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Abstract

Numerous studies have documented the failure of consumption-based pricing mod-
els to explain observed patterns in stock and bond returns. This failure has some-
times been attributed to frictions, transaction costs or durability. If such frictions
are important, they should primarily a�ect the higher frequency components of
asset returns. The long-swings, or lower-frequency comovements should be less af-
fected. Consequently if transaction costs are important, tests of the consumption
based asset pricing model which concentrate on lower-frequency components may
be more successful.

We investigate this hypothesis using a variety of diagnostic tests. We �rst use
coherence analysis and bandpass �ltering analysis to show that, while there is
a complete lack of correlation between asset returns and consumption growth at
frequencies higher than about 0.7 years�1 (swings longer than 1.4 years), the coher-
ence/correlation between the two series at lower frequencies is above 60%. We per-
form Hansen and Jagannathan (1991) bounds tests, �2 tests of moment restrictions,
and Hansen and Jagannathan (1997) speci�cation tests of three consumption-based
models of the asset-pricing kernel: Time-separable preferences with power utility,
the Abel (1990) \Catching up with the Joneses" preferences, and Constantinides
(1990) habit-formation preferences. While none of these models perform well at the
quarterly horizon, the performance of the Abel and Constantinides models improves
strikingly at the two-year horizon.

yWe thank Steve Cecchetti, Larry Christiano, John Cochrane, George Constantinides, Larry Epstein,
Lars Hansen Walter Torous and participants of the NBER Asset Pricing Group Meeting and UCLA
Finance Seminar for helpful discussions, and we acknowledge Denise Du�y and Glenn McAfee for
superlative research assistance. Daniel gratefully acknowledges research support from the Center for
Research in Security Prices (CRSP) at the University of Chicago. The opinions expressed in this paper
are those of the authors, and do not reect the views of the Federal Reserve Bank of Chicago or the
Federal Reserve System.

�Kellogg Graduate School of Management, Northwestern University, Evanston, IL 60208,
847-491-4113, kent@kent.kellogg.nwu.edu, http://kent.kellogg.nwu.edu/

��Federal Reserve Bank of Chicago, 312-322-5102, dmarshall@frbchi.org



1 Introduction

Most research on consumption-based asset pricing focuses on short-horizon returns. The start-

ing point is the familiar intertemporal Euler equation

1 = Et
�
m�

t+� r
�
t+�

�
(1)

where r�t+� denotes the gross real cumulative asset return from date t to date t+ � and m�
t+�

denotes the intertemporal marginal rate of substitution (IMRS) between wealth at date t and

wealth at date t+ � . The unconditional version of this Euler equation is

1 = E
�
m�

t+�r
�
t+�

�
: (2)

In the literature on consumption-based asset pricing, m�
t is modeled as a function of aggregate

consumption, and the implications of (1) or (2) are tested for return horizons � equal to one

month or one quarter. The literature typically rejects the conditional Euler equation (1).

Presumably, the unconditional Euler equation (2) should be easier to �t to the data. Equa-

tion (2) only requires that the IMRS correctly price equity returns "on average". Yet, Cochrane

and Hansen (1992) show how di�cult it is to even �t this unconditional Euler equation. The

problem is that, to �t equation (2), one needs substantial covariation between m�
t+� and r�t+� .

Formally, equation (2) implies

E
�
r�t+� � rf �t

�
E

�
1

rf �t

�
= �cov �m�

t+� ; r
�
t+�

�
= ��m�r�m;r (3)

where rf �t denotes the gross real risk-free rate from date t to date t + � , �m and �r denote

the standard deviations of m�
t+� and r

�
t+� respectively, the correlation coe�cient between m�

t+�

and r�t+� is denoted �m;r, and we use the implication of equation (1) that E[m�
t+� ] = E[1=rf �t ].

The left-hand side of equation (3) is the mean equity premium, "discounted" by the mean

inverse risk-free rate. To generate a large mean equity premium, a model of m�
t+� must display

substantial negative covariation with equity returns. Within the context of consumption-based

asset pricing, this would require substantial positive covariation between equity returns and

consumption growth.

Empirically, the contemporaneous correlation between quarterly returns and quarterly con-

sumption growth is small (less than 0.15), and the largest correlation at any lead/lag (when
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returns lead consumption growth by two quarters) is less than 0.2.1 Cochrane and Hansen

(1992) call this low correlation between the return on market proxies and consumption growth

the \correlation puzzle."2 A number of factors have been proposed to account for the low

correlations between stock returns and aggregate consumption growth at short-horizons, in-

cluding uninsurable cross-sectional heterogeneity,3 �xed costs of adjusting consumption,4 costs

of portfolio adjustment,5 and even small deviations from perfect rationality.6 While these fac-

tors could substantially a�ect the co-movements of asset returns and aggregate consumption

at high frequencies, they should be less disruptive to the theory at longer horizons. Simple

correlations between consumption growth and the VW index return suggest that there may be

merit in this argument. While the contemporaneous correlation between consumption growth

and returns at the one-year horizon is about the same as for the one-quarter horizon, the

correlation between one-year consumption growth and one-year returns lagged by two quarters

is 0.35, almost twice as high as the maximal correlation found between quarterly returns and

quarterly consumption growth

If consumption-based pricing operators perform better at pricing long-horizon assets, this

would provide indirect evidence that the basic intuition underlying the equilibrium asset pricing

theories of Lucas (1978), Breeden (1979), and Grossman and Shiller (1982) is sound; the well-

documented failures of this theory at matching high-frequency data could be attributed to

transaction costs, market imperfections, and uninsurable heterogeneity. This analysis would

not be a substitute for formal modeling of these frictions, but would at least suggest that

this approach is on the right track. If, however, consumption-based pricing proves useless

at all frequencies, this would represent a substantial challenge to equilibrium pricing theory.

In all such models, �nancial assets are vehicles for transferring consumption across time and

1These numbers were calculated using real non-durable and services consumption data, and returns
on the CRSP value-weighted index, deated by the ND&S deator.

2Even if the correlation between consumption growth and equity returns is small, equation (3)
suggests an alternative way of generating a large mean equity premium: increase the variability of the
IMRS (for example, by assuming a high degree of risk aversion). Cecchetti, Lam, and Mark (1993) try
this second strategy. While they can match the mean equity premium, they have di�culty matching
both the �rst and second moments of the equity and risk-free return data.

3See, e.g., Constantinides and Du�e (1996), Lucas (1994), Heaton and Lucas (1995)
4Grossman and Laroque (1990), Marshall (1994), Marshall and Parekh (1998).
5Luttmer (1996), He and Modest (1995).
6See Cochrane (1989).
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random states. It is not clear what sort of model can capture this intuition without implying

a theoretical linkage between aggregate consumption and asset returns at some horizon.

In this study, we investigate the ability of of consumption growth to explain asset returns

at low frequencies using a variety of diagnostic tests. We �rst use multivariate spectral analysis

to characterize to co-movements of consumption growth and excess equity returns. We �nd

that, while the coherence between these variables is insigni�cant at high frequencies (above 0.7

years�1), at lower frequencies this coherence is high and statistically signi�cant. We con�rm

the coherence analysis using bandpass �ltering analysis similar to that suggested by Baxter

and King (1994). We �nd no statistically signi�cant correlation between the two series at high

frequencies. However, at lower \business-cycle" frequencies, we �nd a correlation of over 50%.

We then turn to more formal tests of consumption-based asset pricing at longer horizons.

We look at standard time-separable power utility, the Abel (1990) \Catching up with the Jone-

ses" preferences, and the Constantinides (1990) habit-formation preferences. Our investigation

uses three diagnostic tools: �rst, we apply the Hansen and Jagannathan (1991) mean-variance

analysis, modi�ed to take into account the unconditional correlation between the pricing kernel

and asset returns; second, we apply the standard �2 of the moment restriction in (2). The third

diagnostic we use follows Hansen and Jagannathan (1997). They note that some preference

speci�cations may result in an extremely volatile mt, but one which does not really \�t" the

data better. However, because of the increased volatility, such a preference speci�cation may

still yield a low �2. Hansen and Jagannathan (1997) and Hansen, Heaton, and Luttmer (1995)

suggest a speci�cation test which is immune to this problem. We employ this test as a further

diagnostic tool.

According to our empirical results, none of the consumption-based models performs well at

the quarterly horizon. However, when the horizon is lengthened to two years, versions of the

Abel (1990) and Constantinides (1990) models of preferences perform fairly well. In particular,

no signi�cant violations of the Hansen-Jagannathan restrictions are found, the �2 statistics are

insigni�cantly di�erent from zero, and the Hansen and Jagannathan (1997) diagnostic reveals

rather small discrepancies from equation (2).

