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The Informational Advantage of Specialized Monitors:
The Case of Bank Examiners

Abstract:   Large commercial banking firms are monitored by specialized private-sector monitors
and by specialized government examiners.  Previous research suggests that bank exams produce
little useful information that is not already reflected in market prices.  In this article, we apply a
new research methodology to a unique data set, and find that government exams of large national
banks produce significant new information which financial markets do not fully internalize for
several additional months.  Our results indicate that specialized government monitors can identify
value-relevant information about private firms, even if those firms are already actively followed by
investors and their private-sector agents.
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The asymmetry of information between firm insiders and outside investors constitutes an

important problem in corporate finance.  A firm will incur relatively high costs of raising external

capital when it is costly for individual investors to obtain detailed information about the firm’s

activities.  Without this information, a firm’s outside claimants may also have trouble monitoring

and disciplining the firm’s managers, who otherwise may shirk or divert the firm’s resources to

their own private purposes.  Specialized monitoring institutions (e.g., bond rating agencies,

underwriters, auditors, bank lenders) can reduce the asymmetry between inside and outside

information by devoting specialized resources to these monitoring and information problems. 

Previous studies have established that specialized outside monitors can obtain information that is

not known to individual investors, which suggests that these outside monitors are able to observe

a more accurate signal of firm quality than individual market participants find it optimal to obtain.

“Outside” members of the board of directors provide a similar service for the firm’s investors by

monitoring and disciplining the firm’s managers.

While most U.S. corporations are subject to the scrutiny of some form of private-sector

monitor, many industries face the additional scrutiny of government inspectors.1  Government

inspections gather specialized information about firm operations, and are generally empowered to

take corrective action when they observe unfavorable signals.  While specialized monitors in the

private sector are generally believed to provide valuable services (otherwise, it is argued, they

would fail and exit the industry), government inspectors operate under different incentives and

economic pressures.  It is therefore interesting to determine whether specialized government

monitors can also obtain information which is unknown to market participants.

This paper investigates this general question in the context of the U.S. commercial

banking sector, which is prominently supervised by both government and market agents.

Approximately once every 12 to 18 months, federal or state supervisors examine each U.S.

commercial bank to assess its safety and soundness.  At the close of each exam, the supervisor

                                                            
1 Examples include the banking, transportation, health, and nuclear power sectors.
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assigns a CAMELS rating, which summarizes the bank’s Capital adequacy, Asset quality,

Management, Earnings, Liquidity, and (beginning January 1997) the bank’s Sensitivity to market

risk.2  These ratings are derived from a combination of publicly available information (such as

recent financial statements) and private information produced by bank examiners during their

investigation (such as the quality of individual loans).  Supervisors report these ratings only to a

few top officials at the bank, who may not reveal them to employees, customers, or financial

market participants.  Even though these ratings are kept secret, banks prefer to have a good

CAMEL rating because it can affect how much capital a bank must hold, what activities it may

undertake, how much it pays for deposit insurance, and how frequent and rigorous future exams

will be.

In comparing CAMEL ratings against various market assessments of bank condition, most

previous researchers have concluded that bank exams reveal little useful information that is not

already reflected in market prices. This paper applies a new research methodology to a unique

data set, and concludes that bank exam ratings contain useful private information about bank

safety and soundness which is not already known by financial markets.  Using a three-step

approach, we evaluate the private supervisory information contained in the CAMEL ratings of

national bank subsidiaries of holding companies that have traded debentures outstanding.  First,

we regress each bank’s CAMEL rating on publicly available financial data that were available at

the time of the bank's most recent examination.  The residuals from this (ordered logit) regression

proxy for the private information known only to bank supervisors.  Next, we compute an option-

adjusted risk premium on the subordinated debt of the holding companies that own our sample

banks.  Finally, we test whether, when, and to what degree the market incorporates the private

supervisory information into the risk premium paid on holding company debentures. 

                                                            
2 CAMELS ratings range in whole numbers from 1 (strong performance and practices, posing the least supervisory
concern) to 5 (critically deficient performance, posing the most supervisory concern).  For more details, see OCC
Bulletin 97-1, “Uniform Financial Institutions Rating System and Disclosure of Component Ratings,” Office of the
Comptroller of the Currency, January 3, 1997.  Prior to 1997, bank regulators did not assign a market sensitivity (S)
rating.  Because our investigation uses pre-1997 data, we will refer to CAMEL ratings, rather than CAMELS ratings, for
the remainder of the paper. 
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Our empirical results clearly indicate that bank exams produce private information that

financial markets find useful, and that the market learns some of this information only a few

months subsequent to the exam.  These results demonstrate that specialized government monitors

can successfully identify value-relevant information about private firms, even when those firms are

followed and analyzed by a large number of investors and their private-sector agents.  We

conjecture that government examinations of small banking firms (which are scrutinized by fewer

private sector monitors) will produce greater amounts of new information than identified here for

subsidiaries of the largest U.S. banking companies.

1.  Literature Review

Previous studies have examined the informational advantage of specialized monitors over

the marginal stock or bond investor (whose opinion is reflected in security prices).  Some test

directly whether private monitors gather information that is unknown to individual investors. 

Others treat the announcement of a monitoring relationship as an event, and test whether the

stock market reaction reflects a perceived enhancement in firm value.  Finally, a number of studies

have investigated whether government assessments of banking firms’ condition are more accurate

or timely than those of market analysts (investors).

Hand, Holthausen and Leftwich [1992] examine the impact of bond rating changes on a

firm’s excess bond and stock returns.  They use an expectation model to classify rating changes as

either expected or unexpected.  While expected announcements produce no reaction in either the

bond or stock markets, unexpected downgrade announcements cause significantly negative bond

and stock returns.  By contrast, they find little evidence of a positive bond price reaction to

unexpected upgrade announcements.  This asymmetry suggests that managers are more willing to

release “good” news than “bad” news, and that bond credit analysts specialize in obtaining

accurate signals of deteriorating asset quality.  Our empirical analysis allows for this same type of

asymmetry, which we find to be quite important for bank examiners.
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Empirical studies have also documented the impact of other private monitors on firm

value.3  For example, underwriter quality has been shown to influence the extent of IPO

underpricing (Beatty and Ritter [1986], Carter and Manaster [1990]), as has the identity of an

IPO firm’s auditors (Beatty [1989]).  A long literature documents the positive effect of bank loan

announcements on a firm’s stock price (e.g., Mikkelson and Partch [1986], James [1987],

Lummer and McConnell [1989]), including the finding that announced loans from higher-quality

lenders are associated with more positive borrower abnormal returns (Billett, Flannery, and

Garfinkel [1995]).  Finally, Brennan and Subramanyam [1995] report that the equity of firms

which are followed by a larger number of investment analysts trade with smaller bid-ask spreads,

reflecting lower informational asymmetries across traders in the market. 

Another stream of relevant research has focused on the informational content of bank

CAMEL ratings.  Hirschhorn [1987] used a multi-factor market model to predict quarterly stock

returns for the 15 largest U.S. banks between 1979 and 1987.  He included both

contemporaneous CAMEL ratings and lagged quarter-to-quarter changes in CAMEL ratings as

explanatory variables.  Although the lagged CAMEL values were not useful for predicting stock

returns, Hirschhorn found that contemporaneous CAMEL ratings were significantly related to

stock returns.  These results suggest that exam ratings contain useful information, but that most of

this information is not private -- market participants have either independently inferred this

information at the time of the exam, or this information has been leaked shortly after the exam

was completed. 

Cargill [1989] studied the effect of CAMEL ratings on the interest rates paid on large

certificates of deposits (CDs) at 58 U.S. banks during 1984-986.  Presumably, CAMEL ratings

should be more closely related to deposit risk premia than to equity returns, since depositors and

examiners both care most about down-side risk, while equity holders care about both upside and

downside risk.  Nevertheless, Cargill found that CAMEL ratings contributed little or no

                                                            
3 Chemmanur and Fulghieri [1994] provide some theoretical support for these studies, in the form of a model in which
security underwriters’ reputational capital leads them to function faithfully as specialized monitors in a repeated game.
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explanatory power when added to regressions of large CD rates on market risk measures.

Berger and Davies [1994] evaluate the impact of CAMEL rating changes on the parent

holding company's stock price.  They separate stock price changes into two components:  a

‘private information’ effect (which identifies the public's awareness of new information discovered

by examiners), and a ‘regulatory discipline’ effect (which values the regulators' presumed ability

to force a bank to change its behavior).  Berger and Davies' empirical results provide only weak

evidence of a regulatory discipline effect, but they find a strong private information effect. 

