illustrative examples to comparehhgibeof impulse re-
sponse functions in mixed frequency and traditional VAR models. We lobkatiate systems, i.e. we
study cases with a single series of each type - low and high frequenayoWs to simplify the study
of impulse response functions. We use the setup in equationd (2.11). Weleon =3, correspond-
ing to a monthly/quarterly data mixture and= 12, representing a weekly/quarterly mixture. For the
former - which we refer to as Case 1a, we have: 0, p = .5,y = .5, with [w(7)3, w(7)2, w(7)1]
=[.2,.5,.9] and set the innovation covariance matrix to an identity matrix. Therefores Casorre-
sponds to mildly persistent high and low frequency series (sirce; = .5), without any impact of low
frequency onto high frequency series. Moreover, the MIDAS weifiatire a typical downward decay
pattern. Given the mixed frequency VAR data generating process waatbaze the corresponding
traditional VAR(1) model - with point-sampling of the high frequency data iclhis obtained from
minimizing the criterion appearing in Propositionl5.1. Hence, we view the traditiékR as a mis-
specified model estimated via standard .

Sincea is zero, there is no causality between the low frequency series. Hercexpect that a
shock tozxy,(77,) will not affect futurex (17, + k,¢) fori =1, ..., 3, for £ > 0. Recall that we are
thinking of a quarterly model, hence the impulse responses are in termsreéryuime ticks. The
results appearing in Figur®?. The left panel shows three impulse response functions: (1) the impact
of a shock tar 7 (77, 1) on future quarterlye (77, + k), for k=1, ..., 24 (quarters) as determined by
the mixed frequency VAR, (2) the impact of a shockit@(r, 3) on future quarterlycr, (7, + k), and
(3) the impact of a shock to aggregaigh frequency series in the VAR(1) far(r,) on future quarterly
low frequency data. It is interesting to note that while high frequencylshaffect the low frequency
series up to 10 quarters in the future, the standard frequency VARytsrows any impact of shocks
to the aggregated (skip sampled) high frequency series on the low fregpecess.

®We assume here for simplicity that all the high frequency series involveaine step sizes.
9n the Internet Appendix we provide the Matlab code used to compute thenizal results. Some parts of the code were
inspired by code reported in Hansen and Sargent (1990).
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It is instructive to look at the numerical coefficients of the mis-specified 4Rnhodel which ap-
pear in Tablell. Clearly, the implied dynamics have little resemblance with the drgixed frequency
dynamics. The high frequency process features no persistenceduivieis by the low frequency pro-
cess. In contrast, the low frequency process picks up more perggigitic 0.889) than the DGP. The
right panel also shows three impulse responses, namely: (1) the imgashotk tar, (71 ) on future
quarterlyz g (7, + k, 1), for k=1, ..., 24 as determined by the mixed frequency VAR, (2) the impact
of a shock tary (7)) on future quarterlyc (71, + k,3), and (3) the impact of a shock to aggregate
low frequency series in the VAR(1) far(r;,) on future quarterly high frequency data. Sinces zero,
the first two impulse response functions are flat and equal to zero.eht gontrast, and as implied
by the dynamics in%?), we find that the low frequency process greatly impacts the high freguen
process. Obviously, this numerical example touches on the topic of Greagsality being altered due
to aggregatio

It is also worth noting that the impact of a shockitg(r,, 1) and that of a shock to (7., 3) on fu-
ture quarterlyr (71, + k), look quite different. This is in fact the result of a combination of two effects:
the MIDAS weighting scheme and the persistence of the high frequenigg sérhis prompts us to
look at what we will refer to as Case 1b, where the weighting scheme is fldty ()3, w(7y)2, w(y)1]
=[.1,.1,.1], and we lower the persistence of the high frequency serieg; #el, while the other pa-
rameters remain the same. The impulse responses appear in[Figure 2. \Wgetmloserve the sharp
differences in the first and third monthly impulse response functions,rected.

