
Equilibrium Lending Mechanism and
Aggregate Activity

By: Cheng Wang and Ruilin Zhou

Fe
de

ra
l R

es
er

ve
 B

an
k 

of
 C

hi
ca

go

WP 2000-30



Equilibrium Lending Mechanism and Aggregate Activity�

Cheng Wang

Graduate School of Industrial Administration

Carnegie Mellon University

Pittsburgh, PA 15213

chewang@wang.gsia.cmu.edu

and

Ruilin Zhou

Research Department

Federal Reserve Bank of Chicago

P.O. Box 834 Chicago, IL 60690-0834

rzhou@frbchi.org

December, 2000

Abstract

This paper develops a model of the credit market where the equilibrium lending mechanism,
as well as the economy's aggregate investment and output, are endogenously determined.
It predicts that the optimal contract is one of two kinds: either with intensive monitoring
by investors to overcome entrepreneurs' incentive problems, such as most of intermediated
�nancing, or with heavy reliance on entrepreneurs, such as market �nancing. We show that the
observation that bank lending falls relative to corporate bond issuance during recessions can be
explained by movements in the economy's real factors, such as a decline in average investment
returns, a contraction of credit supply, and paradoxically, maybe even an increase of investment
demand (which worsens credit market condition and intensi�es incentive problems).
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1. Introduction

What determines a �rm's choice of its mechanism of investment �nancing? How is the choice of

a �rm's �nancing mechanism at the micro level related to investment and output at the aggregate

level? These questions are at the center of recent discussions with respect to the nature and role

of the so-called \credit crunch" which occurred during the most recent 1990-91 U.S. recession.

During this recession, the economy's total outstanding loans fell dramatically and more important,

the fraction of intermediated loans fell dramatically relative to unintermediated loans including

public bonds and commercial paper (Friedman and Kuttner 1993).

There are very few existing theories of the relationship between the mechanism of �nancing and

aggregate economic activity. Kashyap, Stein and Wilcox (1993) �nd that following a tightening

of monetary policy, while there usually is a sharp increase in the amount of commercial paper

outstanding, bank loans fall. They argue that monetary contraction tightens the supply of bank

credit and hence forces borrowers to switch to commercial paper, and they further view this as

evidence on the existence of a loan supply channel of monetary policy transmission. On the

other hand, Bernanke, Gertler and Gilchrist (1996) advocate a ight to quality view on the same

subject. They postulate both that demand for short-term credit is countercyclical, and that �rms

di�er in their degree of access to credit markets. Thus, during a recession, high-grade �rms borrow

relatively easily by way of issuing commercial paper while low-grade �rms, �rms which can only

borrow from banks, are constrained.

This paper develops a model of the credit market where the equilibrium lending mechanism,

as well as the economy's aggregate investment and output, are endogenously determined. We then

use the model to examine how the relationship between the equilibrium �nancing mechanism and

aggregate output varies in response to disturbances to the model's exogenous variables. Suppose

the economy receives a negative \real" shock. Speci�cally, suppose there is a decrease in the

potential returns of an average investment project. Then the credit market may respond by

switching from intermediated bank loans to unintermediated market lending. Meanwhile, fewer

projects will be implemented, the success rates of the implemented projects will be higher (ight

to quality), and total investment and output will both fall. Thus we provide a \real" explanation

for the observation that economic downturns are often accompanied not only by contractions in

total lending, but also by declines in the ratio of bank loans to non-bank lending.

Our theoretical �ndings are based on a lender (investor)-borrower (entrepreneur) relationship

that features adverse selection, moral hazard and costly monitoring. In the model, adverse selec-

tion arises in that after the project is funded, the entrepreneur observes a random signal � 2 [0; 1]

which indicates the project's success rate. This signal is private to the entrepreneur unless the

investor pays a �xed cost to monitor. The project can then be liquidated or fully undertaken. In

the latter case, the entrepreneur must make an unobservable e�ort to carry out the rest of the
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investment process.

We show that the optimal contract has the following characteristics. First, it is always optimal

to fully undertake projects with suÆciently high success rates. Let �� denote the cut-o� level of

the realization of the random signal � below which the project is liquidated and above which

the project is fully implemented. Second, either monitoring is never optimal, in which case any

project with � � �� continues to be funded without being monitored; or monitoring is optimal, in

which case there exists a second cut-o� level of the success rate ��n 2 (��; 1] such that a project

with a � that falls between �� and ��n is monitored. Third, the optimal compensation scheme is

a debt contract if the contract prescribes no monitoring, and a combination of debt and equity

contract otherwise.

If the optimal policy involves a positive probability of monitoring the entrepreneur, we brand

the optimal contract as a form of bank lending; and, if the optimal contact involves no mon-

itoring at all, we classify the optimal contract as market �nancing. This interpretation of the

model is essential for our purpose. In practice, some business enterprises seek �nancing from

�nancial intermediaries while others borrow directly from the credit market (e.g., commercial

paper, corporate bond). A key distinction between the two �nancing mechanisms is that �nan-

cial intermediaries often engage in extensive monitoring during the process of �nancing, whereas

typical individual lenders do not monitor, or do so much less. A theoretical explanation for this

distinction is that monitoring of private information is more e�ective when it is delegated to a

�nancial intermediary rather than when done repetitively by individual lenders (Diamond 1984).

The idea that banks are delegated monitors is central to the models of �nancial intermediation

based on costly state veri�cation (e.g., Williamson 1986, 1987). Recent studies on the choice of

the optimal �nancing mechanism by Diamond (1991) and Holmstrom and Tirole (1997) have also

taken seriously the notion that bank �nancing is closely related to monitoring. In both papers,

�nancial intermediaries are modeled as monitors who can detect bad projects.

We now explain why a negative productivity shock can cause both the aggregate output and

the ratio of intermediated loans to unintermediated loans to fall. In our model, it holds that in the

absence of monitoring, the agency costs that must be incurred by the lender are higher if projects

with lower success rates are undertaken. Now suppose the economy receives a productivity shock

that lowers the return of a successful project. Then fewer projects should be fully funded (that is,

�� should be higher). But this implies monitoring would be less eÆcient relative to no-monitoring,

which in turn implies the ratio of intermediated loans to unintermediated loans would decrease.

Meanwhile, because fewer projects are fully funded, total outstanding loans and aggregate output

would be lower.

Our model is also rich enough to permit studies of other interactions between the credit

market and the aggregate variables. In particular, in our model, it can be the case that the

economy's total output is higher when it has less investment opportunities than when it has more
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investment opportunities. This seemingly counterintuitive result can be explained as follows.

When the economy is endowed with more investment opportunities, competition for loans will

lower the equilibrium expected utility of the borrowers. This, given limited liability, makes the

agency problem more severe, thereby causing more liquidation and less output. On the other

hand, if the economy is endowed with less investment opportunities, competition for projects will

shift the bargaining power from the lender to the borrower, thus raising the equilibrium expected

utility of the borrower and lowering agency costs, resulting in less liquidation and more output.

Another lesson we learn from the model is that when the economy is experiencing a decline

in bank lending, the economy's total output may rise or fall, depending on the source of the

decline. Put di�erently, \credit crunch" is not necessarily bad news. It depends on what causes

the crunch. We show that if the decline in bank lending is caused, say, by an increase in the cost

of monitoring or by a decrease in the potential returns of the project, then total output falls as

bank lending declines. If the decline in bank lending is caused by a decrease in the economy's

endowment of investment projects, then under some conditions the economy's total output could

increase while total bank loans fall.

An important feature of our model is that whenever there is a shortage of funds, in equilibrium

there is always credit rationing of the type discussed by Stiglitz and Weiss (1981) and Williamson

(1986, 1987), where among a group of identical borrowers, those who receive loans are strictly

better o� than those who do not. Credit rationing in our model is motivated sometimes by costly

monitoring (as in Williamson 1987) and sometimes by costly over-liquidation. A lower reservation

utility of the borrower may imply that his project must be liquidated with an excessively higher

probability, which lowers the lender's expected returns on a loan. The notion that credit rationing

is a mechanism to avoid excessive liquidation has not been discussed in the literature.

This paper builds on the large literature in contract theory that follows Townsend (1979)

in modeling the role of costly monitoring in optimal �nancial arrangements, including Gale and

Hellwig (1985), Williamson (1986, 1987), and Boyd and Smith (1997). At the heart of our model

is the interaction between the investor's optimal monitoring policy and optimal �nancing strategy.

In which states of the project should the investor monitor, and what happens subsequently? Could

it be optimal that in some states the project is not monitored but fully �nanced, whereas in other

states the project is monitored but subsequently abandoned? These questions, though obviously

important for the study of investment �nancing, have not been addressed explicitly by the existing

literature. Holmstrom and Tirole (1998) also model the optimal liquidation decision conditional

on the realization of a random signal (a liquidity shock in their environment). But they abstract

from the problem of costly monitoring by assuming the random shock is observable (or when

it is not, it still does not a�ect the structure of the optimal contract). Admati and Peiderer

(1994) have a model which is somewhat similar to ours and they assume monitoring is not costly.

Modeling explicitly the process of costly monitoring allows us to study the interaction between
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costly information acquisition and the investment �nancing decision. But as we will show, solving

the optimization problem is by no means a trivial task.

Section 2 presents the model. In Section 3, we study the two-agent optimal contract assuming

a certain credit market outcome. Section 4 embeds the optimal contract in a perfect competitive

credit market, and analyses the market equilibrium. It then considers the implications of the

model's comparative statics. Section 5 concludes the paper.

2. The Model

There are three periods, � = 0; 1; 2: There are two types of agents, investors and entrepreneurs,

and there is a continuum of each type such that the measure of the investors is �, and that of the

entrepreneurs is Æ. All agents are risk neutral. Investors maximize their expected consumption

in period 2, entrepreneurs maximize the expected value of u(c; e) = c� e, where c is consumption

in period 2 and e is e�ort exerted in period 1.

In period 0, each investor has one indivisible unit of investment good, which can either be

invested in the credit market which matches worthy projects (entrepreneurs) with investment

goods (investors), or earn a certain gross return of one unit of consumption in period 2 through

storage. Each investor also has access to �(> 0) units of the consumption good in period 2. We

will assume that � is large enough to ful�ll all payments speci�ed by �nancial contract. Each

entrepreneur owns a risky investment project, which requires an investment of one unit of the

investment good in period 0, or it simply perishes. No entrepreneur has any initial wealth, and

hence he must rely on external �nancing in order to undertake his project. All investors are ex

ante identical, so are all entrepreneurs (hence, their projects).

