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The Choice between Arm�s-Length and Relationship Debt:
Evidence from eLoans

Abstract

Using a unique sample of comparable online and in-person loan transactions, we study the

determinants of arm�s-length and inside lending focusing on the di¤erential information content

across debt types. We �nd that soft private information primarily underlies relationship lending

whereas hard public information drives arm�s-length debt. The bank�s relative reliance on public

or private information in lending decisions then determines trade-o¤s between the availability

and pricing of credit across loan types. Consistent with economic theory, relationship debt

leads to informational capture and higher interest rates but is more readily available whereas

the opposite holds true for transactional debt. In their choice of loan type, lender switching,

and default behavior �rms, however, anticipate the inside bank�s strategic use of information

and act accordingly.



1 Introduction

Banks typically o¤er two very di¤erent types of credit to their corporate customers: relationship

loans characterized by inside information and transactional loans for which banks compete on a

much more equal informational footing (see, e.g., Broecker, 1990, Rajan, 1992, Inderst and Müller,

2006, or Hauswald and Marquez, 2006). While the theoretical implications of competition between

informed and uninformed lenders are well understood much of the empirical work has focused on

relationship lending, in part because data on lending relationships is more readily available (see,

e.g., Petersen and Rajan, 1994, Berger and Udell, 1995, or Elsas, 2005). Furthermore, private

transactional debt with the attributes posited by the theoretical literature is hard to identify in

practice. However, recent advances in lending technologies �nally make available new data on

credit-market transactions that closely �t the theoretical de�nition of transactional lending: online

loans. Hence, we propose to �ll this gap in the literature by analyzing the comparative determinants

of online (transactional) and in-person (relationship) credit transactions.

Using a unique sample of all online and in-person loan applications by small businesses to a

large US bank over a 15-months period we investigate a �rm�s choice between transactional (�arm�s-

length�) and relationship (�inside�) debt and the ensuing bank-borrower interaction to better

understand the economic forces that shape exchange in these two market segments. For each loan

application we collect the bank�s ultimate credit decision and loan terms, its internal credit score,

and the eventual loan performance. Although our bank�s lending standards are identical across

the two modes of origination loan o¢ cers can individually adjust internal credit scores for in-

person applications that therefore contain a soft, subjective credit-assessment component supplied

by branch o¢ ces. No such interaction or adjustment takes place for online applications. From

credit-bureau reports we also know each applicant�s Experian Small Business Intelliscore (XSBI)

as a measure of publicly available information and can identify �rms that refuse the o¤ered terms

to switch lenders.

The primary di¤erence between arm�s-length and relationship debt stems from each loan type�s

information content that determines the availability and pricing of credit. Hence, we �rst orthog-

onalize each applicant�s bank-internal score with the publicly available XSBI score to obtain its

private-information residual (PIR) as a clean measure of the lender�s proprietary intelligence gath-



ered in the screening process. We then follow the typical steps of bank-borrower interaction and

estimate discrete-choice models of the �rm�s choice of lending channel, the bank�s decision to o¤er

credit and the borrower�s to accept the loan terms, and linear-regression models of the o¤ered loan�s

all-in cost. We round o¤ our investigation of the di¤erential information content of arm�s length

and relationship debt by studying the borrower�s decision to switch lenders and the likelihood of

credit delinquency across loan types.

The explanatory variables are proxies for public (Experian score: XBSI), proprietary (lender�s

internal score), and private information (orthogonalization: PIR), and the nature of the lending

relationship or absence thereof. We control for borrower characteristics, loan terms, regional and

business-cycle e¤ects, and the prevailing interest-rate environment. Since the choice between trans-

actional and relationship debt might depend on the local availability of credit we also include the

number of lenders and their branches in each applicant�s zip code to take into account competitive-

ness e¤ects and, similarly, the �rm�s distance to bank�s branch or online-processing center and to

the nearest full-service competitor as proxies for transaction costs terms of time and e¤ort.

We �nd that public and private information plays very di¤erent roles across lending channels be-

cause the bank predominantly relies on one type of intelligence for a particular debt product. Public

information drives transactional credit decisions and pricing whereas private information collected

through prior business interaction and the loan-origination process determines relationship-debt

o¤ers and their terms. We also show that the di¤erential information content across debt types

shapes the predicted trade-o¤ between the availability and pricing of credit for each lending channel

(Broecker, 1990, Rajan 1992, and Hauswald and Marquez, 2006). Arm�s-length debt is less readily

available but at lower rates because symmetrically informed banks, which compete on the basis

of public information, not only drive down its price but also restrict access to credit to minimize

adverse selection ceteris paribus. By contrast, better informed inside lenders strategically use their

information advantage to informationally capture relationship borrowers that pay higher rates but

gain easier access to credit.

Our results also reveal that �rms anticipate the lender�s strategic use of information and rely on

their public credit score as a credit-quality indicator for their own best response. As a consequence,

public information retains some measure of importance even in inside lending and in�uences �rm

decisions in both arm�s-length and inside transactions whereas the bank�s private information pri-
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marily matters to relationship borrowers. Given that �rms take into account the inside bank�s

rent-seeking behavior but nevertheless engage in relationship transactions this �nding strongly sug-

gests that borrowers also bene�t from close ties to their lender, for instance through better access

to credit or intertemporal insurance e¤ects.

The impact and statistical signi�cance of our relationship variables con�rm these e¤ects across

speci�cations and lending channels. Since online applications do not permit banks to generate much

inside knowledge our lender discounts whatever private information might transpire in transactional

lending. By contrast, lending relationships not only o¤er the opportunity to collect such intelligence

but the length and depth of the interaction together with the �rm�s physical proximity are also

good indicators of the information�s quality (see, e.g., Agarwal and Hauswald, 2006). The presence

of established business relationships unsurprisingly enhances the e¤ect of private information on

inside lending but has a much smaller and often insigni�cant e¤ect on arm�s-length transactions.