For the second case we reverse the causal relationship between digomafrequency data.
In addition we also change the persistence of the series. Namely, wie=s8t4, p = «; = .1 and
[w(v)s, w(y)2, w(y)1] =10.,0.,0.], implying that the high frequency data do not affect the low fre-
guency (which is an exogenous process). The results appeactieslyein Figure[3 and Tablel 1. We
observe a similar spurious phenomenon: the impact of high frequeneg sevhich is zero - becomes
significant after we estimate a standard VAR as we can see from the leftsida of Figuré 3. The
right hand side plot in the figure also tells us that the actual impact of lowémry data onto high
frequency series is severely mis-specified in the standard VAR as welbndgan read from Table
we see that the VAR dynamics become non-trivial with a feedback effect fow frequency to high
frequency equal t6.3805 together with the spurious impact of; (7;,) ontox (71) equal to 0.1095.

The third example involves a mixture of weekly and quarterly series. Wdademsomewhat dif-
ferent parameter values, namely= .01, p = .1, oy = .5, [w(7)s3, w(7y)2, w(y)1] = [.5, .4, .3] and all
other remaining 9 MIDAS polynomial weights equal to zero. Hence, this elangusality runs in
both directions, albeit of small magnitude. The impulse response functipesam Figuré ¥4, which
has again two panels with the same type of three impulse response functioiSgase 1. We clearly
misread the dynamics of the impulse responses again both in terms of magnitutienisng. We

"Much has been written about the spurious effects temporal aggregagipmave on testing for Granger causality, see
e.g. Granger (1980), Granger (1988jitkepohl (1993), Granger (1995), Renault, Sekkat, and Szaf8e8j, Breitung and
Swanson (2002), McCrorie and Chambers (2006), among othersonicurrent research we study the topic of testing for
Granger causality in a mixed frequency setting - see Ghysels, Motegi/adkahov (2011).
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provided only two numerical examples. One obviously can think of many alieenscenarios. The
Matlab code provided enables the reader to experiment with alternativiticgigons.

7 Empirical Examples

The empirical application is tailored after Chiu, Eraker, Foerster, Kim, @&od&e (2011) who develop
a Bayesian approach to such mixed frequency VAR models where the maaiacgare drawn via
a Gibbs sampler. Their primary objective is to formulate a model that allows siealy GDP at a
frequency higher than the quarterly data readily available. Their analigsidias the virtue of keeping
the empirical exercise simple and transparent. We want to do the same agfdrineeplicate their
setting for the purpose of comparison. In particular they consider a I#&R(1) model involving
industrial production, inflation, and unemployment rate, and GDP for theAl$ut the last series
are observed monthly. The data are the twelve-month change in indusbdaigtion (denoted IP) and
inflation (denoted INFL), the four-quarter change in real GDP (deh@®#©P), and the unemployment
rate (denoted UNEMP), all expressed as percentage points. ChkerEFaerster, Kim, and Seoane
(2011) assume - like we do - that every month, the monthly data are obsandthe quarterly data
are observed only during the last month of each quarter. We compare tbd fréguency VAR with a
traditional quarterly VAR model. Therefore, we study the co-movements of:

IP(1p) xg(Tr,

1)
IP(TLaj)
INFL 2
(TL) vs %H(TLv ) with $H(TL7j) — INFL(TL,j) (7_1)
UNEMP(7y) vy (7r,3) UNEMP(r, )
GDP(r1) GDP(ry) ’

The data set used in the empirical application runs from January 1948 eniber 2011, for a total of
256 quarters and therefore 768 month§&Summary statistics for the variables are presented in Table 2
(which is comparable to Chiu, Eraker, Foerster, Kim, and Seoane (Zablk 2)).

We report the posterior means and standard deviations for the standefrédomency VAR model
in Table[3. While our sample is not the same as in Chiu, Eraker, Foerster, KirGeoane (2011),
we do find similar parameter estimates. As a result, we also find similar impulsesesfumctions -
which will be discussed later. The mixed frequency counterpart appeadnbld #. Here the parameter
estimates display far more heterogeneous patterns, as expected.