Other papers in the literature have asked whether the restrictions of economic theory are

3



better satis�ed with longer-horizon returns than with monthly or quarterly returns. Brainard,

Shapiro, and Shoven (1991) �nd that stock returns correspond more closely to the theoretical

return to invested capital at longer horizons. Cochrane and Hansen (1992), however, �nd that

the performance of time-separable preferences deteriorates as the horizon lengthens. Finally,

Daniel and Marshall (1997) use a vector ARCH model to estimate the conditional covariance

between equity returns and the pricing kernel implied by various models. All models do

poorly at the quarterly horizon. At the two-year horizon, however, they �nd that the mean

and variance of this conditional covariance series approximate the corresponding moments of

the conditional equity premium as long as su�cient time-nonseparability is incorporated into

preferences. Furthermore, the variation through time in this conditional equity premium is to

some extent reected in variation in the conditional covariance series.

The conditional evidence is important. Although we �nd evidence of a strong unconditional

relationship here, the high unconditional correlations between consumption growth and asset

returns at business cycle frequencies could be caused by co-movement of the expected growth

and return series as opposed to co-movements of the innovations. There is strong evidence

of variation in expected returns across the business cycle.7 Thus a test of the conditional

model might fail when the business cycle variables are used as instruments, even though the

unconditional test does not reject the model. The results in Daniel and Marshall (1997) suggest

that this should not be the case.

The remainder of the paper is organized as follows: In section 2, we present evidence that

although consumption-growth is virtually uncorrelated with asset returns at high frequencies,

it displays substantial covariation with asset returns at business-cycle frequencies. In section 3

we characterize the preference speci�cations to be explored in the remainder of the paper; we

discuss the model diagnostics to be used; and we evaluate particular parameterizations of these

models at various horizons. In that section, we also discuss problems in modeling long horizon

returns that were pointed out by Cochrane and Hansen (1992). We argue that these problems

can be resolved, in principle, by the use of time-nonseparable preferences as advocated by Abel

7For example, Fama and French (1989) show that the term spread and the default spread forecast
future long horizon returns, and Chen (1991) shows that these same variables forecast future economic
activity. If these same variables forecast future consumption growth, this could result in an uncondi-
tional correlation, even if the conditional correlation is zero.
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(1990) and Constantinides (1990). In section 4, we provide a more formal analysis of the Abel

and Constantinides models in which the model parameters are chosen to minimize the Hansen

and Jagannathan (1997) speci�cation criterion. Section 5 summarizes.

2 Low-Frequency Correlation of Asset Returns and Consump-

tion Growth

In this section, we ask whether the Cochrane and Hansen (1992) correlation puzzle is a phe-

nomenon at all frequencies, or just at high frequencies. We use two techniques to explore this

question: multivariate spectral or coherence analysis, and an analysis of the correlations of

bandpass �ltered consumption growth and asset returns.

2.1 Coherence Analysis

To assess the frequency-by-frequency breakdown of the correlation between consumption growth

and a market proxy, we perform coherence analysis of the consumption growth and excess VW

index return series. Essentially, what the coherence analysis does is to split each of the two

series up into a set of Fourier components at di�erent frequencies, and then to determine

the correlation of a set of Fourier components for the two series around each frequency. The

method we use for generating the coherence series is described in the appendix. In addition,

the method yields the phase relation between the two series, which is a measure of how far the

series must be shifted to maximize the correlation of the sets of Fourier components.

In Figure 1, the upper panel gives the coherence between the two series, as a function of

the frequency. Approximate 95% con�dence intervals for both coherence and phase are plotted

as dashed lines in the �gure.8 We also plot the 95% con�dence interval that the coherence is

above zero, which is the dot-dashed line in the �gure.

Figure 1 shows that the coherence is low at high frequencies. However, for lower frequencies,

but not the very lowest, the coherences are relatively large, and are considerably more than

two standard errors away from zero. This suggests that any correlation that arises between

8These are calculated following Bloom�eld (1976). For the coherence series, the standard error is
inversely proportional to the level of the coherence, and in calculating these con�dence intervals we
have assumed that the true coherence is equal to the estimator.
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This �gure shows, in the upper panel, the coherence between quarterly real non-durable and services
consumption growth and quarterly real returns on the CRSP VW index over the period 1947:1-1994:1.
The lower panel shows the phase relationship, in degrees, between the two series at the stated frequency.
A hamming window and a smoothing parameter (n=m) of 16 is used. Details of the coherence and phase
calculations are given in the Appendix.

Figure 1: Coherence and Phase plots for consumption Growth and excess VW index

Returns

the consumption growth and asset return series is due to the co-movement at these lower

frequencies.

The lower panel of Figure 1 displays the phase as a function of frequency. Notice that at a

frequency of zero, the phase is zero, and then decreases approximately linearly with frequency

up to a frequency of about 1 year�1. This suggests a constant-length lead/lag relationship

between the two variables, since the approximate lead/lag length equals the phase multiplied

by (1=frequency � 360). Performing this calculation, Figure 1 tells us that return series leads

the consumption growth series by approximately two quarters. To verify this, in Figure 2 we

lag the VW return series by 2 quarters and rerun the coherence analysis. The coherence values

increase slightly at most frequencies, except at frequency zero where it increases dramatically.

The phase is now approximately zero for frequencies less than one year�1:
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The construction of this �gure was identical to that for Figure 1, except that the VW index return was
lagged by two quarters before calculating the coherence.

Figure 2: Coherence and Phase plots for Consumption Growth and Lagged excess

VW index Returns

In summary, the coherence analysis suggests while there is little relation between con-

sumption growth and asset returns at high frequencies, there is a strong relationship at low

frequencies, but that the relationship is not contemporaneous: consumption growth lags the

market return by about two quarters. This might tie in well with a frictions story: If there is an

extra cost of adjusting consumption quickly rather than slowly, then this is exactly the sort of

relationship one might expect to observe. Alternatively, if agents' preferences exhibited habit

formation (e.g., Constantinides (1990)) and there were a utility cost to rapid consumption

adjustment, consumption would respond slowly to change in asset prices.
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Figure 3: Bandpass Filter Frequency Response

This �gure shows the gain of the three �lters used in the bandpass �ltering analysis over the frequency
range from 0 to 1 years�1. The gain from 1 to 2 years�1 is not shown, but is approximately 1 for the
high �lter and 0 for the other two.
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2.2 Bandpass Filtering Analysis

To verify the coherence results, we also conduct a time-series bandpass �ltering analysis, in

which we break the consumption growth and asset returns series into di�erent components

using a set of moving-average (MA) �lters. To do this, we utilize a bandpass �ltering analysis

similar to that suggested by Baxter and King (1994), and utilized by Baxter (1994).

The MA �lters we utilize here are each designed to pick out a certain range of frequencies in

the data. The �lters are symmetric two-sided �lters, and consequently do not introduce phase

distortions into the data. Though the design of the �lters uses spectral analysis techniques,

the �lters themselves are simple MA �lters. The process of �ltering a data series is conducted

by simply convolving the data series with the set of �lter weights, as with any MA �lter.

The �lter design is done using the FIRLS (�nite impulse response least squares) function

in MATLAB.9 This function takes as an input a desired piecewise linear spectral response

function, and then �nds the length n (here 31 quarters) MA �lter which provides a spectral

response which is as close as possible to the desired spectral shape (in a weighted least-squares

9This function is taken from MATLAB's the Signal Processing Toolbox.
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sense).

We constructed three �lters. To conform to the business cycle literature, we call these the

trend , cycle and high �lters. The trend �lter is designed to eliminate all swings in the data

shorter than 8 years (i.e., with a frequency of higher than 0.125 years�1.). The cycle �lter is

designed to pass all components with wavelength between 1.5 and 8 years, and the high �lter

is designed to eliminate all swings longer than 1.5 years. The spectral gain obtained for the

three �lters are shown in Figure 3.10 While we would like these �lters to have a gain of 1

over the bandpass region and zero elsewhere, this is not achievable with a �nite length �lter.11

Instead, this �gure shows that the �lter frequency responses are about as good as is achievable,

given the constraints.

The motivation for eliminating high frequencies from the data has already been discussed.

The motivation for eliminating the correlations at very low frequencies is that there may be

long-run changes in the structure of the economy that a�ect the co-movement of consumption

and returns on �nancial assets. (Changes in the legal and institutional framework of the

pension-fund industry is one example.) At a more basic level, since other macroeconomic

variables move together at business cycle frequencies, and not elsewhere, this may also be true

for consumption.

The correlations between various measures of consumption growth and VW return series,

�ltered using each of the three �lters in turn, are presented in Table 1. We consider six

alternative measures of consumption: consumer durables, consumer non-durables, consumer

services, nondurables plus services, consumer services excluding the implied service ow from

owner-occupied housing, and nondurables plus services excluding the service ow from owner-

occupied housing. The procedure for constructing each of these correlations was to �lter each

of the two series, and then calculate the maximum correlation �̂max between the two series

over a lead-lag range of eight quarters, that is

10We also demean the set of MA coe�cients output from the FIRLS procedure for the cycle and high

�lter weight series. Since these are �nite length �lters, if the sum of the MA coe�cients is zero than
the �lters will eliminate any integrated (I(1)) component present in the data.