Our main contribution consists in carefully identifying, measuring, and analyzing the di¤erential

information content of transactional and relationship debt on the basis of a large sample of credit

transactions in a uni�ed framework. Given the chosen mode of bank-borrower interaction we

establish that the extent to which informational considerations shape the choice of debt product

critically depends on the bank�s ability to generate private information and bene�t from it. An

additional contribution consists in showing that borrowers also learn about their bank�s policies

and, in particular, its strategic use of private intelligence that determines the di¤erential response

of �rms to banks� information-acquisition and lending strategies across debt types. Finally, our

results highlight how technological progress in the form of online banking and credit scoring allows

intermediaries to simultaneously engage in transactional and relationship lending, thereby helping

them to overcome organizational limitations that in the past led to specialization by market segment

or bank size (Berger et al., 2005).

To the best of our knowledge, there is no comparative work on the di¤erential e¤ects of private

and public information by loan type. While Petersen and Rajan (1994), Berger and Udell (1995),

Degryse and Van Cayseele (2000), Elsas (2005), and Schenone (2007) have analyzed the importance

of relationship banking for the collection of inside information they do not consider the respective

use of public and private credit-quality signals across lending modes, which is central to our analysis.

An exception are Bharath et al. (2006) who also �nd that information asymmetries induce borrowers
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to self-select into lending relationships but who do not consider transactional lending. Focusing on

the bene�ts of relationship lending to borrowers Boot and Thakor (2000) argue that the resulting

close business ties allow banks to fend o¤ competition from other lenders and transactional debt,

which is consistent with our data. Boot (2000) and Boot and Schmeits (2005) o¤er excellent surveys

of recent theoretical and empirical work on relationship banking.

The paper also contributes to the nascent literature on the e¤ect of the internet on �nancial

intermediation. Wilhelm (1999, 2001), who analyzes the impact of the internet on the structure of

banking markets and, especially, relationship banking, argues that technological advances change

the collection and use of (private) information through its codi�cation which is at the heart of

our analysis. Similarly, Petersen (2004) discusses how technology a¤ects the nature of the bank-

borrower interaction and, hence, the operations of �nancial markets and institutions. Anand and

Galetovic (2006) o¤er empirical predictions on the internet�s e¤ect on �rm-bank relationships in

terms of a shift toward non-relationship modes of interaction, which is only partly borne out by

our results. Bonaccorsi di Patti et al. (2004) investigate demand complementarities between

traditional and online provision of banking services and report that e-banking leads to a reduction

in per-customer pro�tability which mirrors our �ndings on the competitive pricing of transactional

debt. Regarding the importance of online banking Fuentes et al. (2006) study the determinants

of the decision of U.S. banks to create a transactional website for their customers while DeYoung

(2005) investigates the scale economies present in internet banking.

The paper is organized as follows. In the next section we review the theoretical literature on

transactional and relationship debt and distill pertinent empirical predictions. Section 3 describes

our data and estimation strategy. In Sections 4 and 5, we analyze the �rm�s choice of arm�s-length

vs. inside debt and the bank�s decision to o¤er credit and at what price across lending channels.

Section 6 investigates the determinants of the borrower�s decision to reject the banks� loan o¤er

and obtain credit from a competitor. In Section 7 we report our �ndings on credit default across

loan types. The last section discusses further implications and concludes. We relegate all tables to

the Appendix.
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2 Transactional and Relationship Lending

The theoretical literature has typically argued that relationship lending o¤ers particular economic

bene�ts to at least one party, if not both, through the closer ties that banks and borrowers forge.

Lending relationships allow intermediaries to gain proprietary information (Rajan, 1992 and Pe-

tersen and Rajan, 1994), facilitate renegotiation through the implicit nature of the debt contract

(e.g., Sharpe, 1990), give rise to intertemporal transfers (e.g., Petersen and Rajan, 1995), and allow

borrowers to learn about their bank�s attributes (Iyer and Puri, 2007).1 In fact, the ability to gather

proprietary information (Bhattacharya and Chiesa, 1995) and use it strategically in credit-market

competition has become the de�ning attribute of relationship debt. By contrast, lenders compete

on a more equal informational footing for transactional loans, competing away potential rents but

at the price of less readily available credit (Broecker, 1990 or Hauswald and Marquez, 2003). Hence,

�rms face a trade-o¤ between the availability and pricing of credit across the two lending modes:

informational capture with rent extraction but more �exibility in �nancing choices or less readily

available credit at lower rates.

Relationship banking allows lenders to strategically acquire proprietary information and to

create a threat of adverse selection for their rivals, thereby softening price competition. For instance,

Petersen and Rajan (2002) argue that local banks who collect �soft� proprietary information on

small �rms over time have an informational advantage over more remote competitors who might

not enjoy the same degree of access to local information.2 Several empirical predictions follow.

Given a �rm�s credit quality relationship lending facilitates the access to credit and intertemporal

insurance but at the cost of rent extraction. Hence, the more and better proprietary information a

bank has, the more willing it should be to approve loan applications but also the higher the quoted

interest rate will be conditional on the applicant�s credit quality (see, e.g., von Thadden, 2004).

By contrast, symmetrically informed transactional lenders should charge less and be less willing to

grant credit to applicants of comparable credit quality (see, e.g., Broecker, 1990).

By the same token, competition a¤ects each lending channel di¤erently. In purely transactional

credit markets symmetrically informed lenders bid less aggressively because more competition wors-

1For a recent survey on relationship banking see Boot (2000).
2Agarwal and Hauswald (2006) provide strong evidence for this conjecture. See also Berger, Frame and Miller

(2005) on the role of soft information in lending decisions and the ability of smaller banks that presumably have a
more local focus to collect and process such intelligence.
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ens their inference problem so that credit becomes less available and interest rates rise (Broecker,

1990). By contrast, when relationship and transactional lending directly compete with each other,

e.g., a better informed inside bank against less informed arm�s-length lenders, competition reduces

the incentives for information acquisition so that interest rates should fall in both segments and

credit availability rises because less informed transactional lenders face a diminished threat of ad-

verse selection (Hauswald and Marquez, 2006).

