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Abstract

I consider the estimation of linear regression models when the independent variables are mea-

sured with errors whose variances differ across observations, a situation that arises, for example, 

when the explanatory variables in a regression model are estimates of population parameters 

based on samples of varying sizes. Replacing the error variance that is assumed common to all 

observations in the standard errors-in-variables estimator by the mean measurement error vari-

ance yields a consistent estimator in the case of measurement error heteroscedacticity. However, 

another estimator, which I call the Heteroskedastic Errors in Variables Estimator (HEIV), is, 

under standard assumptions, asymptotically more efficient. Simulations show that the efficiency 

gains are likely to appreciable in practice. In addition, the HEIV estimator, which is the ordinary 

least squares regression of the dependent variable on the best linear predictor of the true indepen-

dent variables, is simple to compute with standard regression software.
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I. Introduction

It is well known that when the independent variables in a regression model are measured with 

error, the ordinary least squares (OLS) estimator is biased and inconsistent. For example, with a 

single regressor, the OLS estimator of the regression coefficient tends in probability to the product 

of the true coefficient and the reliability ratio of the regressor – the latter quantity being the ratio 

of the variance of the true explanatory variable to the total variance of the measured variable. 

Textbooks1 explain, however, that if the (assumed constant) variance of those errors is known, a 

consistent estimator can easily be obtained. For example, with a single regressor, the errors-in-

variables (EIV) estimator obtained by dividing the ordinary least squares estimate by the reliabil-

ity ratio is a consistent estimator of the true coefficient.

Perhaps the most common situation in which a researcher actually knows the variance of the mea-

surement errors in a variable, and thus is in a position to use the EIV estimator, is when the vari-

able in question is obtained as the result of an earlier statistical procedure. For example, a 

regression analysis might relate a dependent variable for a geographic region to the population 

mean of some other characteristic of the region. If the population mean of the characteristic is 

unknown, it is common practice to replace it with an estimate based on a finite sample. Relative to 

the true population mean, this sample estimate will be measured with error, and because the vari-

ance of that error can often be obtained from sampling theory, the EIV estimator may be applica-

ble. However, in many, if not most, such examples, the variance of the measurement errors will be 

known to vary by observation. For instance, when the observations in the regression correspond 

to geographic regions, it will often be the case that the available samples are larger for more pop-

ulous regions, and thus that the sampling errors will be larger for small regions.

Numerous applied studies fit into this category. For example, Blanchflower and Oswald (1994), 

Card and Hyslop (1997) and Blanchard and Katz (1997) relate state-level wage levels or wage 

growth to state-level unemployment rates where both variables are obtained from subsamples of 

the Current Population Survey. Aaronson and Sullivan (1999) add a measure of job displacement 

rates taken from the Displaced Worker Supplements as another independent variable. As another 

1. See, for example, Greene (1997).
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example, Campbell and Hopenhym (2001) study the dependence of the size distribution of retail 

establishments across cities on a number of variables, including median rents for commercial real 

estate, a variable they construct from samples whose size varies across cities. In each of these 

cases independent variables are better measured for large states or cities than for smaller ones. 

This paper analyzes this frequently occurring situation, which does not appear to have been for-

mally treated in the literature.

As is shown below, simply replacing the assumed-constant measurement error variance in the 

standard EIV estimator by the mean error variance across observations results in a consistent esti-

mator in the case of heteroskedastic error variances. Such an estimator has, in fact, been used by 

researchers.2 However, it is also shown that another estimator, that more fully takes account of the 

varying levels of information in the observations, is, under standard assumptions, asymptotically 

more efficient. This estimator replaces the error-ridden independent variables in the OLS regres-

sion with their best linear predictor based on the observed data, the coefficients of which vary 

with the extent of measurement error. Simulations suggest that the reductions in variance my be 

appreciable in practice. The alternative estimator is, moreover, straightforward to compute using 

standard software packages.

The next section of this paper describes the model and motivates the estimators for the case of a 

single regressor. In section III, I show that under some standard assumptions, the HEIV estimator 

is more asymptotically efficient than the EIV estimator. Section IV presents some simulations that 

suggest the gains in efficiency could be large in practice and that the asymptotic results provide a 

reasonable approximation to what would be found in finite samples. Section V shows how the 

analysis can be extended to the case of multiple regression and details how one can compute the 

estimators using standard software. Finally, some brief conclusions are contained in Section VI.