11Baxter and King (1994) discuss the reasons that an \ideal spectral shape" is not achievable in
practice.
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Table 1: The Correlation of Bandpass Filtered Returns and Consumption Growth

Series

The quarterly real CRSP VW index returns and the real non-durable and services consumption growth
series (1947:1-1997:4), were each �ltered using one of the three �lters, as described in the text. The
maximum correlation coe�cient between the two �ltered series, �̂max, is computed as in equation (4).
The value of �̂max as well as the maximizing value of � are given in the Table for each �lter. The Monte-
Carlo determined p-values are the probability of obtaining a number at least as large as the sample value
assuming that the returns are i.i.d. normal, and independent of consumption growth. Six measures of
consumption are used: consumer durables ("Dur."); consumer non-durables ("ND"); consumer services
("Serv."); nondurables plus services ("ND&S"); consumer services excluding the implied service ow
from owner-occupied housing ("SxH"); and nondurables plus services excluding the implied service ow
from owner-occupied housing ("ND&SxH").

Filter
trend cycle high

Dur. �̂max -0.1053 (0.718) 0.5343 (0.002) 0.2053 (0.192)
�max 0 2 -3

ND �̂max -0.0521 (0.657) 0.5092 (0.003) 0.2735 (0.019)
�max 5 2 1

Serv. �̂max -0.0148 (0.619) 0.4733 (0.020) 0.1449 (0.634)
�max 8 2 4

ND&S �̂max -0.0884 (0.703) 0.5497 (0.002) 0.1662 (0.443)
�max 8 2 1

SxH �̂max -0.1427 (0.747) 0.4248 (0.052) 0.1344 (0.698)
�max 8 2 4

ND&SxH �̂max -0.1504 0.5360 (0.002) 0.1739 (0.38)
�max 8 2 1

�̂max = max
�

�
1

�(r)�(�c)

��
1

T � �

� minfT;T+�gX
t=maxf1;1+�g

(rt�� ��ct) � 8 � � � 8: (4)

where rt and �ct are demeaned returns and consumption growth over period t, respectively,

and �(r) �(�c) are the corresponding sample standard deviations for the series.

We use Monte-Carlo analysis to determine the signi�cance levels of the correlations in Table

1 both in order to account for the fact that we are reporting the maximum of 17 coe�cients,

and to account for the serial correlation induced in the two series by the �ltering operations.

The p-values reported in Table 1 are therefore the probabilities of obtaining a coe�cient at least

as large as the one found if the quarterly returns series were i.i.d. normal, and independent of

consumption growth.
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As predicted by the coherence analysis, the maximum correlation between the two series

after �ltering using the cycle �lter is high. For example, the maximized correlation coe�cient

is 54.97% for ND&S consumption, with a one-tailed p-value of 0.2%. Also, as predicted by

the coherence analysis, the correlation is maximized when the returns series is lagged by two

quarters.

We �nd little correlation between the returns series and any of the high-pass �ltered con-

sumption growth series. The maximized correlation coe�cient is about 20% for most measures

of consumption, and is insigni�cantly di�erent from zero. An exception is the non-durable se-

ries, which is signi�cant at the 1.9% (one-tailed) value. To test whether the correlation is

di�erent at the high and business cycle frequencies, we conduct an additional Monte-Carlo

simulation. Note that the correlation between the business-cycle �ltered series is approxi-

mately 0.5 for all measures of consumption. In our simulation exercise, we impose the null

hypothesis that the correlation between the high-pass �ltered series is also 0.5 in population.

We then compute the probability of obtaining a maximum observed correlation of 0.27 (the

highest correlation in the last column of Table 1). We �nd that this probability is less than

0.001. We conclude that the correlations between high-pass �ltered series are signi�cantly less

than the correlations between business-cycle �ltered series.

Interestingly, the maximum correlation of the trend components of the two series is also

insigni�cant, at -8.8% (one-tailed p-value of 70.3%) for non-durable and services. A Monte-

Carlo simulation shows that the probability of getting a measured trend-correlation of less than

zero is 4.8%, when the true correlation between the two series equal to 0.5 at all frequencies.

Thus, it appears that the correlation is indeed lower at trend frequencies than at business cycle

frequencies.

The normalized, cycle -�ltered asset returns and consumption growth series are plotted

in Figure 4.12 We have also lagged the VW index return series by two quarters. The plot

shows the very strong relationship between the two series in this frequency range from the 50's

through the early 80's. The late 80's are the only period in the plot where the relation is not

extremely strong, perhaps because of the 1987 crash.

12To normalize the series, we divide each series by its sample standard deviation.
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Figure 4: Filtered Asset Returns and Consumption Growth Series
This �gure plots the business-cycle �ltered real consumption growth (Total) and �ltered, two-quarter-
lagged, VW returns series. The �ltering method is described in the text. The period is 1947:1-1994:1,
but the �rst and last four years are truncated in the �ltering process. Each series is normalized by
dividing by its standard deviation.
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3 Unconditional Moments Tests of the Asset Pricing Relation

Section 2 documents that consumption growth is more highly correlated with equity returns at

business cycle horizons than at short horizons, and indeed that there is insigni�cant correlation

at frequencies of less than 0.67 years�1. This suggests that there may be frictions which

\de-link" consumption and asset price movements at high frequencies. If so, tests of the

consumption based asset pricing model may be considerably more successful at pricing longer-

horizon returns. For the remainder of the paper, we explore this conjecture at various horizons.

3.1 Preference Models

3.1.1 Time-Separable Preferences

The most widely-studied (and widely-rejected) preference speci�cation in the consumption-

based pricing literature is time-separable power utility. In this speci�cation, agents solve the
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following maximization problem:

max
fct+jg

1

j=0

U � Et

1X
j=0

�j
c1�t+j

1� 
(5)

subject to the usual budget constraint. The � -period IMRS is:

m�
t = ��

�
ct+�
ct

��
: (6)

An important treatment of long-horizon returns with time-separable preferences can be found

in Cochrane and Hansen (1992). They use the method of Hansen and Jagannathan (1991) to

look at the implications of time-separable utility at horizons ranging from one quarter to �ve

years. They �nd that the performance of time-separable utility actually deteriorates as the

horizon lengthens. This failure of time-separable preferences at long horizons is largely caused

by a high implied risk-free rate. Aggregate consumption is a (stochastically) growing series. In

the time-separable model, agents seek to transfer some of the high future consumption to the

present by borrowing. A counterfactually high risk-free rate is needed to discourage this bor-

rowing. (Recall that net borrowing must equal zero in equilibrium.) However, in a stochastic

model this e�ect is partially countered by the precautionary motive for saving: agents might

wish to insure against the possibility of consumption downturns. As the horizon lengthens,

this precautionary demand becomes weaker, since the empirical probability of a consump-

tion downturn is smaller for the longer horizons. (For example, Cochrane and Hansen (1992)

note that there is no �ve-year period in post-war US data over which aggregate consumption

declines.) As a result, the equilibrium risk-free rate implied by the time-separable model is

counterfactually high for longer-horizon data.

What is needed, then, is a reason why agents would be willing to save at low interest rates,

even though they know that their future consumption is likely to grow. One possible reason

is that agent's within-period utility-of-consumption changes through time. Preference speci�-

cations with this property include the Constantinides (1990) habit-formation preferences and

Abel (1990) \catching-up-with-the-Joneses" preferences. In these speci�cations, the marginal

utility of a given level of consumption grows through time. Agents refrain from borrowing to

increase current consumption because they know that they will need the consumption more

in the future. (As Weil (1989) has pointed out, the same e�ect could be induced by having a

13



subsistence point that grows deterministically in time.) To put this another way, the problem

discussed by Cochrane and Hansen (1992) can be resolved, in principle, if agents are fearful,

not of a decline in consumption, but of a decline in consumption relative to some reference

point, where the reference point itself grows at the same rate that consumption grows. To

resolve the risk-free rate puzzle in this way, we will utilize the Abel (1990) and Constantinides

(1990) models in our empirical tests.13 In the following sections, we formalize these preference

speci�cations.

3.1.2 The Abel (1990) "Catching-Up-With-the-Joneses" Preferences

Let �ct denote the per-capita consumption at date t. The agent solves

max
fct+jg1j=0

U � Et

1X
j=0

�j
(ct+j � ht+j)

1�

1� 
(7)

subject to the usual budget constraint, where

ht � �(1 � �)

� � �m+1

mX
i=1

�i�ct�i; � > 0; 0 < � < 1: (8)

The interpretation is that agents compare their consumption to the consumption of their

neighbors (the "Joneses") in the recent past. In the formal model, the neighbors' consumption

is represented by �ct, and agents behave as if they have a subsistence point equal to � times a

weighted average of the per-capita consumption levels over the past m periods. Notice that

agents treat ht as exogenous: the marginal utility of a �xed level of consumption inherits the

upward trend in �ct, but agents cannot alter the ht process by their own actions. (Of course,

in equilibrium ct = �ct.)