A subtle di¤erence in the adverse-selection problem that lenders face for each loan type is also

behind the respective empirical predictions for borrower switching. In purely transactional credit

markets, banks face symmetric adverse-selection threats so that ceteris paribus they can compete

more aggressively for transactional borrowers who should be more likely to switch. However,

when transactional lenders compete against a better informed inside bank, the greater the latter�s

informational advantage, the greater the threat of adverse selection. As a result, less informed

competitors bid less aggressively (higher interest rates and less frequently) so that relationship

borrowers are less likely to switch providers of credit. Hence, we expect less borrower switching

in relationship lending, the greater the informational advantage of the inside bank is, or the less

competitive a local credit market is. At the same time, better credit risks, which are the primary

targets for rent extraction, should actively respond to such attempts by seeking loans elsewhere so

that publicly observable signals of higher credit quality should induce more lender switching even

by inside borrowers.

Finally, the more private information a lenders has the less likely errors in granting credit

should become. Hence, a bank should experience less credit delinquency in relationship than in

arm�s-length lending. Also, the greater the competition the greater (smaller) adverse-selection

problems become in transactional (relationship) lending so that competition should increase the

incidence of default in transactional loan markets and decrease it in relationship debt.

From an empirical perspective, the de�ning features of transactional and relationship debt then

revolve around the generation and strategic use of proprietary information, di¤erential availability

and pricing of credit, and the resulting competitive reaction as revealed by lender switching across

loan types. While the length and scope of a prior business relationship is thought to reveal the

existence of a lending relationship no such clear-cut identi�er has existed for transactional debt in

the past. However, the advent of online lending to small businesses without any personal interaction
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between the parties allows us to unambiguously identify purely transactional loans. At the same

time, lenders often engage in extensive information acquisition through their branch o¢ ces so that

in-person applications and the resulting interaction with local loan o¢ cers de�ne relationship debt.

3 Data Description and Methodology

Our sample consists of all online and in-person applications for new loans over a 15-months span

by small �rms and sole proprietorships to a large US �nancial institution with a particular regional

focus on New England, the Mid-Atlantic, and Florida. During the sample period, this lender ranked

among the top �ve commercial banks and savings institutions according to the FDIC. Since our

bank more or less automatically rolls over prior loans on request unless a signi�cant deterioration in

creditworthiness has occurred very di¤erent considerations drive the decision to grant credit from

the one renewing an existing loan. As a result, most information production takes place around

the origination of a new loan, explaining our sample selection. All loan applications fall under the

de�nition of small- and medium-sized enterprise lending in the Basel I Accord so that the total

obligation of the applying �rm is less than $1 million and its sales are below $10 million.

We focus on small-business lending because borrowers exhibit just the right degree of informa-

tional opacity for our purposes and credit products in this market are typically close substitutes.

On the one hand, �rms are su¢ ciently opaque for proprietary information to matter in lending

decisions. On the other hand, small businesses are also quite homogeneous so that bank compe-

tition is intense, several lending channels coexist, and third parties provide credit-scoring services

that we can use to measure the contribution of our bank�s own proprietary loan screening to credit

decisions.3

3.1 Operational Policies

The small-business loans originate both from personal visits to branch networks and from websites

without any personal interaction so that we can clearly identify whether credit is granted on an

arm�s-length or relationship basis. In case of an in-person application, the �rm�s representative

3Since our data provider applies a uniform credit-scoring methodology to all loan requests the internal credit
score is a consistent and meaningful measure of the bank�s proprietary information across applicants, branches, and
distribution channels.
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(e.g., owner/manager) personally visits one of the 1,408 branch o¢ ces in our sample (out of a

total of 1,552)4 to supply all the relevant information, submit �nancial statements and tax data,

provide a list of assets, etc. The local loan o¢ cer transcribes this information into electronic form

and matches it with credit reports for input into the bank�s proprietary credit-scoring model. The

whole lending process including the credit decision typically takes four hours to a day from the

initial meeting between applicant and loan o¢ cer.

The loan o¢ cer also uses the branch visit to conduct an in-depth interview with the applicant

to gather �soft�information in the sense that it would be hard to verify by a third party. In up to

8% of the cases, the branch will invite the applicant back to follow up on open questions, review

discrepancies in submitted information with credit reports, discuss the prospects of the �rm, etc.

Such information allows the branch manager or account o¢ cer to subjectively adjust the �rm�s

internal score should the applicant deserve credit in their eyes but fail to meet certain commercial,

pro�tability, liquidity, or credit-score requirements. These subjective score revisions represent the

soft-information component of the bank�s internal credit assessment that forms the basis of our

analysis.

Each branch o¢ ce enjoys a considerable amount of autonomy in the assessment, approval, and

pricing of loans but has to justify any deviation from bank-wide practices. As a consequence, credit

decisions ultimately reside with branches because local managers can alter credit scores on the basis

of a standard set of subjective criteria that the �nal score re�ects. Similarly, they can adapt loan

terms including pricing to the speci�c circumstances of the application. However, branch managers�

career prospects and remuneration depend on the overall success of their credit decisions, and local

�overrides�are closely monitored by the bank�s overall risk management.

In case of online applications, the applicant submits all the requisite information through a

website. The online processing center then requests credit reports to cross-check the information

and computes the �rm�s credit score very much like a branch o¢ ce but does not attempt to resolve

any informational discrepancies. As a matter of operational policy, there is no personal interaction

between the bank and an online applicant so that our lender makes online-credit decision purely

based on its internal credit score, which is not subject to any revisions and computed on the basis of

4For comparability, the 100 institutions with more than $10 billion in assets in 2002 operated, on average, 364
branch o¢ ces. Their average amount of deposits is about a quarter of our data provider�s deposit base.

8



�rm-supplied information, credit reports, and, possibly, prior interaction. Similarly, any loan terms,

especially interest rates, are solely a function of the �rm�s credit score, its ability to post collateral,

third-party guarantees, etc. As a result, both credit o¤ers and their terms are highly automated in

the online market, closely corresponding to the de�nition of transactional debt because the lender

does not gather additional intelligence beyond publicly available information.

