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Abstract

This paper extends the endogenous grid method (EGM, 2006 “The method of endoge-
nous gridpoints for solving dynamic stochastic optimization problems”, Economic Letters)
for dynamic programming (DP) models with discrete and continuous choice variables. Unlike
other generalizations, our extension of EGM enjoys the key advantage of Carroll’s original
approach, namely it avoids iterative algorithms to find the optimal continuous choice (e.g.
consumption). We show that our extension of EGM can in principle handle DP problems
with arbitrary numbers of additional discrete choices and other constraints on the contin-
uous decision variable. The presence of discrete decisions implies that the value function
is the upper envelope of the set of decision-specific value functions, and our method effi-
ciently efficiently calculates this upper envelope, taking care to capture kinks in the value
function that in some circumstances cause the optimal continuous decision rule to have dis-
continuities at the kinks points. Although we illustrate the performance of our extension of
the EGM algorithm in a specific example (a simple life cycle consumption/saving, optimal
retirement problem) we show the method is very general and applies to a wide class of
discrete/continuous dynamic programming problems, and we define the class of problems
which this extended EGM algorithm can solve. We compare the speed and accuracy of
this extended EGM method to a traditional backward induction Euler equation approach,
and show that the extended EGM method can find a solution with comparable accuracy,
but is several orders of magnitude faster. Our extension of EGM has been implemented in
a generic software package that includes pseudo-language for easy model specification and
computational modules which support both shared memory and cluster parallelization. The
package is wrapped in a Matlab class and incurs low start-up cost to the user. The software
package is freely available for other researcher to download and use to solve other types of
discrete/continuous DP problems.
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1 Introduction

Solving dynamic stochastic optimization problems is rarely feasible analytically, and numerical
solutions are usually computationally intensive. Traditionally numerical solutions are obtained
through backward induction (or value function iterations) which require solving for the optimum
value of control in each time period and in each point of the state space of the original problem.
The state space is usually discretized beforehand with an exogenously fixed grid. The endogenous
grid method (EGM) proposed by Carroll [2006] avoids internal optimizations by letting the grid
over the state space vary from one time period to another. The essence of the EGM method is to
guess an optimal value of control and back out the values of the state variables for which the guess
would indeed be optimal. Repeating this procedure until the whole state space is sufficiently
explored in each time period gives the same mapping of points of the state space to the optimal
decisions as in the traditional solution framework. However, by replacing iterative optimization
routine with a single shot algorithm, the EGM approach leads to substantial decrease in run-
time, especially in large scale problems.

Carroll [2006] presents EGM as a solution method for a standard problem of maximizing dis-
counted utility of consumption subject to intertemporal budget constraint, for which he provides
both microeconomic and macroeconomic interpretations. Under the micro interpretation, future
consumption is uncertain due to shocks to labor income, and the budget constraint reflects the
dynamics of liquid assets with positive returns on savings and in presence of borrowing con-
straint. Under the representative agent macro interpretation, future consumption is uncertain
due to shocks to aggregate productivity, and the budget constraint reflects the dynamics of de-
preciating capital. In both interpretations the model boils down to an optimal control problem
with one continuous state and one continuous decision variable.

The purpose of this paper is to generalize the EGM method to make it suitable for a larger class
of dynamic stochastic optimization problems, namely those which include additional discrete
and continuous state variables and more importantly additional discrete choices. The intended
application for our modification of EGM is a more involved microeconometric model with discrete
labor supply choices accompanying the consumption-savings process covered by Carroll’s micro
interpretation. We use a simple model from this class for numerical illustrations and comparisons
to the traditional solution algorithm.

To solve the consumption-savings model, Carroll’s EGM method proceeds in the following way.
In the terminal period consumption is identical to total resources in that period, which forms
the base for backward induction. Further, for given value of end-of-period assets, next period
cash-in-hand is computed using intertemporal budget constraint, then optimal consumption is
found from already known consumption function for next time period, and finally the Euler
equation is used to recover optimal consumption in the current period corresponding to the
chosen value of end-of-period assets. These two values combine to the amount of total assets for
which the posited level of consumption is indeed optimal. Assuming the decision maker has a
strictly concave utility function, the Euler equation can be solved analytically using an inverted
marginal utility function, which allows the method to avoid traditional iterative root finding
algorithms altogether.

The main idea of our generalization of EGM method is to apply Carroll’s original algorithm
(which we refer to as EGM step) for each discrete decision available in current time period. This
produces a consumption function defined over the endogenous grid for each current discrete
decision. Along with the consumption function we also compute discrete-decision-specific value
functions which are also defined over endogenous grids. In order to recover the discrete policy
function which takes the form of one or several threshold values of total resources where the
decision maker shifts from one discrete decision to the other, the computed value functions must
be compared over all values of total resources. We employ a fast algorithm for computing the
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upper envelope of a collection of piece-wise linear functions to speed up this step by avoiding
the unification of the endogenous grids and excessive interpolations. After the thresholds are
computed, the resulting consumption function for the period is constructed from the correspond-
ing decision-specific consumption functions calculated earlier with the EGM step. As a result,
the consumption function appears to have discontinuities associated with points where there
are kinks in the value function. These kinks arise on the upper envelope value function, where
discrete-decision-specific value functions cross each other.