Figuredd throughl7 display the response functions of GDP to shocks thrée high frequency
series, respectively IP, INFL and UNEMP. Since these are of keyeisit@re focus exclusively on these
three. Each figure displays the traditional VAR impulse response fundiigesher with the mixed
frequency ones. Similar to the numerical examples reported in the prewgotisrs we focus on the
first and last month of the quarter to show the contrast with the usual impedpense functions. We

120ur sample is slightly different from Chiu, Eraker, Foerster, Kim, aads®e (2011) who use data from January 1948 to
June 2011, for a total of 762 months or 254 quarters.
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also constructed confidence bands around the low frequency VAR immpegponse functions to give
us an idea about the discrepancy between the two types of impulse resgpoations. It is important
to note the difference between our analysis and the latent high freqi&icynodel of Chiu, Eraker,
Foerster, Kim, and Seoane (2011). The latter have only one respansi@h per high frequency
series, since the basic model is driven by a monthly VAR(1). In their casththmonthly estimates
and the quarterly estimates converted to their monthly counterpart result itsmesponse functions
that, for the most part, are quite similar if not identical. Hence, their findinggest that both the
low frequency VAR and the latent high frequency one yield similar resgoo$ the economy to the
exogenous shocks. Most of the action in their comparison is with respiaet ppecision of the impulse
response estimates improving with the monthly specification - exploiting the higheiney data. With
the coarsely sampled estimation method, since the data are observed questertyvements of the
variables, and hence the effects of shocks, are relatively difficulstmduish.

INCOMPLETE

8 Conclusions

In this paper we introduced a class of mixed frequency VAR models thabhanay important ways
very close to traditional VAR models. Unlike the bulk of the literature on mixeduemcy models,
we do not resort to latent variable/shock representations - but instéad the standard observable
shock paradigm. The use of many standard tools in VAR analysis easilytapmly setting, and in fact
some tools - most prominently Choleski factorizations - become even moreleddapolicy analysis.
The estimation of the new class of models also relies on well established presedh addition, the
absence of hidden shocks avoids complications in terms of estimation anddilterin

Another merit of the paper is that it establishes a relationship between hitoenjgletely discon-
nected literatures: (1) the vast literature on VAR models and (2) the dygomedve obscure literature
on periodic models (for seasonality). One might indeed be tempted to chiamadhe connection as
Hansen and Sargent meeting Sims, since the former introduced periodic nmdere macro liter-
ature. It may also be appropriate to characterize the contributions in thés papstablishing a link
between on the one hand MIDAS and on the other hand part of the lite@miuseasonal time series
models.
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Table 1: Approximate Vector Autoregressive Models

The table reports the mis-specified VAR(1) using the setup in equétiof) (ZLiven the mixed frequency VAR data generating process we ctegize the corresponding traditional
VAR(1) model - with point-sampling of the high frequency data - which iagted from minimizing the criterion appearing in Proposifiod 5.1.In the heteAppendix we provide
the Matlab code used to compute the numerical results. Case bah& witha =0, p = ay = .5, with[w()s, w(v)2, w(y)1] = [.2, .5, .9] and set the innovation covariance matrix
to an identity matrix. Case 1b has flat weights and lower persistence of feigheincy data - not shown in the table, but impulse responses apgéguia[2. Case 2 has 3, a
=04,p=a; = .1, andw(y)s, w(y)2, w(y)1]=[.0,.0,.0]. Case 3 hasn =12,a = .05, p=.1, aq = .5, [w(7)3, w(7y)2, w(y)1] = [.5, .4, .3] with all other remaining 9 MIDAS

polynomial weights equal to zero and set the innovation covariance nbaix identity matrix.