In period 0, there is a competitive credit market in which investors o�er lending contracts to

entrepreneurs who exchange investment opportunities for credit and compensation. Given that

all agents are risk neutral, and all projects are identical ex ante, without loss of generality, we

assume that each entrepreneur obtains funds from at most one investor, and each investor invests

in at most one project. That is, any contract is formed exclusively between one entrepreneur and

one investor. At the end of period 0, there may be projects unfunded or investment goods unused,

depending on the size of each side of the market Æ and �. All contracts traded are identical at

a credit market equilibrium, each promises an expected utility equal to u�0 to the entrepreneur

party. This equilibrium expected utility of the entrepreneur will be determined endogenously.

Without loss of generality, we discuss the contracting and investment problem between two

generic agents of each type: an investor I and an entrepreneur E . Assume that E 's project is

worth funding and is funded by I. The timing of the events unfold as indicated in Figure 1.

At the beginning of period 1 the entrepreneur E observes a signal �. Here � 2 [0; 1] � � is a

random variable that represents the potential success rate of the project. We assume that � is a
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continuous random variable on � with a distribution function G(�) and a density g(�), and for

all � 2 �, g(�) > 0. The signal � is directly observable only to the entrepreneur. The investor I

can observe the realization of � through a costly monitoring process, which requires  � 0 units

of I's e�ort. Here,  may be interpreted as e�ort required to discover the project's technical

feasibility and market pro�tability. If the investor monitors, then she learns the true realization

of �. Otherwise, she knows only the entrepreneur's report.

Figure 1. The Timing of a Project Development
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After the observation of the signal � by at least one party, a decision must be made as for

whether to continue the project or liquidate it. The liquidation value of the project is � � 0; mea-

sured in units of period 2 consumption. If the investor I monitors E 's report of �, then of course

the liquidation/continuation decision can be based on the true realization of �. Otherwise, the

liquidation/continuation decision may take into account only E 's report. Suppose the investment

is continued, then the entrepreneur E makes an unobserved e�ort of either t > 0 or zero. In other

words, there is moral hazard.

If the project is continued, at � = 2, the return is realized. If E makes the required e�ort t

to his continued project, then with probability � the project succeeds with return H > 0, and

with probability 1� � it fails and yields nothing. If E does not make the required e�ort, then the

project fails with probability one. We callH the potential return of the project, and � the project's

success rate. At the end of period 2, the contract ends with transferring the speci�ed payment,
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depending on the commonly observed events occurred during the project development process

(monitoring, continuation/liquidation, and project return), from the investor to the entrepreneur.

The investor receives the residual return of the project.

We make some further assumptions. First, all payments to the entrepreneur must be non-

negative (limited liability). Second, renegotiation is not allowed. In other words, we assume that

once the contract is signed, both parties can fully commit, at all stages of the investment process,

to the terms of the initial contract. Third, a necessary condition that a project is worthy of

investment ex ante is that at � = 1, with the best possible realization of � (= 1), the project

return H is higher than all the potential costs from then on. That is,

Assumption (1) t+ �+  � H:

Finally, we make a technical assumption to guarantee the uniqueness of solution to the optimal

contracting problem in the sections to follow.

Assumption (2)
�H

H � (t+ �)
�
g0(�)

g(�)
�

H

t+ �+ 
:

Clearly, there is a wide range of distribution functions with support [0; 1], including the uniform

distribution, which satisfy the above condition.

In what follows, we �rst investigate the optimal contract between an investor and an en-

trepreneur, assuming a certain outcome of credit market competition. We then use the obtained

optimal contract to study credit market equilibrium.

3. Two-Agent Optimal Contract

In this section, we determine the form of the optimal contract between a representative investor

I and entrepreneur E pair. Suppose that the period-0 credit market competition yields that an

entrepreneur's compensation from his funded project is at least u0 � 0 in terms of expected utility.

The optimal contract, then, maximizes the investor's expected utility subject to the constraint

that the entrepreneur's expect payo� is no less than u0. As u0 varies, the contract moves along

the Pareto frontier between the two agents.

3.1. The First-Best Contract

Consider the case where both the realization of � and entrepreneur E 's e�ort t are publicly

observable. Given that there is no private information and moral hazard problem, entrepreneur

E can be compensated with a �xed payment, denote it x. In addition, a contract must specify

a liquidation/continuation policy �, a subset of �: if � 2 �, then the project is continued;

6



otherwise, it is liquidated. Given the environment, the optimal contract must implement t as the

entrepreneur's e�ort.

Let �0 denote the complement of the set �. The problem of optimal contracting can then be

formulated as follows.

(P0) max
x;�

Z
�
�HdG(�) +

Z
�0

�dG(�)� x (1)

subject to

x�
Z
�
tdG(�) � u0: (2)

The objective function (1) represents investor I's expected payo�.1 Condition (2) is entrepreneur

E 's participation constraint: his expected return is no less than the expected credit market payo�

u0. Clearly, constraint (2) must be binding, since otherwise reducing the value of x can improve

I's expected payo� while holding the participation constraint satis�ed. By substituting constraint

(2) into the objective function, we can rewrite the optimal contracting problem as

max
�

Z
�

�
�H � t

�
dG(�) +

Z
�0

�dG(�)� u0: (3)

Obviously, the optimal � must be an upper interval of �.2 Let this interval be [�fb; 1], �fb =

argmaxx2[0;1]F (x) where

F (x) �
Z 1

x

�
�H � t

�
dG(�) + �G(x):

It can be shown that function F (x) is strictly concave under assumption (2),3 and therefore the

maximization problem (3) has a unique solution:

�fb = [�fb; 1]; where �fb =
t+ �

H
: (4)

Given �fb, E 's compensation is determined by x = u0 + (1 � G(�fb))t, and I's expected payo�

(expected net returns on an investment) is given by

Vfb = H

Z 1

�fb

(� � �fb)dG(�) + �� u0 � 1: (5)

1For convenience, we omit the constant unit cost of date-0 investment in all of the objective functions.
2If a project with a lower success rate � is continued, then a project with a higher � should also be continued.
3We have F 0(x) = �[xH � (t+ �)]g(x): Obviously, F 0(0) > 0, F 0(1) < 0. Also, F 00(x) = �[xH � (t+ �)]g0(x)�

Hg(x): So for the function F (x) to be concave, we need

�
g0(x)

g(x)

h
xH � (t+ �)

i
< H:

Now if xH� (t+ �) � 0, then the above inequality certainly holds. If xH� (t+ �) < 0, then the concavity condition
becomes

g0(x)

g(x)
<

H

(t+ �)� xH
;

which holds, by the second inequality of assumption (2).
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Note that given both parties are risk neutral, it is straightforward to show the following holds.

The �rst-best outcome is achievable when there is only moral hazard concerning the entrepreneur's

e�ort, but no information asymmetry with respect to the project's success rate �. The �rst-best

outcome is also achievable if there is only asymmetric information concerning the success rate �,

but there is no moral hazard.

3.2. Contract with Costly Monitoring and Moral Hazard

Now, we consider our original model where the realization of the project's success rate �

is directly observable only to entrepreneur E . Investor I can observe the value of � at a cost

 > 0. Moreover, there is moral hazard: entrepreneur E 's e�ort is not observable. In this

standard �nite-horizon, two-person game with adverse-selection and moral-hazard problems, the

revelation principle applies. That is, every equilibrium allocation of any arbitrary mechanism

can be implemented as an equilibrium of a revelation mechanism. Therefore, we will focus on

incentive compatible mechanisms to characterize the optimal contract.

3.2.1. The De�nition of contract

With costly monitoring and moral hazard, there are now three components to a loan con-

tract: (i) a monitoring policy M for verifying the state of the success rate �, (ii) a liquida-

tion/continuation policy � which determines whether or not the project is liquidated after the

realization of the state �, and (iii) a scheme for state contingent compensations to the entrepreneur.

Formally, a contract takes the following form:

� =
n
M ; �; x; y(~�); ~� 62 �; R0(~�); R(~�); ~� 2 �

o
:

We abstract throughout from stochastic monitoring; thus, the monitoring policy M is a subset of

� in which veri�cation of the reported state will occur. That is, let �̂ denote the entrepreneur's

report of �, then monitoring takes places if and only if �̂ 2M .

The liquidation/continuation policy � is also a subset of �. Unlike in the case of complete

information, here � as well as compensation schedule must take into account the fact that there

is information asymmetry between investor I and entrepreneur E concerning the realization of �.

Let ~� denote investor I's knowledge of the realization of � on which the liquidation/continuation

decision must be conditioned:

~�(�̂; �) =

8><>:
�; if �̂ 2M;

�̂; otherwise.

Then the project is continued if ~� 2 �, and it is liquidated if ~� 62 �.
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In the state of liquidation, investor I seizes the scrap value of the project �, and entrepreneur

E receives a payment y(~�). Conditional on the project being continued, entrepreneur E is paid

R0(~�) � 0 if the project eventually fails; and he is paid R0(~�) + R(~�) � 0 if the project succeeds

with realized return H. Finally, the contract speci�es a �xed payment x � 0 that entrepreneur E

receives in period 2. This payment is not contingent on the state of � nor the realization of the

project's random return.4

Given that monitoring is costly, it may not be eÆcient to always monitor. To simplify matters,

we assume that if entrepreneur E is indi�erent between reporting truthfully and lying, he reports

truthfully. Therefore, if both the realization � and the report �̂ are in the monitoring region

M , there is no point to lie. Furthermore, for any realization � not in the monitoring region M ,

entrepreneur E gains nothing by giving a false report in M to induce monitoring. Since in either

case, E 's payo� will depend on the truth only. This implies that entrepreneur E will not submit

a false report of � for monitoring. In other words, we have:

Lemma 1. If �̂ 2M; then �̂(�) = �:

As mentioned in the introduction, a focus of this paper is the joint determination of the

optimal monitoring policy M and liquidation/continuation policy �. It is thus useful to de�ne

the following subsets of �:

A � � \M; B � �0 \M; C � � \M 0; D � �0 \M 0;

where �0 and M 0 are the complements of � and M , respectively. By Lemma 1, if E 's report of

the state �̂ is in A[B], then monitoring will occur and the project will [will not] continue. On the

other hand, if �̂ 2 C[D] , then the project is not monitored and it will [will not] continue.

Now consider the set D, the non-monitoring/liquidation region. Suppose that �1; �2 2 D and

y(�1) > y(�2). Then, whenever �2 is realized, E could lie and report �1 to get the higher payo�

y(�1), given that both �1 and �2 are not monitored. This implies that y(�) must be constant on

D in order for the contract to be incentive compatible.

Lemma 2. An incentive compatible contract satis�es y(�) = YD for all � 2 D.