With Abel preferences,

m�
t+� = ��

(ct+� � ht+� )
�

(ct � ht)
� : (9)

Let the value function V (W;h) be de�ned as the maximum value of the objective function

that can be attained given initial wealth W and an initial subsistence point h. We de�ne the

coe�cient of relative risk aversion (denoted RRAt) by

RRAt � �W VWW (W;h)

VW (W;h)
: (10)

13We note that we have also investigated preferences in which utility is based on consumption relative
to a deterministic trend with similar results for the unconditional moment tests.
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For Abel preferences,

RRAt = 
ct

ct � ht
(11)

Notice that the coe�cient of relative risk aversion is time-varying, and everywhere exceeds .

The risk-free rate puzzles will be partially resolved by the Abel speci�cation, since, empirically,

declines in (ct � ht) are observed more frequently than declines in ct.

3.1.3 Constantinides (1990) Habit-Formation Preferences

Constantinides (1990) models agents as maximizing an objective function of the same form as

(7) with the following alternative speci�cation for ht:

ht � �(1 � �)

� � �m+1

mX
i=1

�ict�i; � > 0; 0 < � < 1: (12)

The di�erence between (8) and (12) is that in (12) the stochastic subsistence point ht is a

function of the agent's own consumption ct, rather than the per-capita consumption. The

marginal rate of substitution is now

m�
t+� = ��

MUt+�
MUt

(13)

where the marginal utility of consumption MUt is de�ned by

MUt � (ct � ht)
� � �(1� �)

� � �m+1

mX
i=1

(��)iEt [ct+i � ht+i)]
� (14)

With habit-formation preferences, agents consider the e�ect of their current consumption on

future values of ht. The presence of conditional expectations in equation (14) reects this

fact. These conditional expectations must be computed when we construct m�
t . We do this as

follows. First, de�ne the variable Dt by:

Dt � 1� �(1� �)

� � �m+1

Pm
i=1 (��)

i [ct�m+i � ht�m+i)]
�

(ct�m � ht�m)
� : (15)

The variable Dt behaves as a stationary stochastic process. Equations (13) and (15) imply

that, in the Constantinides model,

m�
t+� = ��

(ct+� � ht+� )
� Et+�Dt+�+m

(ct � ht)
� EtDt+m

(16)
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Since Dt is stationary, we can �t an autoregressive time-series model for this variable, and use

the �tted values as our estimate of EtDt+m: For most models, the likelihood ratio statistics

testing n lags against n � 1 lags in the autoregression for Dt (for n between 1 and 5) favor

four lags. We estimate a fourth-order autoregression in Dt, and project the �tted regression

m periods into the future.

We consider Constantinides preferences separately from Abel preferences for two reasons.

First, it is possible that the behavior of m�
t in (13) may di�er substantially from that implied

by (9). A second, and more important reason, is that habit formation preferences do not

accentuate risk aversion in the way that Abel's preferences do:14 the coe�cient of relative

risk aversion implied by habit-formation for a given speci�cation of f; �; �; �g is smaller than

that given in (11). From the perspective of the individual agent, Abel preferences are time-

separable, since a change in an individual's ct does not a�ect his marginal utility with respect

to ct+i for i 6= 0. For such preferences, the coe�cient of relative risk aversion equals the

curvature of the per-period utility function U , as measured by �C U 00(C)
U 0(C) :

In contrast, habit formation preferences incorporate true time nonseparability: The marginal

utility at date t is a�ected by changes in the state-contingent consumption plan for dates

t + i; i = 1; :::;m. In response to a wealth shock at date t, the agent with habit-formation

preferences adjusts her state-contingent plans for future consumption so as to optimally adjust

ht+i; i = 1; :::;m. This attenuates the impact of a given wealth shock on the objective function,

as compared to the Abel speci�cation. In particular, higher � does not increase RRAt as much

as in (11). While RRAt cannot be computed analytically for our model of habit-formation,

Constantinides (1990) and Ferson and Constantinides (1991) obtain closed-form solutions for

RRAt in the context of a simpler model. They show that, for preference parameters similar to

ours, the mean coe�cient of relative risk aversion is not too far above :15

14This point is extensively discussed by Constantinides (1990), Ferson and Constantinides (1991),
and Boldrin, Christiano, and Fisher (1995).

15Boldrin, Christiano, and Fisher (1995) report a similar result.
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3.2 Tests of Long-Horizon Pricing Using Unconditional Moments

In Section 3.3 we redo the long-horizon Hansen-Jagannathan analysis of Cochrane and Hansen

(1992) using Abel (1990) and Constantinides (1990) preferences, and �nd that there is indeed

considerable support for consumption based asset pricing models at long horizons, and very lit-

tle support at short horizons. In this section we describe the long-horizon Hansen-Jagannathan

tests and test-statistics we utilize.

3.2.1 The Hansen-Jagannathan Analysis

Cochrane and Hansen (1992) derive the Hansen and Jagannathan (1991) mean-variance bounds

using a linear projection of a candidate stochastic discount factor on the space of portfolio

payo�s. In this section, we describe an alternative derivation that is helpful in pointing out the

importance of the unconditional correlation between the pricing kernel and the mean-variance

e�cient portfolio. In vector form, Equation (1) is:

E[m�
tR

�
t ] = 1: (17)

where R�
t denotes the vector consisting of the gross-returns between period t and period t+ �

on a set of n assets, and 1 is an n-vector of ones. Equation (17) holds for all � , so, in the

remainder of this section, we suppress the superscript � . Equation (17) implies that:

cov(m;R) = E[mR] �E[m]E[R]

= 1�E[m]E[R] (18)

Rearranging, we obtain for any return r:

E[r]�E[m]�1 =
cov(m; r

E[m]
= ��m;r

�
�m�r
E[m]

�
: (19)

where �r and �m are the standard deviations of r andm, respectively, and �m;r is the correlation

coe�cient between r and m. Since the correlation coe�cient ��m;r cannot be less than �1,
we see that:  

E[r]�E[m]�1

�r

!
� �m

E[m]
(20)
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where the "�" must hold for every asset and every feasible portfolio. Let us de�ne the left-

hand side of equation (20) as the asset's Sharpe ratio.16 Hansen and Jagannathan (1991) derive

the strongest bound implied by (20): in e�ect, they evaluate the left-hand side of (20) at the

portfolio return with the highest Sharpe ratio, which is simply the unconditional mean-variance

e�cient portfolio. This portfolio has a Sharpe ratio of

SR� =
q
(E[R] � 1 �E[m]�1)0
�1(E[R] � 1 �E[m]�1) � �m

E[m]

where 
 is the covariance matrix of returns. For any given value of E[m], this gives a bound on

�m which is dependent only on the asset return �rst and second moments, and is independent

of preferences.

Equation (19) also tells us something about the importance of the correlation between asset

returns and the pricing kernel. This equation can be rewritten:

�m
E[m]

= � SRj

�m;Rj

:

where SRj denotes the Sharpe ratio of asset j. This equation says that, for any asset or portfolio

of assets with SRj > 0, the lower bound on �m ! 1 as � " 0�: if the pricing operator m

has an arbitrarily small negative correlation with some asset with a positive Sharpe ratio, this

implies an arbitrarily tight bound on �m: This clearly ties in with our results in Section 2:

the positive correlation between equity returns and consumption growth suggests a negative

correlation between equity returns and the marginal rate of substitution in consumption that

serves as the consumption-based proxy for m. If the correlation between short-horizon equity

returns and short-horizon consumption growth is positive but small, the implied bound on �m

is likely to be much tighter than the standard Hansen-Jagannathan bound.

3.2.2 Projected Hansen-Jagannathan Bounds Tests

Following Cochrane and Hansen (1992), we note that if m satis�es (17), then so will the

projection (denoted m�) of m onto the set of asset returns and a constant:

m� = a+R0 � b; (21)

16The risk-free rate equals Et[mt+1]
�1, so our de�nition of the Sharpe ratio di�ers from the usual

de�nition by a "Jensen's inequality" correction.
If the risk-free rate were constant, the two de�nitions would coincide.
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where

m = a+R0 � b+ �;

and E[�R] = 0. If the correlation of m with the elements of R is very small, then the variance

of m� will be very small relative to that of m. As in equation (20), this means that a higher

value of �m will be required to satisfy the HJ bounds when implemented using m�. This

test therefore provides a tighter restriction than the standard HJ test. We present Hansen-

Jagannathan tests both for m and m�. We also use the procedure described in section 3.1

of Hansen, Heaton, and Luttmer (1995) to test formally whether the Hansen-Jagannathan

mean-variance restrictions are satis�ed.