II. Model and Motivation of Estimators

Consider first the case of a true regression model with a single regressor:

2. Aaronson and Sullivan (1999) is an example.
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(1)  ,

where  is the true, but unobserved, independent variable, assumed here to have zero mean and 

variance  and  is a disturbance term, assumed to have zero mean and variance  and to 

be uncorrelated with . The observed, but error-ridden, explanatory variable is given by 

(2)  ,

where  is mean zero with variance  and is uncorrelated with both  and . 

To allow for reasonable forms of heteroskedasticity while keeping the asymptotic analysis simple, 

assume that  and , where  and  have unit variances and that 

 for  are independent and identically distributed. Also, for a given 

, assume that  and  are independent of each other and of , , and . I will also need to 

assume that  has finite fourth moments.

The assumptions above imply a relationship between  and  with a composite error term,

(3) . 

Because  is correlated with , the OLS estimator

(4)  

will be biased and inconsistent. Indeed, substituting (1) and (2) into (4), appealing to the law of 

large numbers, and letting ,
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2 ε̃i η̃ i, , , ,( )
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(5)  ,

so that the OLS estimator is asymptotically biased towards zero.

If  and  are known, the obvious generalization of the standard EIV estimator is 

(6)  ,

where  is the analog of the standard reliability ratio in the standard model in which 

the measurement error variance is  for all observations. Multiplying the denominator of the 

OLS estimator by  scales its probability limit down to the “correct” value of  and thus yields 

a consistent estimator. The only subtlety involved in this generalization relative to the standard 

case of a constant measurement error variance is that one needs to substitute the mean value of the 

error variances in the standard estimator, rather than, for example, the mean value of the observa-

tion-specific reliability ratio, .

The EIV estimator is usually motivated, as above, as adjusting the sample variance of the inde-

pendent variable so as to match what is required for the population moment condition for  in 

terms of the correctly measured variables (i.e. ). However, the standard EIV 

estimator can also be viewed in another way that suggests what turns out to be, under standard 

assumptions, an asymptotically more efficient estimator. Specifically, the EIV estimator can be 

viewed as the OLS regression of the dependent variable on a predicted value for the true indepen-

dent variable given the observed variable. Indeed,  is the value of  than minimizes the uncon-

ditional expectation . Moreover, the regression of  on the linear predictor ,

plimβ̂ols
E xi∗ η i+( ) xi∗ β εi+( )[ ]

E xi∗ η i+( )2[ ]
---------------------------------------------------------- ω2

ω2 τ2+
------------------β= =

ω2 τ2

β̂eiv

n 1– xiyi∑
rn 1– xi

2∑
-----------------------=

r ω2

ω2 τ2+
------------------=

τ2

r ω2

ri
ω2

ω2 τ i
2+

------------------=

β

Exi∗ yi βExi∗ 2=

r κ

E xi∗ κxi–( )2[ ] yi rxi
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, evidently reduces to the EIV estimator. The corresponding regression model,

(7)  , 

also has a composite error term. But in contrast to (3), both parts of the error term in (7) are uncor-

related with the regressor. Indeed,  is the normal equation for the prediction 

problem that can serve to define . Thus, as long as  is positive, the EIV estimator will be con-

sistent.

When the measurement error variances vary across observations, one can better predict the true 

 by taking that variation into account. Specifically, the best linear (in ) predictor given the 

available information is , the product of the observed data and the observation-specific reli-

ability ratio. That is,  is the value of  that minimizes the conditional expectation 

. This suggests an alternative Heteroskedastic Errors in Variables (HEIV) esti-

mator that is the focus of this paper. Specifically, the HEIV estimator is the OLS regression of the 

dependent variable on , the best linear predictor of  given the observed data and the actual 

measurement error variance for the observation:

(8) .

The regression underlying (8), 

(9)  , 

again has a composite error term. The lack of correlation between the error term and the regressor 

follows in this case from the iterated expectations identity, 

 and the fact that  for 

n 1– rxiyi∑
n 1– rxi( )2∑
-----------------------------

yi rxiβ εi xi∗ rxi–( )β+[ ]+=

E rxi xi∗ rxi–( )[ ] 0=

r ω2

xi∗ xi

rixi

ri κ

E xi∗ κxi–( )2 τ i
2[ ]

rixi xi∗

β̂heiv
n 1– rixiyi∑
n 1– rixi( )2∑
-------------------------------=

yi rixiβ εi xi∗ rixi–( )β+[ ]+=

E rixi xi∗ rixi–( )[ ] E E rixi xi∗ rixi–( ) τ i
2[ ][ ]= E rixi xi∗ rixi–( ) τ i

2[ ] 0=
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all , which again is a first order condition that could be used to define the . Thus  will 

also be consistent as long as there is sufficient variation in .