Given Lemmas 1 and 2, an incentive compatible contract has to satisfy the following three

sets of incentive constraints. First, there should be no incentives for entrepreneur E to report

untruthfully a �̂ 2 C in order to continue the investment process without monitoring (conditions

(6) and (8)). Second, there should be no incentives for entrepreneur E to report untruthfully

a �̂ 2 D so that a good project is abandoned to avoid making e�ort or to receive a better

compensation YD (conditions (7) and (9)). Third, there should be no incentives for entrepreneur

4Clearly, x is a mathematically redundant component of the contract, and we have introduced x only for
analytical convenience.
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E to shirk whenever the project is continued (condition (10)). Formally,

Truth-telling constraints:

8 � 2 A [ C; 8 �̂ 2 C �R(�) +R0(�)� t � max
n
�R(�̂) +R0(�̂)� t; R0(�̂)

o
(6)

�R(�) +R0(�)� t � YD (7)

8 � 2 B [D; 8 �̂ 2 C y(�) � max
n
�R(�̂) +R0(�̂)� t; R0(�̂)

o
(8)

8 � 2 B y(�) � YD (9)

E�ort constraint:

8 � 2 A [ C �R(�) +R0(�)� t � R0(�) (10)

The entrepreneur's participation constraint is as follows,

x+

Z
A[C

�
�R(�) +R0(�)� t

�
dG(�) +

Z
B[D

y(�)dG(�) � u0: (11)

We are now in a position to de�ne optimality. We call a contract optimal if it maximizes

investor I's expected payo�, subject to the incentive constraints, the participation constraint,

and the limited-participation constraint for entrepreneur E . That is, an optimal contract solves

the following problem,

(P1) max
�

Z
A[C

[�H � �R(�)�R0(�)] dG(�) +

Z
B[D

[�� y(�)]dG(�) (12)

��(A [B) � x

subject to (6)|(11)

x � 0; 8 � 2 B [D y(�) � 0;

8 � 2 A [C R0(�) � 0; R0(�) +R(�) � 0 (13)

where � denotes the probability measure on �: for any set Z � �, �(Z) =
R
Z dG(�).

3.2.2. The optimal contract

We now set out to analyze the properties of the optimal contract. Our �rst task is to simplify

the incentive constraints. The approach we take is to consider a class of optimal contracts, all of

which deliver the same expected utilities to both entrepreneur E and investor I, and then show

that each contract in that class is equivalent to a contract whose compensation scheme resembles

that of a debt or an equity contract. In the following, any two contracts are said to be equivalent

if they satisfy the same set of constraints and promise the same expected payo�s to both the

investor and the entrepreneur.

Proposition 1. For any contract � that solves (P1), there exists a contract �̂ which is

equivalent to � , and �̂ has the following properties: for all � 2 A [ C , R0(�) = 0, and for all

� 2 C, R(�) = RC , where RC � 0 is a constant.
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Proposition 1 implies that we can focus on the set of contracts which have a relatively simple

compensation structure: conditional on the project being continued, the entrepreneur's compen-

sation is zero if the project fails. Moreover, if the project succeeds, and if there is no monitoring,

entrepreneur E 's compensation is independent of his report of �. The intuition for this result

is simple. The debt structure is eÆcient here partly because it imposes the largest possible

punishment for a bad outcome. The constant compensation on C is required by truth-telling

constraint. The technical proof of this proposition, however, is somewhat involved because of the

tangled truth-telling and e�ort-making incentive constraints. The proof of Proposition 1 is in the

appendix.

Proposition 1 allows us to focus on a set of simpler contracts where the compensation schemes

are debt-looking in the continuation regions A and C. Note that by constraint (10), we have

R(�) � t=� > 0 for any � in A or C, which implies the non-negativity of R(�) on A and RC .

Hence, the optimal contracting problem can be simpli�ed as follows:

(P2) max
�

Z
A
[�H � �R(�)]dG(�) +

Z
C

�
�H �RC

�
dG(�) +

Z
B
(�� y(�))dG(�) (14)

+(�� YD)�(D)� �(A [B) � x

subject to

x � 0; 8 � 2 B y(�) � 0; YD � 0; (15)

x+

Z
A
(�R(�)� t)dG(�) +

Z
C
(�RC � t)dG(�) +

Z
B
y(�)dG(�) + YD�(D) � u0 (16)

and the following set of incentive constraints,

8 � 2 A �R(�)� t � �RC � t; (17)

�R(�)� t � YD; (18)

8 � 2 B y(�) � �RC � t; (19)

y(�) � YD; (20)

8 � 2 C �RC � t � YD; (21)

8 � 2 D YD � �RC � t; (22)

8 � 2 A �R(�) � t (23)

8 � 2 C �RC � t: (24)

The next proposition shows that the optimal liquidation/continuation policy is monotonic.

That is, if a project with success rate � is continued, then any project with a higher rate of

success is also continued.

Proposition 2. For any optimal contract � that solves problem (P2), there exists a contract

�̂ satisfying: for all �1 2 � and �2 2 �0, �1 > �2 and �̂ is equivalent to �.
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Suppose a project with success rate �1 is continued, but a project with success rate �2 (�2 > �1)

is liquidated. Then by switching the positions of �1 and �2, and by re-arranging the compensation

schemes properly, one can achieve a Pareto improvement. The proof of Proposition 2 is in the

appendix.

Given Proposition 2, we can then focus, without loss of generality, on contracts with monotonic

liquidation/continuation policies; that is, contracts in which the set � is an upper interval of �.

Our next lemma shows that for optimality, this upper interval must not be empty.

Lemma 3. If � is an optimal contract, then �0 6= ;.

The proof of Lemma 3 is in the appendix. The next contract speci�es the main structure of

optimal contract.

Proposition 3. An optimal contract has the following characteristics:

(i) B = ; and �0 = D.

(ii) There are constants �m and �n, 0 < �m � �n � 1 such that

A = [�m; �n); C = [�n; 1]; D = [0; �m]:

(iii) Moreover, the following compensation scheme is optimal:

8 � 2 A = [�m; �n) R(�) = t=�; 8 � 2 C = [�n; 1] RC = t=�n; YD = 0:

By Proposition 3, it is never optimal to have the project monitored and then abandoned.

Moreover, the optimal monitoring strategy is to monitor those success rate � which are neither too

low, nor too high. Put di�erently, it is optimal not to monitor when the \news" from entrepreneur

E is suÆciently good or suÆciently bad. The entrepreneur's compensation is zero when the project

is abandoned and when the project is continued but fails. When the project is continued and

succeeds with return H, entrepreneur E 's compensation is nonlinear in the realization of �: it is

relatively high but decreasing in the success rate � in the region where monitoring occurs, and it

is low (but positive) and constant across the region where monitoring does not occur.

Note that the optimal monitoring strategy is not monotonic over the whole state space �,

although it is monotonic conditional on the investment being continued. Also, given that the

investment is continued, entrepreneur E 's expected net compensation is monotonic and piecewise

linear in �: it is zero for all � 2 A and (t=�n)� > 0 for all � 2 C.

The intuitions for Proposition 3 are as follows. There is no need to monitor a project that

is to be abandoned (B = ;), since it is a waste of resources without any return. Conditional

on continuation, it is optimal to monitor lower rather than higher reports of � because doing so

minimizes the cost of monitoring. To see this, suppose there is a �0 in A that is greater than the

lowest � in C. Then continuing a project with report �0 without monitoring (that is, move �0 into

12



C) can result a net gain for investor I without violating any other constraints. Entrepreneur E 's

expected payo� can be maintained by increasing the �xed payment x by the amount of reduction at

�0 from R(�0) to RC . The change is also incentive compatible. First, the e�ort-making constraint

is satis�ed at �0 since it is satis�ed at the lowest � in C. Second, there are no incentives for the

entrepreneur to misreport a realization �0 as some other �00 in D, since his payo� in the liquidation

stage YD is lower than �0RC � t, his expected payo� if the project continues. Third, there are no

incentives for him to misreport a di�erent �00 in C other than �0, since the payo� is the same with

both reports on C. However, this change strictly improves investor I's expected payo� because

it reduces monitoring cost in state �0.

To explain part (iii), notice that it is optimal to set the entrepreneur's compensation, YD in

the liquidation region D and R(�) and RC in the continuation regions A and C, just high enough

that proper incentives are given for truthful reporting and e�ort making. Holding the levels of

YD, R(�) and RC too high is potentially costly: it may cause the entrepreneur's overall expected

compensation to exceed his reservation utility, since x � 0 must hold. Now given (i) and (ii), it

is easy to check that the compensation scheme speci�ed in the proposition is the lowest possible

that still satis�es all the incentive constraints.

Given Proposition 3, the optimal contract is characterized fully by variables x, �m, and �n,

with x � 0 and �m � �n. Hence, the optimal contracting problem (P2) can be rewritten as follows:

(P3) max
x;�m;�n

Z �n

�m

�
�H � t� 

�
dG(�) +

Z 1

�n

�
�H � �

t

�n

�
dG(�) + �G(�m)� x (25)

subject to

x+ T (�n) � u0; (26)

x � 0; �m; �n 2 [0; 1]; �m � �n; (27)

where

T (�n) �
Z 1

�n

�
�
t

�n
� t

�
dG(�): (28)

The term T (�n) is the lowest reservation utility of entrepreneur E in order to induce his full e�ort

for all continued projects in non-monitoring region [�n; 1]. We have

T 0(�n) = �
t

(�n)2

Z 1

�n

�dG(�) < 0:

Thus, in the absence of monitoring, more must be promised to entrepreneur E if more projects

are continued.

Obviously, the problem (P3) has a solution, denote it fx�; ��m; �
�
ng. To solve problem (P3),

we consider the cases where the entrepreneur's participation constraint (26) is binding and slack

separately.

13



First, suppose that constraint (26) is binding at the optimum. Then, substituting x = u0 �

T (�n) into the objective function (25) and maximize it without constraint (27), we have

��m = ��n = �fb =
1

H
(t+ �) (29)

and

x� = u0 � T (�fb): (30)

That is, no monitoring is necessary, and the optimal cuto� level for project continuation coincides

with the �rst-best continuation level �fb. Of course, for fx
�; ��m; �

�
ng, given by (29) and (30), to be

the solution, it has to satisfy x� > 0, given that �fb 2 [0; 1] by assumption (1). That is,

T (�fb) � u0: (31)

When condition (31) holds, fx�; ��m; �
�
ng given by (29) and (30) is the solution to (P3). In fact,

condition (31) is the necessary and suÆcient condition for this to be the solution and for the

�rst-best continuation/liquidation to be achievable.