3.2.3 A �2 test of the moment restriction E[mR] = 1

Because we are not estimating model parameters in our test, it is straightforward to directly

test the moment restriction E[mR � 1] = 0: for the n assets being considered. If we de�ne

gt � (mtRt � 1), the sample moment estimator is gT = (1=T )
P

T gt. We can construct a test

statistic

JT = Tg0TS
�1
0 gT ; (22)

where S0 is a consistent estimator of the spectral density matrix of gt at frequency zero, and

where this spectral density matrix is estimated using the Newey-West procedure.17 As shown

in Hansen (1982), JT is asymptotically distributed �2 with n degrees of freedom. In our case,

we use two distinct asset returns, so n = 2.

For the time-separable model, Cochrane and Hansen show that this �2 test (for these two

assets) strongly rejects the time-separable power utility model for 's of less than 50.18

3.2.4 The Hansen-Jagannathan (1997) Speci�cation Test

As pointed out in Hansen and Jagannathan (1997), �2 tests of the moment restriction (17),

like that discussed in Section 3.2.3, can be misleading in comparing speci�cations. If a model

17The number of lags used equals 8, 11, 15, and 19 lags for the quarterly, yearly, two-year, and
three-year horizons, respectively.

18See Cochrane and Hansen (1992), Table 2, p. 129.
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produces a highly volatilem, the eigenvalues of the spectral-density matrix may be huge, so the

weighting matrix S�10 in equation (22) may be close to singular. This would imply a \small"

�2 statistic, even when the pricing errors are large.19

To help to assess whether observed low �2 test statistics result from a superior �t of a

given model, we utilize a distance measure derived by Hansen and Jagannathan (1997).20 We

denote this measure the "HJ97 statistic". This test constructs an estimator the mean squared

distance between the candidate stochastic discount factor mt and the set (M) of valid pricing

kernels (that is, the set of y's that satisfy E(yR � 1) = 0). Formally, this distance measure,

�̂2, is de�ned by

�̂2 � min
y2M

E(yt �mt)
2 (23)

As stated, this minimization is over a set of random variables M. Equation (8) in Hansen,

Heaton, and Luttmer (1995) show that � can be computed more simply as the solution to the

conjugate maximization problem. We follow their procedure in computing d̂2T (the �nite-sample

analogue to �̂2) for the various models of mt we study.
21

HJ97 statistics are not directly comparable across di�erent investment horizons without

some normalization; here we derive a modi�ed HJ97 statistic with appropriate normalization

to allow such a comparison. The � period long horizon misspeci�cation measure (in our

notation) is:

�̂2� � min
y�2M�

E(y�t �m�
t )

2 = �2� + �2� (24)

where �� � E(ŷ�t �m�
t ) and �

2
� = var(ŷ�t �m�

t ), where ŷ is the argmin of (24). If we assume that

the \best-�t" pricing kernel ŷ� will not change with horizon, then the � period pricing kernels

19For example, the �2 test discussed in 3.2.3 (and presented by Cochrane and Hansen (1992)), strongly
rejects for small 's (JT = 5:1 for  = 40 for our sample), but fails to reject the time-separable model

for a 's over 200 (JT is equal to 0.88 for  = 240). However, the HJ97 statistic �̂2 (de�ned in equation
(23)) is equal to 0.257 for  = 0 and 0.416 for  = 240. In other words, despite the low �2 statistic, the
m for the  = 240 model is further from M than the naive (and obviously sub-optimal) speci�cation
mt = 1, for all t.

20See also Hansen, Heaton, and Luttmer (1995) (HHL), Section 1.2).
21Hansen, Heaton, and Luttmer (1995) show that if mt 2 M (that is, if � = 0), then the limiting

distribution of
p
T d̂T is degenerate. For this reason, we do not use the HJ97 statistic to test whether

mt is a valid pricing kernel.
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in (24) are simply products of the single period pricing kernels: ŷ�t = ��
i=1ŷ

1
t+i�1 and m�

t =

��
i=1m

1
t+i�1. Since, for small � , both y and m should be close to one, and since:

�N
i=1(1 + �i) � 1 +

NX
i=1

�i

we have that:

ŷ�t �m�
t = ��

i=1ŷ
1
t+i�1 ���

i=1m
1
t+i�1 �

�X
i=1

(ŷ1t+i�1 �m1
t+i�1)

Thus, under this approximation,

�� � ��1;

and

�2� = � � �21 � V R(�);

where the variance ratio V R(�) is de�ned in the usual way as the ratio of the variance of

(y� �m� ) to the variance of (y1 �m1), divided by � :

V R(�) � �2�
� � �21

:

It follows that the HJ97 statistic can be written

�̂2� = �2� + �2� � �2 � �21 + � � �21 � V R(�): (25)

We now de�ne the modi�ed HJ97 statistic �̂y� as

(�̂y� )
2 � �2�

�2
+
�2�
�

= �+ �2 � V R(�) (26)

For � = 1, (�̂y� )
2 is equal to the standard HJ97 statistic in (24). To implement (26), we compute

ŷ as the argmin of the sample version of equation (24).22, we calculate the sample �̂� and �̂� ,

and form the square-root of the sample version of our modi�ed statistic, d̂y� . In the empirical

section, we use the modi�ed HJ97 statistic d̂y� to assess the �t of the model at di�erent horizons.

The modi�ed HJ97 statistic tells us exactly what we want to know about how the char-

acteristics of (y � m) change as the test horizon lengthens: if (yt � mt) is characterized by

22HHL show that the ŷ 2 M̂ which minimizes the sample version of equation (24) is ŷt = mt �R0
�;

where � is the vector of Lagrange multipliers of the original minimization problem, and where the
F.O.C. de�ning � is given in their equation (10). Therefore, (ŷt�mt) = �̂

0
R: �� and �� are the sample

mean and standard deviation of this series.
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rapid, negatively autocorrelated movements which are \washed-out" at longer horizons, then

the variance-ratio in (25) will be small and d̂y� will be small for long horizons. This would tell

us that eliminating high frequency components improves the �t of the model. If, on the other

hand, (yt �mt) is characterized by positively correlated, long-swings, then the variance-ratio

in (25), and d̂y� will be large for long horizons, and the modi�ed HJ97 statistic will indicate a

poorer �t to the data at longer-horizons.

3.3 Empirical Results

We now present the results from our empirical analysis of the models presented in Section

3.1, using the tests presented in Section 3.2. We use quarterly data from 1952-1997. Detailed

description of the data can be found in the Data Appendix. We follow the standard practice

in the literature in using consumer expenditures on nondurables and services("ND&S") as our

primary measure of consumption. We also perform the analysis for consumer expenditures on

nondurables ("ND"). Finally, The data compiled by the Bureau of Economic Analysis data

for consumer expenditures on services includes a series measuring the imputed rental value

of owner-occupied housing. Rather than being compiled from observed surveys on consumer

expenditure, this series is a construct. It has rather di�erent properties from other consumption

series. In particular, Marshall and Parekh (1998) note that the covariance between the growth

rate of this series and equity returns is negative. To allow for the possibility that this series is

substantially mis-measured, our third measure of consumption is ND&S minus this imputed

rental value of owner-occupied housing.

3.3.1 Time-Separable Preferences

We examine time-separable preferences for four horizons: one quarter, one year, two years, and

three years. We set � equal to 1.0, and we vary the curvature parameter . The behavior of

this model for ND&S consumption is displayed in Figure 5.23 The solid \U-shaped" curves in

Figure 5 plot the Hansen-Jagannathan bounds, calculated using two returns: the real CRSP

23We also conducted this analysis using non-durable consumption and using ND&S minus the service
ow from owner-occupied housing. The results are very similar to those fore ND&S, and are not
displayed.
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Figure 5: Hansen and Jagannathan bounds tests for Time-Separable Preferences,

Non-Durable and Services Consumption

The four solid curves in both panels are the Hansen-Jagannathan bounds on the quarterly standard
deviation of the pricing kernel, inferred from the asset return data at the four horizons: one quarter,
one year, two years, and three years. In the top panel, the dotted lines plot the means/standard
deviations for the time-separable model marginal rate of substitution for the following four horizons:
one quarter (\+"), one year (\*"), two years (\circle"), and three years (\x"). We set � = 1 and we
let the value of  range from 0 to 200; for each line the spacing between the symbols is  = 5. In
the bottom panel, the dashed lines are generated by running a regression of the candidate discount
factors on the set of real returns (in this case the VW index and the T-Bill rate). The means and
standard deviations of the �tted regressions are plotted for  = 0, ..., 200. Consumption is measured
as expenditures on consumer nondurables plus services; the time period is 1947:1-1997:4.
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VW index return and the real 3-month T-Bill return. To facilitate comparison across di�erent

investment horizons, we normalize the plots to put both mean and variance of the pricing

kernel in quarterly terms. To do this, we divide the resulting lower bound on �m by
p
� , where

� is the horizon length in quarters (1, 4, 8 or 12 in this plot). The mean is normalized by

plotting E[m]1=� . In the upper panel of Figure 5 we plot the mean-standard deviation loci

of mt implied by time-separable preferences with ND&S consumption, for the four horizons

and for values of  ranging from 0 to 200. In the lower panel, we project the time-separable

model's pricing kernel onto the set of asset returns as described in Section 3.2.2, and plot the

mean and standard deviation of m� (de�ned in equation (21) against the same H-J bounds.