When the EGM step is performed again in preceding time periods, the kinks in value function
translate into the intervals of total resources where the solution to the Euler equation is not
unique. In such non-convex regions solving the first order condition is not sufficient for finding
the optimal value of consumption, and slower global optimization methods were used in previous
literature to deal with this problem. We develop a new approach to handling non-convex regions
which is also based on fast upper envelope algorithm. We describe our algorithm in detail in
section 3.

EGM has already been generalized for the case of additional state variables and additional con-
trols by Barillas and Fernandez-Villaverde [2007] who propose an iterative scheme in which EGM
step is alternated with traditional value function iteration step. During EGM step the objec-
tive function is optimized only with respect to one continuous decision variable while keeping
all other policy functions (decision rules) fixed. The latter are updated at each value function
iteration step. Barillas and Fernandez-Villaverde use standard representative agent neoclassi-
cal growth model with endogenous continuous labour supply to illustrate their method, and
show the speed-up of the solution to be of two orders of magnitude compared to the traditional
approach.

Our generalization of EGM, although similar in spirit, differs from Barillas and Fernandez-
Villaverde [2007] in several important aspects. First, Barillas and Fernandez-Villaverde tailor
their algorithm for infinite horizon problems, which allows them to use EGM directly in place
of value function iterations in the search for the fixed point that solves the Bellman equation.
Restricting attention to infinite horizon problems allows for an accurate initial guess of a value
function, using the analytic steady state solution for the deterministic version of the model. As
Barillas and Fernandez-Villaverde note1, for some models (including the one they use to illustrate
their method) running EGM with one control fixed to its deterministic steady state value, and
performing just a single value function iteration afterwards may give nearly as accurate a solution
as the traditional method. In contrast, our method is developed with finite horizon problems
in mind, thus there is no gain in the efficiency of the method due to a possibly better initial
guess for the value function. Calculations start at terminal period from the same point (terminal
utilities) as they would in the traditional backward induction approach. Yet, our method can
be easily extended to infinite horizon.2

Second, Barillas and Fernandez-Villaverde [2007] cannot avoid root-finding operations com-
pletely. Besides optimizations with respect to some decision variables which are inevitable in
value function iterations, in their method a non-linear equation has to be numerically solved
during each transition between the two types of iterations. In our algorithm we make use of
the fact that value function iterations when all decision variables are discrete are not only faster
because internal optimization tasks reduce to calculating maximums across finite sets of points,
but also they can be “vectorized” when the upper envelope of a set of decision-specific value
functions is calculated instead. The gain in computational speed is due to the fact that not all
decision-specific value functions have to be compared in each state point in order to calculate
the upper envelope. In addition, we develop an efficient algorithm for combining the different

1Section 3.2, page 2701.
2Although the question of choice of the initial guess for policy functions will then arise.
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grids these value functions are defined over (due to the use of EGM) which avoids multiple re-
interpolations. In effect, our algorithm avoids all root-finding operations, except the complicated
cases of utility maximization in terminal period3.

Fella [2011] provides a generalization of the endogenous grid point method for non-concave
problems which includes the specification we consider here. Fella proposed a different method
to solve an example model of durable goods purchases with switching costs. The key idea of
Fella’s method is to identify the regions of the problem where first order conditions are not
sufficient and run auxiliary numerical optimizations to verify whether the solution found by
EGM step is indeed a global maximum. Contrary to his approach, we show that identifying
exact boundaries of such non-convex regions is not necessary and that global maxima can be
found with a much less time consuming computation of the upper envelope over the auxiliary
value functions produced by each solution of the first order condition.

The rest of the paper is organized as follows. We start with setting up a simple illustrative
model of optimal retirement and show how it can be best solved using a modification of the
traditional dynamic programming approach, that iteratively solves a “kinked” Euler equation.
The “kinked” Euler equation arises when there is a combination of a discrete retirement decision
and a continuous consumption-saving choice. Then, unlike much of the previous literature
including both Carroll [2006], Fella [2011] and Barillas and Fernandez-Villaverde [2007] who
center their algorithms around particular model specifications, in section 3 we set up an abstract
stochastic control problem and present our solution method separately from the details of any
particular economic model. In section 4 we present numerical results and compare generalized
EGM to traditional solution methods for our illustrative problem, and then we conclude.

2 Illustrative model

2.1 Model of retirement

Consider a model with a single state variable Mt which denotes total liquid resources (wealth)
available in the beginning of period t, and two choices: how much to consume ct and whether
or not to work dt. Let dt = W denote the choice to work and dt = R denote the choice to retire.