Moreover, there is reason to expect that  will be more efficient than  since (9) leaves 

more variation in the regressor than (7). That is 

, while 

. Because  is a strictly convex function of 

 and , Jensen’s inequality implies that  and thus that 

. The inequality will be strict as long as there is some dispersion in the s. 

Alternatively, the variance of the second component of the error term in (9) is smaller than that of 

the corresponding term in (7):  while 

, implying that . Thus, 

relative to model (7), model (9) has higher variance in its independent variable and lower variance 

in its disturbance, suggesting that it will yield more precise estimates of parameters.

III. Asymptotic Comparison of Estimators

In this section, I compare the asymptotic variances of the EIV and HEIV estimators, showing that 

under some standard assumptions, the asymptotic variance of the HEIV estimator is lower. The 

two estimators have a similar structure. In particular, 

(10)

while

τ i
2 ri β̂heiv

xi∗

β̂heiv β̂eiv

Var rxi[ ] r2Var xi∗ η i+[ ] r2 ω2 τ2+( ) rω2= = =

Var rixi[ ] E E riω2 τ i
2[ ][ ] E ri[ ]ω2= = ri

ω2

ω2 τ i
2+

------------------=

τ i
2 r ω2

ω2 E τ i
2[ ]+

---------------------------= E ri[ ] r≥

Var rixi[ ] Var rxi[ ]≥ τ i
2

Var xi∗ rixi–( )β[ ] 1 E ri[ ]–( )ω2β2=

Var xi∗ rxi–( )β[ ] 1 r–( )ω2β2= Var xi∗ rixi–( )β[ ] Var xi∗ rxi–( )β[ ]<

β̂eiv β
n 1– rxiεi∑

n 1– rxi( )2∑
-----------------------------

n 1– rxi xi∗ rxi–( )∑
n 1– rxi( )2∑

-----------------------------------------------β+ +=
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(11) .

Thus, given the assumption of an i.i.d. data generating process, deriving the asymptotic distribu-

tion is straightforward. In particular, by the law of large numbers,  and  

converge in probability to, respectively,  and . And, by 

the central limit theorem, , , , and 

 tend in distribution to Gaussian random variables with mean zero and 

variances, respectively, of , , , and 

, provided those exist, which they will given that  and  are assumed to 

have finite fourth moments. Thus  and  tend to Gaussian variables 

with mean zero and variances, respectively, of

(12)

and

(13) .3

Thus the asymptotic variance of each estimator has two components. The first component of the 

asymptotic variance, which I call the structural component because its source is the error term  

in the true equation, is denoted above as  for the EIV estimator and as  for the HEIV 

estimator. These terms have a form typical of regression models and that does not depend on the 

regression coefficient. The second component of the asymptotic variance, which I call the predic-

3. The cross product terms converge to zero.

β̂heiv β
n 1– rixiεi∑
n 1– rixi( )2∑
-------------------------------

n 1– rixi xi∗ rixi–( )∑
n 1– rixi( )2∑

--------------------------------------------------β+ +=

n 1– rxi( )2∑ n 1– rixi( )2∑
E rxi( )2[ ] rω2= E rixi( )2[ ] E ri[ ]ω2=

nn 1– rxiεi∑ nn 1– rixiεi∑ nn 1– rxi xi∗ rxi–( )∑

nn 1– rixi xi∗ rixi–( )∑
Var rxiεi[ ] Var rixiεi[ ] Var rxi xi∗ rxi–( )[ ]

Var rixi xi∗ rixi–( )[ ] xi∗ η i

n β̂eiv β–( ) n β̂heiv β–( )

Λeiv Λeiv
s Λeiv

p+
Var rxiεi[ ]

rω2( )2--------------------------
Var rxi xi∗ rxi–( )[ ]

rω2( )2----------------------------------------------β2+= =

Λheiv Λheiv
s Λheiv

p+
Var rixiεi[ ]
E ri[ ]ω2( )2---------------------------

Var rixi xi∗ rixi–( )[ ]

E ri[ ]ω2( )2-------------------------------------------------β2+= =

εi

Λeiv
s Λheiv

s
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tion component because its source is the imperfection of the linear predictor for the true indepen-

dent variable, , is denoted above as  for the EIV estimator and as  for the HEIV 

estimator. These have a less standard form, depending, in particular, on the true parameter value. 

Evidently, the prediction components are relatively more important when  is larger. I consider 

in turn the assumptions and arguments needed to compare  to  and  to .

Structural Error Components

The relative sizes of  and , the portions of the asymptotic variances due to the presence 

of the structural error term, , will, in general depend on the nature of any heteroskedasticity in 

. But, given the standard assumptions of homoskedasticity and independence of  and , 

 where  is the common variance of the , while 

. Thus,  while , which estab-

lishes the following proposition.