Figure 5 con�rms the failure of the time-separable model that has been noted by many

previous studies. At every horizons from one quarter through three years, the (mean, stan-

dard deviation) loci of the pricing kernel implied by this model are substantially outside of the

Hansen-Jagannathan bound. As in Cochrane and Hansen (1992), the longer horizons are fur-

ther from the bound than the quarterly horizon. We test formally these Hansen-Jagannathan

mean-variance restrictions using the procedure described in Hansen, Heaton, and Luttmer

(1995).24 The failure of the time-separable model is generally con�rmed. In particular, the

Hansen-Jagannathan restrictions for the projected kernel are rejected at the 1% marginal sig-

ni�cance level for all horizons except when  is near zero25 or, for the quarterly horizon, for

values of  exceeding 200.26

One should not, however, take these results as indicating that time-separable preferences

can �t the data with 's near zero or (for the quarterly horizon) near 200. When �2 statistics

are calculated using equation (22). The statistics reject the model for all values of . In

particular, the smallest values of these �2 statistics are 24.8, 16.8, 14.9, and 12.32 for horizons

of one quarter, one year, two years, and three years, respectively. All of these values exceed

10.60, which is the 0.5% critical value for a �2 statistic with two degrees of freedom. The

modi�ed HJ97 statistics, given in equation (26), tell the same story. These statistics range

between 0.273 and 0.437, implying that the root-mean-squared deviation of the model's pricing

24See Hansen, Heaton, and Luttmer (1995), section 3.1.
25When  = 0 (risk-neutrality), this test has p-values of 0.073, 0.048, 0.074, and 0.056 for horizons

of one quarter, one year, two years, and three years, respectively.
26The p-value for the quarterly horizon when  = 200 is 0.087.
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kernel from the set of valid kernels is between 2730 bp and 4370 bp per quarter.

3.3.2 Time-Nonseparable Preferences: An Overview of the Empirical Results

In this section, we conduct an analysis of the Abel and Constantinides models analogous to

that done in section 3.3.1 for time-separable preferences. That is, we look at the models'

performance as curvature increases. While the model with time-separable preferences has only

two parameters, � (the subjective discount rate) and  (the curvature parameter), the Abel

and Constantinides models have �ve parameters: �, , � (the rate at which the habit stock

depreciates), � (the ratio of mean consumption to mean habit stock) and m (the number of

lagged consumptions that enter the habit stock). In this subsection, we proceed somewhat

informally: We simply �x f�; �; �;mg at values where the models perform fairly well27 and

we vary , as in �gure 5. In section 4, below, we consider the models' performance when the

parameters are chosen optimally.

Note that equation (14) for the marginal utility of consumption in the Constantinides model

only makes sense if this marginal utility is positive. If the second term in equation (14) exceeds

the �rst term, the expected e�ect of additional consumption on the future habit stocks would

outweigh the e�ect on current period utility. In that case, it would be optimal for the consumer

to reduce consumption via free disposal. In addition, the right-hand side of equations (9) or

(14) could be negative or complex if (ct � ht) is negative. We discard any parameterizations

of these models where either of these anomalies occurred.

3.3.3 The Abel Model

For the Abel model, we set � = 0.8; � = 0.9; � = 1; and m = 20. Figure 6 is analogous to

Figure 5. The upper panel plots the mean-standard deviation loci of mt implied by Abel with

ND&S consumption, for the four horizons, and for various values of the curvature parameter

. The lower panel is the analogous plot for the projection of Abel model pricing kernel onto

the set of asset returns.

The upper panel shows that the model pricing kernels with ND&S consumption satisfy the

27We conduct a preliminary search in which we set � = 1.0 and we vary � and � from 0.5 through
0.9, we vary  from 0 through 30, and we vary m from 2 through 20.
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Figure 6: Hansen and Jagannathan bounds tests for Abel Preferences, for

Non-Durable and Services Consumption

The four solid curves in both panels are the Hansen-Jagannathan bounds on the quarterly standard
deviation of the pricing kernel, inferred from the asset return data at the four horizons: one quarter,
one year, two years, and three years. In the top panel, the dotted lines plot the means/standard
deviations for the Abel model marginal rate of substitution, as given in equation (9, for the following
four horizons: one quarter (\+"), one year (\*"), two years (\circle"), and three years (\x"). The
model parameters are � = 0:8, � = 0:9, m = 20, � = 1. The value of  ranges from 0 to 30; for each
line the spacing between the symbols is  = 2. In the bottom panel, the dashed lines are generated by
running a regression of the candidate discount factors on the set of real returns (in this case the VW
index and the T-Bill rate). The means and standard deviations of the �tted regressions are plotted for
 = 0, ..., 30. Consumption is measured as expenditures on consumer nondurables plus services; the
time period is 1947:1-1997:4.
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HJ bounds at the yearly (\*") two-year (\circle"), , and three-year (\x") horizons when  =

10-14. The quarterly horizon (\+") requires a somewhat higher value of  (over 20). The

lower panel, where the pricing kernels are projected onto the space of asset returns, give a

somewhat di�erent story. While the two-year horizon comes closest to the HJ bounds, none

of the point estimates implied by the model actually satisfy these bounds. The reason is that

the correlation between consumption growth and returns is small. However, when the Hansen-

Jagannathan mean-variance restrictions are tested formally using the Hansen, Heaton, and

Luttmer (1995) procedure, the distance between the HJ bound and the (mean,variance) loci

of the pricing kernels is signi�cantly di�erent from zero only for the quarterly horizon (and

perhaps for the 3-year horizon) at low values of . In particular, for 's in the range of 6-24,

p-values of above 10% are achieved for the three longer horizons. (For the quarterly horizon,

's greater than 10 are required.) This means that, for moderately high values of , none of

the models are signi�cantly outside the HJ bounds according to this test.

The �2 statistics, calculated using equation (22) give similar results. These statistics are

graphed in Figure 7. For each of the four return horizons, the dashed line displays the value

of the �2 statistic as a function of . The scale for this statistic is given at the left-hand side

of each graph. The horizontal dotted line indicates the value of 5.99, which is the 5% critical

value for a �2 random variable with two degrees of freedom. This critical value is given only as

a point of reference. If the parameters were chosen before looking at the data, the �2(2) would

be the appropriate distribution under the null hypothesis that the model �ts in population,

since equation (2) must hold for each of two assets. However, the parameters used in this

section were chosen after an informal grid search, so the �2(2) critical values should only be

used as an informal guide.

In �gure 7, the value of the �2 statistic drops rapidly for all horizons as  increases. For

high enough values of , there seems to be little evidence against the model. Note in particular

the rapid monotonic decline for the quarterly horizon (panel A). Results like these lead some to

argue that models with time non-separabilities are consistent with the behavior of short-term

asset returns.28 An alternative interpretation, put forth by Hansen and Jagannathan (1997), is

28See, for example, Ferson and Constantinides (1991) and Campbell and Cochrane (1994).
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Figure 7: �2 statistics and Hansen-Jagannathan (1997) statistics for Abel Prefer-

ences.
The �gure plots the �2 statistic (dashed line) and the HJ97 statistic (solid line) implied by the Abel
model at the quarterly (panel A), one-year (panel B), two-year (panel C), and three-year (panel D)
horizon for values of  ranging from 0 to 30 (horizontal axis). The scale for the �2 statistic is on the
left-hand side of the graph; the scale for the HJ97 statistic is on the right-hand side of the graph.
The horizontal dotted line indicates the value of 5.99, which is the 5% critical value for a �2 random
variable with two degrees of freedom. The model parameters are � = 0:8, � = 0:9, m = 20, � = 1.
Consumption is measured as expenditures on consumer nondurables plus services; the time period is
1947:1-1997:4.
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that the �2 statistic lacks power. In �gure 7, the solid lines plot the modi�ed HJ97 statistics as

 increases. The scale for these statistics, given at the right-hand side of each graph, is chosen

so that the HJ97 statistic and the �2 statistic are at the same level for  = 0. According to

these results, only the longer horizons with  around 16-20 perform particularly well. A useful

point of comparison for these statistics is the value when  = 0, which implies a constant IMRS

of one. The HJ97 statistics for  = 0 are therefore the root-mean square (RMS) distance from

the set M of valid pricing kernels to mt = 1. The HJ97 statistics for the quarterly test of the

Abel model show that the RMS distance from the model to M is not much smaller than the

distance to mt = 1 for any value of . However, for the 1 and 2 year horizons, the statistics

are about a factor of six smaller than for the model with constant mt: this indicates that m

is indeed getting close to the set M. The minimal value of the modi�ed HJ97 statistic at the

two-year horizon (�gure 7, panel C) is 0.037, occurring at  = 18. That is, the minimal RMS

error is on the order of 3.7%. The RMS error for the three-year horizon is approximately 4.5%,

when  equals 16.