Case la
zu(tz) | _ [ —0.0064 0.1807 zp(tp — 1) vz ()
zr (L) 0.0500  0.8890 zr(r, — 1)

Case 2

[ xm(re) ] _[ 00582 03805 | [ au(re —1) +2(r)
| @o(r) |7 | 01095 0.6203 | | zp(ro —1)
Case 3
[ wp(ry) ]_[ 07020 00193 ][ zu(re—1) ], _
| wr(rz) || —0.0330 0.8972 | | xr(rp —1) *E(T)

E[e(Tr)

E[e(Tr)

E[E(1)

m|

m]

[l

()] =

(r1)] =

(r0)] =

0.3405
0.0005

[0.3437
| 0.0003

[ 0.8350

0.0174

0.0005
0.3377

0.0003 T
0.3368 |

0.0174 ]
1.0096




Table 2: Summary Statistics Data

The table reports summary statistics for our sample data of industrialgtiod, inflation, and unemployment rate, and GDP
for the US. All but the last series are observed monthly. The datassare as follows:

« Industrial Production Index (SAhttp://research.stlouisfed.org/fred2/series/INDPRO/

¢ Inflation: CPI All Urban http://www.bls.gov/cpi/tables.htm

* Unemployment rate - 16yrs and older (SAjtp://www.bIs.gov/iwebapps/legacy/cpsatabl.ntm
* Real GDP (SA and chained 2005 dollafsitp://www.bea.gov/national/

The series are transformed as follows: the twelve-month change intiradipsoduction (denoted IP) and inflation (denoted
INFL), the four-quarter change in real GDP (denoted GDP), anditeeployment rate (denoted UNEMP), all expressed as
percentage points. The sample covers January 1948 until Decefitier 2

Mean Standard Dev. Autocorrelation

IP 2.976 5.8253 0.9660
INFL 3.549 2.8095 0.9879
UNEMP 5.801 1.6504 0.9892
GDP 3.130 2.6830 0.8507

Table 3: Posterior Mean and Standard Error Estimates VAR Model

The table reports the posterior mean and variances of VAR(1) modaling industrial production, inflation, and unem-
ployment rate, and GDP for the US. All but the last series are obsenesthly. The data are the twelve-month change in
industrial production (denoted IP) and inflation (denoted INFL), the-fpuarter change in real GDP (denoted GDP), and the
unemployment rate (denoted UNEMP), all expressed as percerdgage. porhe sample covers

IP(r, —1) INFL(r, —1) UNEMP(r;-1) GDP(rz) Ao

IP(rr) 0.85 -0.35 0.34 003 -0.07
(0.06) (0.07) (0.06) (0.12)  (0.19)
INFL(r) 0.09 0.96 0.02 -0.07 0.01
(0.02) (0.02) (0.03) (0.04)  (0.16)
UNEMP(r;) -0.02 0.03 0.94 -0.03 0.41
(0.01) (0.01) (0.01) (0.02)  (0.07)
GDP(r) 0.13 -0.12 0.18 0.64 0.11
(0.03) (0.03) (0.03) (0.05)  (0.16)

35
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Table 4: Posterior Mean and Standard Error Estimates Mixed FrequeriRyMédel

The table reports the posterior mean and variances of VAR@Hehinvolving industrial production, inflation, and unelmyment rate, and GDP for the US. All but the last series asenfed monthly. The data are the twelve-month change irstnidbiproduction (denoted

IP) and inflation (denoted INFL), the four-quarter changeeial GDP (denoted GDP), and the unemployment rate (dendt#MP), all expressed as percentage points. The samplescover

TL — 1
IP(rz,1)

INFL(7y,1)

UNEMP(r1,1)

IP(71,2)

INFL(7y,2)

UNEMP(7y,2)

I1P(71,3)

INFL(7y,3)

UNEMP(ry,3)

GDP(t1)

IP(.,1)
-0.26
(0.06)

-0.01
(0.02)

0.01
(0.01)

-0.46
(0.09)

0.03
(0.03)

0.03
(0.01)

-0.54
(0.12)

0.04
(0.04)

0.04
(0.02)

-0.30
(0.04)

INFL(.,1)
-0.17
(0.15)

-0.05
(0.07)

0.02
(0.03)

-0.01
(0.20)

0.05
(0.10)

0.03
(0.04)

-0.17
(0.27)

0.01
(0.13)

0.03
(0.04)

0.01
(0.06)

UNEMP(.,1)
-0.29
(0.24)

0.07
(0.13)

0.05
(0.06)

-0.11
(0.32)

0.19
(0.18)

0.10
(0.07)

0.59
(0.44)

0.16
(0.24)

0.14
(0.09)