We assume that if someone chooses to work they receive a fixed (non-random) wage y together
with an age-dependent additive disutility (or cost) of working wt. Let the time constant discount
be β ∈ (0, 1)4. We assume that there is a potentially random return R ≥ 0 to savings, but in
this model we do not consider portfolio allocation choice focusing on one discrete decision to
retire5.

We consider a version of the problem where retirement is assumed to be an absorbing state, i.e.
once retired we rule out the possibility of subsequent labor market entry. The value function for
a person who has not yet retired Vt(M,W) is given by

Vt(M,W) = max

[

Vt(M,R), max
0≤ct≤M

[u(ct)− wt + βEVt+1 (R (M + y − ct) ,W)]

]

, (1)

3When terminal utility is increasing monotonically, this maximization is trivial because in presence of bor-
rowing constraint consumption is bounded from above.

4The closed-form solutions provided below can be extended to the case where β is age-dependent which could
reflect age-variation due to mortality.

5The solutions below can be extended to allow returns of the form R(µ) which depend on a parameter µ ∈ (0, 1)
that can be viewed as a portfolio allocation decision between a riskless security (Treasury bills) and risky securities
(stock portfolio).
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where Vt(M,R) is the value function for a retiree given by

Vt(M,R) = max
0≤ct≤M

[u(ct) + βEVt+1 (R (M − ct) ,R)] . (2)

For the class of constant relative risk averse utility functions, u(c) = (cρ − 1)/ρ for ρ ∈ [0, 1)
(with u(c) = log(c) when ρ = 0), Hakansson [1970], extending Phelps [1962], derived closed-form
solutions for optimal consumption ct(M) and for Vt(M,R), t ∈ {1, . . . , T}, where T is the upper
bound on lifespan. We have for ρ ∈ (0, 1)

Vt(M,R) =

[

Mρ

ρ

]

(

T−t
∑

i=0

Ki

)(1−ρ)

−
1

ρ

(

t
∑

i=0

βi

)

(3)

ct(M,R) = M

(

T−t
∑

i=0

Ki

)−1

, (4)

where K = (βRρ)1/(1−ρ), so K = β when ρ = 0. Further, for ρ = 0 we have6

Vt(M,R) = log(M)

(

T−t
∑

i=0

βi

)

+AT−t (5)

where

At =

(

t
∑

i=0

iβi

)

[log(R) + log(β)]− log

(

t
∑

i=0

βi

)(

t
∑

i=0

βi

)

.

The optimal retirement threshold M t is the value of M that makes the person indifferent between
retiring and not retiring at age t

Vt(M t,R) = Vt(M t,W). (6)

If wt > 0 (i.e. there is a positive disutility from working), it will be optimal for a person of age t
to retire if M ≥ M t and work otherwise. We will have a non-convex kink in the value function
for working Vt(M,W) at the point M t since we have from (1)

Vt(M,W) = max [Vt (M,R) , Vt (M,W)] (7)

and we can show that in this problem the two functions will only intersect once at M t with
Vt(M,W) > Vt(M,R) for M < M t and Vt(M,W) < Vt(M,R) for M > M t.

Let ct(M,R) be the optimal consumption of a retiree of age t. This function is given by

ct(M,R) = argmax0≤c≤M [u(c) + βEVt+1 (R (M − ct) ,R)] . (8)

Let the optimal consumption of a individual who is still working (not yet retired) be denoted
ct(M,W). This function is composed of two components corresponding to the two discrete
choices available to a worker, namely

ct(M,W) =







ct(M,W,W) if M ≤ M t,

ct(M,W,R) if M > M t,
(9)

where ct(M,W,W) is a consumption function of the worker who decides to continue working,
given by

ct(M,W,W) = argmax0≤c≤M [u(ct)− wt + βEVt+1 (R (M + y − ct) ,W)] , (10)

6Equation (5) can be derived by L’Hôpital’s rule from (3) in the limit as ρ → 0
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and ct(M,W,R) is a consumption function of the worker who decides to retire, given by

ct(M,W,R) = argmax0≤c≤M [u(ct)− wt + βEVt+1 (R (M − ct) ,R)] , (11)

which is identical to optimal consumption of a retiree because disutility of work wt is independent
of consumption, i.e. ct(M,W,R) = ct(M,R).

The optimal consumption function of a worker ct(M,W) has a discontinuity at M t, and for some
small ξ > 0 ct(M t − ξ,W) > ct(M t + ξ,W). This follows from the fact that the kink in the
value function Vt(M,W) at M t results from the maximization in (7) of two concave functions,
and thus can only be downward pointing. The derivative of the value function V ′

t (M,W) makes
a discontinuous jump at this point, i.e. V ′−

t (M t,W) < V ′+
t (M t,W), where V ′− and V ′+ denote

left and right hand derivatives correspondingly.