We have conducted a similar analysis of the Abel model using the alternative consumption

measures.29 When consumption is measured as purchases of consumer nondurables, the HJ97

statistics tend to be less favorable to the model. Higher values of  are required to get a

reasonable �t at the two-year horizon, and the three-year horizon does poorly. In contrast, when

the service ow from owner-occupied housing is omitted from the standard ND&S measure of

consumption, the model tends to perform somewhat better. In particular, rather low values

of the HJ97 statistic are found for the two- and three-year horizon when  equals 14.30 This

is of interest because the service ow from owner-occupied housing is not an observed series,

but is a construct that may be fraught with measurement error.

3.3.4 Constantinides Habit Persistence

We conclude this section by performing an analogous study of a particular parameterization

of Constantinides preferences. We measure consumption as ND&S, and set � = 0.9, � = 0.8,

29Detailed tabulations of these results are available from the authors.
30With this measure of consumption, the HJ97 statistic when  = 14 is 0.038 for the two-year horizon

and 0.053 for the three-year horizon.
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Figure 8: Hansen-Jagannathan bounds tests for Constantinides Preferences, for
Non-Durable and Services Consumption

The description for �gure 6, applies here also, except that the preferences here are Constantinides; the
model parameters are � = 0:8, � = 0:9, m = 2, � = 1; the value of  ranges from 0 to 18; and the
spacing between the crosses is  = 1. This �gure is for Non-Durable and Services Consumption.
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and m = 2. The Hansen-Jagannathan bounds plots for are presented in Figure 8. Unlike

the Abel model displayed in Figure 6, the point estimates for this parameterization of the

Constantinides model satisfy the HJ bounds only at the two-year horizon. When the pricing

kernels are projected onto the space of asset returns (lower panel), none of the point estimates

satisfy the HJ restrictions. As with the Abel model, the two-year horizon comes closest to

the HJ bounds. However, the Hansen-Jagannathan mean-variance restrictions not rejected

statistically by the Hansen, Heaton, and Luttmer (1995) test except at the three year horizon.

Figure 9 is the analogue for Constantinides preferences to �gure 7. The �2 test appears

less favorable to the quarterly horizon than with Abel preferences: In panel A of �gure 9

the �2 statistics exceed the 5.99 critical value for all values of . The three-year horizon does

somewhat more poorly according to this criterion with Constantinides preferences, as compared

to Abel preferences. However, both the one- and two-year horizons do quite well for values

of  exceeding 4. Moreover, the modi�ed HJ97 statistics (solid lines) indicate that the �2

statistics are small because the distance between m and M is indeed shrinking. For example,

the RMS distance between the model's IMRS and the set of valid pricing kernels is only 0.018

for the two-year horizon with  equal to 11. As with the Abel model, the Constantinides model

does less well when consumption is measured by nondurables only. When housing services are

omitted from the data, the results are similar to those for ND&S.

To summarize the evidence from this section, the graphical H-J analysis, the �2 statistics,

and the HJ97 statistics suggest that the Abel model performs best at the two-year horizon and

the Constantinides model does fairly well at both the one- and two-year horizons.

4 Evaluation of Time Non-Separable Preferences When Model

Parameters Are Chosen Optimally

In the previous section, we simulate the Abel and Constantinides models over a grid of pa-

rameters. We found that, broadly speaking, these models appeared to perform poorly at the

quarterly horizon, fairly well at the two-year horizon, and with intermediate performance at

the one- and three-year horizons. In this section, we ask how well these models perform when

the parameters are chosen optimally. In particular, for each model we wish to see whether
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Figure 9: �2 statistics and Hansen-Jagannathan (1997) statistics for Constantinides
Preferences.

The �gure plots the �2 statistic (dashed line) and the HJ97 statistic (solid line) implied by the Con-
stantinides model at the quarterly (panel A), one-year (panel B), two-year (panel C), and three-year
(panel D) horizon for values of  ranging from 0 to 30 (horizontal axis). The scale for the �2 statistic
is on the left-hand side of the graph; the scale for the HJ97 statistic is on the right-hand side of the
graph. The horizontal dotted line indicates the value of 5.99, which is the 5% critical value for a �2

random variable with two degrees of freedom. The model parameters are � = 0:8, � = 0:9, m = 2,
� = 1. Consumption is measured as expenditures on consumer nondurables plus services; the time
period is 1947:1-1997:4.
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there are parameter con�gurations that set the HJ97 statistic to zero (indicating that the

mean residuals from the asset pricing Euler equations equal zero in sample). If a zero value

of this criterion is achieved, we wish to see whether the parameter that achieve this value are

"plausible" in some intuitive sense.31

In conducting this exercise, we note that the model is under-determined. We have only

two unconditional Euler equations (one for the 3-month T-bill return, and one for the equity

return). However, in each of the two models we have �ve parameters to choose: f�; ; �; �;mg:
We set the quarterly subjective discount factor � = :99 (implying a yearly discount rate

of approximately 4%). We treat m, the number of lagged consumption in the habit-stock

formation, as an approximation to an in�nite lag. We do so by letting m depend on �: we

set m as the smallest number such that �m < 0:05. That is, we choose an m su�ciently big

that the discarded lags (those greater than m) all have discount factors less than 5%. This

still leaves us with three parameters f; �; �g and only two model restrictions. Since this is a

highly nonlinear model, one could �nd no parameter combinations that set the HJ97 statistic

to zero or one could �nd multiple parameter combinations that achieve this goal. To explore

this question we �x � at three values f0:6; 0:7; 0:8g, and for each value we minimize the HJ97

statistic over parameters f; �g. When � = 0:8 (the maximum value we use), m = 14, implying

that the habit stock incorporates three-and-a-half years of lagged consumptions.

Before describing our general results, we illustrate the behavior of a particular model. In

�gure 10 we consider how well the Constantinides model performs for two-year returns when

� = 0:6. We consider values of  from zero to 40 (horizontal axis), and for each value of  we

�nd the value of � that minimizes the HJ97 statistic. Note that both  and � are curvature

parameters. One might think that there is a trade-o� between these two parameters: a high

value of  acting similarly to a high value of �. In the bottom panel of �gure 10 we see that

this is indeed the case: The optimal choice of � declines as  increases. It does not then follow,

however, that  and � are not separately identi�ed. As one can see in the top panel of �gure

10, there is a unique f; �g combination that minimizes the HJ97 criterion. This pattern holds

31This exercise is analogous to that performed by Campbell (1998) for time-separable preferences.
Using a variety of data sets from di�erent countries, he computes the risk aversion parameter needed
to match the mean equity premium. His test of the model is whether the requisite level of risk aversion
is plausible from an economic standpoint.
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Figure 10: Optimal Choice of Curvature Parameters for Constantinides Model, Two

Year Horizon

For a grid of 's ranging from zero to 40, the Hansen-Jagannathan (1997) statistic ("HJ97") is min-
imized by choice of parameter �. The Constantinides model of preferences is used with consumption
measured by ND&S. Other model parameter are set as follows: � = 0:99; � = 0:6, m = 6. The top
panel of this �gure plots the minimized HJ97 statistic for each value of . The bottom panel gives the
minimizing choice of � for each value of . The time period is 1947:1-1997:4.
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generally: In all model variants and all return horizons, for each � there is a uniquely-identi�ed

optimal f; �g combination.

Table 2 gives the best-performing con�guration of f�; ; �g for each model and each hori-

zon. (When multiple values of � achieve a zero value for the HJ97 statistic, we display the

parameterization with the lowest value of .) The results broadly con�rm the patterns dis-

cussed in the previous section. First, for no model can we �nd a parameter combination that

performs acceptably at the quarterly horizon. In the Abel model, the minimum HJ97 statis-

tic for quarterly returns is 0.214; for the Constantinides model, this minimum HJ97 value is

0.115. Varying the number of lags in the habit stock does not improve the performance of

these models, nor does using alternative measures of consumption. 32 We conclude that these

models are inconsistent with the unconditional moments of short-horizon asset returns.

Second, for each model and each measure of consumption there exist parameter combina-

tions f; �; �g that set the HJ97 statistic to zero for the two-year horizon. For the Constan-

tinides model, this good �t to the data does not require an excessive value of the curvature

parameter . In particular, when � = 0:8, the Constantinides model requires  of only 7.4.

The Abel model requires somewhat higher values of  to set the HJ97 statistic to zero. The

best �t for the Abel model at the two-year horizon occurs when � = 0:6. For this value of �,

the optimal  equals 17.9. In that sense, one can argue that the Abel model has more di�culty

than the Constantinides model in �tting the unconditional moments of the asset-return data.