Next, suppose that condition (31) does not hold. Then it must hold that x� = 0, for otherwise,

given T 0(�n) < 0, it is possible to reduce the values of x and �n simultaneously and to increase

the investor's expected payo� without violating the participation constraint (26). With x� = 0,

constraint (26) becomes T (�n) � u0. Let ��n be the level of � at which the constraint binds, that

is,

T (��n) = u0: (32)

Since u0 = T (��n) < T (�fb), and T is decreasing in �n, we have �fb < ��n � 1. Also because T (�n) is

decreasing, the participation constraint T (�n) � u0 is equivalent to �n � ��n. Now we can rewrite

the optimal contracting problem (P3) as follows:

(P4) max
�m;�n

O(�m; �n) �
Z 1

�m

�
�H � t

�
dG(�) + �G(�m)� T (�n)�

Z �n

�m

dG(�) (33)

subject to �m; �n 2 [0; 1]; �n � �m; �n � ��n: (34)

For future reference, let (�̂m; �̂n) be the solution for the unconstraint problem (33). Then,

�̂m =
t+ �+ 

H
(35)

t

(�̂n)2

Z 1

�̂n

�dG(�)� g(�̂n) = 0: (36)

Furthermore, let ~�n be the solution to the following equation,

~�n =
1

H
(t+ �) +

t

(~�n)2 g(~�n)H

Z 1

~�n
�dG(�): (37)
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It is easy to show that �fb < �̂m � 1, 0 � �̂n < 1, and �fb < ~�n < 1.

Problem (P4) is well de�ned: the objective function O(�m; �n) is strictly concave, and the

constraint set de�ned by (34) is convex. So it has a unique solution. The detailed solution is

given in the appendix. The following proposition summarizes the solution for problem (P3).

Proposition 4. The optimal contract takes one of the following three forms:

(i) If u0 � T (�fb), then

�fbn : ��n = �fb; M
� = ;; �� = [�fb; 1]; and x� = u0 � T (�fb):

(ii) If u0 < T (�fb), and �̂m < minf�̂n; ��ng, then ��m = �̂m, �
�
n = minf�̂n; ��ng,

�sbm : �fb < ��m < ��n; M
� = [��m; �

�
n); �

� = [��m; 1], and x� = 0,

(iii) If u0 < T (�fb) and �̂m � minf�̂n; ��ng, then ��m = ��n = minf~�n; ��ng,

�sbn : �fb < ��n; M
� = ;; �� = [��n; 1], and x� = 0.

Proposition 4 states the precise conditions under which the optimal contract takes what par-

ticular form. One critical element is u0, the reservation utility of entrepreneur E . If u0 is high

enough, the optimal contract �fbn achieves the �rst-best outcome without monitoring. When u0 is

below a certain threshold; u0 < T (�fb), only second-best outcome can be obtained. In such a case,

the optimal contract may be one with some monitoring (reports in regionM� = [��m; �
�
n), contract

�sbm), or without monitoring at all (contract �
sb
n ). In either cases, the cut-o� level for continuation

(��m under �sbm , �
�
n under �

sb
n ) is the higher than that of the �rst-best solution. That is,

Corollary 4.1. Whenever the �rst-best is not attainable, there is always over-liquidation at

the optimum.

Proposition 4 also shows that unless the �rst-best is attainable, the non-state-contingent

component of the compensation x must be zero. Thus, when the �rst-best is not attainable,

the optimal contract takes the form of debt (�sbn ) or combined debt and equity (�sbm) contract.

Moreover, at the optimum, the entrepreneur earns positive compensation only in states where

the project is carried out without being monitored; that is, only when the project is suÆciently

good and when the project is ultimately successful. Given (��m; �
�
n), the optimal payo� schedule

for entrepreneur E is given by Proposition 3. That is,

8 � 2 [0; ��m) y�(�) = 0; 8 � 2 [��m; �
�

n) R�(�) = t=�; 8 � 2 [��n; 1] R
�(�) = t=��n: (38)

Let V (u0) denote investor I's net expected payo� from the project as a function of the reser-

vation utility u0 of entrepreneur E . Then,

V (u0) = H

Z 1

��m

�
� � �fb

�
dG(�)�

Z ��n

��m

dG(�) + �� (x+ T (��n))� 1: (39)
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Not surprisingly, when the �rst-best is attainable, V (u0) coincides with Vfb as de�ned in (5). We

call V the investor's value function. For the optimal contract to be valid, the project has to yield

positive expected net return for the investor, that is, V (u0) � 0.

By proposition 4, given the parameters of the model, H; ; �; and t, there are two possible

cases: (1) �̂m < �̂n at which for some values of the entrepreneur's reservation utility u0, the optimal

contract involves monitoring, and (2) �̂m � �̂n at which there is never monitoring at optimum

regardless of u0. De�ne

� = �̂n � �̂m: (40)

Consider case (1) �rst (� > 0). By proposition 4, the value function (39) can be divided into

�ve segments, as depicted in Figure 2. When, u0 � û0, where

û0 = T (�fb) (41)

the optimal contract is the non-monitoring �rst-best �fbn . The threshold between contract �sbm or

�sbn being optimal, call it �u0, is determined by ��n = �̂m, that is,

�u0 = T (�̂m): (42)

When the optimal contract is �sbm , i.e. when u0 2 [0; �u0), the cuto� level above which continued

projects are not monitored, ��n, can be either �̂n or ��n. The value function V is di�erent depending

on which value ��n takes. In particular, when ��n = ��n, entrepreneur E is paid exactly u0, and

V is strictly decreasing as u0 rises. But when ��n = �̂n, entrepreneur E is paid T (�̂n), which is

independent of u0, and as a result V is constant in u0. Let u
1
0 be the boundary between the two

regions, which is determined by �̂n = ��n, that is,

u10 = T (�̂n): (43)

Similarly, when the optimal contract is �sbn , i.e. when u0 2 [�u0; û0), the cuto� level below which

projects are liquidated, ��n, can be either ~�n or ��n. When ��n =
��n, more projects is liquidated as

u0 decreases, entrepreneur E is paid exactly u0, and function V is strictly decreasing in u0. But

when ��n = ~�n, the liquidation cuto� level is �xed at ~�n, entrepreneur E is paid T (~�n), which is

independent of u0, and as a result V is constant in u0. Let u20 be the boundary between these

two regions, which is determined by ~�n = ��n, that is,

u20 = T (~�n): (44)

It is easy to verify that 0 � u10 � �u0 � u20 � û0. In case (2) (� � 0), the value function

V corresponds to only a portion of the function under case (1): segments III, IV and V. To

summaries, the value function V may consist of either �ve or three segments.
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� If � > 0, V (u0) may be divided into �ve segments, as depicted in Figure 2:

I: 8u0 2 [0; u10), �sbm is optimal, (��m; �
�
n) = (�̂m; �̂n), V is constant.

II: 8u0 2 [u10; �u0), �sbm is optimal, (��m; �
�
n) = (�̂m; ��n), V is strictly decreasing.

III: 8u0 2 [�u0; u
2
0), �sbn is optimal, ��m = ��n =

~�n, V is constant.

IV: 8u0 2 [u20; û0), �sbn is optimal, ��m = ��n =
��n, V is strictly decreasing.

V: 8u0 � û0, �
fb
n is optimal, ��m = ��n = �fb, V is linear and strictly decreasing.

� If � � 0, then u10 = �u0 = 0, and V is divided into III, IV and V three segments as above.

Figure 2. The Investor's Value Function
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3.2.3. Analyzing the optimal contract

Suppose that in addition to assumption (1) and (2), V (u0) � 0, that is, investment in the

project is bene�cial for both parties. Two questions are of particular interest. First, under what

conditions does T (�fb) � u0 hold and hence the �rst-best is attainable? Second, suppose that the

�rst-best is not attainable, then under what conditions is monitoring optimal? Both questions

can be studied with the criterion given in Proposition 4.

Consider �rst the condition T (�fb) � u0, which is necessary and suÆcient for attaining the �rst-

best outcome. From the analysis above, T (�fb) is the minimum amount of expected compensation
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needed, in absence of monitoring, to induce truth-telling and e�ort-making if all projects with

potential success rate above �fb are to be continued. For this reason, we call T (�fb) the incentive

cost to �rst-best �nancing. Condition (31) requires that this incentive cost to be lower than

entrepreneur E 's reservation utility u0. The following proposition summarizes the conditions

under which the �rst-best is attainable. For convenience, de�ne

	(H; t; �; u0) �
u0
t
�fb �

Z 1

�fb

(� � �fb)dG(�) � 0: (45)

Then, condition T (�fb) � u0 is equivalent to 	 � 0. Note that 	 is independent of the monitoring

cost .

Proposition 5. Suppose that assumptions (1) and (2) hold, and V (u0) � 0. Then holding

other parameters constant,

(i) 	 � 0 if and only if u0 � û0.

(ii) There exists Ĥ � t+ � such that 	 � 0 if and only if H � Ĥ;

(iii) If 	 � 0 holds for some �̂, then it holds for all � � �̂.

Part (i) of the proposition is obvious. Parts (ii) and (iii) are given by the facts that function

	 is increasing in �fb and that �fb is decreasing in H but increasing in �. The proof is omitted.

When the �rst-best is not attainable, the optimal contract is either one at which some projects are

monitored or one at which no project is monitored. The following proposition characterizes the

parameter space for each of these two forms of second-best �nancing mechanism to be optimal.

Proposition 6. Suppose that assumptions (1) and (2) hold, V (u0) � 0, and that 	 < 0.

Let Ĥ and û0 be de�ned as in Proposition 5. Holding other parameters constant,

(i) For all u0 2 [0; �u0), �
sb
m is optimal, and for all u0 2 [�u0; û0), �

sb
n is optimal.

(ii) There exists �H > Ĥ suc that for all H 2 (Ĥ; �H), �sbn is optimal, and for all H > �H, �sbm

is optimal.

(iii) There exists � 2 [0;H � t� �) such that for all  � �, �sbm is optimal; and for all  � �,

�sbn is optimal.

(iv) Suppose that �sbm is optimal for some �� > 0, then �sbm is optimal for all � � ��.

The proof for Proposition 6 is given in the appendix. In both lemmas, we omit the discussion

of the e�ect of moral hazard cost t on the form of optimal contract because of its complexity.5

5We know only when the e�ort cost t is very large or very small, the �rst-best �nancing is achievable. This is
because in both cases, the incentive cost T (�fb) is small: when t is very small, the direct e�ect of a small e�ort cost
implies that the incentive cost is small; when t is large, the indirect e�ect of inducing more liquidation (�fb is high)
implies that the incentive cost required for the small amount of continued project is also low. However, in general,
there is no monotone relationship between t and the incentive cost. As t increases, the compensation required to
overcome the moral hazard problem for the continued project increases, but the optimal level of total amount of
the project continued decreases. These two opposite e�ects are what create the potential non-monotonicity of the
relationship.
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We now explain the intuition behind Propositions 5 and 6.