Proposition 1. If , the error term in the true regression equation has constant variance and is 

independent of  and , the true independent variable and its measurement error, then 

.

With arbitrarily malevolent forms of heteroskedasticity, it is possible for the ratio of  

to  to be larger than , resulting . This would be the case, for 

example, if  was proportional to . But this is not what one would expect in practice. 

Indeed, it is much more likely that  would be negatively correlated with the reliability ratio. 

For instance, if the dependent variable was itself a sample estimate of a population quantity, a por-

tion of its variance would be due to a measurement error whose variance would likely be about 

xi∗ Λeiv
p Λheiv

p

β

Λeiv
s Λheiv

s Λeiv
p Λheiv

p

Λeiv
s Λheiv

s

εi

εi xi∗ τ i
2

Var rxiεi[ ] σ 2Var rxi[ ] rω2σ2= = σ2 εi

Var rixiεi[ ] E ri[ ]ω2σ2= Λeiv
s σ2 rω2⁄= Λheiv

s σ2 E ri[ ]ω2⁄=

εi

xi∗ τ i
2

Λheiv
s Λeiv

s⁄ r E ri[ ]⁄ 1≤=

Var rixiεi[ ]

Var rxiεi[ ] E ri[ ] r⁄( )2 Λheiv
s Λeiv

s>

σi
2 rixi( )2

σi
2
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proportional to . Thus Proposition 1 may be a lower bound on the improvement to be expected 

in practice from using the HEIV rather than EIV estimator.

Prediction Error Component

It is also very likely that , the portion of the asymptotic variance due to the deviations 

of the linear predictors from the true independent variable is lower for the HEIV estimator than 

for the EIV estimator. First, as with  and , the denominator of  is larger than that 

of . Moreover, it appears that in most cases of practical interest, the numerator is also smaller. 

Indeed,  while 

 is simply , since  

for all . Thus one would expect that in most cases  will be less than 

.

It is not, however, necessary that . In fact, when the 

distribution of  is weighted heavily towards values that are large relative to , 

 is typically greater than . However, in the cases I have 

examined, even when , the ratio of 

 to  has been less than , so that the ratio of 

 to  remains less than .

The most straightforward case to analyze is when  and  have Gaussian distributions, in 

which case the following proposition can be established.

τ i
2

Λheiv
p Λeiv

p<

Λeiv
s Λheiv

s Λheiv
p

Λeiv
s

Var rxi xi∗ rxi–( )[ ] E Var rxi xi∗ rxi–( ) τ i
2[ ][ ] Var E rxi xi∗ rxi–( ) τ i

2[ ][ ]+=

Var rixi xi∗ rixi–( )[ ] E Var rixi xi∗ rixi–( ) τ i
2[ ][ ] E rixi xi∗ rixi–( ) τ i

2[ ] 0=

τ i
2 Var rixi xi∗ rixi–( )[ ]

Var rxi xi∗ rxi–( )[ ]
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2 ω2

Var rixi xi∗ rixi–( )[ ] Var rxi xi∗ rxi–( )[ ]

Var rixi xi∗ rixi–( )[ ] Var rxi xi∗ rxi–( )[ ]>

Var rixi xi∗ rixi–( )[ ] Var rxi xi∗ rxi–( )[ ] E ri[ ] r⁄

Λheiv
p Λeiv

p r E ri[ ]⁄

xi∗ η i
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Proposition 2. If  and , the true independent variable and its measurement error, have Gaus-

sian distributions, then .

To prove proposition 2, note that  is equal to , 

which can be expanded to give

(14) .

With Gaussian  and ,  and . Substituting these 

expressions into (14) and simplifying yields

(15) .

Similarly, using the iterated expectations identity,

(16) .

When  has a Gaussian distribution,  which is greater than or equal 

to  by Jensen’s inequality. It follows that

(17) ,

and, thus, after some simplification, that

(18) .

Comparing (15) and (18), it suffices to show that  or 

 which can be rewritten as . 

xi∗ η i
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∗ riη i–( )
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2xi
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2 1 6ri 6ri
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ω2 τ i
2+( )

-----------------------– 0≤



11

Putting the fractions over a common denominator, simplifying and dropping multiplicative con-

stants, this is equivalent to

(19) .

To see that (19) must hold, define  if  and 

 if .4 Then  for all . So 

. But  is concave, so , which completes 

the proof of Proposition 2.