It will be an important test to check if the solution method can accurately determine the optimal
retirement thresholds M t and capture the discontinuity in the optimal consumption function
ct(M,W) at these points.

2.2 Solving the model using the “kinked” Euler equation

Numerical dynamic programming is traditionally used to solve models similar to the retirement
model laid out in previous section. The method proceeds backwards from the terminal period
T by iteratively solving the Bellman equations (1) and (2). Optimization in (1) and (2) can
be performed directly using various standard numerical maximization/minimization methods,
but to make a closer comparison to EGM, we adopt a numerical approach based on first order
conditions. Therefore, we start with deriving the “kinked” Euler equation for the retirement
problem.

For M ≤ M t it is optimal for the worker to continue working, and we have the following first
order condition for (1) holding for each Mt in this region

u′ (ct (M,W)) = β

ˆ ∞

0
RV ′

t+1 (R (M + y − ct (M,W)) ,W)F (dR), (12)

where F (R) is cumulative distribution function for the returns R.

However we have

V ′
t+1(M,W) =







V ′
t+1(M,W) if M ≤ M t+1,

V ′
t+1(M,R) if M > M t+1,

(13)

Via the Envelope Theorem, we have

V ′
t (M,W) =







β
´∞

0 RV ′
t+1 (R (M + y − ct (M,W)) ,W)F (dR), if M ≤ M t,

β
´∞

0 RV ′
t+1 (R (M − ct (M,R)) ,R)F (dR), if M > M t.

(14)

However, for the first order condition for post-retirement consumption, we have

u′ (ct (M,R)) = β

ˆ ∞

0
RV ′

t+1 (R (M − ct (M,R)) ,R)F (dR), (15)

Substituting equations (12) and (15) into the equation (14) above, we get

V ′
t (M,W) =







u′(ct+1(M,W)) if M ≤ M t,

u′(ct+1(M,R)) if M > M t.
(16)
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Now substituting formula (16) into the Euler first order condition for optimal pre-retirement
consumption (12) we obtain

u′ (ct (M,W)) = β

ˆ ∞

0
Ru′(ct+1(R (M + y − ct (M,W)) ,W)) · I{R (M + y − ct (M,W)) ≤ M t+1}F (dR)

+ β

ˆ ∞

0
Ru′(ct+1(R (M − ct (M,W)) ,R)) · I{R (M − ct (M,R)) > M t+1}F (dR). (17)

This is the appropriate “kinked Euler equation” to be solved to determine optimal consumption
in the pre-retirement phase of the dynamic programming problem. Note that with a change of
variables q = F (R), we can write the kinked Euler equation (17) as

u′ (ct (M,W)) = β

ˆ qt

0
F−1(q)u′

(

ct+1

(

F−1(q) (M + y − ct (M,W)) ,W
))

dq

+ β

ˆ 1

qt

F−1(q)u′
(

ct+1

(

F−1(q) (M − ct (M,W)) ,R
))

dq (18)

where the threshold qt is given by

qt = F

(

M t+1

M + y − ct(M,W)

)

. (19)

As long as distribution of returns is not degenerate, the resulting “kinked” Euler equation (18)
is continuous and smooth in ct(M,W) in spite of the discontinuity in the consumption function
ct+1(M,W) at M = M t+1. In fact, it is straightforward to define the Euler residual function as
the difference between left hand side and right hand side of the equation (18) and write down
the derivative of this function. Then solving the Euler equation amounts to finding zeros of
the Euler residual function, and with analytical derivatives available, this task can be efficiently
performed by Newton’s Method.

The difficulty that remains and has to be addressed separately in the non-convex problems with
discontinuous drops in optimal consumption similar to the one we consider here, is the fact that
Euler equation is only a necessary condition and solutions may not be unique. Even in the case
of random returns when Euler residual function is smooth, it is not necessarily monotone, and
thus there may be several solutions to the Euler equation. In fact, in the simple retirement
model in the period T − 3 there are two solutions for the Euler equation for worker for some
levels of wealth MT−3. In such cases, globally optimal level of consumption can be recovered
by comparing value functions for each of the solutions of the Euler equation. This considerably
complicates the numerical solution procedure not only because of the need to compare multiple
solutions of the Euler equation, but also because of the necessity to find all possible solutions
before determining which one results in global optimum at each level of of wealth.

3 Generalized EGM algorithm for discrete-continuous problems

In this section we provide formal description of the class of the models that can be solved with
generalized EGM method, make a compact presentation of the solution algorithm itself and
discuss its interior machinery in more detail.