There are four cost factors at work. First, monitoring cost  is paid for project whose success

rate is in the monitoring range M�. Second, entrepreneur E has to be paid incentive cost T (�n),

which is a result of giving the entrepreneur enough incentive to report truthfully and to make

the required e�ort t for all continued but not-monitored projects as if they are the ones with

the lowest signal � in the region. Third, as Corollary 4.1 indicated, there will be over-liquidation

when the �rst-best is not attainable. And fourth, entrepreneur E 's expected net payo� from the

project has to meet his reservation utility u0. The form of optimal contract is usually a result of

balancing two of the relevant factors out of these four. We discuss the inuence of each of the

parameters of the model on the choice of optimal �nancing through their e�ects on these factors,

assuming assumptions (1) and (2) are satis�ed, and V (u0) > 0.6

E's reservation utility u0:
�sbm �sbn �fbn

�u0 û0

All four factors may be at play here, although not concurrently. Figure 3 depicts the rela-

tionship between the incentive cost function T (�) and the reservation utility u0, and their e�ects

on the optimal contract, when monitoring contract is optimal for some u0 (corresponds to Figure

2, the �ve segmented value function V ). When the credit market awards a high expected utility

u0(> û0) to entrepreneur E , the �rst-best outcome is achievable. In such a case, the incentive

cost T (�fb) is part of the u0 payment. No monitoring is necessary, since entrepreneur E 's stake in

the project is high enough to avoid any of his incentive problems.

When u0 is in the intermediate range (u0 2 (�u0; û0), note that it is possible �u0 = 0), it is

not worthwhile for investor I to pay the incentive cost to �rst-best �nancing T (�fb), which is

higher than u0. It is also too costly to pay the monitoring cost and liquidating more projects

than necessary. Continuity argument suggests that raising the liquidation threshold ��n, and hence

reducing the incentive cost T (��n) to u0 preserve the best interests of both parties. This leads to

the optimal contract to be the one with non-monitoring, �sbn . However, when u0 2 (�u0; u
2
0], setting

the liquidation threshold ��n by equating T (�n) to u0 (�
�
n =

��n) may resulting too much liquidation.

In such a case, entrepreneur E is paid more than his market share of the project u0 since the gain

to continue the pro�table project (or the cost of liquidating it) outweighs the incentive cost.

When u0 is low (u0 < �u0, in the case of �u0 > 0, which may be true when  is low), it

is optimal to monitoring some projects, and the chosen contract is �sbm . While the trade-o�

between monitoring cost and liquidation cost determines the boundary between liquidation and

continuation ��m, the boundary between monitoring and non-monitoring among the continued

projects is more complicated. Its determination partitioned this set of u0 into two subsets. If

u0 2 [�u0; u
1
0), the non-monitoring region is chosen so that the incentive cost to induce e�ort T (��n)

6Note that the cut-o� points, such as �u0, Ĥ, etc. may be zero.
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is exactly u0, and the rest of continuation region are monitored. If u0 � u10, the trade-o� between

paying the monitoring cost  and the incentive cost due to non-monitoring tip the balance in

favor of the incentive cost: it is bene�cial for the investor to pay a higher incentive cost than

u0 in exchange for monitoring less projects. Therefore, even though the credit market may have

assigned zero or a very small share of project surplus to the entrepreneur, his expect payo� will

not go down that low since it is optimal for the investor to not monitor him and hence pay him

the incentive cost than paying the high monitoring cost.

Figure 3. Reservation Utility u0, Incentive Cost T (�), and Optimal Contract
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Project return H:
�fbn �sbn �sbm

Ĥ �H

With very low project return H (< Ĥ), a project's potential success rate has to be very high

in order for it to be continued, that is, the �rst-best liquidation level �fb is very high. With few

high-success-rate projects being continued, the incentive cost of not monitoring these projects are

also small. In particular, it is lower than the entrepreneur's reservation utility u0. Therefore,

the non-monitoring contract achieves the �rst-best �nancing. With very high return H (> �H),

on the other hand, even projects with low potential success rate is worth to be continued. Be-

cause many projects are continued, paying the incentive cost of non-monitoring according to the

lowest-success-rate continued project for the entire set of continued projects is very expensive.

Hence, monitor the lower success rate projects and not monitoring the higher ones (contract �sbm)
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is optimal. There is a lower bound for H, �H, below which paying incentive cost of non-monitoring

is cheaper than monitoring. In such a case, the non-monitoring contract �sbn is optimal.

Monitoring cost :
�sbm �sbn

�

This parameter is only relevant when the �rst-best �nancing is not attainable. The key trade-

o� here is paying the monitoring cost or the incentive cost due to non-monitoring. It is intuitive

when the monitoring cost  is low, the optimal contract should be the one with monitoring �sbm .

And when it is high, not monitoring but paying the incentive cost to induce truth-telling and

e�ort-making is less costly, and hence, �sbn is optimal.

Liquidation value �:
�sbm �sbn �fbn

�̂ ��

The liquidation value � works exactly the opposite way as project return H, through its e�ect

on the level of project continuation. With very high � (> ��), the opportunity cost of continue

a project is high. Hence, few projects are continued. But with very low � (< �̂), the close to

nothing scrape value of a project will not have much e�ect on its continuation decision, and hence

relatively, more projects are continued. The e�ect of � on the amount of projects continued is

monotonic.

This concludes our discussion of the two-agent optimal contract.

4. Equilibrium

In this section we �rst describe what a credit market equilibrium is, and then compare alloca-

tions across equilibria under di�erent parameter values of the model. We focus on the following

questions: What determines the equilibrium total number of projects which are fully implemented?

(What determines the economy's equilibrium output?) How are the economy's total investment

and output related to the equilibrium lending mechanism?

We have assumed up to now that the parameters of the model, H; t; �; ; and the density

function g(�), satisfy assumptions (1) and (2). We need to make a third assumption: at least for

some credit-market solution u0, it is worthwhile for investors to invest in projects rather than the

storage technology. That is,

Assumption (3) There exists u0 � 0 such that V (u0) � 0.

Since investors' value function V (u0) is a weakly decreasing function of u0 by Lemma 4,

assumption (3) implies the following lemma.
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Lemma 6. Suppose that assumptions (1)|(3) hold. Then for the optimal contract ��, there

exists u0 > 0 satisfying V (u0) = 0, such that for all u0 � u0, V (u0) � 0, and for all u0 > u0,

V (u0) < 0.

We need to assume that the parameters of the model satisfy assumptions (1)|(3) in order to

have any investment made.

The equilibrium notion we use is competitive: the short side of the market extract all the sur-

plus from trades. There are two possibilities. The �rst is the case when the economy's total supply

of loanable funds exceeds the total demand for funds, that is, Æ < �. In this case, competition for

projects among lenders will work to maximize the expected payo� of entrepreneurs. Speci�cally,

it will drive the expected payo� of each entrepreneur u0 down to u0 at which the expected net

payo�s for investors are zero. Thus in equilibrium entrepreneurs will extract all of the surplus

associated with the invested projects. Depending on where u0 is located, the optimal contract

can be the monitoring �sbm (u0 2 [0; �u0]), the non-monitoring second-best �sbn (u0 2 [�u0; û0]), or

the non-monitoring �rst-best �fbn (u0 � û0).

The second case occurs when the economy's total supply of funds is less than the total demand

for funds, that is, Æ > �. In this case, not all projects will be funded. Competition for funds will

drive u0 to zero, although the expected payo� of each entrepreneur may be above zero (due to

incentive problems) at a level where the investor's expected returns are maximized. The optimal

contract is the the monitoring �sbm if regions I and II in Figure 2 are not empty (�u0 > 0). Otherwise,

it is the non-monitoring second-best �sbn .

In the special case where Æ = �, the two parties can divide the surplus from invested projects

in any arbitrary way. For simplicity, we assume that in such a case, entrepreneurs get all the

surplus, since this is the most likely case to achieve the �rst-best. Formally,

Proposition 7. Suppose that the parameters of the model satis�es assumptions (1)|(3).

Then, there are two possible equilibria.

(i) If Æ � �, then in equilibrium all projects are funded, and an equilibrium is a pair (u�0; �
�),

where u�0 = u0 (that is, V (u�0) = 0), and �� is the optimal contract which gives expected

utility u�0 to the entrepreneur.

(ii) If Æ > �, then in equilibrium the measure of the projects funded is �, and an equilibrium is

a pair (u�0; �
�), where u� = 0 and �� is the optimal contract which presumes zero expected

payo� to the entrepreneur, but its actual prescription is T (��n).

Obviously we have imposed a very simple market structure in the de�nition of the credit-

market equilibrium. This simple competition mechanism may be interpreted as a special case of

a bargaining process which in principle can take a very general form.7

7For example, this bargaining process may dictate that the equilibrium fraction of the surplus associated with
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4.1. Credit Rationing

Notice that whenever Æ > �, in equilibrium there is always credit rationing of the type discussed

by Stiglitz and Weiss (1981) and Williamson (1987), where among a group of identical borrowers

some receive loans and some don't, and those who do are strictly better o� than those don't.

Why is credit rationed? Sometimes it is because of costly monitoring, as in Williamson (1986,

1987).8 Speci�cally, when �sbm is optimal, lowering the entrepreneur's reservation utility u0 implies

a higher ��n, which in turn implies that the expected monitoring cost is higher. Sometimes credit

is rationed because of costly liquidation. In particular, when �sbn is optimal, as u0 decreases,

more projects must be liquidated in order to make the contract incentive compatible. The notion

that credit rationing is a mechanism to avoid excessive liquidation has not been discussed in the

literature. Stiglitz and Weiss (1981) model credit rationing as a mechanism to reduce costly ex

post default on loans.

4.2. Comparative Statics

In the section of two-agent optimal contract, we discuss the e�ect of the parameters of the

model on the optimal contract, for a given credit market outcome u0. In this section we study the

general-equilibrium e�ects of shocks to project return H, monitoring cost , the investment fund

supply (the measure of investors �), and the demand for funds (the measure of entrepreneurs Æ)

on the equilibrium �nancing mechanism and output. The results obviously depend on the initial

condition, in particular, which party gets bigger share of the investment return, that is, u�0 = 0 or

u�0 = u0. We �rst summarize some properties the value function V which are needed to analyze

the response of u0 to changes in the parameters of the model.

The value function V are implicit function of the exogenous parameters H; ; �;, and explicit

function of u0.

Lemma 4. Holding other parameters of the model constant, the sign of the derivative of

V with respect to parameter x, @V=@x, for x being H; ; �; as well as u0 on the �ve (or three)

a project that goes to the investor is a function of Æ and � in the form of say �( Æ
�
), with � 2 [0; 1] and �0 < 0. The

special case we use in this paper simply sets

�(
Æ

�
) =

�
1 if Æ

�
> 1

0 if Æ

�
< 1:

(46)

Adopting the more general form of the competition mechanism does not a�ect our results qualitatively.
8Williamson considers a standard costly state veri�cation model.
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segments of V are as follows.

I II III IV V overall

H + + + + + increasing

 � � 0 0 0 decreasing

� + + 0 + + increasing

u0 0 � 0 � � decreasing

This lemma can be veri�ed directly against the solution of the optimal contract given in

Proposition 4. As parameters H;  and � changes, in addition to the level of V , the validity

of condition � > 0 (the case where for some u0, the optimal contract involves monitoring), as

well as the boundaries û0; �u0; u
1
0; u

2
0 that divide the value function V into �ve or three segments

may change correspondingly. Using the de�nition of �; û0; �u0; u
1
0; u

2
0 given in equations (40)|

(44) as well as that of ��n; �̂n and ~�n given in equations (32), (36) and (37), the following lemma

summarizes these e�ects.