However, the information effect applies only to CAMEL downgrades, which tend to precede

stock price declines.  Consistent with the findings of Hand, Holthausen and Leftwich [1992],

Berger and Davies find no movement in stock prices following a CAMEL upgrade. 

Berger, Davies, and Flannery [1998] apply Granger causality analysis to the leading and

lagging relationships between exam ratings and the actions of bank stakeholders in financial

markets for 184 bank holding companies between 1989 and 1992.  They find that lagged

movements in BOPEC ratings (the safety and soundness ratings for bank holding companies)

explain 1.6 percent of the ‘additional’ variation in shareholder market variables (i.e., stock returns,

changes in insider and institutional shareholdings), but explain 4.1 percent of the ‘additional’

variation in bond ratings.4  This is not surprising, since the objectives of bank supervisors are

more closely aligned with those of bank creditors.

Previous research also suggests that the information in supervisory (CAMEL) assessments

will deteriorate over time.  Cole and Gunther [1998] found that new (less than 6 months old)

CAMEL ratings more accurately predict bank financial distress than financial ratios can, but that

financial ratios are better predictors than older (more than 6 months old) CAMEL ratings. 

O’Keefe and Dahl [1996] conclude that this result may be asymmetric: they found that CAMEL

ratings became less reliable over time for banks with deteriorating finances, but not for banks with

improving financial condition.

                                                            
4 Berger, Davies and Flannery [1998] define ‘additional’ variation as the variation not already accounted for by lagged
values of the market variables themselves.
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We study the ability of government monitors to extract new, value-relevant information

about banking firms, using an unusual data set which combines public and private assessments of

bank condition over a relatively turbulent macroeconomic period (1989-1995).  Because bond

investors and government examiners share a primary concern about a bank’s probability of failure,

we expect that examiners’ private information is more likely to be relevant to bond investors than

to stock investors.  Our empirical specifications reflect two key features of the existing literature: 

the asymmetric ability of monitors to identify new “bad” information and the plausible notion that

the value of examiners’ assessments declines with the passage of time.  At the same time, our

methodology adds two important features to previous studies.  First, we differentiate between a

“raw” CAMEL rating and the component of the rating which reflects examiners’ private

information.  Second, we explicitly compare current examiner assessments with subsequent

market assessments, to determine whether the market ultimately ratifies examiner opinions.

2.  Methodology

We seek to determine whether bank exams produce unique information that is not already

known to financial market participants.  Our tests require two primary pieces of data:  a measure

of the market's information about the examined bank, and a proxy for the information produced

during a bank exam.  We measure the market's assessment of bank condition by the option-

adjusted risk premium (called SPREAD) on subordinated debt issued by the bank's parent holding

company.  Previous research has concluded that these spreads accurately reflect holding company

risk exposures, at least after regulators had withdrawn conjectural guarantees of debentures after

about 1989 (Flannery and Sorescu [1996]). We use subordinated debt rather than an equity-

related measure of bank condition because the safety and soundness objectives of bank

supervisors are more closely related to the concerns of bank debtholders:  the primary concern of

both bank supervisors and bank debtholders is the down-side risk that a bank will default.

We measure the "private" information produced during a bank exam by estimating an
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ordered logit model of the CAMEL ratings for each of the banks in our sample.5  Regressing each

bank's CAMEL ratings on its most recent public financial information (from the quarterly

condition reports) isolates the private information known only by the bank examiner in the

regression residuals.  We aggregate this estimate of examiners' private information across all

banks in the same holding company, and use it to explain subsequent changes in the holding

company's debenture SPREAD.  A finding that the CAMEL residuals significantly explain

subsequent changes in SPREAD would indicate that examiners learn relevant information before it

becomes known to public investors.  

2.1 "Private" Examiner Information about Bank Condition

Examiners form assessments of bank condition on the basis of both public and private

information.  Using available financial statements to represent publicly available information, we

can decompose examiners' total information using a regression of the form: 

(1) Yi,t  =  f( [bank financial ratios]t-1 ) + εi,t

where Yi,t is examiners' total information about bank i at time t, the bank financial ratiost-1 are

assumed to reflect the most recently available public information about bank i,6 and the residual

term εi,t measures the examiners' private information about bank i at time t. 

We cannot observe Y directly, but we can observe bank CAMEL ratings.  CAMEL ratings

sort banks into five discrete safety and soundness categories.  It is generally accepted that the

                                                            
5 We use bank CAMEL ratings to measure private examiner information, rather than the BOPEC rating of the parent
company that issued the subordinated debt, for two reasons.  First, most holding companies hold primarily bank assets. 
Hall, Meyer, and Vaughan [1997] find a 0.93 correlation between bank holding company BOPEC ratings and the "B," or
"bank," component of this rating.  Second, CAMEL information is likely to be more timely than BOPEC information for
our purposes, since the "B" component of BOPEC is basically an asset-weighted average of the CAMEL ratings
previously assigned to subsidiary banks.  (Berger, Davies and Flannery [1998] explain the relation between BOPEC and
CAMEL ratings.)

6 In alternative regression specifications, we augmented the vector of bank financial ratios to include both the bond
rating and the market-to-book ratio of the parent holding company.  Adding these two variables had very little effect on
the regression results, which we do not report because missing values reduced our number of observations by about
25%. 
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difference in safety and soundness across these five categories is not linear:  the difference

between 1-rated and 2-rated banks is not necessarily equal to the difference between 2-rated and

3-rated banks, between 3-rated and 4-rated banks, etc.  Thus, after replacing the unobservable

cardinal variable Y with the observable ordinal variable CAMEL, we use an ordered logit model to

estimate the following equation:

(2) CAMEL i,t  =  f( [bank financial ratios]t-1 ) + εi,t

where CAMELi,t is the rating produced by an examination of bank i at time t.7   The vector of 

bank financial ratiost-1 contains publicly known financial information about bank i at the quarter-

end date that most recently precedes the exam date t.  Banks are typically examined only once

every 12 to 18 months, so even though we observe each bank multiple times during our sample

period, the majority of banks will be unexamined in any given quarter.  Once (2) is estimated, we

can construct the private information residual term ε as follows:

(3)              i t$ ,ε ρ ρ
ρ

ρ  =   CAMEL   -    * Prob (CAMEL = )i,t
=1

5
,t∑

where each of the five probabilities Probi,t(CAMEL=D) are generated from the estimated

parameters of the ordered logit model (2).  Multiplying each of these estimated probabilities by its

corresponding ρ value (ρ = 1,2,3,4,5) and summing generates the expected CAMEL rating for

bank i based on publicly available financial information at time t.  If variables on the right-hand-

side in (2) reasonably approximate the publicly available information about the bank's financial

condition, then the estimated residuals $ ,εi t  will measure private information about the bank known

only to the bank supervisor.  A positive (negative) residual suggests that examiners have bad

                                                            
7 See Greene [1997, p. 926] for further details on the ordered logit model.
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(good) private news about the bank.8 

Our ultimate objective is to test whether examiners' private information about banks (ε)

can predict the market-determined risk premia on bank holding company subordinated debt

(SPREAD).  Before running such a test we must first combine the private examiner information

about the banks in each holding company.  This task is complicated by the fact that banks are

examined on an irregular schedule that is not coordinated across the various banks in a holding

company.  We address these timing and aggregation issues by constructing a private information

variable for each holding company j at the end of each quarter t:

          ( ) * $
,4 1
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1
              PRIVINFO  =  

assets

total assets
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i
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∑

∑
∑
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PRIVINFOj,t is an asset-weighted average of the most recent private information ( $εi,t ) for each

bank i in holding company j at the end of each quarter t.  Our data set includes CAMEL ratings

only for national banks, so we can estimate ε only for the national banks in each holding company.

 To ensure that the asset weights (the second bracketed term) sum to unity, the denominator

includes only the assets held by the m (i=1,m) national bank affiliates in holding company j. 

However, since most bank holding companies also hold the assets of state chartered banks and/or

non-bank operating subsidiaries, we scale PRIVINFOj,t by the proportion of holding company j’s

assets that come from national banks (first bracketed term).  This construction effectively places

less weight on the holding companies for which national banks comprise a smaller percentage of

total assets.9  As with the estimated residual $εi,t , a positive (negative) value for PRIVINFOj,t

implies that examiners have bad (good) private news about the bank holding company on average.