0.03
(0.03)

IP(.,2)
0.07
(0.09)

0.01
(0.04)

0.03
(0.02)

-0.02
(0.14)

-0.13
(0.06)

0.06
(0.02)

-0.12
(0.19)

-0.12
(0.07)

0.07
(0.03)

-0.04
(0.08)

INFL(.,2)
0.24
(0.20)

0.00
(0.10)

-0.09
(0.05)

-0.28
(0.27)

-0.22
(0.15)

-0.02
(0.06)

-0.49
(0.37)

-0.06
(0.20)

-0.04
(0.07)

0.00
(0.06)

UNEMP(.,2)
0.23
(0.25)

-0.11
(0.15)

0.21
(0.08)

0.23
(0.34)

-0.55
(0.21)

-0.02
(0.10)

0.04
(0.47)

-0.33
(0.29)

-0.06
(0.12)

0.01
(0.04)

IP(.,3)
1.13
(0.06)

0.03
(0.02)

-0.05
(0.01)

1.22
(0.09)

0.16
(0.04)

-0.09
(0.01)

1.23
(0.12)

0.18
(0.05)

-0.10
(0.02)

0.35
(0.05)

INFL(.,3)
-0.12
(0.13)

1.04
(0.07)

0.06
(0.03)

0.15
(0.18)

1.13
(0.10)

0.00
(0.04)

0.42
(0.26)

1.01
(0.13)

0.03
(0.05)

-0.06
(0.06)

UNEMP(.,3)
0.11
10.

0.06
10).

0.71
0.

-0.01
200).

0.38
10.

0.89
0d).

-0.41
39).

0.18
260).

0.87
1.

0.02
0.

GDP Ao
0.07
(0.07)

-0.18
(0.31)

-0.02  -0.09
(0.03) (0.13)

003 027
(0.01) (0.06)

0.29
(0.10)

-0.26
(0.39)

-0.05  -0.03
(0.04) (0.19)

005 0.33
(0.01) (0.07)

0.43
(0.13)

-0.38
(0.51)

-0.10  0.09
(0.05) (0.26)

009  0.50
(0.02) (0.09)

0.82
(0.06)

0.33
(0.23)
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Figure 1: Impulse Response Functions Monthly/Quarterly

The left panel shows the impulse response function of a mixed fregughR and a mis-specified VAR(1) using the setup in equation {2.11) with0, p = a3 = .5, with
[w(7)3, w(v)2, w(y)1] = [.2,.5,.9] and set the innovation covariance matrix to an identity matrix. We consideB, corresponding to a monthly/quarterly data mixture with
point-sampling of the high frequency data - which is obtained from minimittiegcriterion appearing in Propositibnb.1. The left panel shows thregl#mpesponse functions: (1)
the impact of a shock to (71, 1) on future quarterlyc . (2. + k), for k =1, ..., 24 (quarters) as determined by the mixed frequency VAR, (2) the imgacsbock taz i (7., 3)

on future quarterly:, (7. + k), and (3) the impact of a shock to aggreghigh frequency series in the VAR(1) fat(7.) on future quarterly low frequency data. The right panel
also shows three impulse responses, namely: (1) the impact of ahogkrz ) on future quarterly: iz (7. + &, 1), for k =1, ..., 24 as determined by the mixed frequency VAR,
(2) the impact of a shock ter, (71.) on future quarterly: iz (7. + k, 3), and (3) the impact of a shock to aggregmte frequency series in the VAR(1) fai(z ) on future quarterly
high frequency data.