Most monitoring is automated for both loan types and takes place through the daily tracking

of current-account movements or balances5 (whenever available) and prompt debt service. On a

monthly basis, the bank collects new credit reports for the �rm and its owner and updates the ac-

count�s risk pro�le. Yearly credit reviews and the treatment of overdue loans, however, di¤erentiate

ongoing information production across lending channels. On each anniversary of the loan�s origina-

tion, transactional borrowers submit updated �nancial information online. Relationship borrowers

have to do so in-person at their branch o¢ ce, which uses the visit to discuss the �rm�s prospects,

state of solvency, funding needs, etc. Similarly, if a payment is between 10 and 20 days late on

a relationship loan the account o¢ cer will personally visit the �rm. If the account becomes more

than 20 days overdue, the bank cuts back credit lines to the current balance, i.e., reduces its credit

commitment, but will not take such action on term loans before 60 days past-due.

Although the lending standards are identical across online and in-branch origination the result-

ing transactions di¤er in their information content because loan o¢ cers and branch managers can

personally revise applicants�credit scores on the basis of subjective impressions. At the same time,

the two lending channels e¤ectively compete within the bank because branches have no incentive

to encourage in-person applicants to also apply online. As a result, the observed loan type al-

lows us to cleanly sort credit applications into transactional or relationship debt with the required

informational attributes.

3.2 Data Description

The sample consists of all applications for new loans to our bank that conform to the Basel I Accord�s

SME lending de�nition between January 2002 to April 2003 (36,723 observations). We match

these records with credit-bureau reports (Experian and Dunn & Bradstreet) on the application

5Mester et al. (2007) �nd that current-account transactions provide valuable information for loan monitoring in
a setting similar to ours.
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date to verify the supplied information and delete applications with missing data (e.g., Experian

credit score) or other informational discrepancies such as nonexisting addresses. Our data provider

also engaged in several M&A transactions a¤ecting its branch network so that we also omit all

re-assigned loan records. Overall, we lose 2,868 credit requests leaving a total of 7,945 online

applications and 25,910 in-person ones. Table 1 summarizes our data as a function of the applicant�s

chosen form of interaction with the bank and reports the P -values of t-tests for the each variable�s

mean conditional on the lending channel.6

To analyze informational e¤ects in transactional and relationship lending we rely on the out-

come of the bank�s own borrower assessment in terms of the internal credit score calculated for each

loan application. While the methodology is proprietary and subject to con�dentiality restrictions,

the credit-screening procedure is consistent across all branches, lending channels, and applications

because it uses a common set of inputs and the same statistical model. For in-person applica-

tions, our bank�s credit scores comprise a subjective element because local branches provide �soft

information� through individual adjustments that can over-ride automated lending decision and

centralized loan pricing. From periodic surveys of loan o¢ cers the data provider estimates that

20% to 30% of the in-person score ultimately consists of subjective (soft) information. We use

the �nal scores whose revisions follow bank-wide guidelines and require detailed justi�cation by

branches. Internal scores for online applications are not subject to revision and therefore comprise

at most hard, i.e., independently veri�able, proprietary information.

Internal scores range from 0 (worst) to 1,850 (best). Their means (medians) are 899 (902) for

online applicants and 930 (949) for in-person ones, and the di¤erence is signi�cant at the 1% level

(P -value of 0.00%). We also collect the applicant�s Experian Small Business Intelliscores (XSBI),

which this leading credit bureau provides together with its report services, as a publicly available

signal for each �rm�s creditworthiness. We reverse the Experian scores, which measure the likelihood

of �serious delinquency�over the next 12 months, and linearly rescale them for comparability with

the better known (retail) FICO scores so that the XSBI variable ranges from 300 (worst) to 850

(best). Contrary to the internal score, the average (median) of online applicants�Experian scores

is statistically signi�cantly higher: 723 (704) against 716 (705) for in-person applicants (P -value

6For con�dentiality reasons, the data provider did not allow us to report further descriptive statistics because they
could be used to �reverse-engineer�the composition of the loan portfolio.
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of 0.00%).7 This discrepancy in scores across loan types stems from the subjective revisions to

internal credit assessments for in-person applicants. It highlights not only the informational value

of relationship lending but also shows how banks incorporate subjective information such as personal

impressions of borrower quality into credit decisions.

We assess the nature of the lending relationship, which facilitates the collection of such borrower-

speci�c information, along two dimensions.8 Our �rst variable is the number of months that a

particular �rm has been on the books of the bank, which measures the length of the lending

relationship. We see that in our sample online applicants have, on average, obtained a �rst credit

product 27.7 months prior to the loan application whereas in-person applicants have been borrowers

for 30.8 months. The second variable measures the breadth of the business relationship. To this

end we de�ne a binary variable Scope in terms of the balance of the �rm�s current account (at

least $5,000) together with prior borrowing and the purchase of at least one other banking product

(Scope: about 20% of online against 30% of in-person applications).

To control for the availability of public information and �rm-speci�c attributes we rely on the

months a particular applicant has been in business (64 vs. 103 months for online and in-person

applications, respectively), which is a good proxy for informational transparency, and the �rm�s

monthly net income ($64,734 vs. $101,109 for online and in-person applications, respectively) that

captures size and pro�tability e¤ects. We also use 38 industry dummy variables based on the

applicants� two-digit SIC codes to account for any industry e¤ects in the data. Table 1 shows

that our sample represents a wide cross-section of industries, albeit with a particular emphasis on

wholesale and retail trade, personal, business and professional services, and construction. Similarly,

we rely on state and quarter dummy variables to account for regional and business-cycle e¤ects.

To measure the competitiveness of local credit markets we collected the number of bank branches

and active lenders in a �rm�s zip code from the FDIC�s Summary of Deposits data base by year.

Concentration measures such as the Her�ndahl-Hirschman Index of deposits or branch shares by

�rm ZIP code are not statistically signi�cant in our speci�cations so that we do not tabulate their

sample statistics or estimation results.

7The US mean (median) for comparable consumer FICO scores is currently 678 (723). See Experian (2000, 2006)
for further details on the SBI and its ability to forecast credit delinquency.