                                                            
8 Berger and Davies [1994] use the simple change in CAMEL ratings to measure examiners' potential private
information.  Our approach in (3) provides a less discrete measure of examiner information and separates out the
component in the CAMEL rating that was already known to public market investors. 
9 As we report below, our test results are largely unaffected when we exclude holding companies for which national
banks constitute less than 75% or less than 90% of total assets.
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 Previous literature has determined that managers voluntarily release "good" news more

readily than they release "bad" news (Hand, Holthausen, and Leftwich [1992]).  In order to test

whether this phenomenon affects the quality of the information examiners typically acquire, we

disaggregate PRIVINFOj,t into good and bad private information.  Our "bad" private information

variable is:

          ( ) $5               j,t

i
i 1

m

j

i

i
i 1

m
i 1

B

i,tBADNEWS  =  
assets

total assets
*

assets

assets
*=

=

=

∑

∑
∑





































ε

where the summation from i=1 to i=B includes only banks for which examiners have bad

information, i.e., banks for which $εi,t >0.  BADNEWS equals zero if  $εi,t #0 for all of the national

bank affiliates in holding company j.  Our "good" private information variable is:

          ( ) $6               j,t
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where the summation from i=1 to i=G includes only banks for which examiners have good

information, i.e., banks for which $εi,t <0.  GOODNEWS equals zero if $εi,t $ 0 for all of the national

bank affiliates in holding company j.

2.2 The Market's Assessment of Bank Condition

Normally we would expect the risk premium on a corporation’s debentures to change

when the public gains new information about the firm's condition, in particular upon the release of
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new financial statements.  We might model this relationship as follows:

          (7)   SPREAD  =   * HC  j,t j,t j t∆ ∆γ η+ ,

where SPREADj,t is the option-adjusted risk premium on the subordinated debt of holding

company j at time t, computed as in Flannery and Sorescu [1996]; )SPREADj,t is the one-quarter

change in SPREAD between the end of quarters t-1 and t; ∆HCj,t is the one-quarter change in a

vector of public information about holding company j between the end of quarters t-1 and t; and

ηj,t is a normally distributed random disturbance term.10 Specifying both the dependent variable

SPREAD and the holding company variables HC as changes rather than levels cancels-out the

effects of fixed company-specific variables omitted from the specification and obviates the need

for an intercept term.

The market often learns about changes in a firm's financial condition before these changes

are reflected in financial statements.  In equation (7), any change in the risk premium (∆SPREAD)

based on information not yet reflected in financial statements (∆HC) will remain in the residual

term (η).  Adding our measure of private examiner information (PRIVINFO) to the right-hand-

side of (7) allows us to test whether bank examinations uncover some of this "not-yet-public"

information about bank safety and soundness; that is, to test whether the private information in

CAMEL ratings is relevant to financial markets.  We augment (7) as follows, which we will

estimate using nonlinear least squares:

          (8)
  =  * PRIVINFO *e  + * HC  + * SPREAD

  *Q  + 
j,t

*AGE
j,t j,t -1

t j,t

j,t∆ ∆j,tSPREAD α γ δ
λ η

β

+

                                                            
10 Specifying both the dependent variable SPREAD and the holding company variables HC as changes rather than levels
washes out the effects of any omitted company-specific variables and obviates the need for an intercept term.
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where PRIVINFOj,t is defined above; AGEj,t is the asset-weighted average (across the holding

company's national bank subsidiaries) of the number of days elapsed between each subsidiary

bank’s most recent exam and the end of quarter t; SPREADj,t-1 is the lagged risk premium; and Qt

is a vector of quarter dummies.  

The interactive specification of AGE and PRIVINFO in (8) in essence "weights" the value

of private examiner information by its vintage.  If examiners' assessments become less informative

as time passes (either because the holding company’s true situation becomes public or because its

financial condition changes), then the effect of those assessments on SPREAD should diminish

with AGE.  That is, $ should be negative.11  Figure 1 illustrates, for two reasonable values of $,

the effect of using AGE to weight our private information variable.  A smaller value for $ implies

that exam information remains relevant for a longer period of time.  Rather than imposing a shape

on the decay of private information, we permit the data to determine the best value for $.   We

include the lagged risk premium (SPREADj,t-1) in (8) to allow for mean reversion in the dependent

variable, and the quarter dummies Qt to capture systematic changes in economic and regulatory

conditions.

A significant effect of PRIVINFO on SPREAD within the same calendar quarter in

equation (8) would indicate that the bond market learns and incorporates at least some of the

information produced by bank examiners during the quarter in which the exam occurred.12 

Equation (8), however, is not useful for revealing whether PRIVINFO systematically predates

SPREAD.  If private examiner information predates the market's assessments of bank holding

company condition, and if this private information becomes public only slowly, we should be able

to predict future changes in SPREAD from estimates of current PRIVINFO.  We test the

predictive power of PRIVINFO as follows:

                                                            
11 Cole and Gunther [1998] report that CAMEL ratings can predict failure more accurately than financial ratios can, but
only if the ratings are less than 6 months old.
12 The bond market might learn this information independent of the bank examination, or via a leak of exam information
from the supervised bank.  An econometrician cannot discriminate between these two hypotheses.
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          (9)   SPREAD  = * PRIVINFO * e  + * SPREAD  *Q  + j,t k j,t
*AGE

j,t t j,t
j,t∆ + +α δ λ ηβ

where ∆SPREADj,t+k measures the (future) change in SPREAD between the end of quarter t and

the end of quarter t+k, and SPREADj,t is assumed to capture all public information about holding

company j at time t.13  Statistically significant effects of PRIVINFO and AGE in (9) would be

consistent with the hypothesis that bank examinations produce at least some value-relevant

information that is not immediately impounded in debenture prices. 

We modify equations (8) and (9) to allow for the possibility that "good" private examiner

information may affect SPREAD differently than does "bad" private examiner information,

perhaps because banks prefer to announce good information promptly but tend to obscure bad

information.  We therefore estimate a "non-symmetric" version of (8):

 (10)
  SPREAD  =  * GOODNEWS * e  +  * BADNEWS * e  

HC SPREAD Q

j,t G j,t
*AGE

B j,t
*AGE

j t j t j t

G j t
G

B j t
B∆

∆

α α

γ δ λ η

β β

τ τ

, ,

* * *, , ,+ + + +− ∑1

where AGEB and AGEG are, respectively, the asset-weighted average ages of BADNEWS and

GOODNEWS (see equations (5) and (6) above).  We also estimate a similar non-symmetric

version of (9):

 (11)
 SPREAD  =  * GOODNEWS *e  +  * BADNEWS *e  

SPREAD Q

j,t k G j,t
* AGE

B j,t
* AGE

j t j t

G j t
G

B j t
B∆ +

+ + +∑
α α

δ λ η

β β

τ τ

, ,

* *, ,

2.3  Market Responses to Exam Information

Knowing whether examiner assessments of bank condition routinely predate the market's
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assessments of bank condition is crucial for regulatory design.  If examiner information does not

predate market information, then the government monitor is redundant to specialized private

sector monitors.  In this case, bank supervisors should reallocate their examination resources to

small and moderate-sized banks that are not actively evaluated by private market monitors. 

If examiner information does predate market information, then the government monitor is

not redundant.  The actions of the bank supervisor will be based on its informational advantage,

and these actions will likely influence the market's assessment of bank condition.  Suppose

examiners uncover "bad" private information about the bank's financial condition.  This

information will eventually become public as examiners require that it be recorded in financial

statements (e.g., bad loans) and as specialized private sector monitors uncover bad information

with a lag.  As the examiner’s private information becomes public, the bank's SPREAD will

increase to reflect greater risk.  Call this the "information effect."  The supervisor might also

impose restrictions or issue warnings designed to reduce risk and halt the bank's deteriorating

financial condition.  These supervisory actions will eventually become public knowledge, and if

the market believes that the actions were appropriate then the bank's SPREAD will decrease to

reflect reduced risk -- call this the "regulatory discipline effect."14  Note that both the information

effect and the regulatory discipline effect are symmetric.  As "good" private examiner information

becomes public, the information effect predicts a reduction in SPREAD as the market reduces its

assessment of risk, and the regulatory discipline effect predicts an increase in SPREAD as the

market expects less rigorous regulatory oversight.