Impulse Responses Case la-m =3

0.9 0.121

—+— First —+— First
08l —#— last —#— last
O - Aggregate

© - Aggregate

0.1r
0.08
0.06 o

0.04- [0}

(e}

L [e]
0.02 o
O.o

[ o S o L o T s e e e e ]
0 5 10 15 20 25

(a) High Frequency Shocks (b) Low Frequency Shocks



8¢

Figure 2: Impulse Response Functions Monthly/Quarterly

The left panel shows the impulse response function of a mixed freguéhR and a mis-specified VAR(1) using the setup in equation {2.11) with0, p = .1, a3 = .5, with
[w(y)s, w(v)2,w(y)1] = [.1,.1,.1] and set the innovation covariance matrix to an identity matrix. We consideB, corresponding to a monthly/quarterly data mixture with
point-sampling of the high frequency data - which is obtained from minimittiegcriterion appearing in Propositibnb.1. The left panel shows thregl#mpesponse functions: (1)
the impact of a shock to (71, 1) on future quarterlyc . (2. + k), for k =1, ..., 24 (quarters) as determined by the mixed frequency VAR, (2) the imgacsbock taz i (7., 3)

on future quarterly:., (7. + k), and (3) the impact of a shock to aggreghigh frequency series in the VAR(1) fat(7z) on future quarterly low frequency data. The right panel
also shows three impulse responses, namely: (1) the impact of ahogkrz ) on future quarterly: iz (7. + &, 1), for k =1, ..., 24 as determined by the mixed frequency VAR,
(2) the impact of a shock ter, (71.) on future quarterly: iz (7. + k, 3), and (3) the impact of a shock to aggregmte frequency series in the VAR(1) fai(z ) on future quarterly
high frequency data.

Impulse Responses Case 1b-m =3
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Figure 3: Impulse Response Functions Monthly/Quarterly

The left panel shows the impulse response function of a mixed fregugAR and a mis-specified VAR(1) using the setup in equation {2.11) with 4, p = a3 = .1,
[w(7)3, w(y)2, w(¥)1] = [0.,0.,0.] and set the innovation covariance matrix to an identity matrix. We consideB, corresponding to a monthly/quarterly data mixture with
point-sampling of the high frequency data - which is obtained from minimittiegcriterion appearing in Propositibnb.1. The left panel shows thregl#mpesponse functions: (1)
the impact of a shock to (71, 1) on future quarterlyc . (72, + k), for k =1, ..., 24 (quarters) as determined by the mixed frequency VAR, (2) the imgacsbock taz i (7., 3)

on future quarterly:., (7. + k), and (3) the impact of a shock to aggreghigh frequency series in the VAR(1) fat(7.) on future quarterly low frequency data. The right panel
also shows three impulse responses, namely: (1) the impact of ahogkrz ) on future quarterly: iz (7. + &, 1), for k =1, ..., 24 as determined by the mixed frequency VAR,
(2) the impact of a shock ter, (71.) on future quarterly: iz (7. + k, 3), and (3) the impact of a shock to aggregmte frequency series in the VAR(1) fai(z ) on future quarterly
high frequency data.
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Figure 4: Impulse Response Functions Weekly/Quarterly

The left panel shows the impulse response function of a mixed fregughR and a mis-specified VAR(1) using the setup in equation {2.11) with.05, p = .1, a; = .5,
[w(y)3, w(y)2, w(y)1] = [.5, .4, .3] with all other remaining 9 MIDAS polynomial weights equal to zero and setrthovation covariance matrix to an identity matrix. We consider
m =3, corresponding to a monthly/quarterly data mixture with point-samplirigeohigh frequency data - which is obtained from minimizing the criterion apg in Proposition
B.1. The left panel shows three impulse response functions: (1) thecinof a shock ta i (71, 1) on future quarterly: .. (7. + k), for k =1, ..., 24 (quarters) as determined by the
mixed frequency VAR, (2) the impact of a shockae (71, 3) on future quarterlyz ., (7 + k), and (3) the impact of a shock to aggreghigh frequency series in the VAR(1) for
T(7r) on future quarterly low frequency data. The right panel also showee impulse responses, namely: (1) the impact of a shogk (or,) on future quarterlyc i (7. + &, 1),
fork=1,..., 24 as determined by the mixed frequency VAR, (2) the impact of a shogk (@, ) on future quarterlyc (71 + k, 3), and (3) the impact of a shock to aggregate
frequency series in the VAR(1) far(7;,) on future quarterly high frequency data.