Lemma 5. Holding other parameters of the model constant, the sign of the derivative of

y with respect to parameter x, @y=@x, for y being �; u10; �u0; u
2
0; û0; and x being H; ; � are as

follows.
� u10 �u0 u20 û0

H + 0 + + +
 � + � 0 0
� � 0 � � �

The derivations of both lemmas are omitted here.

4.2.1. Disturbances to project return H

Consider �rst the e�ect of a change in the level of H. Fix the model's other parameters

at levels such that assumptions (1)|(3) are satis�ed. Suppose the economy is experiencing a

negative technology shock which lowers the level of H from Ho to Hn. Assume that with Hn,

assumptions (1)|(3) remain valid.

Suppose �rst that regardless the initial environment, after the shock, �n � 0 (at which only

non-monitoring contract is optimal). Then, equilibrium lending mechanism either shifts from

bank lending to market �nancing or continue to be market �nancing. With lower H, it is less

pro�table to continue some projects that would have been fully funded under Ho. Lower expected

return of each continued project and increased liquidation implies that the total output of the

economy will fall, more than the drop in H.

Next, suppose that in the initial environment, �o > 0 (so it is possible to have intermediated

lending to be optimal), and after the shock, by Lemma 5, � decreases but �n > 0. Suppose that
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the economy has an over-supply of projects, that is, u�0 = 0. Then the �nancing mechanism was

and continues to be intermediated lending (�sbm). If the economy has an over-supply of funds,

that is, u� = u0, the e�ect of the shock is more complicated. On the one hand, by Lemma 4,

the investors' value function V is an increasing function of H and a decreasing function of u0.

Hence, as H decreases from Ho to Hn, u0 is also reduced, say from uo0 to u
n
0 . On the other hand,

by Lemma 5, three of the four boundaries between segments of V , �u0, u
2
0 and û0 also decrease.

The end result is likely that the lending mechanism does not change in response to the shock.

However, it is possible, although rare, that the initial funding mechanism is market lending (�sbn

or �fbn ), and the new market clearing u�0 (= un0 ) drops enough to a level that is less than the new

boundary �un0 (see Figure 2). In this case, the lending activities moves to borrowing from banks.

Whether or not the lending mechanism is a�ected, the amount of projects liquidated increases,

and hence total output falls.

Thus, our model predicts that, as H decreases, the economy will see more projects being

liquidated. There is a ight for quality in the sense that projects which are fully executed have

higher probabilities to succeed. Furthermore, if �rms borrow from banks to �nance investment,

the drop in H is likely to trigger a switch to bond �nancing (although not necessarily). This is

consistent with what happened during the 1990-91 recession. Note that as H falls, the economy's

total output falls more than proportionally. This is because, as H decreases, not only each �rm

produces less, but also there are fewer �rms producing. In other words, an earnings shock is

ampli�ed through the credit market.

Conversely, as H rises, which is often associated with economic boom, more projects will be

fully implemented, total output of the economy rising, and the optimal lending mechanism is

likely to be intermediated �nancing.

4.2.2. Disturbances to monitoring cost 

Consider now the e�ect of a change in the values of , while other parameters of the model

hold constant. Suppose the economy is experiencing an improvement in monitoring technology

such that monitoring cost  drops from o to n. Assume that both before and after the change,

assumptions (1)|(3) are satis�ed.

First, suppose that in the initial environment, �o � 0, that is, the initial optimal contract is

the non-monitoring �sbn or �fbn . The drop of monitoring cost raises the value of � to �n > 0 (by

Lemma 5). If the economy has an over-supply of projects, that is, u�0 = 0, then the equilibrium

�nancing mechanism shifts to bank lending (�sbm). If the economy has an over-supply of funds,

that is, u� = u0, bank-lending is optimal if u0 is now in the �sbm region, otherwise, bond �nancing

remains optimal. Next, suppose that in the initial environment, �o > 0. Then by Lemma 5,

�n > 0. In this case, regardless who has the upper hand on the credit market, the equilibrium

�nancing form does not change. (When u� = u0, a drop in  induces a rise in u0 since V is
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decreasing in  in regions I and II, but it also leads to a right shift of the boundary between �sbm

and �sbn , �u0. Given that the rest of function V does not change, the new u0 remains in region II.)

In all these scenarios, lending mechanism either remains unchanged or moves into intermediated

�nancing. Either way, the drop in  will leads to less liquidated projects, hence, higher total

output.

If there is an increase in the monitoring cost , the e�ect will be complete opposite, with

increased liquidation, lower output, and more likely market lending.

4.2.3. Shocks to demand for funds Æ or supply of funds �

Suppose the economy resides initially at an equilibrium where there is an over-supply of funds,

i.e., Æ < �. So all projects are funded, and the entrepreneurs have the upper hand in the credit

market, earning the maximum payo� possible u0. The equilibrium lending mechanism can be

either borrowing from banks or issuing corporate bond.

Imagine now the economy receives a \real" shock which increases the number of investment

opportunities from Æo to Æn, and Æn > �. That is, there is an increase in the demand for funds

while the supply of funds remain unchanged. This reversal of power on the credit market implies

that now the entrepreneurs' share of the investment return is reduced to zero, i.e, u0 = 0. The

new optimal contract can be either �sbm or �sbn . The only possible change of lending mechanism

occurs when � > 0, the initial optimal contract prescribes non-monitoring (�sbn or �fbn ), and the

new one requires monitoring (�sbm). In such a case, lending activities shift from bond market to

bank loans. Regardless of the lending mechanism, the induced drop in entrepreneurs' reservation

utility is likely to trigger an increase in the amount of projects liquidated, unless u0 is in the at

portion of the value function V (region I or III). However, the increase of investment opportunities

implies that the amount of projects funded rises from Æo to �, to fully utilize the available funds.

The combined e�ect on total output is unclear, depending on whether the downward push of

the increased liquidation can be overturned by the upward lift of the increased investment. It is

possible that the e�ect of more liquidation dominates that of more funding, hence total output

falls despite the increased investment. This seemingly counterfactual result is rooted in the logic

that the tightening of credit market for the entrepreneurs may produce the adverse e�ect of

intensifying incentive problems.

Next, consider the implications of a \monetary" shock that changes the supply of loanable

funds, starting from the same initial credit market equilibrium (excess of funds, u�0 = u0). Specif-

ically, suppose that a sequence of monetary policy innovations manage to bring � to below Æ.9

The reduction in available funds shifts the market power to the side of the investors, and leads

to a similar reduction of the entrepreneurs' entitlement of investment return u�0 from u0 to zero.

9We do not provide explanations for why a tight monetary policy induces a contraction in the total supply of
credit.
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The response to this decline in u�0 is the same as those induced by the increased demand for funds

discussed above, with increased liquidation and a potential shift of lending mechanism from issu-

ing bond to borrowing from banks. The only di�erence here is that when available loans shrink,

total investment also shrink. Therefore, the economy will see a de�nite fall in total output.

In our model, a fall in the supply of credit can create two e�ects: an interest rate e�ect and

a credit e�ect. The interest rate e�ect occurs right when � crosses Æ, where there is a discrete

downward jump in both total investment and total output caused by a sudden increase in the

investor's expected return on a loan (rate of interest). As the expected return on loans increases,

the utility of the entrepreneurs fall, agency costs increase, more projects are liquidated after the

observation of the random signal, and aggregate output is lower.

After � has crossed Æ, the credit e�ect takes over. As � keeps falling, total investment and

total output fall continuously while the rate of interest remains at. The same credit e�ect is

discussed in Stiglitz and Weiss (1981). But a somewhat interesting point this paper o�ers is: a

decrease in the total supply of loans may cause aggregate output to fall more than proportionally.

A fall in loan supply causes less projects to be funded initially (a pure credit e�ect), and among

those receive initial funding, more are to face liquidation subsequently (an agency e�ect).

5. Concluding Remarks

We have constructed and studied a model of the credit market in which both the economy's

total output and the equilibrium source of �nancing are endogenously determined. In contrast

to the literature, we focus on two important elements of external �nancing. One is that the

equilibrium contract is optimal with respect to the environment rather than exogenously imposed.

The other is the e�ect of credit market condition on the equilibrium lending mechanism. Among

other things, we show that the observation that bank lending falls relative to corporate bond

issuance during recessions can be explained by movements in the economy's real factors, including

the availability of investment opportunities and the potential returns of an average investment

project.

A major simplifying assumption of the model is that the economy's total demand for and

supply of funds are exogenously �xed. This can be relaxed. For instance, one could imagine that

the availability of funds is an increasing function of the expected return on a loan to the investor,

or one could also assume that a higher expected return on a project to the entrepreneur brings a

supply of more projects. But as long as these relationships are not suÆciently elastic, it is clear

that the comparative statics properties of the model will remain valid.
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Appendix

Proof of Proposition 1.

Step 1. We show that there exists a contract ~� = fM ; �; ~x; y(�); � 2 B; YD; R(�); R0(�); � 2

A; ~R(�); ~R0(�); � 2 Cg such that ~� is equivalent to �, and that ~R(�) and ~R0(�) are constants on

C. Note that ~� is identical to � except for ~R(�), ~R0(�), and ~x. Without loss of generality, assume

that C has a minimum point, and let �1 � min�2C �. Let ~R(�) = R(�1), ~R0(�) = R0(�1) for all

� 2 C, and allow ~x to be determined later.

(i) We �rst show ~� is incentive compatible. We need to show only that the revision on C

satis�es conditions (6)|(8), and (10). Note that conditions (6) and (8) are obviously satis�ed on

C, given that �1 2 C, and ~R(�) = R(�1), ~R0(�) = R0(�1), for all � 2 C. Since condition (7) holds

for � = �1, we have for any � 2 C, � � �1,

� ~R(�) + ~R0(�) � �1R(�1) +R0(�1) � YD:

Thus ~� also satis�es (7) for all � 2 C. Similarly, condition (10) holds for � = �1, which implies

�1R(�1) � t. Then, for any � 2 C, we have � ~R(�) � �1R(�1) � t. That is, (10) is satis�ed with

any � 2 C.

(ii) With ~� instead of �, the entrepreneur's expected utility is di�erent only in C. Let ~x be

de�ned as follows:

~x = x+

Z
C

�
�R(�) +R0(�)

�
dG(�)�

Z
C

�
�R(�1) +R0(�1)

�
dG(�):

We need to show ~x � 0. But by (6), 8 � 2 C,

�R(�) +R0(�) � �R(�1) +R0(�1) = � ~R(�) + ~R0(�):

That is, with ~�, for all � 2 C, entrepreneur E 's expected payo� is less than or equal to that of the

original contract. We therefore have: ~x � x � 0.