The assumption that the true independent variable and measurement errors have Gaussian distri-

butions does not seem overly strong in the context of the likely applications of the HEIV estima-

tor. The independent variables in those applications tend to be continuous measures, such as the 

unemployment rate for a geographic region, which, at least after a suitable transformation, have 

distributions that appear approximately Gaussian. Moreover, in most instances, the measurement 

error is the result of sampling variability in an estimator that is at least asymptotically Gaussian.

In a number of examples I have examined, the bound  is not particularly 

sharp in that the ratio of variances is often considerably less than . For instance, when, as 

often seems to be the case, , 

. In the case of Gaussian  and , a sufficient condition for 

4. The function  is equal to  up to the point at which the latter reaches its maximum 

value and is equal to that maximum value for higher values of .

E
τ i

2 τ2–
ω2 τ i

2+( )2------------------------- 0≤

h τ i
2( )

τ i
2 τ2–

ω2 τ i
2+( )2-------------------------= τ i

2 ω2 2τ2+<

h τ i
2( ) 1

4 ω2 τ2+( )
--------------------------= τ i

2 ω2 2τ2+≥
τ i

2 τ2–
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2

h τ i
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τ i
2 τ2–

ω2 τ i
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τ i
2

E
τ i

2 τ2–
ω2 τ i
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2( )[ ]≤ h τ i

2( ) E h τ i
2( )[ ] h τ2( )≤ 0=
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p Λeiv

p⁄ r E ri[ ]⁄≤

r E ri[ ]⁄

Var rixi xi∗ rixi–( )[ ] Var rxi xi∗ rxi–( )[ ]<

Λheiv
e Λeiv

e⁄ r E ri[ ]( )⁄( )2≤ xi∗ η i
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 is that the support of  is entirely contained in the 

interval  – that is, the reliabilities are always greater than 1/3. To see why this is the case, 

note that, as was shown above,  and 

. Thus if  were a concave function of  

then . In general,  is 

not a concave function of , but over the relevant domain it may be. Figure 1 shows that  

rises sharply from a value of zero when  to its maximum value of  when . 

It then slowly asymptotes to zero. The function is strictly concave for . Thus if the sup-

port of  is entirely contained in the interval  – that is, if the reliability is always 

greater than 1/3 – then . As noted, it would follow that 

.

It follows from Propositions 1 and 2 that if the structural error term is homoskedastic and the true 

independent variable and measurement error are Gaussian, then , the ratio of the full 

asymptotic variance of the HEIV estimator to that of the EIV estimator, is less than or equal to 

, which will be less than one if there is any dispersion in the .

Weighted HEIV estimator

Even when the variance of the structural portion of the error term is constant, the variance of the 

prediction component will vary by observation. Thus it may be possible to increase the efficiency 

of the HEIV estimator by computing a weighted version. Specifically, the variance of the error 

term for the HEIV regression (9) will be  where  is the variance of the 

structural component of the error. Under the assumption that  and  have Gaussian distribu-

tions,  is given by (14). Thus for a given value of , one can compute the optimal 

Var rixi xi∗ rixi–( )[ ] Var rxi xi∗ rxi–( )[ ]< τi
2

0 2ω2, )[

Var rxi xi∗ rxi–( )[ ] ω2( )2r 1 r–( )≥

Var rixi xi∗ rixi–( )[ ] ω2( )2E ri 1 ri–( )[ ]= ri 1 ri–( ) τ i
2

Var rixi xi∗ rixi–( )[ ] Var rxi xi∗ rxi–( )[ ]< f τ i
2( ) ri 1 ri–( )

ω2τ i
2

ω2 τ i
2+( )2-------------------------= =

τ i
2 f τ i

2( )

τ i
2 0= ω2 4⁄ τ i

2 ω2=

τ i
2 2ω2<

τ i
2 0 2ω2, )[

Var rixi xi∗ rixi–( )[ ] Var rxi xi∗ rxi–( )[ ]<

Λheiv
e Λeiv

e⁄ r E ri[ ]( )⁄( )2≤

Λheiv Λeiv⁄

r E ri[ ]⁄ τ i
2

σ2 Var xi∗ rixi–[ ]β 2+ σ2

xi∗ η i

Var xi∗ rixi–[ ] β
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weights, which are inversely proportional to . Since  will initially be 

unknown, one would need to start from the unweighted estimator and iterate to obtain the final 

weighted HEIV estimator.

If one assumed that  had a Gaussian distribution and that the distributions of  and  were 

jointly Gaussian, then such an algorithm would have the character of the EM algorithm of Demp-

ster, Laird and Rubin (1977). Specifically, given those assumptions, the linear predictor of  

given  would coincide with the conditional expectation that forms the basis of the typical “E” 

step of the EM algorithm, while the weighted least squares regression on the linear predictor 

would correspond to the typical “M” step in which the complete-data likelihood function is maxi-

mized. In simulations not reported below, I have found, as expected, that the weighted version of 

the HEIV estimator has modestly lower variance than the unweighted HEIV estimator analyzed 

above.