8James (1987), Lummer and McConnell (1989), and Elsas (2005) present evidence suggesting that banks gain
access to private information over the course of the lending relationship.
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In terms of loan characteristics our data contains the requested loan amount (mean of $37,333

and $46,877 for online and in-person applications, respectively, in line with typical small busi-

ness lending), its maturity (mean: 5.43 and 6.74 years, respectively), and existence of collateral

(about 42% for online against 55% for in-person applications). About 17% (37%) of online (in-

person) credit requests were personally guaranteed by guarantors with a monthly income of $23,745

($35,164). 19.6% (28%) of online (in-person) applications are for term loans, the remainder is for

credit lines. As a matter of business policy, our bank only o¤ers term loans at �xed rates and

credit lines at variable rates so that our Term Loan (vs. credit line) binary variable also captures

the nature of the interest rate. Finally, 3.74% of online against 6.41% of in-person applications fall

under the terms of the Small-Business Administration (SBA) guarantee program.

To control for the ease and cost of personally transacting with the bank in terms of time and

e¤ort we use the driving distance in miles between each �rm and their branch o¢ ce for in-person

applications or, for consistency, the processing center for online request, as well as the distance to

the closest full-service branch of a competitor.9 We see that relationship borrowers are on average

located 10.3 (median: 2.8) miles away from their bank branch whereas transactional applicants are

91.7 (median: 31.9) miles away from the bank�s online-loan processing center. By contrast, both

transactional and relationship applicants are about 1 mile on average (median: 0.5 miles) from the

nearest full-service branch of a competing lender.

Since banks and their customers might choose to locate in certain areas based on local economic

conditions, we include the Case-Shiller Home Price Index (CSHPI: see Case and Shiller, 1987,

1989) to account for potential endogeneities in the parties�choice of location and lending channel.

By matching each loan application with the index by zip code and month we also capture loan-

transaction e¤ects that are due to the local level of economic activity, di¤erences in a uence across

postal zones, and di¤erential levels of urbanization or road infrastructure as re�ected in local house

prices.

We see that, contrary to common perceptions, transactional applicants are typically younger and

9See Degryse and Ongena (2005) on the importance of transportation costs in credit markets. We rely on Ya-
hoo!SmartView and Yahoo!Maps to identify the nearest competitor for all loan applicants and to determine the
driving distances between the �rm, the bank branch for personal applications or the processing center for online ones,
and the competitor�s branch. SmartView has the dual advantage that it does not accept sponsored links and draws on
the combined yellow-page directories of BellSouth and InfoUSA (Mara, 2004) providing objective and comprehensive
bank-branch information.
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smaller �rms that request smaller loan amounts, o¤er less collateral and personal guarantees, and

are more creditworthy according to publicly available information (XSBI). However, they are less

likely to have a prior business relationship with the bank and, if so, it is shorter than for in-person

applications. As a result, the bank�s internal score as a proprietary measure of credit quality is

higher for relationship borrowers, presumably through subjective revisions that incorporate private

local information into the credit decision.

3.3 Methodology

Our estimation strategy simply retraces the steps of the loan-origination process starting with

a discrete-choice model of the �rm�s choice of loan type as a function of publicly available and

proprietary information, characteristics of the lending relationship, �rm attributes, and our control

variables. We next investigate the bank�s credit decision by estimating a logistic model of its

decision to o¤er credit by lending channel and, if so, at what price. To this end we specify a linear

model of the o¤ered annual-percentage rate (APR: the all-in cost of credit taking into account fees

and commissions) as a function of the same variables once again taking into account the debt type.

Successful loan applicants typically move next by accepting or declining loan o¤ers. Hence, we

explore the di¤erential e¤ect of private and public information across debt type on bank competition

as revealed by an applicant�s decision to switch lenders. Lastly, the respective informational and

competitive dynamics of each lending mode hold di¤erent implications for type II errors in credit

screens and, hence, default across loan types. We therefore estimate the likelihood of borrower

delinquency by lending channel to assess the incidence of debt type on the quality of the bank�s

public and private information in terms of loan performance.

For every decision in the lending process, we specify logistic discrete-choice models with separate

equations for each lending channel so that we can compare informational e¤ects across debt types

and directly test empirical predictions in a uni�ed econometric framework. For instance, we estimate

the likelihood of a loan o¤er Yi = 1 as

E [Yi jxi ] = E [(1� 1eloan)Yi + 1eloanYi jxi ] = Pr fYi = 1 jxi g = �
�
x0i�+1eloan � x0i

�
(1)

where � (x0i�) =
expfx0i�g
1+expfx0i�g

is the logistic distribution function. The binary variable 1eloan; which
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takes the value 1 for online applications and 0 otherwise, allows us to report results by debt type

because we have

E
h
Ŷi jxi

i
= �

�
x0i�̂+1eloan � x0î

�
=

8><>: �
�
x0i

�
�̂ + ̂

��
for transactional debt (1eloan = 1)

�
�
x0i�̂

�
for relationship debt (1eloan = 0)

Similarly, we specify the following linear-regression model of the o¤ered loan�s all-in cost (APR) ri:

ri = x
0
i�+1eloan � x0i + "i (2)

We focus on the following key variables in our investigation of the di¤erential information pro-

duction in transactional and relationship lending: each �rm�s Experian Small Business Intelliscore

(XSBI) as a measure of publicly available information, its internal credit score as a measure of the

lender�s proprietary information, the scope and months-on-book variables measuring the depth of

the lending relationship, and a measure of soft private information. To extract this purely private

component of credit screens we orthogonalize the internal and Experian scores because the former

relies on a mix of public and private intelligence as inputs into the proprietary scoring model.

Speci�cally, we estimate the bank�s private credit assessment as the residual ûi of the regression

ln (IntScorei) = �0 + �1 �XSBIi + 1eloan (0 + 1 �XSBIi) + ui (3)

which we label the Private-Information Residual (PIR). Incidentally, the R2 of the above regression

are 0.67 and 0.71 for the online and in-person equations, respectively, which con�rms our data

provider�s contention that up to 30% of the internal score is based on soft, subjective information.10

The Private-Information Residual ûi represents a clean measure of our data provider�s soft

private information whenever it exists. Given its construction, the online PIR captures hard private

intelligence only to the degree that it exists for eLoans through repeat business, veri�cation of

self-reported information with credit reports, and the lender�s proprietary scoring methodology.