By (ii), investor I's payo� is the same with contract ~� as with contract �. So, we have shown

that ~� is equivalent to the original contract �.

Step 2. We further demonstrate that the contract ~� is equivalent to a third contract �̂ =

fM ; �; x̂; y(�); � 2 B; ŶD; R̂(�); R̂0(�); � 2 A [ Cg; which is otherwise identical to ~� except

8 � 2 A R̂0(�) = 0; R̂(�) = R(�) +
1

�
R0(�) (47)

8 � 2 C R̂0(�) = 0; R̂(�) = RC � ~R(�) = R(�1) (48)

ŶD = YD �R0(�1); x̂ = ~x+ �(C)R0(�1) + �(D)(YD �R0(�1)): (49)
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(i) We show that this new contract �̂ promises the same expected utilities as does ~� to both

entrepreneur E and investor I. The entrepreneur's expected payo� on A under �̂ is the same

pointwise as under � since for each � 2 A,

�R(�) +R0(�) = �(R(�) +
1

�
R0(�)) + 0 = �R̂(�) + R̂0(�):

By (48), under �̂, if the project with � in C succeeds, entrepreneur E receives the expected payo�

RC that he would receive under ~�. His total expected payment on C when the project fails,

�(C)R0(�1), and part of the payment on D, �(D)(YD � R0(�1)) (which is positive by (8)), are

moved from C and D, respectively, into the constant payment x̂ (an increase from ~x). Therefore,

the two contracts give the same expected payo�s to both agents.

(ii) We show that the new contract �̂ is incentive compatible. First, since the changes on

A do not a�ect the entrepreneur's expected payo� pointwise, the left-hand side of the relevant

constraints (6) and (7) are the same as those under ~�. Seconde, note that for any � 2 �, and

any �0 2 C, ~R0(�
0) = RC � 0 = R̂0(�

0), and � ~R(�0) + ~R0(�
0)� t � �RC � t = �R̂(�0) + R̂0(�

0)� t.

Furthermore, YD � ŶD. That is, the right-hand sides of conditions (6)|(9) under �̂ are all

smaller than that under ~�. Therefore, for any � 2 A [B, conditions (6)|(9) are satis�ed under

�̂. Next, given that the de�nition of ŶD by (49), and that conditions (6)|(8) are satis�ed for

any � 2 C [ D under ~�, they are also satis�ed under contract �̂. Last, since constraint (10) is

satis�ed under ~�, for any � 2 A, �R(�) � t, and �1RC � t. By (47), R̂(�) � R(�), so for any

� 2 A, �R̂(�) � �R(�) � t. For any � 2 C, � � �1, so �R̂(�) = �RC � �1RC � t. Therefore,

condition (10) holds under �̂.

We have shown that incentive constraints (6)|(10) hold for �̂, and that both agents receive

the same expected payo� under contract �̂ as under ~�. Therefore, the two contracts are equivalent.

Proof of Proposition 2.

We �rst introduce some notation. De�ne

X >� Y () 8x 2 X; 8 y 2 Y; x > y:

Let P = ��� be the product measure on ���, and let X e>Y denote \X >� Y almost surely",

X e>Y () P
n
(x; y) jx 2 X; y 2 Y and y > x

o
= 0:

The proposition states that for any given optimal contract �, there is contract which is equivalent

to � and which satis�es �̂ >� �̂0:

We �rst show that � satis�es � e>�0; which is equivalent to showing A e>B; A e>D, C e>B, and
C e>D. Before proceeding, assume each of the four sets A; B; C and D has positive measure. (If

one of the sets has measure 0, the corresponding assertion holds automatically.)
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(i) We show A e>B: Suppose not, then there exist �A � A and �B � B such that �B >� �A:

Without loss of generality, suppose that �A and �B satisfy �(�A) = �(�B) 6= 0,10 and that R(�)

has a minimum on �A. Now consider an alternative contract ~� which is identical to � except

(a) ~B = B [�A n�B , and 8 �A 2 �A,

~y(�A) =
1

�(�B)

Z
�B

y(�)dG(�):

(b) ~A = A [�B n�A, and 8 �B 2 �B,

~R(�B) = Rmin(�A) � min
�2�A

R(�);

(c) If
R
�B

�BRmin(�A)dG(�B) <
R
�A

�AR(�A)dG(�A), then

~x = x+

Z
�A

�AR(�A)dG(�A)�
Z
�B

�BRmin(�A)dG(�B)

otherwise, ~x = x.

We need only verify that the incentive constraints (17)|(20) and (23) hold for ~�. Since

R(�A) � RC for all �A 2 �A, it holds that ~R(�B) = Rmin(�A) � RC , for all �B 2 �B; or ~R(�B)

satis�es (17). Now de�ne ��A �argmin�2�A R(�A): By (18) and (23), ��AR(��A) � YDt � t. Thus

for all �B 2 �B ;

�B ~R(�B) � ��A ~R(�B) = ��AR(��A) � YDt � t:

That is, ~R(�B) satis�es (18) and (23). Since � satis�es constraints (19) and (20), we have for all

� 2 �B, y(�) � maxf�RC � t; YDg. Therefore, for all �A 2 �A,

~y(�A) =
1

�(�B)

Z
�B

y(�)dG(�) � max

�
RC

�(�B)

Z
�B

�dG(�)� t; YD

�
� max

n
RC�A � t; YD

o
;

or ~y(�A) satis�es (19) and (20). Thus we have shown that ~� is incentive compatible.

Next, we show that ~� Pareto dominates �. By construction,
R
�A

~y(�A)dG(�A) =
R
�B

y(�B)dG(�B).

Suppose
R
�B

�BRmin(�A)dG(�B) �
R
�A

�AR(�A)dG(�A). Then moving from � to ~� the en-

trepreneur's expected payo� is changed byZ
�B

�BRmin(�A)dG(�B)�
Z
�A

�AR(�A)dG(�A) > 0;

and the investor's expected payo� is changed byZ
�B

�B(H �Rmin(�A))dG(�B)�
Z
�A

�A(H �R(�A))dG(�A) > 0;

10Given � is continuously distributed, the sets �A and �B can be cut arbitrarily small to satisfy this property.
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since �B >� �A. Thus both parties are better o� under ~� than under �.

Suppose
R
�B

�BRmin(�A)dG(�B) <
R
�A

�AR(�A)dG(�A). Then under ~� the entrepreneur's

expected payo� decreases on �B compared to what she receives under � on �A, but the decrease

is made up exactly by the increase of x to ~x, so her total expected payo� remains the same.

Now the investor's expected payment to the entrepreneur is the same, but the investor's expected

payo� is increased by

H

�Z
�B

�BdG(�B)�
Z
�A

�AdG(�A)

�
> 0:

This is because projects with higher success rates are continued. Again, ~� Pareto dominates �.

(ii) We show A e>D: Suppose not, then there exist �A � A and �D � D such that �D >� �A:

Without loss of generality, suppose �A and �D satisfy �(�A) = �(�D) 6= 0, and R(�) has a

minimum on �A. Now consider an alternative contract ~� which is identical to � except

(a) ~D = D [�A n�D, and 8 �A 2 �A,

~y(�A) = YD:

(b) ~A = A [�D n�A, and 8 �D 2 �D,

~R(�D) = Rmin(�A) � min
�2�A

R(�); 8 �D 2 �D:

(c) If
R
�D

�DRmin(�D)dG(�D) <
R
�A

�AR(�A)dG(�A),

~x = x+

Z
�A

�AR(�A)dG(�A)�
Z
�D

�DRmin(�A)dG(�D);

otherwise, ~x = x.

Now since �D >� �A and (22) holds for �, we have YD � �DRC � t � �ARC � t holds for all

�A and �D, and hence constraint (22) is satis�ed by contract ~�.

As in the proof for A e>B, we can show that ~R(�D) satis�es constraints (17), (18), and (23), and

thus ~� is incentive compatible. As in the proof for A e>B, we can show that ~� Pareto dominates

�, a contradiction.

(iii) We show C e>B: Suppose not. Without loss of generality, assume that there exists �B � B

and �C � C such that �B >� �C ; and �(�B) = �(�C) 6= 0: Now consider an alternative contract

~� which is identical to � except

(a) ~B = B [�B n�C , and 8 �C 2 �C ,

~y(�C) =
1

�(�B)

Z
�B

y(�)dG(�):
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(b) ~C = C [�C n�B ; and 8 �B 2 �B ,

~R(�B) = RC :

Since every �B 2 �B satis�es (19) and (20), y(�B) � maxf�BRC � t; YDg. Then, for any

�C 2 �C ,

~y(�C) =
1

�(�B)

Z
�B

y(�)dG(�) � max

�
RC

�(�B)

Z
�B

�dG(�)� t; YD

�
� max

n
RC�C � t; YD

o
:

That is, ~y(�C) satis�es (19) and (20). Also, take an arbitrary �C 2 �C , �CRC � t � YD and

�CRC � t. Since for any �B 2 �B , �B > �C , we have �BRC � t � YD and �BRC � t, or,

constraints (21) and (24) are satis�ed on �B . So the modi�ed contract satis�es all the relevant

incentive constraints.

By construction,
R
�C

~y(�C)dG(�C) =
R
�B

y(�B)dG(�B). But since �B >� �C , the en-

trepreneur's expect payo� is increased byZ
�B

�BRCdG(�B)�
Z
�C

�CRCdG(�C) > 0;

and the investor's expected payo� is increased byZ
�B

�B(H �RC)dG(�B)�
Z
�C

�C(H �RC)dG(�C) > 0:

That is, both agents' expected payo�s are strictly higher under ~� than under �.

(iv) Last, we show C e>D: Constraints (21) and (22) directly imply that C >� D; which

further implies C e>D:
To summarize, we have shown that � e>�0: Given that contract � satis�es � e>�0; it is trivial

to show that there is an equivalent contract �̂ that satis�es �̂ >� �̂0: Since � >� �0 can only be

violated on a measure zero set, we can rearrange monitoring and continuation/liquidation policies

on this measure-zero set to eliminate the violations without a�ecting the payo�s.

Proof of Lemma 3.

Consider an optimal contract �. By Proposition 2, we assume � = [�1; 1] and �0 = [0; �1).

Suppose �0 = ;. Then consider contract �̂ which is otherwise identical to � except

(a) D̂ = [0; t=H); Â = A \ [t=H; 1]; Ĉ = C \ [t=H; 1]:

(b) ŶD = 0.

(c) If RC > H, then R̂C = H; if RC � H (including the case C = ;), then R̂C = RC .

(d) x̂ = x+
R
A\D̂

(�R(�)� t)dG(�) +
R
C\D̂

(�RC � t)dG(�) +
R
Ĉ
�(RC � R̂C)dG(�).
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Notice that since t > 0, �(D̂) 6= 0.