3.1 Abstract model to be solved by generalized EGM method

The generalized EGM algorithm is designed to solve a particular dynamic stochastic optimal
control problem in discrete time with one continuous and one discrete decision variables. The
model has the form
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maxδ∈F







E





T
∑

t=T0





t
∏

τ=T0

βτ



 · u (ct, dt, stt)











(20)

s.t. Mt+1 = Rt+1 (At, stt, dt, stt+1, ξt+1) (21)

Mt = At + ct (22)

At > A0, (23)

where notations are as follows:

u (ct, dt, stt) is an instantaneous utility at period t, which is dependent on consumption ct =
Mt −At , discrete decision dt and a vector of additional state variables stt;

Mt ∈ R
1 is a uni-dimensional continuous state variable which is given special role in the solution

algorithm, with standard microeconomic interpretation of total resources (money-at-hand)
available for consumption in period t;

At ∈ R
1 is a scalar continuous decision variable which is interpreted as end-of-period resources

remaining after within-period consumption in accordance with (22), which is subject to
credit constraint (23);

dt ∈
{

d(1), .., d(D)
}

is the discrete decision variable which has D possible values;

δ = {δT0
, .., δT } is a set of decision rules (policy functions) of the form δt : (Mt, stt) → (At, dt)

which map points of the state space into choices at each time period, and are jointly chosen
from the class of feasible decision rules F;

βτ is exogenous discount factor which may be time-dependent, for example reflecting mortality
probabilities;

Rt+1 (At, stt, dt, stt+1, ξt+1) is the intertemporal budget constraint which describes how the next
period total resources Mt+1 depend on current period savings At given the transition from
stt to stt+1 and the discrete decision dt;

ξt+1 is an idiosyncratic shock in period t+ 1 that affects the budget constraint.

The intertemporal budget constraint for the retirement model is given by Rt+1 (At, stt, dt, stt+1, ξt+1) =
ξt+1At + y · I {dt = W}, where ξt+1 = R is the time-independent stochastic return on savings.
It is also straightforward to verify that with different definitions for Rt+1 (At, stt, dt, stt+1, ξt+1)
the problem (20) nests both micro and macro specifications in Carroll [2006].

The solution method relies on the following properties assumed about this problem:

A1. The instantaneous utility u (c, dt, stt) is twice continuously differentiable, concave, and has

a monotonic derivative with respect to c (i.e. ∂2u
∂c∂c < 0);

A2. The decision space contains one scalar continuous choice variable At and one scalar discrete
choice variable dt

7;

A3. The structure of the constraints (21-23) holds, thus singling out one continuous state vari-
able Mt for which the stochastic motion rule is given by (21) and which enters the utility
function only through ct = Mt −At;

7Because vector values of any multinomial discrete decision can always be “re-coded” into the single set of
values, there is no loss of generality in assuming dt to be scalar.
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A4. The decision At is restricted to [A0,Mt] which ensures through (22) that ct ≥ 0;

A5. The transition probabilities (densities) for the state process {stt} used in calculating the ex-
pectation in (20) are independent of Mt, namely P (stt+1|stt,Mt, At, dt) = P (stt+1|stt, At, dt).

3.2 General layout of the solution algorithm

According to the Principle of Optimality, the problem (20) can be written in recursive form as

Vt (Mt, stt) =

{

maxδt {u (Mt −At, dt, stt) + βt+1E [Vt+1 (Rt+1 (At, .., ξt+1) , stt+1)]} , 1 6 t < T,

maxδt {u (Mt −At, dt, stt)} , t = T,

s.t. At > A0, M1 fixed, st1 fixed.
(24)

Vt (Mt, stt) is the value function of the problem. In the absence of discrete component in the
decision rule δt first order conditions for (24) in combination with envelope theorem would lead
to the single Euler equation that constitutes the foundation of EGM in Carroll’s original 2006
paper. But because the maximand in (24) is not differentiable with respect to dt, it is not
possible to apply Carroll’s argument in full and derive the set of Euler equations to characterize
the solution to the problem (20). Instead, we rely on the result from Clausen and Strub which
generalizes the argument we used in section 2.2 to derive the kinked Euler equation in the
optimal retirement problem.

Theorem 3 in Clausen and Strub establishes that when the utility function is differentiable with
respect to consumption (assumption A.1) the value function is also differentiable at interior
optimal choices. Moreover, the Euler equation with respect to the continuous control variable
holds as long as no constraints bind. The intuition behind their result is the following. Because
value function Vt (Mt, stt) is in fact an upper envelope of the discrete choice specific value
functions

V dt
t (Mt, stt) = max

A
dt
t (Mt,stt)

{u (Mt −At, dt, stt) + βt+1E [Vt+1 (Rt+1 (At, .., ξt+1) , stt+1)]}

(25)
(for 1 6 t < T ), and as long as there are no kinks in V dt

t (Mt, stt) caused by binding constraints,
it may only have downward pointing kinks which cannot be even local maxima. In other words,
the decision maker never chooses a savings level where he is indifferent between the discrete
choices.