Impulse Responses Case 3-m =12

161

—+— First —+— First
145 —#— last —#— last
O - Aggregate © - Aggregate

1.2

0.8F

0.6

0.4

0.2r

ek

(a) High Frequency Shocks (b) Low Frequency Shocks



144

Figure 5: Response Function of GDP to IP shocks - BVAR and Mixedu&mrcy BVAR comparison

The plot displays a comparison of impulse response functions obtaimedtie BVAR model estimates reported in Tdble 3 with the correspondieg thonthly impulse response
functions obtained from the mixed frequency BVAR estimates reportedbitel@.
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Figure 6: Response Function of GDP to INFL shocks - BVAR and Mixextjiiency BVAR comparison

The plot displays a comparison of impulse response functions obtaimedtie BVAR model estimates reported in Table 3 with the correspondieg thonthly impulse response
functions obtained from the mixed frequency BVAR estimates reportedbitel@.
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Figure 7: Response Function of GDP to UNEMP shocks - BVAR and Mixedd#ency BVAR comparison

The plot displays a comparison of impulse response functions obtaimedtie BVAR model estimates reported in Tdble 3 with the correspondieg thonthly impulse response
functions obtained from the mixed frequency BVAR estimates reportedbitel@.
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Technical Appendix

A Parsimony - Details

We proceed with a brief discussion of univariate MIDAS regien polynomial specifications. A detailed de-
scription appears in Sinko, Sockin, and Ghysels (2010). Mbst commonly used parameterizations (some
involving restrictions denoted by superscriptare:

1. Normalized beta probability density function,

a1 — )2t

w;(7) =w;(71,72) = Effl x;“_l(l e (A.1)
wi () = wi(l,72) (A.2)
wherez; = (: — 1)/(N — 1) and one often sets the first parameter equal to one Bsih (A.2).
2. Normalized exponential Almon lag polynomial
eit2i?
w;(7) =wi(71,72) = W (A3)
wi = w;(71,0) (A.4)

3. Almon lag polynomial specification of ordér (not normalized, i.e. sum of individual weights is not equal
to 1).

P
Bwi(Yo, -, 7P) = D Wi” (A.5)
p=0

Note that this can also be written in matrix form:

wo 1 0 0 - 0
Wo 1 2 22 ... 2F o]
ws | =11 3 32 ... 3P (A-6)
: . . : . . Yp

| wy | |1 N N? ... NP

Therefore the use of Almon lags in MIDAS models can be achiexra OLS estimation with properly
transformed high frequency data regressors using thexarapresentation appearing in the above equa-
tion. Once the weights are estimated via OLS, one can alvesgale them to obtain a slope coefficient
(assuming the weights do not sum up to zero).
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4. Polynomial specification with step functions (not norizexd)

P
ﬁwi(’)/lv cee a’VP) = Vllie[ag,al] + Z’ijie(a,,_l,ap]
p=2
aw=1<a1<...<ap=N (A7)
1, ap1<i<a,
Iie[ap,l,ap] = :
0, otherwise

whereag = 1 < a; < ... < ap = N. The step functions approach to MIDAS appeared in Ghysels,
Sinko, and Valkanov (2006). A special case is a completetgstricted specification where each weight
is estimated separately. This so called U-MIDAS (unreddVIDAS polynomial) approach suggested
by Foroni, Marcellino, and Schumacher (2011) is shown tdviior small values ofn.

A so calledmultiplicative ADL MIDAS regression specifications is also suggested in&nd, Ghysels, and
Kourtellos (2010). Taking the last equation[in (2.11) weehav

P P
xr(tn) = Zaj+ij33H(7‘L—j)(7)+5(TL7m+1)
eu(r—H0) = Y wl)swu(rs —j,k) (A.8)

=~
Il

1

hence, the withins, period high frequency weights remain invariant and yieldw frequency parameterized
processcy (tr, — 7)(7)-

B Proof of Theorem[4.1

We start be defining the covariance generating functiorsedan equation):
S(z) = &0)+ Y [é(=k)z " +&(—k)'2"]
S(z) = ©0)+ Y [e(—k)zF +e(—k) 2] (B.1)

Since the former is derived from a periodic linear model, \&a apply what is known as the Tiao and Grupe
(1980) formula which yields aigh frequency non-periodic procegéry, kg ), with spectral density equal to:

Sx(2) = — Q)8R ®.2)

whereQ(z) = [Iz1...2m7 '] .