Furthermore, in the Abel model the coe�cient of relative risk aversion is time-varying, but

always exceeds , often by a good deal. (See equation (11).) For example, the mean coe�cient

of relative risk aversion implied by the parameters that achieve a zero HJ97 statistic for the

two-year horizon (� = 0:6;  = 17:9; � = 0:85) is 114. Thus, the best-�tting parameterizations

of this model do imply extremely high (perhaps implausible) risk aversion. In contrast, it has

been noted by Constantinides (1990), Ferson and Constantinides (1991), and Boldrin, Chris-

tiano, and Fisher (1995) that habit formation in the Constantinides model does not accentuate

risk aversion to the extent that it does in the Abel model. While a closed-form expression for

32The minimal HJ97 statistics obtained for the quarterly horizon using nondurable consumption only
are 0.232 and 0.136 for the Abel and Constantinides models, respectively. When housing services are
omitted from ND&S, the corresponding statistics are 0.215 and 0.117.
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the coe�cient of relative risk aversion is not available for the Constantinides model, numerical

analyses of simpler versions of the model by these authors suggest that the mean coe�cient of

relative risk aversion is only slightly higher than :We conclude that the Constantinides model

can match the unconditional properties of these asset returns at the two-year horizon without

imposing extreme levels of risk aversion.

Third, in both models we can �nd parameter combinations f; �; �g that set the HJ97 cri-
terion to zero for the one-year horizon. This generally holds for other measures of consumption

as well. 33 However, the requisite value of  needed at this one-year horizon is always sub-

stantially higher than that needed for the two-year horizon. Speci�cally, the best-performing

parameter con�guration for the Abel model at the one-year horizon sets  equal to 72. As with

the two-year horizon, the Constantinides model requires a substantially lower value of 17.2.

Still, this value of  exceeds that required to �t the data at the two-year horizon. Fourth, the

Constantinides model does not set the HJ97 statistic to zero at the three-year horizon for any

value of �: The Abel model can achieve a zero value for the HJ97 statistic at the three-year

horizon (when � equals 0:7 or 0:8), if a high value of  (in excess of 68) is assumed.

Finally, the results do seem sensitive to the number of lagged consumptions ("m") used to

construct the habit stock. While the Constantinides model performs fairly well at the two-year

horizon when � = 0:6 or 0:8, it does rather poorly when � = 0:7: The problem is not with the

value of � per se, but with the value of m = 9 implied by � = 0:7: When we �x � = 0:7 but set

m = 6, the model behaves much like the case in Table 2 with � = 0:6. Similarly, when m = 10

(but � remains �xed at 0.7), the model resembles the case in Table 2 with � = 0:8.

5 Conclusions

In this paper, we ask whether consumption-based pricing models work better at longer hori-

zons than at the quarterly horizon. Our motivation is that if frictions, transactions costs,

or durability a�ect the comovements of consumption growth and asset returns, they should

primarily a�ect the higher frequency components.

33An exception is the Abel model using nondurable consumption, where the minimal value of the
HJ97 statistic is 0.015 (when � is set to 0.8).
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Table 2: Minimum HJ97 statistics for Abel and Constantinides Models

For each model, � is �xed at 0:6; 0:7; or 0:8, m is set to the minimum value such that �m < 0:05, and

the HJ97 statistic is minimized over f; �g. These tables report the minimal value of the test statistic
obtained, for horizons of one quarter and 1, 2, and 3 years. Consumption is measured as ND&S. When

the minimized HJ97 statistic equals zero for more than one value of �, the case with the lower value of

 is displayed.

Horizon Abel Model Constantinides Model
(years) HJmin �  � m HJmin �  � m

0.25 0.214 0.8 23.0 0.79 14 0.115 0.8 28.9 0.77 14
1 0.015 0.8 72.1 0.59 14 0.000 0.8 17.2 0.80 14
2 0.000 0.6 17.9 0.85 6 0.000 0.8 7.4 0.87 14
3 0.000 0.6 68.2 0.79 6 0.014 0.6 58.8 0.85 6

We �rst show that consumption-growth and equity returns are virtually uncorrelated at

high frequencies. However, we �nd that at lower frequencies, corresponding to swings longer

than one and one-half years, the two series are highly correlated. We then test three models

of the pricing kernel: time-separable power utility; the Abel (1990) \Catching up with the

Joneses" preferences; and the Constantinides (1990) habit-formation preferences. We �nd

while all models perform poorly at quarterly horizons, the Abel (1990) and Constantinides

(1990) models perform well at longer-horizons. The Hansen and Jagannathan (1991) bounds,

modi�ed to take account of correlation the correlation between the pricing kernel and asset

returns, are satis�ed. A �2 moment restriction test is not rejected, and the modi�ed Hansen,

Heaton, and Luttmer (1995) speci�cation test suggests that our inability to reject the model

is not due high volatility of the pricing kernel.

Our results raise numerous questions for further research. First, it suggests that correlation

puzzle may at least partially be due to frictions that disrupt the high-frequency co-movements

of marginal utility growth and returns. However, it also necessary to �rst understand why past

attempts at modeling frictions to explain the equity-premium puzzle have not been entirely

successful.

The Abel and Constantinides models motivate agents to save at relatively low interest

rates, even though consumption grows, because the marginal utility-value of a given level of

consumption also grows. There may be other ways to motivate saving, such as by looking
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carefully at life-cycle models of saving and investment.

Finally, we consistently �nd that the models with time-nonseparabilities perform better at

the two-year horizon than at the three-year horizon. (The Constantinides model does rather

poorly at the three-year horizon.) This represents somewhat of a puzzle. If the only reason for

the poor performance of consumption-based models at short horizons is transient, short-term

frictions, then one would expect the models' performance to improve monotonically as the

horizon lengthens. One possible reason is that consumers are particularly averse to risk at

business cycle frequencies. At the three year horizon, much of the business cycle behavior of

consumption growth and asset returns is �ltered out. However, it is unclear why consumers

would be relatively insensitive to lower-frequency risk. Whether this reects a degree of myopia

or a hitherto un-modeled aspect of preferences remains to be determined.
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Appendices

A Construction of the Data

The total quarterly real non-durable, durable, services, and total consumption series, the
deators for each of the three components series, and the population series (GPOP) were
extracted from CITIBASE for the 1947:1-1997:4 period.

Monthly VW index returns were obtained from CRSP, and were cumulated to obtain quar-
terly returns. One month T-Bill returns were taken from the CRSP RISKFREE �le. One,
two, and three year nominally risk-free rates were computed as the returns to one-, two-, and
three-year zero-coupon bonds, computed from the Fama-Bliss data in CRSP.

B Construction of the Coherency and Phase Estimates and

Con�dence Intervals

To construct the coherency and phase estimates plotted in Figures 1 and 2, the two series x and
y (log consumption growth and returns) and are �rst each subdivided into N non-overlapping
subsamples of length n (here, n = 16 quarters). Each of these subsamples is then detrended
and windowed using a Hamming window. The detrended, windowed subsamples are then
fast-fourier transformed to generate Jx(!) and Jy(!), which are equal to, for x,

Jx(!) = n�1
n�1X
t=0

xte
�i!t:

where each of the subsamples is indexed from t = 0; :::; n � 1. Note that Jx and Jy will be
complex. The x and y power-spectral densities and the cross-spectral densities are then de�ned
as:

Pxx(!) =
1

N

NX
k=1

n

2�
Jkx (!)J

k
x (!)

�

Pyy(!) =
1

N

NX
k=1

n

2�
Jky (!)J

k
y (!)

�

Pxy(!) =
1

N

NX
k=1

n

2�
Jkx (!)J

k
x (!)

�

where Jkx (!) denotes the Fourier transform of the k'th subsample, and � denotes the complex
conjugate.

Although Pxx and Pyy are real valued, in general the cross- spectral density will not be.
The coherency between the two series is de�ned as:

Sx;y(!) =
jPxy(!)j

[Pxx(!)Pyy(!)]
1=2

:
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and the phase is de�ned as:

�x;y(!) = arctan

 
Im(Pxy(!))

Re(Pxy(!))

!
:

where Im(�) and Re(�) denote the imaginary and real components, respectively. With these
de�nitions,

Pxy(!) = (Pxx(!)Pyy(!))
1=2 sx;y(!)e

i�x;y(!):

Finally, con�dence intervals for the coherency and phase were calculated using the method
described in Bloom�eld (1976, Section 9.5). The upper and lower bounds of the 95% con�dence
intervals are therefore:

tanh

�
arctanh(Pxy(!))� 1:96gp

2

�

where g2 = (2=3)(n=T ), is a constant based on the Hamming window (see p. 224 of Bloom�eld
(1976).) The 95% con�dence intervals for the phase are:

�x;y(!)�
s

1

Pxy(!)2
� 1:
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