In addition to such hard private information, the in-person PIR also comprises a soft subjective

component stemming from the loan o¢ cer�s personal impressions of borrower quality incorporated

10For con�dentiality reasons we cannot provide further details on the orthogonalization nor report any results. The
log-linear speci�cation best agrees with the nonlinear nature of Experian�s Small Business Intelliscore.
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into the internal score through the interview, follow-up, and revision process. Since we compare

the PIR across two equations in the same speci�cation the transactional eLoans become the de

facto benchmark which we use to measure the additional and, hence, soft information content of

in-person credit applications. Note, however, that we can also interpret the residual ûi as a proxy

for the bank�s informational advantage over publicly available information regardless of debt type.

To control for systematic e¤ects in self-selection and approval practices across branches and

lending channels we estimate all our speci�cations including the internal-score orthogonalization

with branch �xed e¤ects and rely on clustered standard errors that are adjusted for heteroskedas-

ticity across bank branches and autocorrelation within o¢ ces including the online-loan processing

center. The estimation of all discrete-choice models proceeds by full-information maximum like-

lihood; we report their pseudo R2 which is simply McFadden�s likelihood ratio index whenever

appropriate.

It is worthwhile to point out that the unique nature of our data set allows us to sidestep pervasive

endogeneity problems that arise in the study of the credit terms when the sample only consists of

booked loans (see, e.g., Berger et al., 2005). Since our data comprise all applications and loan o¤ers

potential borrowers have not chosen yet whether to accept or to refuse the lender�s terms. The

omission of declined loan o¤ers could give rise to the joint endogeneity of borrower characteristics,

bank attributes, and loan terms, which we avoid through sample selection by including the 1,335

ultimately declined o¤ers in this part of the analysis. Since several of the variables �t better in

logarithms than levels we use the former whenever appropriate.

4 The Choice between Arm�s-Length and Relationship Debt

Speci�cation 1 in Table 2 reveals that public credit-quality perception is by far the most important

criterion in a �rm�s choice of loan type. Applicants, who presumably have a good sense of their own

creditworthiness, are the more likely to choose arm�s-length debt the higher their public credit score

is: a 10% increase in the �rm�s Experian score raises the likelihood of applying online by 2.15%.

The second important determinant is Months on Books. The longer a �rm has been a borrower

at our lender the more likely it is to apply in-person for a relationship loan. We also see that,

contrary to widespread perceptions, the �rm�s size, pro�tability, age, and ability to post collateral
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do not seem to enter into the applicant�s choice of loan type: Net Income, Months in Business, and

Collateral are all statistically insigni�cant.

However, lending relationships allow information to �ow in both directions so that borrowers

typically learn about their bank�s operational policies, too (e.g., Iyer and Puri, 2007). Furthermore,

verbal communication between the loan o¢ cer and �rm representative during the origination in-

terview often reveals bank-internal information to applicants who use such knowledge in their own

decision making. Hence, we would expect the lender�s proprietary and private information as mea-

sured by the Internal Score and PIR to be correlated with borrower perceptions of bank-internal

credit assessments. To capture this facet of lending relationships we successively add these two

variables to the speci�cation. We see that the inclusion of the Internal Score dramatically reduces

the marginal e¤ect of the public score lending support to our contention that the former can also

serve as a proxy for borrower impressions of their bank�s credit-quality signal, which increases their

likelihood of applying online (Speci�cation 2, Table 2). However, in terms of economic signi�cance

the marginal e¤ect of public information, i.e., the XSBI score, is almost four times that of the

Internal Score.

To the extent that loan o¢ cers communicate their subjective impressions not only to their own

institution (through score revisions) but also to customers (during the interview), applicants might

also become aware of the bank�s private information. Hence, we next replace the Internal Score

with its orthogonalization in terms of the XSBI, the Private-Information Residual (PIR). Com-

paring Speci�cations 2 and 3 in Table 2 we see that the distinction between proprietary (Internal

Score) and private (PIR) information is crucial. Only when we properly measure the latter as the

former�s orthogonal complement to public information do we �nd the predicted sign pattern so

that public signals of high credit quality are associated with transactional debt and private signals

with relationship lending. To preclude any possibility of spurious correlation between the PIR and

dependent variable arising from our two-equation estimation (3) we reestimate the speci�cation

with the residuals from a pooled orthogonalization but do not report the results because they are

virtually identical.

The two overriding factors for the �rm�s choice of debt type are now the public credit-quality

signal, whose marginal e¤ect is almost unchanged from the previous estimation, and our private-

information measure PIR ( Speci�cation 3, Table 2). Not only are their marginal e¤ects of com-
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parable magnitude but their opposite signs also conform to perceived notions of the di¤erential in-

formation content present in transactional and relationship lending. A better public credit-quality

signal makes the �rm more likely to apply online for a transactional loan because applicants that

are presumably aware of their own credit risk know that a higher public score improves their access

to (cheaper) arm�s-length debt and act accordingly.

Conversely, a �rm with a longstanding banking relationship might be able to infer its lenders�s

credit-quality assessment if only because of the signalling value of repeated loan o¤ers. It can

count on being well regarded and, hence, on preferential treatment by its bankers, who, in turn,

gain better access to inside information. As a result, we would expect the �rm�s application

loan-type decision and the bank�s private credit-quality signal to be correlated. The PIR�s large

negative marginal e¤ect in Speci�cation 3 of Table 2 bears out this conjecture. The better the

private credit-quality assessment, the less likely the �rm will request a transactional loan and

instead apply for relationship credit in-person at a branch o¢ ce. Since the PIR also measures the

inside bank�s informational advantage vis-à-vis competitors this �nding suggest that despite the

danger of informational capture better private information actually increases a �rm�s likelihood of

choosing relationship debt through the promise of future bene�ts such preferential access to credit

or intertemporal transfers.

To further investigate this hypothesis we next add interaction terms between the PIR and

relationship variables to capture the potential for collecting private information and the borrower�s

awareness of such e¤orts (Speci�cation 4, Table 2). Both the PIR-Months-on-Books and PIR-

Scope e¤ects further support our interpretation that despite the danger of informational capture

borrowers well known to their bank seek relationship debt precisely because loan o¢ cers can better

communicate their (high) opinion of good credit risks to those customers during negotiations. The

longer (Months on Books) or broader (Scope) the parties�interaction the more likely the �rm will

choose relationship debt and the more important the existence of private information becomes for

this choice of loan type.