The information effect and the regulatory discipline effect are not mutually exclusive, so

the net impact of PRIVINFO on SPREAD is theoretically ambiguous.  We summarize the possible

net impacts in Table 1.  Consider the first row in Table 1, in which PRIVINFO and ∆SPREAD are

                                                                                                                                                                                                   
13 We relax this assumption in alternative versions of (9) by adding either ∆HCj,t or HCj,t as right-hand-side variables
(results not reported).  This modification had little effect on the signs or the (joint) significance of estimated α or β. 
14 Explicit regulatory action is not the only explanation for a negative sign on ∂∆SPREAD/∂PRIVINFO.  If an
examination produces "bad" information that the bank itself did not previously know or fully appreciate, the bank may
take unilateral action to reduce risk to a level it finds more acceptable.  
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contemporaneously positively correlated (i.e., ∂∆SPREADt / ∂PRIVINFOt in equation (8) is

positive).  This implies that examiners and market investors have learned at least some of the same

information by the end of the quarter, but does not indicate whether examiners have an

informational advantage over the market at quarter-end.15  If examiners do have an informational

advantage, market participants should discover some of that private information only in

subsequent quarters (i.e., ∂∆SPREADt+k  / ∂ PRIVINFOt in equation (9) is not equal to zero).  Cell

“1” implies that examiners have an informational advantage over market participants that lasts for

at least a quarter.  Cell “2” implies that examiners have no informational advantage, or that the

advantage erodes quickly as market participants learn the examiner’s private information before

the quarter-end.  Cell “3” implies that that examiners have an informational advantage over

market participants, but that the "regulatory discipline" effect dominates the "information" effect

when market participants learn the private information and incorporate it into market prices.

The second row of Table 1 considers scenarios in which PRIVINFO and ∆SPREAD are

not contemporaneously correlated.  Cell “4” provides the strongest possible indication of

examiner informational advantage:  the market is currently unaware of examiner PRIVINFO, but

upon learning it in subsequent quarters finds it valuable and impounds it into SPREAD.  By

contrast, cell “5” implies that market prices never reflect examiners’ private assessments.  This

could occur if the market believes that examiner opinions are irrelevant, or if market investors

never understand the typical bank’s true condition.  Cell “6” implies that the market is initially

unaware of examiner PRIVINFO, but upon learning it in subsequent quarters impounds the

regulator's response to this information (rather than the information itself) into SPREAD.

Finally, the third row of Table 1 considers scenarios in which PRIVINFO and ∆SPREAD

are contemporaneously negatively correlated (i.e., ∂∆SPREADt/∂PRIVINFO in equation (8) is

negative).  We have no appealing explanation for the possible outcome in cell “7."  Cell “8”

implies that market participants learn PRIVINFO within the quarter, assume from this information

                                                            
15 We also do not know which party learned its information first, or whether the parties learned their information through
the same or different channels.
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that the supervisor has taken (or soon will take) countervailing measures, and impound the effects

of these regulatory actions in SPREAD.  This same process occurs more slowly in cell "9."

3. Data and Variables

We estimate equation (2) using a panel of quarterly data for 1,079 national banks from the

third quarter of 1986 (1986:2) through the first quarter of 1995 (1995:1).  We estimate equations

(8), (9), (10), and (11) separately using the results from equation (2) and a panel of quarterly data

for the 61 parent holding companies from 1989:1 to 1995:1.  The shorter 1989-1995 holding

company panel corresponds roughly to the post-"too-big-to-fail" period, during which the bond

market has been shown to price subordinated bank debt efficiently (Flannery and Sorescu [1996]).

 The longer 1986-1995 bank panel allows us to generate estimates of PRIVINFO for banks in

1989 whose most recent exam rating was up to three years old.  Both data panels are unbalanced.

 Mergers and acquisitions that occurred mid-way through our sample period caused some holding

companies to drop out of the data set, while other holding companies only began to issue

subordinated debt mid-way through the sample period.  Similarly, the commercial bank affiliates

associated with these holding companies changed during the sample period due to new bank

charters, acquisitions, or failure.

Summary statistics for the variables used in equation (2) are displayed in Table 2.  All of

these variables are observed at the end of each quarter in which the bank was examined.16 

CAMEL is the safety and soundness rating that was assigned at the bank’s most recent exam.

lnASSETS is the natural log of bank assets in 1995 dollars.  ROA is return on assets, defined as

net income over total bank assets.  LIAB/EQ equals total liabilities divided by total book equity,

and measures a bank’s leverage.  Asset quality is measured by three variables:  NAL, the ratio of

                                                                                                                                                                                                   

16 We assign bank exams to calendar quarters based on the 'exam approval' date, which is the day the OCC officially
closes the exam.  This differs from the ‘exam end’ date, which is the day examiners leave the bank.  These dates are
generally less than a month apart.  The ‘exam end’ date would be the first date on which complete exam information
might unintentionally leak out to the public, while the ‘exam approval’ date would be the first date that on which
supervisors could intentionally release (if they changed current policy and chose to do so) official CAMEL ratings to the
public.  These distinctions are a moot point for this study, however, because the ‘exam end’ dates were not available for
a substantial portion of the data early in the sample period. 
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nonaccruing loans to total bank assets; PD90, the ratio of  loans past due 90 days or more to total

bank assets; and OREO, the ratio of other real estate owned to bank assets.  GAP is the absolute

value of the bank's one year maturity gap (earning assets repriceable within one year less liabilities

repriceable within one year) as a proportion of the bank’s equity market value, and is included to

measure interest rate risk.17 

Table 3 reports summary statistics for the bank holding company variables used in

estimating equations (8), (9), (10) and (11).  All of these variables are observed at the end of

every quarter for which the holding company existed, not just in the quarters during which its

subsidiary banks were examined.  The dependent variable SPREAD is the average option-adjusted

risk premium on the subordinated debt issues of the holding company.18   PRIVINFO is computed

as in equation (4).  AVGAGE is the weighted average number of days since the affiliate national

banks in the holding company have been examined, using the same asset weighting scheme used

to construct PRIVINFO.  The variables ROA, LIAB/EQ, NAL, and GAP, RATING, and

RELMKTBK correspond to their bank-level counterparts, and are computed for the consolidated

holding company.19  RATING is a weighted average of the Moody’s and S&P bond ratings for all

of the bonds outstanding at the end of the quarter, and ranges from 1 (equivalent to Moody’s

Aaa+ rating or S&P AAA+ rating) to 23 (equivalent to Moody’s or S&P's D rating).20 

                                                            
17 Several of the variables in Table 2 have extreme outlying values.  The outlying values for LIAB/EQ and GAP are for
banks with very small absolute values of equity in the denominator.  The outlying values for ROA occur because the
numerator of this variable is constructed by annualizing (i.e., multiplying by 4) quarterly net income, which exacerbates
the volatility of an already volatile number.  The 1st and 99th percentiles of the distributions for each of these variables
have economically reasonable magnitudes. 
18 SPREAD is calculated as follows.  For each bond issue, we calculated the difference between the yield to maturity and
the maturity-matched rate on Treasury securities, less an option adjustment computed as in Flannery and Sorescu
[1996].  SPREAD equals the weighted average of these option adjusted risk premia, using the outstanding principal of
each bond as weights.  SPREAD takes on extreme maximum values in Table 3 for some holding companies just prior to
defaulting on their debt.   
19 The definition of GAP for bank holding companies is the same as in Flannery and Sorescu [1996].  The definition of
GAP for banks is somewhat different, however, due to changes in bank call reports over the sample period.  Details are
available from the authors.
20 Most holding companies have several bond issues outstanding at any given date, and we used all of these bonds
(callable and noncallable bonds, floating and nonfloating rates) to construct RATING.  We began by converting the
Moody’s and S&P ratings for each bond into numbers from 1 to 23.  We then averaged these two numerical ratings
together for each bond issue, and computed a weighted average (using each bonds’ outstanding principal value) of the
mean bond ratings. This method of aggregation is consistent with the one used to construct SPREAD.  In about 2 percent
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RELMKTBK is the ratio of the parent company’s market-to-book ratio to the mean market-to-

book ratio for all sample companies in the same quarter. 

These data were taken from a variety of sources.  Debenture data (including call

conditions, yield, and RATING were taken from the Warga-Lehman Brothers Fixed Income

Database (see Warga [1995]).  The stock prices and the number of shares outstanding were taken

from the CRSP tapes.  The bank-level level values of ASSETS, ROA, LIAB/EQ, NAL, PD90,

OREO, and GAP came from the Reports of Condition and Income (“call reports”), while the

holding company values of these variables were constructed from the FRY-9C reports.  CAMEL

ratings and AGE were taken from confidential OCC examination records.  National bank assets

comprised at least 75 percent of total holding company assets for 60.11 percent of these

observations, and comprised at least 90 percent of total holding company assets for 38.09 percent

of these observations.21 

4.  Results

Table 4 presents the estimation results for the ordered logit (CAMEL) equation (2).  All of

the estimated coefficients are significantly different from zero and have appropriate signs.  The

negative coefficients on ROA and lnASSETS indicate that high values of these variables associated

"good" (numerically low) CAMEL ratings.  Conversely, the positive estimated coefficients on

LIAB/EQ, NAL, PD90, OREO, and GAP indicate that high values for these variables are

associated with "bad" (numerically high) CAMEL ratings.  The predicted CAMEL rating (i.e., the

CAMEL rating to which the model assigned the highest probability) matched the actual CAMEL

rating for 79 percent of the observations, so that the model correctly "explained" the CAMEL

ratings for about 4 out of 5 banks.  Panel 4B shows that the "private information" residuals ε

constructed using equation (3) averaged near zero, with a standard deviation of about one-half of

a CAMEL rank.