Therefore we base our generalization on the fact that the Euler equation with respect to the
continuous control remains the necessary condition for optimality, and thus the EGM step can
be carried through conditional on the discrete choices. The Euler equation with respect to
the continuous control can be derived similarly to the “kinked” Euler equation in the optimal
retirement problem. For problem (20) it takes the form

{

∂u
∂c (ct, dt, stt) = βt+1E

[

∂Rt+1

∂At
· ∂u
∂c (ct+1, dt+1, stt+1) |At, stt

]

, 1 6 t < T,

∂u
∂c (ct, dt, stt) =

∂u
∂c (cT , dT , stT ) = 0, t = T,

(26)

where the arguments of the intertemporal budget constraint function Rt+1 (At, stt, dt, stt+1, ξt+1)
are dropped to simplify exposition.

The general layout of the algorithm is presented in Table 1; each column represents one of a
series of nested loops, and each row represents a distinct operation within a corresponding loop.
When t = T (upper panel in the table) there is no subsequent period, and the problem can be
reformulated as a static maximization of utility of consumption under borrowing constraint. For
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Table 1: Schematic layout of the generalized EGM algorithm

In the last
period
when
t = T

For each
stT

Choose some initial grid over MT

Compute optimal consumption cT using second line in Euler equation
(26) and restriction 0 6 cT 6 MT − AT

Output optimal consumption and savings functions cT (MT , stT ) and
AT (MT , stT ) = MT − cT (MT , stT ), as well as value functions
Vt (MT , stT ) = u (cT , dT , stT ) for each stT , and proceed with next iteration of t

For t from
T − 1 to 1

For each
stt

For
each
dt

For a
sequence
of guesses
of At

generated
such that
the en-
dogenous
grids
M

grid
t (dt, stt)

overlap for
all discrete
decisions

Compute left hand side of the Euler equation

E
[

∂Rt+1

∂At
· ∂u

∂c
(ct+1, dt+1, stt+1) |At, stt

]

and the

expected value function E [Vt+1 (Rt+1, stt+1) |At, stt]
using

• transition probabilities for the state process
P (stt+1|stt, At, dt)

• probability distribution of shock ξt+1

• optimal consumption ct+1(Mt+1, stt+1) and
optimal discrete choice dt+1(Mt+1, stt+1)
computed on the previous iteration of t

• value function Vt+1 (Mt+1, stt+1) computed on
the previous iteration of t

Compute the optimal consumption ct at t for given At

using the Euler equation (26) and the inverse of the
marginal utility function

Add another point Mt = At + ct to the (decision
specific) endogenous grid M

grid
t (dt, stt)

Compute the dt-specific value function at the new grid
point V dt (Mt, stt) =
u (ct, dt, stt) + βt+1E [V (Mt+1, stt+1) |At, stt]

Compute the “secondary” upper envelopes in the non-concave
regions (where more than one solution to the Euler equation is
found for the same values of total resources Mt) by dropping the
endogenous points corresponding to local maxima of the value
function.

Save to memory the calculated dt-specific optimal consumption

function cdtt

(

M
grid
t (dt, stt), stt

)

and dt-specific value function

V dt
t

(

M
grid
t (dt, stt), stt

)

defined over decision specific endogenous

grid M
grid
t (dt, stt)

Compute the upper envelope of decision specific value functions

V dt
t

(

M
grid
t (dt, stt), stt

)

while simultaneously constructing the unified

endogenous grid M
grid
t (stt) and optimal discrete decision rule dt(Mt, stt)

Using the optimal discrete decision rule and the corresponding dt-specific
optimal consumption functions, find the unified optimal consumption

function ct

(

M
grid
t (stt), stt

)

and value function Vt

(

M
grid
t (stt), stt

)

.

Output optimal consumption and savings functions ct (Mt, stt) and
At (Mt, stt) = Mt − ct (Mt, stt), the optimal discrete decision rule dt(Mt, stt) and
value functions Vt (Mt, stt) for each stt, and proceed with next iteration of t
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all utility functions which are monotonically increasing in consumption (∂u∂c (ct, dt, stt) > 0) the
optimal consumption and savings at the terminal period is just cT = MT −A0 and AT = A0. In
such case the only equation to be solved numerically is eliminated and the method avoids root
finding operations completely.

The lower panel of Table 1 contains a set of nested loops that have to be run in order to find
optimal behavior in all the rest of time periods. The outer-most and the next loop are standard
in backwards induction solution approaches for Markovian decision problems, but the content
of the latter is specific for our generalization of EGM.

The main principles are the following. The core EGM step is performed conditional on each
current period discrete decision dt to produce the dt-specific endogenous grid Mgrid

t (dt, stt) ∈

R
n(dt,stt) and optimal consumption rule ct

(

Mgrid
t (dt, stt), stt

)

defined over this grid. The stan-

dard EGM step is augmented with the calculation of the dt-specific value functions V dt
t

(

Mgrid
t (dt, stt), stt

)

,

performed in parallel at very small marginal cost. It is worth noting that instead of the notion of
a fixed grid over end-of-period total resources At we adopt the notion of a sequence of guesses of
At, which are taken one by one and fed into the EGM step. This is important because the proper
sequence of guesses may differ for different dt, and therefore we develop an adaptive algorithm
to generate it in order to ensure that dt-specific endogenous grids overlap over the interval of
interest of Mt.