The fact that both the lender�s informational advantage and prior borrowing strongly increase

the probability of a relationship-loan request provides additional support for our conjecture that

�rms not only are aware of their lender�s information but also bene�t from special ties to their bank.

Firms know that longstanding business relationships facilitate the access to credit precisely because
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loan o¢ cers tend to have a better picture of their prospects. Exposed to the danger of informational

capture by their bank, applicants of high perceived credit quality might as well bene�t from more

readily available credit that inside debt typically o¤ers in such circumstances, a topic that we turn

next to.

5 Credit Decision by Lending Channel

In this section, we analyze the availability and pricing of credit by origination mode to determine

the di¤erential information content of arm�s-length and relationship debt. Table 3 reports summary

statistics for the key variables by credit decision and lending channel, in particular loan terms and

pricing. Two facts consistent with the theoretical predictions on debt type stand out: rejection rates

are much higher for online applications (about 61% as compared to 49% for in-person requests), and

credit spreads are on average much lower for transactional than for relationship loans (279 and 453

basis points, respectively). Credit appears to be much less readily available through transactional

channels but, when it is, loan rates are much more favorable.

5.1 Credit Availability

The results for the bank�s decision to grant credit show that transactional debt is much harder to

obtain than relationship debt ceteris paribus. Both speci�cations in Table 4 reveal that applying

online lowers the probability of a loan o¤er by up to 11.2%. Transactional lenders know that they

compete on a much more level informational playing �eld in this segment, if not at an outright

disadvantage should the �rm also be seeking inside credit elsewhere. To avoid potential adverse-

selection problems they have to be much more circumspect in their arm�s-length lending and refrain

from o¤ering credit more often, thereby lowering the probability of an online loan o¤er (see, e.g.,

Broecker, 1990 or von Thadden, 2004).

Speci�cation 1 in Table 4 shows that the likelihood of obtaining transactional credit increases in

both the public and proprietary credit-quality signal (XSBI and Internal Score, respectively): the

better the outcome of the credit screen, be it public or bank-internal, the easier access to online loans

becomes. However, an increase in the Internal Score has only a small, albeit statistically highly

signi�cant, impact on the likelihood of obtaining transactional credit. By contrast, the Experian
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score (XBSI) is not statistically signi�cant in the relationship-loan equation. Instead, positive

proprietary credit assessments containing a mixture of soft private and hard public information

primarily decide the access to inside credit. This �nding suggests that not only the origin of the

bank�s information but also how it processes and interprets its intelligence matters for relationship

lending.

To carefully distinguish private from public information we again replace the Internal Score

with its Private-Information Residual (PIR) and add the relationship-PIR interaction terms to the

model (Speci�cation 2 in Table 4). Our results con�rm that di¤erent types of information shape

each credit-market segment. Although both the PIR and Experian score are statistically signi�cant

in each equation, the relative magnitudes of the variable�s marginal e¤ects are reversed across loan

types. Transactional-credit decisions primarily rely on public information (XSBI score) whereas

private information (PIR) only has a small impact; in fact, the marginal e¤ect of a positive public

credit signal is almost 8 times larger than that of a positive private credit-assessment. By contrast,

private information is the overriding factor in the decision to o¤er relationship credit because its

marginal e¤ect is almost �ve times larger than the small positive impact of public information.

Comparing the relative impact of public and private information on credit availability across

loan types we see that the marginal e¤ect of positive private information is 15 times greater for

relationship than for transactional lending. Interestingly, the importance of a high public credit

score does not di¤er as much across the two lending modes (only 5.5 times lower) and retains its

statistical signi�cance at 5% in the relationship-loan equation (Speci�cation 2). In light of the fact

that lenders and loan types compete with each other this �nding is less surprising than it might

otherwise be. The theoretical literature has long argued that good credit risks are the primary

targets for informational capture in relationship lending (e.g., von Thadden, 2004) and, therefore,

more likely to switch providers of credit. Hence, banks know that public perceptions of credit

quality matter in the competitive response of other lenders that try to poach borrowers. As a

result, the Experian score not only captures credit-quality e¤ects but also acts as a proxy for the

expected intensity of competition for the borrower.

We conclude from both speci�cations in Table 4 that, consistent with theoretical predictions,

private information primarily determines access to inside debt whereas public information drives

arm�s-length lending. Banks speci�cally gather more costly private information for borrowers that
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through their chosen mode of interaction with the lender facilitate its collection and signal their

willingness to be informationally captured. The di¤erential impact of the length and scope of the

banking relationship across loan types con�rms this interpretation. Scope and Months on Books are

statistically insigni�cant in the decision to o¤er arm�s-length credit but highly signi�cant both in

statistical and marginal terms for relationship-loan o¤ers. Taken together these e¤ects suggest that

a prior lending relationship enhances the likelihood of obtaining inside credit precisely because they

facilitate the collection and interpretation of (private) information. By contrast, prior interaction is

less relevant for the decision to grant transactional loans because there is no opportunity to revise

online applicants�scores in light of additional information.

Similarly, we see that the �rm-bank distance is only statistically signi�cant (at around 5%) in

the in-person-loan equation. The closer a potential relationship borrower is to a branch o¢ ce the

higher the likelihood of obtaining credit becomes. In addition to capturing physical transaction

costs, the bank-borrower distance is an excellent proxy for the quality of the lender�s private in-

formation and, hence, informational advantage (see Agarwal and Hauswald, 2006). Petersen and

Rajan (2002) argue that soft subjective information, whose collection borrower proximity and prior

lending relationships facilitate, is crucial for lending decision. No such opportunity to collect soft

information and incorporate it into credit decisions exists in the case of transactional loans, which

might explain the statistical insigni�cance of the relevant variables in the eLoan equation.

A comparison of the two speci�cations in Table 4 shows that all the other e¤ects remain virtually

una¤ected by the inclusion of the Private-Information Residual. The �rm�s size or pro�tability (Net

Income) and its ability to post collateral or to guarantee the loan raises the likelihood of a loan o¤er

for each lending channel and the marginal e¤ects are very comparable. The local-competitiveness

e¤ects closely correspond to theoretical predictions. More competition, i.e., a higher number of

competing lenders or branches in the �rm�s zip code, decreases the likelihood of obtaining a loan

of either type because competition decreases the average quality of the applicant pool (see, e.g.,

Broecker, 1990) so that banks refrain more often from o¤ering credit.