                                                                                                                                                                                                   
of our quarterly bank observations, we had data only for the Moody’s rating or the Standard & Poor’s ratings, but not
both.  Since we could not average across ratings services in those instances, we simply used a single service’s rating. 
When both ratings were available, the correlation between Moody’s ratings and Standard & Poor’s ratings was 0.93.
21 We report results using these 75% and 90% subsamples in subsequent footnotes.
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4.1  Contemporaneous ∆SPREAD Regressions

Table 5 contains the results of the contemporaneous )SPREAD regressions.  Consider

first the symmetric specification (8), which does not differentiate between "good" and "bad"

examiner information.  We first note that the two public information variables carry appropriate

signs. The coefficient on PRIVINFO (which equals the partial derivative M)SPREADt /

MPRIVINFOt evaluated at AGE=0) is positive, while AGE carries a negative coefficient, indicating

that the informativeness of private examiner information diminishes as time since the exam passes.

 Although neither the PRIVINFO nor the AGE coefficient differs significantly from zero, the

calculations at the bottom of the Table indicate that the combined effect of these two variables on

)SPREAD is significantly positive when private examiner information is neither brand new nor

quite old.22  Specifically, when the exam occurred between 60 and 270 days (AGE) before the

quarter's end, the effect of PRIVINFO on )SPREAD is statistically significant and positive,

implying that the private information contained in CAMEL ratings is value-relevant for bond

investors.  The magnitude of this partial derivative declines with AGE (because $ is negative),

which is consistent with the "shelf-life" results of Cole and Gunther [1998].

The non-symmetric specification (10) fits the data slightly better, but more importantly

shows that examiners' BADNEWS is driving the results of the symmetric specification: 

)SPREAD responds significantly to contemporaneous BADNEWS but not to contemporaneous

GOODNEWS.  Good information identified during an on-site examination is either irrelevant to

market valuations or is already known to market investors.  We conjecture that managers

disseminate good news promptly to the market, but try to delay the announcement of bad

information.  Examiners uncover at least some of this bad information, and the significantly

positive coefficient on BADNEWS indicates that the public knows at least some of this bad

                                                            
22 We use a Wald test to determine whether the derivative M∆SPREAD/ MPRIVINFO is statistically different from zero. 
The value of this estimated derivative and the estimated asymptotic standard error associated with it are functions of
AGE.  Our point estimates indicate this derivative declines monotonically with AGE, and the estimated standard error
increases (and the associated confidence intervals get wider) as AGE moves further from the means of the data.  Thus, it
is relatively difficult to reject the null hypothesis that M∆SPREAD/ MPRIVINFO = 0 for very small and very large values
of AGE.
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information within the quarter.  We cannot determine whether the public learned this information

before or after examiners did.  However, the fact that even 270-day-old exam information affects

)SPREAD indicates that at least some examiner PRIVINFO becomes known to market investors

with only a considerable lag.  The magnitude of these estimated effect is quite substantial:  the

estimated coefficient on BADNEWS (about 1.05) indicates that a one standard deviation increase

in BADNEWS (0.267) increases SPREAD by about 28 basis points, which is equivalent to a 13%

increase in the risk premium for the average bank holding company in our sample.23 

4.2 The Predictive Power of PRIVINFO

Table 6 displays the relationship between current PRIVINFO and future ∆SPREAD, based

on the symmetric specification of private examiner information in equation (9).  We estimate this

equation twelve separate times, testing whether PRIVINFO at time t is useful for predicting

∆SPREAD one month ahead (t+1), two months ahead (t+2), etc.  As in Table 5, the coefficients

on PRIVINFO are positive, and the coefficients on AGE are negative.  Although neither of these

coefficients tends to be statistically significantly by itself, their combined effect indicates that exam

information that is between 0 and 60 days old is useful for predicting future ∆SPREAD up to 9

months into the future.  Note that the coefficient on SPREADt eventually becomes negative and

significant, indicating regression to the mean in the risk premium. 

Table 7 shows the results of equation (11), which specifies "good" and "bad" examiner

news asymmetrically and hence does not obscure the differential effects of this information on

future ∆SPREAD.  The predominance of BADNEWS is readily apparent.  BADNEWS that is

between 0 and 120 days old is useful for predicting future ∆SPREAD up to nine months into the

future, but current GOODNEWS is never a significant barometer of future risk premia.24

                                                            
23 We re-estimated equations (8) and (10) for subsamples of holding companies with at least 75% or 90% of their assets
in national banks.   In all cases, the partial derivatives M)SPREAD/MPRIVINFO, M)SPREAD/MGOODNEWS, and
M)SPREAD/MBADNEWS retained the same signs and significance levels as in Table 5, and in some instances the
coefficient magnitudes were larger. 
24 We re-estimated equations (9) and (11) for subsamples of holding companies with at least 75% or 90% of their assets
in national banks.  In virtually all cases, the partial derivatives with respect to private examiner information retained the
same signs and significance levels as in Tables 6 and 7, but with slightly larger magnitudes.  The only exception was that
M)SPREAD/MGOODNEWS was negative and significant in equation (11) for the 2-month prediction of ∆SPREAD for
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Cole and Gunther [1998] find that the information content of CAMEL ratings diminishes

substantially once it is 6 months old.  With this result in mind, we estimated alternative versions of

equations (10) and (11) that identified two kinds of private exam information: more than 6 months

old and less than 6 months old (results not shown).  On the right-hand-side of these equations we

interacted dichotomous age variables with the asymmetric private examiner information variables

(GOODNEWS*NEWG, GOODNEWS*OLDG, BADNEWS*NEWB, and BADNEWS*OLDB), where

the dichotomous variable NEWG=1 for exams bearing good news that are less than 180 days old,

OLDG=1 for exams bearing good news that are more than 180 days old, etc.  Consistent with the

Table 5 results, both "new" (less than 180 days old) and "old" (more than 180 days old)

BADNEWS was significantly and positively related to contemporaneous ∆SPREAD, while "new"

and "old" GOODNEWS were not.  Consistent with the Table 7 results, "new" BADNEWS was

significantly and positively related to future SPREAD, while "old" BADNEWS, "new"

GOODNEWS, and "old" GOODNEWS were not.

4.3 Interpretation of Regression Results

We return to Table 1 to interpret the empirical results presented in Tables 5, 6, and 7.  The

distinctly different effects of good examiner information and bad examiner information means that

we cannot summarize our results in terms of a single cell in Table 1.  "Good" examiner

information is unrelated to both contemporaneous ∆SPREAD (Table 5) and future ∆SPREAD

(Table 7).  Thus, good news is fully reflected in debenture risk premia within one calendar quarter

of the exam.  This corresponds to Cell 5 in Table 1: GOODNEWS has no marginal impact on

SPREAD, beyond the information that already lies in the public domain. 

By contrast, "bad" examiner information is positively related to both contemporaneous

∆SPREAD (Table 5) and future ∆SPREAD (Table 7).  This corresponds to Cell 1:  a portion of

BADNEWS is publicly known by the end of the exam quarter, but it is not fully known to the

public for at least nine months after the examination is formally completed.  The absence of any

                                                                                                                                                                                                   
holding companies that held at least 90% of their assets in national banks.   This is the only result that corresponds with
the "regulatory discipline" effect, and it offers weak evidence that, upon learning good news about a bank, the market
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significant negative effects of PRIVINFO on ∆SPREAD in either Tables 5, 6, or 7 implies either

the absence of a "regulatory discipline" effect, or that the average exam's "information effect"

tends to dominates any "regulatory discipline" effects.25 

5.  Conclusions

Government supervisors operate under non-market incentive and compensation schemes. 

This has led some observers to conclude that the efforts of government supervisors to gather

information and apply prudential discipline will be inferior to those of private analysts and

investors operating under more “normal” market incentives.  Contrary to these suspicions, our

empirical results strongly indicate that bank examiners routinely uncover value-relevant

information about the safety and soundness of banks several months before this information is

impounded in debenture prices.  Thus, bank supervisors act like effective monitors of large

banking firms.  Furthermore, we find that examiners are more likely to uncover “bad” private

information than “good” private information, which is consistent with managers' incentives to

obscure bad information but promptly convey good information to the market.  In this regard,

government bank examiners closely resemble private bond monitors, who also seem particularly

adept at uncovering negative new information.