Estimating standard errors

In applications one needs to have estimates of  or . For these, one can appeal to the 

results of White (1980). This requires strengthening slightly the assumptions on the existence of 

moments of , , and , so as to satisfy the assumptions of his Theorem 1. Given such 

assumptions, one can consistently estimate the asymptotic variance of the EIV estimator by

(20)  ,

where  is the residual from the estimated version of (7). Similarly 

(21)  ,

σ2 Var xi∗ rixi–[ ]β 2+ β

εi xi∗ η i

xi∗

xi

Λeiv Λheiv

xi∗ εi η i

Λ̂eiv
n 1– r2xi

2ei
2∑

n 1– rxi( )2∑( )2------------------------------------=
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where  is the residual from the estimated version of (9), is a consistent estima-

tor of the asymptotic variance of the EIV estimator.

Estimating Reliability Ratios

Up to this point the observation-specific reliability ratios have been assumed known as has the 

reliability ratio corresponding to the mean level of measurement error. However, in most, if not 

all, of the examples that motivate this analysis, these will have to be estimated and used to con-

struct “feasible” EIV or HEIV estimators. Reliability ratios depend on the levels of measurement 

error in the individual observations, which in the examples motivating this analysis will be deliv-

ered as part of a prior statistical analysis that also constructs the independent variable, . The 

details of those calculations will vary from application to application and will not be considered 

here. However, in all cases, an estimate of , the variance in the true explanatory variable also 

will be required.

The parameter  can be estimated in a number of ways. For example,  for 

each . Thus,  is an unbiased and consistent estimator of . However, 

 will not be constant across observations. In particular, observations for which  is 

large will also likely be ones for which  is high. So it is possible to estimate  

more efficiently. For instance, in the case of Gaussian measurement error, one can show 

. Thus, using weights proportional to 

, will yield a more efficient estimator, say 

. The weights used to construct  depend on , but one may 

calculate the unweighted estimator to get an initial estimate of  and use that value to estimate 

an approximate set of weights.

ei yi rixiβ̂heiv–=

xi

ω2

ω2 E xi
2 τ i

2–[ ] ω2=

i ω2ˆ n 1– xi
2 τ i
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IV. Simulations

This section quantifies the increase in asymptotic efficiency from using the HEIV rather than EIV 

estimator for a class of examples designed to correspond closely to conditions found in applica-

tions. It also shows that the asymptotic approximations are useful for samples of reasonable size.

The calculations are based on a set of distributions for  that are motivated by the likely applica-

tions of the estimators. In particular, I assume that the distribution of  is discrete with 50 points 

of equal mass at values given by  , where  is a positive constant and the  

are the levels of employment in the 50 states.5 The true, independent variable, , and the struc-

tural disturbance, , are taken to have unit Gaussian distributions. As  varies,  can 

take on any positive value. Setting the variance of  to unity is just a normalization, since what 

matters for the calculations is  or, equivalently, the reliability ratio corresponding to 

, . Neither does the variance of  effect the ratios  and 

.

Figure 2 shows the two ratios,  and , as functions of . When  

is small, say 0.1, so that the typical reliability ratio is above 0.9, the reduction in the portion of the 

variance deriving from the structural error term is slightly less than 1%. However, even when 

 is only 0.1, the variance of the prediction component of the HEIV error term is less than 

69% of the corresponding variance for the EIV estimator. Both ratios decline initially as the vari-

ance of the measurement error increases. When  is equal to one, so that the typical reliabil-

ity is 1/2,  is about 84%, while  is about 32%, both represent gains that 

could matter in practice. As  increases further,  continues to decline, while 

5. Specifically, they are the average level of payroll employment for the 12 months of 1999.
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 reaches a minimum of a little less than 30% when  is around two and a half, a 

point at which the typical reliability ratio is about 0.3. At this point,  is under 70%. 

The two lines eventually converge at a level of about 38.4%, but it is not until  is over 100 

that both ratios are within a percentage point of that level.

The overall variance ratio will lie between the two lines in Figure 2. It will be closer to 

 when  is large and  is small and closer to , when the opposite is true. 

For the particular choice of  and , the overall ratio is about midway between the 

two lines. For instance when , the overall HEIV variance is about 65% that of the EIV 

estimator.

In the last section, the possibility that  was discussed. 