By construction, for all � 2 D̂, �R̂C � t � t
H
R̂C � t � 0 = ŶD, and hence constraint (22)

is satis�ed on D̂. The contract �̂ satis�es constraint (17) since RC � R̂C . �̂ also satis�es (18)

since (23) holds under �. If R̂C = RC , then clearly constraints (21) and (24) are both satis�ed.

If H = R̂C < RC , then for all � 2 Ĉ, � � t=H, �R̂C = �H � t, hence constraints (21) and (24)

are also satis�ed. Therefore, �̂ is incentive compatible. Finally, the expected payment to the

entrepreneur under contract �̂ is the same as under contract �, but the investor's expected payo�

is increased by ��(D̂) �
R
D̂
(�H � t)dG(�) > 0. This contradicts the fact that the � is optimal.

Proof of Proposition 3.

We �rst show that given the optimal continuation/liquidation policy �, the optimal monitoring

region A is a lower interval of � and the non-monitoring region C is the complement upper interval

of �. Suppose this is not true. That is, suppose there is an optimal contract � such that a subset

�A of A is embedded in C, that is, for all �A 2 �A, �A > infC �. Without loss of generality

assume �(�A) 6= 0.

Consider contract �̂ which is otherwise identical to � except

(a) Â = A n�A; Ĉ = C [�A, and 8 �A 2 �A,R̂(�A) = RC :

(b) x̂ = x+
R
�A

�(R(�)�RC)dG(�):

To show that �̂ is incentive compatible, we need only check that constraints (21) and (24) are

satis�ed for all �A 2 �A. Since for all � 2 C, �RC � t � YD, we have (infC �)RC � t � YD, which

in turn implies for all �A 2 �A, �ARC � t � YD given that �A > infC �. That is, (21) is satis�ed.

Constraint (24) is implied by (21) since YD � 0.

By construction of x̂, the entrepreneur's expected payo� remains the same under �̂. But the

investor gains by the savings of the monitoring cost  �(�A) > 0. This contradicts the fact that

the contract � is optimal.

Next, we show that B = ;. Let � be an optimal contract which has B 6= ;. By Proposition

2, � >� �0, and from the above proof, C >� A. Hence we can let A = [�m; �n) and C = [�n; 1],

where �m � �n. Consequently, � = A [ C = [�m; 1] and �0 = B [D = [0; �m). Notice Lemma 3

implies �m > 0.

Consider an alternative contract �̂ which is otherwise identical to � except

(a) R̂C = t=�n.

(b) D̂ = D [B, and ŶD = 0.
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(c) x̂ = x+
R
C �(RC � R̂C)dG(�) +

R
B y(�)dG(�) +

R
D YDdG(�).

Using the equations RC � t=�n = R̂C and ŶD = 0, it is easy to check that the contract

�̂ satis�es all the incentive constraints including (17), (18), (21), (22), (24), as well as the non-

negative constraints (13). Moreover, the construction of x̂ implies that the entrepreneur's expected

compensation under �̂ is the same as under �. However, under �̂ the investor's expected payo� is

increased by the savings of the monitoring cost �(A [B) > 0. This contradicts the assumption

that � is optimal.

Finally, we show (iii) holds. Suppose � is optimal and it has a compensation scheme that

di�ers from what is given by the proposition. We need only show that � is equivalent to a

contract �̂ whose compensation scheme takes the form that is given by the proposition. Let

the compensation scheme of �̂ be given by R̂(�) = t=� for all � 2 A, R̂C = t=�n, ŶD = 0, and

x̂ = x+
R
A �(R(�)�t=�)dG(�)+

R
C �(RC�R̂C)dG(�)+�(D)YD. It is easy to check that �̂ satis�es

incentive constraints (17){(24). Since the compensation schedule of the contract � also satis�es

these constraints, in particular, for all � 2 A, R(�) � t=� = R̂(�), for all � 2 C, RC � t=�n = R̂C ,

and YD � 0 = ŶD, we have x̂ � x. Clearly, the compensation scheme of �̂ conforms with the

proposition, and �̂ is equivalent to �.

Solution to Problem (P4)

We �rst show that by assumptions (1) and (2), the objective function O(�m; �n) is strictly

concave in both �m and �n.

The function O(�m; �n) is strictly concave if its Hessian matrix is negative de�nite. By the

de�nition of function O(�m; �n) in equation (33), @O(�m; �n)
2=@�n@�m = 0. So, we only need to

show that the second derivatives with respect to �m and �n are strictly negative.

@O(�m; �n)
2

@�2m
= �[�mH � (t+ �+ )]g0(�m)�Hg(�m):

If �mH � (t + � + ) � 0, then @O(�m; �n)
2=@�2m < 0 since by the �rst inequality of assumption

(2),
�H

H � (t+ �+ )
<

�t

H � (t+ �)
�
g0(�m)

g(�m)
:

If �mH � (t+ �+ ) < 0, then @O(�m; �n)
2=@�2m < 0 is equivalent to

g0(�m)

g(�m)
<

H

(t+ �+ )� �mH

which is implied by the second inequality of assumption (2). With respect to �n,

@O(�m; �n)
2

@�2n
= �

t

�n
g(�n)�

2t

�3n

Z 1

�n

�dG(�)� g0(�n) < �
t

�n
g(�n)� g0(�n) � J(�n):
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By assumptions (1) and (2),

�
t

�n
< �

t


�

�t

H � (I1 + t+ �)
�
g0(�m)

g(�m)

hence, J(�n) < 0, or equivalently, @O(�m; �n)
2=@�2n < 0. So, O(�m; �n) is strictly concave in both

�m and �n.

Given that the objective function O(�m; �n) is strictly concave, and that the constraint set

de�ned by (34) is convex, problem (P4) has a unique solution. We can solve (P4) with Lagrange's

method. Let �1 be the multiplier for constraint �m � �n, and �2 be the multiplier for constraint

�n � ��n. Then the Lagrange is given by

L(�m; �n; �1; �2) =

Z 1

�m

�
�H � t

�
dG(�) + �G(�m)� T (�n)�

Z �n

�m

dG(�) + �1(�n� �m) + �2(��n� �n):

The �rst-order conditions are

@L

@�m
=

�
�H�m + t+ �+ 

�
g(�m)� �1 = 0 (50)

@L

@�n
=

t

(�n)2

Z 1

�n

�dG(�)� g(�n) + �1 � �2 = 0 (51)

@L

@�1
= �n � �m � 0; �1 � 0 with complementary slackness (52)

@L

@�2
= ��n � �n � 0; �2 � 0 with complementary slackness. (53)

Depending on which of the constraints binds, there are four possible solutions for f��m; �
�
ng.

(a) �1 = 0, �2 = 0. Then neither constraint binds. By (50) and (51), ��m = �̂m and ��n = �̂n.

(b) �1 = 0, �2 > 0. Then by (50), ��m = �̂m, and ��n is given by the binding constraint: ��n =
��n.

(c) �1 > 0, �2 = 0. Then �m = �n and �n < ��n. Substituting �2 = 0 and �m by �n, we get

equation (37) from (50) and (51). Given that ~�n is its solution, �
�
n = ��m = ~�n:

(d) �1 > 0, �2 > 0. Then both constraints binds: ��m = ��n =
��n.

To summarize, the solution to (P4) can be one of the two classes, depending on whether ��m = ��n:

(1) When �̂m < minf�̂n; ��ng, which includes cases (a) and (b), ��m < ��n. Then the monitoring

regionM� is not empty, M� = [��m; �
�
n), and the project-continuation region is �� = [��m; 1],

where ��m = �̂m, �
�
n = minf�̂n; ��ng, and ��m > �fb.

(2) When �̂m � minf�̂n; ��ng, which includes cases (c) and (d), ��m = ��n. Hence, the monitoring

region is empty, M� = ;, and the project-continuation region is given by �� = [��n; 1], where

��n = minf~�n; ��ng, and �
�
n > �fb.
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Proof of Proposition 6.

(i) This is given by the discussion of value function V .

(ii) Both �̂n and ��n do not depend on H. When H = Ĥ, ��n = �fb � (t + � + )=H = �̂m,

since u0 = T (�fb) = T (��n). Then, regardless of �̂n, �̂m > ��n � minf�̂n; ��ng. When H ! 1,

�̂m ! 0 < minf�̂n; ��ng. Since �̂m is a continuous function of H, and minf�̂n; ��ng does not depend

on H, there exists an �H > Ĥ, such that for all H 2 (Ĥ; �H ], �̂m � minf�̂n; ��ng, which by

Proposition 4, implies that the optimal contract is the one without monitoring �sbn , and for all

H > �H, �̂m < minf�̂n; ��ng, which, by the same proposition, implies that the optimal contract is

the one with monitoring �sbm .

(iii) The following facts are relevant to the proof of this statement.

(a) Given condition (31) does not hold, �fb < ��n, and both �fb and ��n are not functions of .

(b) When  ! 0, �̂m ! �fb < ��n and �̂n = 1, hence, �̂m < minf�̂n; ��ng = ��n. When  = H�t��

(where H � t� � is the maximum  that is allowed by assumption (1)), �̂m = 1 > minf�̂n; ��ng.

(c) It is obvious that �̂m is an increasing function in . Also, �̂n as a solution to equation (36)

is a decreasing function of , since totally di�erentiate (36) with respect to �n and  at �̂n, we

have

d �̂n=d  = g(�̂n)
. @O(�m; �n)

2

@�2n

���
�n=�̂n

< 0

given that function O is strictly concave. Since ��n does not depend on , minf�̂n; ��ng is also a

decreasing function of .

Both �̂m and minf�̂n; ��ng are continuous functions of . By (c), �̂m is increasing in  and

minf�̂n; ��ng is decreasing in . By (b), as  ! 0, �̂m < minf�̂n; ��ng, but at  = H � t � �,

�̂m > minf�̂n; ��ng. Therefore, there exists a � 2 (0;H � t� �) such that �̂m = minf�̂n; ��ng, for all

 < �, �̂m < minf�̂n; ��ng, and for  2 [�;H� t��], �̂m � minf�̂n; ��ng. Hence by Proposition 4, the

optimal contract is the one with monitoring �sbm for  < �, and it is the one without monitoring

�sbn for  2 [�;H � t� �].

(iv) Both �̂n and ��n do not depend on �. By assumption, there exists an �� > 0 satisfying

assumptions (1) and (2) such that the optimal contract is the one with monitoring �sbm . Hence,

by Proposition 4, �̂m = (t+ ��+ )=H < minf�̂n; ��ng. Therefore, for any � � ��,

�̂m =
t+ �+ 

H
�
t+ ��+ 

H
< minf�̂n; ��ng:

That is, the condition for case (ii) of Proposition 4 is satis�ed. It then follows the optimal contract

is the one with monitoring �sbm .
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