Our results naturally raise two public policy questions.  First, does the current combination

of government sector and private sector monitors produce more information about bank condition

than the purely private arrangements that would evolve in the absence of regular government

exams?  Other than noting some similarity between the motives of bank supervisors and bond

rating agencies, we have little to say about this important regulatory design issue.  Our conclusion

that government supervisors produce information more quickly than does the market are

themselves conditional on the existence of the current "dual" system of monitoring.  

Second, would public dissemination of bank examiners' private information improve

managerial discipline in the banking sector?  Over the past decade, a number of commentators

                                                                                                                                                                                                   
might expect less rigorous regulatory oversight.
25 The sole exception to this is discussed in the previous footnote.
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have proposed that bank regulators should publicly disclose exam ratings (e.g., Kane [1991],

Scott, Jens, and Spudeck [1991b], Horvitz [1996]).  A common argument for disclosing CAMEL

ratings is that nondisclosure wastes scarce information which, if released, would improve the

market’s ability to control and discipline individual banks.  Our findings strongly support the

notion that information in CAMEL ratings significantly adds to what the market already knows

about the safety and soundness of large, publicly traded banking firms.  We conjecture further: the

value of specialized government monitors is even greater for the small banking firms (excluded

from our study) which do not issue traded debentures and are not followed by as many private

sector investors and analysts. 

Although bank supervisors may feel encouraged by our empirical results, they have

plausible reasons to oppose public disclosure of exam ratings (Scott, Jens, and Spudeck [1991a,

1991b], Horvitz [1996]).  First, publicly disclosing a poor CAMEL rating might weaken public

confidence in the bank at a time when the bank can least afford it.  Second, publicizing exam

ratings might make the interaction of bankers and examiners more adversarial, thus changing the

nature of the exam process and reducing the informativeness of ratings it produces.  Maximizing

the social value of specialized government monitors may well depend on balancing the efficiency

improvements from reduced information asymmetries in public markets with preserving the

efficacy of the monitoring process.  
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Table 1

Possible effect of private exam information (PRIVINFO) on
contemporaneous and future changes in bond risk premia (∆SPREAD).

PRIVINFO correlated with
subsequent ∆SPREAD

positive zero negative
PRIVINFO correlated positive 1 2 3
with contemporaneous zero 4 5 6

∆SPREAD negative 7 8 9

1  = Exam information is partially known within the quarter, and the bond market learns the
rest of this information over time.

2  = Exam information is known completely.  Bond market fully incorporates this information
into prices immediately.

3 = Bad PRIVINFO was partly known to the public; examiners’ discovery leads to corrective
regulatory discipline.

4  = Exam information is private.  Bond market learns this information over time, and gradually
incorporates it into prices.

5  = The information generated by bank exams does not affect SPREAD.
6  = Exam information is private.  Bond market learns this information over time, and expects

regulators and/or banks will take action to correct any problems. 

7 = No apparent rationale.
8  = Exam information is known completely.  Bond market anticipates that regulators and/or

banks will take action to correct any problems.
9  = Exam information is partially known.  Bond market learns the rest of this information over

time, and expects regulators and/or banks will take action to correct any problems. 
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Table 2

Summary Statistics for Banks used in CAMEL Regressions.
3,992 Observations of 1,079 different National Banks from 1986:2 through 1995:1.

Mean Std. Dev. Minimum Median Maximum

CAMEL 2.041 0.815 1.000 2.000 5.000

ASSETS (thousand $) 3,500,645 12,314,020 342 309,844 210,490,000

lnASSETS 13.150 2.032 6.095 12.767 19.181

ROA 0.008 0.038 -0.889 0.010 1.443

LIAB/EQ 13.460 55.516 -33,441 13.829 630.500

NAL 0.010 0.015 0.000 0.006 0.261

PD90 0.003 0.005 0.000 0.001 0.074

OREO 0.004 0.010 0.000 0.001 0.201

GAP 5.530 24.863 0.000 4.702 1,531

CAMEL = bank exam rating.
ASSETS = bank assets (thousands of 195 dollars).
ROA = bank net income divided by bank assets.
LIAB/EQ = bank liabilities divided by book equity.
NAL = nonaccruing loans divided by bank assets.
PD90 = loans past due 90 days or more divided by bank assets.
OREO = >other real estate owned’ divided by bank assets.
GAP = absolute value of the one year maturity gap (earning assets minus current liabilities that reprice within a year)
divided by book value of equity.
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Table 3

Summary Statistics for Bank Holding Companies used in SPREAD Regressions
1,064 Quarterly Observations of 61 Bank Holding Companies from 1989:1 through 1995:1

 Mean Std. Dev. Minimum  Median Maximum

 ∆SPREAD 0.044 1.878 -25.905 0.014 21.747

 SPREAD 2.211 3.211 0.164 1.374 49.450

 PRIVINFO 0.056 0.354 -0.865 0.009 1.499

 BADNEWS 0.162 0.267 0.000 0.053 1.499

 GOODNEWS -0.107 0.170 -0.865 -0.020 0.000

 AGE 126 114 0 99 661

 lnASSETS 17.021 1.089 14.237 17.103 19.425

 ROA 0.004 0.006 -0.041 0.004 0.020

 LIAB/EQ 14.741 6.025 -98.980 14.041 89.280

 NAL 0.016 0.014 0.001 0.011 0.130

 RATING 8.680 2.904 2.924 8.000 19.500

 GAP 3.248 1.830 0.000 3.184 11.336

 RELMKTBK 0.985 0.345 -0.323 0.981 2.537

SPREAD = weighted average of the option-adjusted risk premium for holding company’s outstanding debt issues.
PRIVINFO = weighted average for the holding company of examiners’ private information about the national bank

affiliates.
GOODNEWS = weighted average for the holding company of examiners' private information about the national bank

affiliates for which the examiners have net “good” news. 
BADNEWS = weighted average for the holding company of examiners' private information about the national bank

affiliates for which the examiners have net "bad" news. 
AGE = weighted average for the holding company of the number of days since the closing date of each affiliate

nationally-chartered banks’ most recent exam.
lnASSETS = natural log of holding company assets (millions of 1995 dollars).
ROA = holding company net income divided by holding company assets.
LIAB/EQ = holding company liabilities divided by market value equity.
NAL = nonaccruing loans divided by holding company assets.
GAP = absolute value of the one year maturity gap (earning assets minus current liabilities that reprice within a year)

divided by book value of equity.
RATING = weighted average of Moody’s and S&P bond ratings (converted to numerical values from 1 (lowest risk) to

23 (highest risk)) for holding company’s outstanding debt issues.
RELMKTBK = holding company market-to-book ratio, divided by sample average market-to-book ratio.
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Table 4

4A: Ordered Logit Regression Results.  Dependent Variable is CAMEL.

3,992 Observations of 1,079 different National Banks.
Based on safety and soundness exams finished from 1986:2 through 1995:1.

parameter
estimate

standard
error

Wald
Chi-Square

p-value

Intercept 1 * 0.52 0.4717

Intercept 2 * 225.02 0.0001

Intercept 3 * 581.22 0.0001

Intercept 4 * 690.91 0.0001

lnASSETS -0.0459 0.0174 6.99 0.0082

ROA -15.5259 1.6778 85.63 0.0001

LIAB/EQ 0.0425 0.0033 161.84 0.0001

NAL 90.7166 3.9810 519.27 0.0001

PD90 40.4218 7.8182 26.73 0.0001

OREO 78.2306 5.4694 204.58 0.0001

GAP 0.0988 0.0078 159.82 0.0001

-2 Log Likelihood 6,583.9860 2,285.93 0.0001

* These intercept terms have been suppressed to preserve confidentiality of the CAMEL ratings.

4B: Expected and Residual CAMEL Values

Mean std. dev. minimum median maximum

CAMEL (actual) 2.0408 0.8146 1.0000 2.0000 5.0000

CAMEL (fitted value)     2.0409 0.5906 1.0000 1.8651 5.0000

ε (constructed residual) -0.0001 0.5696 -2.9877 0.0917 3.0808
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Table 5: Contemporaneous ∆SPREAD, Symmetric (8) and Non-Symmetric (10) Specifications

          (8)   =  * PRIVINFO * e  +  * HC  +  * SPREAD
  * Q  +  

j,t
* AGE

j,t j,t -1

t j,t

j, t∆ ∆j,tSPREAD α γ δ
λ η

β

+

         (10)         
  SPREAD  =  * GOODNEWS * e  +  * BADNEWS * e  

HC SPREAD Q

j,t G j,t
* AGE

B j,t
* AGE

j t j t j t

G j t
G

B j t
B∆

∆
α α

γ δ λ η

β β

τ τ

, ,

* * *, , ,+ + + +− ∑1

Dependent variable is the current change:   SPREAD(t) - SPREAD(t-1).  Independent variables are defined in Table 3. 
Estimated coefficients on the quarter dummies are not shown.  Test statistics are based on asymptotically efficient
(White=s) estimate of the covariance matrix. ***, **, * indicate a significant difference from zero at the 1, 5, and 10
percent levels, respectively. 