Once EGM step is performed for each value of current discrete decision dt, dt-specific value

functions V dt
t

(

Mgrid
t (dt, stt), stt

)

must be compared to reveal the ranges of Mt where each

discrete option is optimal. This comparison may be hard and time consuming due to the
fact that the functions to be compared are defined over generally unknown dt-specific grids
Mgrid

t (dt, stt). One extreme case is when for some d′t and d′′t the grids do not overlap, i.e.

max
{

Mgrid
t (d′t, stt)

}

< min
{

Mgrid
t (d′′t , stt)

}

. The adoptive algorithm for generating the se-

quences of At mentioned above is designed to rule out this case and ensure that all endogenous
grids overlap in the range of the initial grid over Mt chosen at t = T .

The computational burden of comparison of the dt-specific value functions V dt
t

(

Mgrid
t (dt, stt), stt

)

is also due to the fact that functions of interest are defined over different grids. The brute force
approach implied in previous papers [Barillas and Fernandez-Villaverde, 2007, Fella, 2011] re-

quires, first, that period t unified endogenous grid Mgrid
t (stt) is fixed, second, that all value

functions at the nodes of this new grid are interpolated, and third, that maximum is found
at each point. Additional steps are required to compute the exact boundaries of the regions
of optimality for each of the discrete decisions dt. We propose an algorithm for computation
of the the upper envelope of piece-wise linear functions which works across the whole range of
Mt thus “vectorizing” the comparison. The exact values of switching between different discrete
decisions are also found naturally in the computation of upper envelope. Theorem 2 in Pach
and Sharir [1989] provides the upper bound on the number of linear segments in the upper en-
velope, namely O {D · (n− 1) · α (D · (n − 1))}, where α (•) is extremely slowly growing inverse
Ackermann function8 and n is the largest number of points in the endogenous grids.9

Our algorithm for the computation of the upper envelope is based on the idea of re-utilizing the
existing grid points to avoid unnecessary interpolations and the insight that many comparisons
can be skipped for inferior functions. The algorithm achieves linear running time in the number
of endogenous grid points.

8For all practical purposes it can be assumed that α (D(n− 1)) < 5.
9Algorithm 1 and Theorem 2.1 in [Edelsbrunner, 1989] demonstrates how this boundary is achieved for piece-

wise linear planes with respect to both time and storage.
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Finally, the optimal consumption rule ct

(

Mgrid
t (stt), stt

)

and value function Vt

(

Mgrid
t (stt), stt

)

(in next to last row in Table 1) are also constructed as part of the upper envelope calculation.

3.3 Borrowing constraints

Borrowing constraints present both theoretical and numerical problems, but similarly to the
original EGM by Carroll [2006] our generalized method deals very effectively with both of them.

The theoretical difficulty is due to the fact that Euler equation (26) is only necessary as long
as the constraint At > A0 is not binding. Carroll [2006] deals with it by running the EGM
iteration for the guess At = A0 and finding the threshold M0 where the decision maker is at
the verge of becoming credit constrained. All points Mt > M0 where the constraint is relaxed
are reconstructed in the EGM step using Euler equation, and for all points Mt < M0 the credit
constraint binds, implying that At = A0 and ct = Mt−A0 from (22). So, if optimal consumption
is graphed against Mt, Carroll [2006] simply connects the left-most point recovered in EGM step
to the point (A0, 0).

Our generalization of EGM applies exactly the same approach when it comes to the calculation

of optimal consumption rule cdtt

(

Mgrid
t (dt, stt), stt

)

during the EGM step. The first point in

the construction of dt-specific endogenous grid Mgrid
t (dt, stt) is manually set to be A0 with

corresponding consumption cdtt (A0, stt) = 0. The EGM step starts with current savings equal
to A0 and recovers the second point in the dt-specific endogenous grid which is denoted by

Mdt
0 (stt) = A0 + cdtt

(

Mdt
0 (stt), stt

)

.

For all values of Mt between A0 and Mdt
0 (stt) the decision maker is credit constrained and saves

exactly A0. This is due to monotonicity of optimal savings function.

Numerical difficulties arise when the dt-specific value functions V dt
t (Mt, stt) are calculated on

Mgrid
t (dt, stt) in the proximity of A0. For any utility function that assigns negative infinity

to zero consumption the value functions become increasingly steep at the left side of the grid,
and their piece-wise linear approximations become increasingly rough. As a result, the upper
envelope of these approximations becomes excessively complex on the left end of the grid, and
the algorithm finds lots of switching between different discrete decisions on very small intervals
close to A0. However, we are able to suppress this numerical noise using the following property
of the dt-specific value functions V dt

t (Mt, stt).