Figure 3 shows that this can, indeed, occur for high enough values of . In the figure, the 

solid line represents , while the dashed line represents . 

For values of  less than three or four,  is substantially less than 

. But, when  exceeds seven,  falls below 

.

Table 1 shows how well the asymptotic distributions approximate the finite sample variances for 

the state-data simulation just described for the case in which  and . Data were 

generated for sample sizes of 100, 500, and 1000. Each such experiment was replicated 10,000 

times. The table shows the means across these replications as well as their associated standard 

errors.

The first two rows of Table 1 show how well  and  do in approximating  times the 

finite-sample variances due to the structural error term. The next two rows do the same for the 

error term arising from the prediction error, while the next two rows show the total mean square 

Λheiv
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errors. The final two rows show how the robust variance estimators perform. In general, the 

asymptotic approximations are quite reasonable, even for samples of size 100. However, there is, 

for such samples, some tendency for the variance due to the structural error term to be somewhat 

higher than the asymptotic limit, both for the EIV and HEIV estimators. In addition, the variance 

estimator for the EIV estimator is biased downwards by about 5% for samples of size 100. But, by 

and large, the asymptotic results give a good indication of the finite sample behavior.

V. Multiple Regression

Most applied problems involve more than a single regressor. Nevertheless, I have avoided extend-

ing the analysis to multiple regression until this point because the single-variable results given 

above are simpler to understand and because most applications of which I am aware involve only 

a single independent variable with measurement error and the results above appear to give a good 

indication of the performance of the EIV and HEIV estimators for such models. In this section, I 

show how the EIV and HEIV estimators can be extended to multiple regression, including cases 

in which more than one variable is measured with error.

The model is still

(22)  ,

where  is the true, but unobserved, independent variable, but now  is a vector of indepen-

dent variables, with covariance matrix . The disturbance term, , is again assumed to have 

zero mean and variance  and to be uncorrelated with . The observed, but error-ridden, 

explanatory variable is given by 

(23)  ,

where  is now a vector of errors with mean zero and covariance matrix  and is uncorrelated 

with both  and . If , then the square matrix  is a multivariable 

extension of the reliability ratio based on the mean measurement error. In particular, the th col-

yi xi∗ β εi+=

xi∗ xi∗

Ω εi

σi
2 xi∗

xi xi∗ η i+=

η i ϒi

xi∗ εi E ϒi[ ] ϒ= R Ω ϒ+( ) 1– Ω=

j
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umn of  is the value of the vector  that minimizes the unconditional mean square error 

, where  is the th component of the vector .

The multivariable version of the EIV estimator is the OLS regression of  on , the linear pre-

diction of . That is,

(24)  .

Assuming the inverses exist,  reduces to . The regression model 

underlying  is

(25)  .

If there is sufficient variation in the , the consistency of  follows from the fact that all ele-

ments of  are zero by the construction of .

As in the single variable case, when there is heteroskedasticity in the , the prediction of  can 

be improved by taking that heteroskedasticity into account. In particular, the vector consisting of 

the best linear predictors of the elements of  is  where . Thus the mul-

tivariable version of the HEIV estimator is 

(26)  ,

which is obtained from OLS estimation of

(27) .

Again, the error term is uncorrelated with  by construction. Thus  provides consistent 

estimates of  as long as there is sufficient variation in .

R κ
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As in the single regressor case, the precision of estimates of  based on (27) should be higher 

than those based on (25) because there will be more variation in the independent variables and 

less variation in the error term.

Estimating Reliability Ratios

As in the single regressor case, it will ordinarily be necessary to estimate the reliability ratios that 

underlie the EIV and HEIV estimators. The estimation of the observation-specific measurement 

error variance, , and the mean measurement error variance, , will depend on the specifics of 

the application and will not be discussed here. Given these, however, it still will be necessary to 

estimate the covariance matrix of the true independent variables, .

Given that , the unweighted estimator  will be unbi-

ased and consistent. However, the variances of the elements of  will vary by observa-

tion. In particular, if  and  have Gaussian distributions, then one can show that 

 is equal to . 

Thus, if the latter is denoted by , then  will be a more 

efficient estimator of .6 Because the weights will depend on , one would need to first use the 

unweighted estimator to get an initial set of weights.

Subset of variables measured with error

Frequently, only a subset of the independent variables are measured with error. For instance, sup-

pose

6. In addition to varying by observation,  will typically be nondiagonal, implying that even 

more efficient estimation will be possible. In particular, if  and  have Gaussian distributions, then one 

can express  as a function of  and , say . Then 

 will be an efficient estimator.