        Symmetric        Non-symmetric
     PRIVINFO (8)       PRIVINFO (10)
Estimate P-value Estimate P-value

PRIVINFO 0.6707 0.196 -- --
AGE -7.74E-5 0.850 -- --

BADNEWS -- -- 1.073* 0.092
AGEB -- -- -7.49E-5 0.981
GOODNEWS -- -- -0.424 0.464
AGEG -- -- -3.58E-3 0.668

∆lnASSETS     -2.2745***    0.001 -2.1079*** 0.002         
∆ROA -18.0411    0.657 -13.935 0.733
)LIAB/EQ   0.0322***    0.000  0.0327*** 0.000         
)NAL  72.3562     0.108  77.6656* 0.086         
)RATING    1.0025***     0.006  0.9780*** 0.006         
)GAP     0.0084     0.914 0.0145  0.855         
)RELMKTBK    -1.7809***     0.004 -1.7732*** 0.005         
LAGGED SPREAD -0.2016*     0.097 -0.2126*   0.081         

R-squared  0.2735 0.2794
Adj. R-sq   0.2503                                         0.2548
N 1064                                           1064        

(continued)
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Table 5 (continued)

        Symmetric        Non-symmetric
     PRIVINFO (8)       PRIVINFO (10)
Estimate P-value Estimate P-value

M )SPREADt /MPRIVINFO t:
   AGEt = 0 days  0.6707 0.196
   AGEt = 30 days       0.6554 0.137
   AGEt = 60 days       0.6403* 0.084
   AGEt = 90 days       0.6256** 0.044
   AGEt = 120 days       0.6113** 0.021
   AGEt = 150 days       0.5972** 0.013
   AGEt = 180 days      0.5835** 0.014
   AGEt = 210 days      0.5701** 0.024
   AGEt = 240 days      0.5570** 0.050
   AGEt = 270 days      0.5442* 0.090
   AGEt = 300 days      0.5318  0.147
   AGEt = 330 days    0.5195  0.207
   AGEt = 360 days      0.5076 0.267   

M )SPREADt /MBADNEWSt:
   AGEt = 0 days   1.0731*   0.092  
   AGEt = 30 days      1.0707* 0.055
   AGEt = 60 days      1.0683**  0.029  
   AGEt = 90 days      1.0659** 0.015
   AGEt = 120 days       1.0635*** 0.009
   AGEt = 150 days       1.0611*** 0.008
   AGEt = 180 days     1.0587** 0.013
   AGEt = 210 days       1.0564** 0.024
   AGEt = 240 days      1.0540** 0.047
   AGEt = 270 days      1.0516*  0.081
   AGEt = 300 days      1.0493  0.125
   AGEt = 330 days    1.0469  0.173
   AGEt = 360 days      1.0446 0.223     

M )SPREADt /MGOODNEWSt:
   AGEt = 0 days  -0.4235   0.464  
   AGEt = 30 days      -0.3803 0.400 
   AGEt = 60 days      -0.3416 0.336  
   AGEt = 90 days      -0.3067 0.286
   AGEt = 120 days       -0.2754 0.263
   AGEt = 150 days     -0.2474  0.278
   AGEt = 180 days      -0.2221 0.323
   AGEt = 210 days       -0.1995  0.385
   AGEt = 240 days      -0.1791  0.450
   AGEt = 270 days        -0.1609 0.511
   AGEt = 300 days      -0.1445 0.563
   AGEt = 330 days    -0.1297 0.608
   AGEt = 360 days        -0.1165 0.646
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Table 6: Predicted ∆SPREAD, Symmetric (9) Specification

            S P R E A D  =  * P R I V I N F O * e  +  * S P R E A D  * Q  +  j, t k j,t
* AGE

j,t t j, t
j, t∆ + +α δ λ ηβ

Dependent variable is the predicted change:  SPREAD(t+k) - SPREAD(t).  Independent variables are defined in Table 3.  Estimated coefficients on the quarter
dummies are not shown.  Test statistics are based on asymptotically efficient (White=s) estimate of the covariance matrix. ***, **, * indicate a significant difference
from zero at the 1, 5, and 10 percent levels, respectively. 

Dependent Variable: )SPREADt+1 )SPREAD t+2 )SPREAD t+3 )SPREAD t+4 )SPREAD t+5 )SPREAD t+6

Est.       P-value Est.       P-value Est.       P-value Est.       P-value Est.       P-value Est.       P-value
 
PRIVINFO 1.2593 0.223 0.9651*   0.088 1.6425    0.175 2.4486   0.187 3.6163   0.161 1.6993 0.265
AGE -0.0219 0.313 -0.0105   0.312 -0.0145   0.284 -0.0182   0.225 -0.0209*  0.082 -0.0112 0.413

SPREADt -0.0553 0.503 -0.0401     0.822 -0.1344   0.300 -0.2316   0.054 -0.2288   0.152 -0.2366*   0.071

R-squared  0.1009 0.0691 0.1363 0.1764 0.1348 0.1684
Adj. R-sq   0.0811     0.0484 0.1169 0.1581 0.1154 0.1495
N 1158 1152 1140 1101 1095 1083
                               
M )SPREADt+k /MPRIVINFOt:
   AGEt = 0 days 1.259 0.223 0.965*   0.088 1.643     0.175 2.449   0.187 3.616    0.161 1.699 0.265
   AGEt = 30 days   0.653*  0.081 0.704**    0.026 1.063**   0.040 1.418** 0.039 1.928*   0.055 1.212* 0.088
   AGEt = 60 days 0.339    0.274 0.514**    0.047   0.688**   0.049 0.821*   0.069 1.028*   0.067 0.866**   0.034
   AGEt = 90 days      0.176  0.499 0.375     0.157  0.446   0.202 0.476  0.255 0.548   0.193 0.618 0.133
   AGEt = 120 days      0.091  0.633 0.273 0.302 0.288 0.379    0.276 0.436 0.292 0.349 0.441 0.317
   AGEt = 150 days 0.047 0.714 0.199 0.426 0.187 0.511 0.159 0.559 0.156 0.474 0.315 0.467
   AGEt = 180 days   0.024 0.767 0.146 0.519 0.121 0.601 0.092 0.642 0.083 0.566 0.225 0.572

(continued)
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Table 6: Predicted ∆SPREAD, Symmetric (9) Specification  (continued)

Dependent Variable:       )SPREADt+7 )SPREAD t+8 )SPREAD t+9 )SPREAD t+10 )SPREAD t+11 )SPREAD t+12

Est.       P-value Est.       P-value Est.       P-value Est.       P-value Est.       P-value Est.       P-value

PRIVINFO 2.3567 0.262 0.9792 0.139 1.7035 0.202 1.4007 0.326 2.0682 0.135 7.0125 0.346
AGE -0.016 0.248 -0.0012 0.835 -0.0104 0.536 -0.0129 0.615 -0.0076 0.556 -0.0417 0.202
SPREADt -0.355*** 0.004 -0.362**  0.050 -0.452*** 0.001 -0.4686***0.001 -0.5002***0.001 -0.5406***0.001

R-squared  0.2073 0.1480 0.2302 0.2257 .1978 0.2877
Adj. R-sq   0.1891                 0.1287 0.2125 0.2079 .1793 0.2710
N 1042 1036 1024 982 824 963
                               
M )SPREADt+k /MPRIVINFOt:
   AGEt = 0 days 2.357       0.262 0.979 0.139 1.704 0.202 1.4007 0.326 2.0682 0.135 7.0125 0.346
   AGEt = 30 days      1.446   0.109   0.945**   0.084 1.247*     0.079 0.9499 0.139 1.6462 0.197 2.0145 0.228
   AGEt = 60 days      0.887*  0.088   0.911**   0.056 0.912 0.175 0.6443 0.333 1.3103 0.272 0.5787 0.435
   AGEt = 90 days      0.544 0.216 0.879 0.055 0.668 0.375 0.4369 0.555 1.0439 0.325 0.1662 0.647
   AGEt = 120 days      0.334 0.384 0.848 0.081    0.489 0.528 0.3864 0.679 0.8301 0.459 0.0477 0.749
   AGEt = 150 days 0.205 0.514 0.818 0.134    0.358 0.628 0.2009 0.752 0.6607 0.559 0.0137 0.807
   AGEt = 180 days      0.126 0.605 0.789 0.206  0.262 0.695 0.1363 0.799 0.5259 0.631 0.0039 0.843
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Table 7: Predicted ∆SPREAD, Non-Symmetric (11) Specification

 S P R E A D  =  * G O O D N E W S * e  +  * B A D N E W S * e  S P R E A D Qj, t k G j, t
* A G E

B j,t
* A G E

j t j t
G j t

G
B j t

B∆ + + + +∑α α δ λ ηβ β
τ τ

, , * *, ,

Dependent variable is the predicted change:  SPREAD(t+k) - SPREAD(t).  Independent variables are defined in Table 3.  Estimated coefficients on the quarter
dummies are not shown.  Test statistics are based on asymptotically efficient (White=s) estimate of the covariance matrix. ***, **, * indicate a significant difference
from zero at the 1, 5, and 10 percent levels, respectively. 