Denote Mdt
0 (stt) as the level of total resources that is returned by the EGM step when it is

called with A0, to the left of which the decision maker is credit constrained when making choice
dt. Denote EV dt

0 (stt) as the expected choice-specific value function corresponding to no savings
(At = A0), i.e.

EV dt
0 (stt) = E [Vt+1 (Rt+1 (A0, stt, dt, stt+1, ξt+1) , stt+1)] .

Then for Mt < Mdt
0 (stt) the dt-specific value function V dt

t (Mt, stt) is given by

V dt
t (Mt, stt) = u1 (Mt −A0, stt) +

[

u2 (dt, stt) + βt+1EV dt
0 (stt)

]

, (27)

where we assume that the utility function is additively separable in consumption and dt, i.e.
u (Mt −A0, dt, stt) = u1 (Mt −A0, stt) + u2 (dt, stt). Note that the first term in the right hand
side of (27) is independent of dt and the second term is independent of Mt. The latter implies
that for any Mt < Mdt

0 (stt), the dt-specific value function V dt
t (Mt, stt) can be calculated exactly

by adding a constant u2 (dt, stt) + βt+1EV dt
0 (stt) to the utility function. But moreover, the
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former implies that the collection of dt-specific value functions V dt
t (Mt, stt) in the proximity of

A0 appears to be a collection of functions u1(ct, stt) with different dt-specific vertical shifts. In
other words, the dt-specific value functions V dt

t (Mt, stt) do not intersect for any Mt < M0(stt) =

mindt

{

Mdt
0 (stt)

}

.

Our algorithm for upper envelope computation exploits these properties, disregarding the inter-
val (A0,M0 (stt)) completely, and is capable of computing analytical dt-specific value functions

on the intervals
(

M0 (stt) ,M
dt
0 (stt)

)

to avoid any numerical noise. The resulting upper enve-

lope Vt (Mt, stt) (in the third row and next to last row in Table 1) is given with a piecewise linear

approximation Vt

(

Mgrid
t (stt), stt

)

to the right of the threshold M0(stt), and can be calculated

exactly to the left of it using

Vt (Mt, stt) = u (Mt −A0, dt, stt) + βt+1maxdt

{

EV dt
0 (stt)

}

. (28)

The use of an analytical functional form for the value function for Mt < M0(dt−1, stt) on the
next t iteration also substantially the accuracy of the numerical solution.

3.4 Parallelization

Our generalization of EGM allows for efficient parallelization on the most computationally in-
tensive level of the algorithm.

The general scheme for parallelization of backwards induction computations is to parallelize
the within time period operations, and then gather and redistribute to all nodes the results of
each time period iteration. In other words, the parallelization is across the state space, with
synchronization occurring at the end of each time period of the backward induction iterations.
This is necessary because entities to be computed in time period t in general may depend on
the value in all points of the state space in period t+ 1.

Our algorithm is compatible with this general scheme, and is parallelized on the level of second
column in Table 1 with synchronization at the end of each time period iteration.

The prospects for deeper parallelization is less obvious. Even though the next nested loop over
dt can be parallelized, the consequent upper envelope algorithm is inherently sequential. Yet,
because the dimensionality of the state space stt is the main factor underlying computational
complexity of EGM, we expect the method to give good scalability in practical applications even
without any deeper parallelization.
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4 Comparisons of the solution methods

4.1 Computation time and accuracy of solution

The table below previews the numerical comparison of the two solution algorithms for the
retirement model solved for 50 time periods using 5000 grid points. The model can be solved
very accurately with much fewer points, but we have chosen 5000 grid points to scale up the
problem and thus better highlight the differences in computational time.

Table 2: Computation time and accuracy of solution

Traditional Euler EGM

Running time 37 sec. 0.11 sec.

Max abs error, c⋆t 5e-9 4e-14

Mean abs error, c⋆t 1.4e-12 1.5e-14

Max abs error, Vt(M,R) 39.466 15.163

Mean abs error, Vt(M,R) 2.5e-02 3.2e-02

5 Conclusions

<This section is not yet complete, as the paper will be extended by including an additional
section that derives computable error bounds (for both the decision rule and the value function,
though this part of the paper is still work in progress. However the main conclusion so far is that
our extension of the EGM method results in substantial speed-ups with no loss of accuracy>

The clear limitation of our extension of EGM is the restriction that there is a single continuous
decision variable ct. While other continuous decisions could in principle be discretized, so that
our proposed discrete-continuous adoption of EGM will apply to any desired degree of approxi-
mation, it does not seem to be an attractive strategy because of the loss of accuracy in discrete
representation of the policy function.

<Discuss typical models for which this method is optimal: large number of discrete choices, but
not discretized continuous choice (a curse of dimensionality arises for discretization of multiple
continuous control variables, since in the resulting discretized DP problem, the set of possible
discrete choice variables becomes huge and increases exponentially in the number of possible
continuous choice variables.)>
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