β
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(28)  ,

where there are no measurement errors in . Let , , and 

 be conformable matrices. Then it is straightforward to show

(29)  .

(30)  ,

(31)  and 

(32) .

Letting  denote the best linear predictor of  given the vector , the 

quantity  is the variance of , the difference between the true  

and its best linear predictor using , while  is the variance of 

, the difference between the measured  and the best linear predictor given . 

Thus  has the form of a reliability matrix for the variable , the portion of  not 

accounted for by . Using (29) to (32), the overall best linear predictor of  given both  and 

 is

(33)

while the best linear predictor of  is just

(34)  .
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The HEIV estimator is then the regression of  on  and :

(35) .

The EIV estimator is of the same form, but with  replaced by 

, which leads to the regression

(36) .

The term  is in the space spanned by the . So one would obtain the same esti-

mate of  from a regression of  on  and . However, in the case of (35), the term 

 cannot be dropped because, though  is in the space spanned by , 

the coefficients,  vary by observation.

When only a single independent variable is measured with error,  and  are scalars and (33) 

implies that the best linear predictor of  is a convex combination of the observed variable  

and its prediction, , based on the other independent variables. The weight 

on  is the fraction of the variance of  not attributable to measurement error.

When only a single independent variable is measured with error, the results of sections III and IV 

appear to give a good guide to the behavior of the EIV and HEIV estimators for  if one associ-

ates  and  with  and , respectively. That is, the correct multivariable analog of the sin-

gle variable reliability ratio is the reliability ratio for the quantity, . This reflects the 

frequently made point that what may seem to be a relatively small amount of measurement error 

in a variable can still be quite significant if, given the other variables in the regression, there is lit-

tle independent variation in the variable.
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Computing the EIV and HEIV estimators

StataCorp (1999) has a built-in procedure (eivreg) that can compute the EIV estimator for the case 

of a diagonal  matrix. One simply supplies the procedure with the reliability ratios correspond-

ing to the mean level of measurement error. Computing the HEIV estimator, or the EIV estimator 

in the case of a nondiagonal  matrix, requires only modestly more work. Given their definitions 

in terms of OLS regressions, they can be implemented using standard regression software without 

extensive programming or high computational expenses.

In the case in which there is a single regressor subject to measurement error, the various compo-

nents of the calculation can be easily obtained once the weighted estimate of  is constructed. If 

the variable  subject to measurement error is ordered first, then the first row and column of 

 will need to be computed using the weights described above. However, the rest of the matrix, 

corresponding to the variables,  measured without error, is just the standard 

. Standard regression programs then can take the covariance matrix  as 

input to compute the coefficients of the regression of  on , , the associated fitted 

values, , and the variance of the residuals, , which are the 

main quantities needed to compute the EIV and HEIV estimators.

VI. Conclusion

Having varying degrees of measurement error in the independent variables of a linear regression 

model is a common problem in applications when the data are taken from earlier rounds of statis-

tical analysis based on samples of varying sizes. Simply replacing the assumed-common variance 

of the measurement error in the standard errors-in-variables estimator yields a consistent EIV esti-

mator when measurement errors are heteroskedastic. But the results of this paper suggest that 

there are significant gains in efficiency from using the alternative, HEIV estimator. It is, more-

over, straightforward to compute using standard regression software.
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Table 1: Finite-sample and asymptotic variances for state data simulation

Variance Component
Sample Size Asymptotic 

Limit100 500 1000

: n EIV Structural Variance 2.100
(0.031)

2.035
(0.029)

2.016
(0.028)

2.00

: n HEIV Structural Variance 1.758
(0.025)

1.711
(0.025)

1.690
(0.024)

1.68

: n EIV Prediction Variance 1.715
(0.025)

1.741
(0.025)

1.756
(0.025)

1.73

: n HEIV Prediction Variance 0.563
(0.008)

0.551
(0.008)

0.551
(0.008)

0.55

: n EIV Mean Squared Error 3.749
(0.054)

3.783
(0.049)

3.767
(0.054)

3.73

: n HEIV Mean Squared Error 2.231
(0.034)

2.279
(0.033)

2.238
(0.032)

2.23

EIV Robust Variance Estimate 3.576
(0.012)

3.699
(0.006)

3.719
(0.004)

3.73

HEIV Robust Variance Estimate 2.221
(0.007)

2.223
(0.003)

2.227
(0.002)

2.23
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Figure 1:  as a function of E rixi xi∗ rixi–( ) τ i
2[ ] τ i

2 ω2⁄
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Figure 2:  and  as a function of  for state-data simulationΛheiv
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Figure 3:  and  as a function of  for state-
data simulation
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