Dependent Variable: )SPREADt+1 )SPREAD t+2 )SPREAD t+3 )SPREAD t+4 )SPREAD t+5 )SPREAD t+6

Est.       P-value Est.       P-value Est.       P-value Est.       P-value Est.       P-value Est.       P-value

BADNEWS 1.4638 0.152 1.2037* 0.060 1.8211 0.120 2.4495 0.154 3.6669 0.156 1.7850 0.201
AGEB -0.0148 0.362 -0.0085 0.358 -0.0106 0.326 -0.0141 0.256 -0.0180 0.112 -0.0067 0.541
GOODNEWS -0.6644 0.252 -0.2383 0.464 -0.2810 0.454 -0.4686 0.777 2.1585 0.469 -1.1187 0.516
AGEG -0.0078 0.471 -0.0001 0.986 -0.0008 0.861 0.0047 0.503 -0.3794 0.815 -0.0272 0.509
SPREADt -0.0601 0.467 -0.0443 0.806 -0.1400 0.283 -0.2359 0.051 -0.2331 0.147 -0.2458*  0.057

R-squared  0.1071 0.0719 0.1394 0.1769 0.1353 0.1712
Adj. R-sq   0.0857             0.0496 0.1185 0.1569 0.1143 0.1508
N 1158 1152 1140 1101 1095 1083
                               
M )SPREADt+k /MBADNEWSt:
   AGEt = 0 days 1.464 0.152 1.204* 0.060 1.821 0.120 2.450 0.154 3.667 0.156 1.785 0.201
   AGEt = 30 days 0.939* 0.028 0.934** 0.022 1.323** 0.028 1.603** 0.043 2.135* 0.054 1.458* 0.067
   AGEt = 60 days 0.602 0.113 0.725** 0.045 0.962** 0.029 1.049* 0.057 1.243* 0.067 1.191**   0.028
   AGEt = 90 days 0.387 0.332 0.562 0.140 0.699 0.126 0.687 0.191 0.725 0.163 0.973* 0.084
   AGEt = 120 days 0.248 0.501 0.436 0.270 0.508 0.279 0.449 0.356 0.421 0.313 0.795 0.225
   AGEt = 150 days  0.159 0.609 0.339 0.388 0.369 0.413 0.294 0.484 0.245 0.441 0.649 0.371
   AGEt = 180 days 0.102 0.681 0.263 0.480 0.268 0.514 0.192 0.575 0.143 0.537 0.530 0.483

M )SPREADt+k /MGOODNEWSt:
   AGEt = 0 days -0.664 0.252 -0.238 0.464 -0.281 0.454 -0.469 0.777 2.159 0.469 -1.119 0.516
   AGEt = 30 days      -0.525  0.151 -0.238 0.420   -0.274     0.413 -0.054 0.763 0.000 0.983 -0.494  0.328
  AGEt = 60 days      -0.416 0.124 -0.237 0.373   -0.268     0.369 -0.062 0.748 0.000 0.992 -0.218 0.549
   AGEt = 90 days      -0.329 0.185 -0.236 0.322  -0.261 0.325 -0.071 0.731 0.000 0.994 -0.096 0.716
   AGEt = 120 days      -0.259 0.299 -0.236 0.269 -0.255 0.280    -0.082 0.713 0.000 0.996 -0.073 0.799
   AGEt = 150 days      -0.205 0.515 -0.235 0.217 -0.249 0.239    -0.094 0.691 0.000 0.997 -0.019 0.846
   AGEt = 180 days      -0.163 0.508 -0.235 0.172 -0.243 0.205  -0.109 0.666 0.000 0.997 -0.008 0.875

(continued)
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Table 7: Predicted ∆SPREAD, Non-Symmetric (10) Specification  (continued)

Dependent Variable:       )SPREADt+7 )SPREAD t+8 )SPREAD t+9 )SPREAD t+10 )SPREAD t+11 )SPREAD t+12

Est.       P-value Est.       P-value Est.       P-value Est.       P-value Est.       P-value Est.       P-value
 
BADNEWS 2.4497 0.240 1.2714* 0.068 1.9294 0.133 1.5875 0.222 2.4701 0.196 6.6159 0.307
AGEB -0.0131 0.296 -0.0002 0.957 -0.0080 0.539 -0.0099 0.593 -0.0057 0.541 -0.0332 0.195
GOODNEWS -0.7553      0.690 -0.4209 0.787 -1.6933 0.436 -2.7606 0.429 -2.2613 0.483 -2.2879 0.493
AGEG -0.0357 0.705 -0.0166 0.843 -0.0268 0.496 -0.0325 0.439 -0.0342 0.469 -0.0314 0.468
SPREADt -0.361*** 0.004 -0.373*** 0.040 -0.460*** 0.001 -0.4764***0.001 -0.5141***0.001 -0.5493***0.001

R-squared  0.2081 0.1508 0.2320 0.2274 .2009 .2898
Adj. R-sq   0.1886        0.1298 0.2128 0.2079 .1807 .2716
N 1042 1036 1024 982 976 837
                               
M )SPREADt+k /MBADNEWSt:
   AGEt = 0 days 2.450   0.240 1.271* 0.068 1.959 0.133 1.5875 0.222 2.4701 0.196 6.6159 0.307
   AGEt = 30 days      1.654        0.107   1.264*     0.057 1.516*     0.079 1.1776 0.133 2.0833 0.195 2.4405 0.209
   AGEt = 60 days      1.117*      0.091   1.257*     0.058 1.191 0.163 0.8735 0.275 1.7570 0.267 0.9002 0.318
   AGEt = 90 days      0.754 0.179  1.249* 0.069 0.936 0.320 0.6479 0.164 1.4818 0.377 0.3321 0.551
   AGEt = 120 days      0.509 0.331 1.242* 0.091    0.736 0.459 0.4807 0.294 1.2498 0.485 0.1225 0.678
   AGEt = 150 days      0.344 0.462 1.235 0.123    0.578 0.559 0.3565 0.677 1.0541 0.574 0.0452 0.752
   AGEt = 180 days      0.232 0.558 1.228 0.163  0.454 0.632 0.2645 0.734 0.8890 0.646 0.0167 0.799

M )SPREADt+k /MGOODNEWSt:
   AGEt = 0 days -0.755 0.690 -0.421 0.787 -1.693 0.436 -2.7606 0.429 -2.2613 0.483 -2.2879 0.496
   AGEt = 30 days      -0.259      0.673   -0.256      0.671 -0.757      0.319 -1.0399 0.272 -0.8092 0.703 -0.8928 0.356
   AGEt = 60 days      -0.089       0.827   -0.156      0.750 -0.338 0.574 -0.3917 0.578 -0.2895 0.748 -0.3484 0.549
   AGEt = 90 days      -0.030 0.889  -0.095 0.846 -0.151 0.726 -0.1475 0.736 -0.1036 0.784 -0.1359 0.726
   AGEt = 120 days      -0.010 0.920 -0.057 0.894    -0.068 0.802 -0.0556 0.811 -0.0371 0.814 -0.0531 0.808
   AGEt = 150 days      -0.004 0.938 -0.035 0.919    -0.030 0.846 -0.0209 0.854 -0.0133 0.839 -0.0307 0.853
   AGEt = 180 days      -0.001 0.949 -0.021 0.936  -0.013 0.874 -0.0079 0.881 -0.0047 0.861 -0.0081 0.881
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Figure 1

Representative Effect of AGE on the Value of Examiner
Information
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