The resulting process is the high frequency aperiodic sgmtation which inherits the high frequency sam-
pling of the periodic models. To obtain the implied low fregey process, we need to address the aliasing
problem (see e.g. Hansen and Sargent (1983) and Phillig8)L8ssociated with sampling this process only at
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low frequency. More specifically§(z) is a skipped sampled version 8%, and therefore:

m—

— z+2mj
5(2) Z& —) (8.3)
7=0
which can be written as:
m—1 . .
1 1 z+27r] z2+27m7 . z+ 2wy, _
= %Q )S(( o ) )Q((T) Y (B.4)

j=0

S

Using the spectral density representations appearinguatims [4.11) yields:

m—1

> QT (A (2 2T ®.5)

m m m

S(z) =

S\H

j=0

C Proof of Proposition(5.1

We start with listing the regularity conditions. We assuine DGP is the/(; + m x Ky dimensional vector
x(71,) described by equatioh (2.6):
A(LL)(X(m1) — px) = &(7z)

with E[e(7r,)e(rr)’] = CC'. Similar to Theoreni 411 we assume all the processes are aoearstationary and
therefore have a spectral representation. In particular:

Assumption C.1. The processi(r;) satisfy Assumptioris 2.1 ahd 2.2 and has spectral delsity for z =
exp (—iw) with w € [0, 7], which can be written as:

S(z) = A(z)7'CC/ (A1)
The same process is parameterized as:

Ay(Lp)(E(rL) — pF) = E(rr)

with spectral density:
S(z,0) = Ay (2)1CyCly(Ag (2711

Furthermore, a simple skip-sampled or the general aggiegaicheme as i (4.3) yields a low frequency VAR
model with spectral density as in (#.1) parameterized®hy

S(z,®) = B (2) 'CoCq(Bo(z~1) 1Y

Moreover, the parameter vector spaces are respectively\3, ¥ € Ay and

Assumption C.2. The parameter spacess and Ay are compact subsets of a Eucledian space
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Assumption C.3. The spectral densitie$(z, ¥) andS(z, ®) for z = exp (—iw) are continuous mappings map-
ping respectively—, 7] x Ag and[—m, 7] X Ag into the space of positive definite Hermitian matrices shelt t
for some) < g; < &, : 1] < S(exp (—iw), ¥) < e,I ande; ] < S(exp (—iw), ®) < ,1 for respectively each
(w, W) € [, 7] x Ay and (w, ®) € [—m, 7] x Ag, S(exp (iw), ¥) is the complex conjugate Sfexp (—iw), ¥)
and S(exp (iw), ®) is the complex conjugate 6fexp (—iw), ®).

Assumption C.4. uz is a continuous function on the domainAg. u; is a continuous function on the domain
of Ayg.

Under the above assumptions, Hansen and Sargent (1993fah@generic potentially mis-specified model
characterized by spectral densi{d) involving parameter vectaf against DGP with spectral densisy that
the maximum likelihood estimator minimizes the Kullbaclddreibler (1951) information criterion which can
be written as:

E(G(0),5) = Ei(G(6),5) + E2(G(5),5) + E5(G(6),5)

E(G6),§) = % _w log(detG(exp (—iw)))dw
Ey(G(6),5) = % :T trace(detG(8, exp (—iw)) 1S (exp (—iw)))dw
E3(G(6),5) = (nz —v(9)G1) ™" (nz — v(9)) (C.6)

using results from Akaike (1973), Ljung (1978), White (1982)d Btscher (1987). The results in equations
(&.3) follows by substituting(5) with $(¥) and the corresponding meanify. For the result in equatiofi{3.6)
we need to add one operation, namely we need to handle fa¢hthlmw frequency process needs to be stacked
and skip sampled. This results in the appearance of (1) thigpfiaative termm in the first termFEy, (2) the use

of Q(.) in E5 and (3) the use of,,,, am-dimensional vector of ones in the tedm.
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