Our �ndings suggest that the use and, hence, quality of proprietary intelligence radically dif-

fers across lending channels. The limited ability to gather inside information or, equivalently, its

high cost in transactional lending forces banks to discount any private knowledge and instead to

rely on publicly available signals of credit quality. As a result, banks compete on a much more
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equal informational footing, which borrowers recognize and incorporate into their choice of loan

product. By contrast, banks heavily rely on private information gathered through inside lending

in relationship-credit decisions. Although lenders can use their informational advantage to soften

competition through the threat of adverse selection and to extract information rents it also facil-

itates relationship borrowers� access to credit (see, e.g., Hauswald and Marquez, 2006). By the

same token, our credit-decision results validate the �rm�s perception of the importance of personal

interaction and private information for obtaining relationship loans discussed in Section 4.

5.2 Loan Pricing

To investigate di¤erential credit pricing across lending channels we next estimate linear models of

the loan�s o¤ered all-in cost (APR) as a function of our previously described explanatory variables.

Like the internal score of in-person applicants, branches can adjust both the loan terms and pricing

in light of local conditions and information. No such adjustment opportunity exists for eLoans whose

price is a simple function of the internal score, the ability to post collateral or personally guarantee

the loan, etc. Table 3 provides descriptive statistics for the o¤ered loan terms by credit channel.

To control for the interest-rate environment, we rely on the maturity-matched (interpolated) US

Treasury yield on the loan date and the di¤erence between the 5-year and 3-months US Treasury

yield (Term Spread: yield-curve shape). We estimate the model with the Heckman correction for

sample-selection bias (Lambda) to take into account the lender�s prior credit decision.

Table 5 shows that arm�s-length debt is up to 138 basis points less expensive than inside debt

ceteris paribus. Speci�cation 1 summarizes the e¤ects of relationship variables, �rm attributes, loan

terms, and various controls on o¤ered loan rates. Adding the informational variables (Speci�cations

2 and 3), we observe the same relative importance of public, proprietary, and private information

in the determination of o¤ered loan rates across lending channels that we found for the prior credit

decision. Even with our measure of proprietary information Speci�cation 2 in Table 5 shows that

the impact of the public (XSBI) and internal score on the quoted all-in cost symmetrically varies

across lending channels. An increase in the Experian score (XSBI) greatly reduces transactional

loan rates whereas bank perceptions of higher credit quality (Internal Score) lead to a much more

modest reduction in rates. The exact opposite is true for relationship loans whose price is much

more a¤ected by a rise in the Internal Score than in the XSBI one. These e¤ects are all the more
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pronounced that the Experian score is highly nonlinear in implied credit quality.

Replacing the bank�s credit score with the Private-Information Residual reinforces this conclu-

sion (Speci�cation 3, Table 5). Our measure of private credit assessments now becomes statisti-

cally insigni�cant in the eLoan equation but retains its high statistical signi�cance in the in-person

equation. The same is true for the relationship-PIR interaction variables that increase the private-

information e¤ect for relationship loans but are statistically insigni�cant in the transactional-loan

equation. Any pure private information the bank can gather is mostly valuable in inside lending to

limit competition and informationally capture relationship borrowers. Its poorer quality for online

borrowers does not o¤er any signi�cant bene�ts over publicly available creditworthiness signals.

Hence, our bank disregards the purely private component of its credit assessments in the pricing of

transactional debt which primarily results from symmetrically informed competition on the basis

of public credit-quality signals. We also note that competition e¤ects do not seem to signi�cantly

�gure in the pricing of transactional or relationship loans.

Interestingly, the relationship variables Scope and Months on Books (statistically) signi�cantly

reduce not only the o¤ered APR of relationship debt but also the cost of transactional debt. Con-

trary to the credit decision, the prior purchase of other products from the bank and the length

of a lending relationship enters into the pricing of transactional loans. One possible explanation

might revolve around rewarding customer loyalty in the presence of very low switching costs in

online lending (see also Schenone, 2007). As a result, prior lending could be a signi�cant factor in

banks�pricing policy but less for informational considerations, which the bank addresses through

the decision to grant credit, than to retain a customer of proven pro�tability. Adding the interac-

tion terms in Speci�cation 3 lends further credence to this interpretation. In the eLoan equation,

the interaction terms are statistically insigni�cant whereas the relationship variables retain their

signi�cance. In the in�person equation the interaction terms are highly signi�cant so that the rela-

tionship variables enhance the bene�cial e¤ect of a higher private credit-quality signal. Hence, prior

business interaction a¤ects inside-loan rates more by improving the quality of credit assessments

so that banks place greater weight on their private information in the pricing of relationship debt.

It is also worthwhile to point out that a �rm�s age matters for the pricing of transactional but

not relationship debt. Older, more established �rms pay less for loans but the e¤ect is statistically

signi�cant only for online o¤ers. The opposite is true for �rm pro�tability (Net Income) that
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only matters for the pricing of relationship debt. Again, informational e¤ects might be at work.

The longer a �rm has been in existence the more publicly available information exists which is

particularly valuable in the pricing of transactional debt. By contrast, �nancial data such as net

income are self-reported in online-loan applications and, therefore, susceptible to manipulation. It

is very costly to follow up on �nancial information for online applications so that our data provider

seems to disregard it in this case. By contrast, loan o¢ cers can easily verify such information

during the branch visit by in-person applicants (from, e.g., tax �lings) and, hence, place more trust

in �nancial statements.

The other explanatory variables have very similar e¤ects across the two loan types. In particular,

we note that the ability to post collateral or to personally guarantee a loan reduces loan rates by

210 to 239 and 30 to 81 basis points, respectively, depending on the lending channel. This �nding

contrasts with previous work such as Berger and Udell (1995) or Carey, Post, and Sharpe (1998)

who report that collateral is associated with higher spreads. However, their results are probably

due to the fact that collateral acts as a proxy for nonmeasured risk characteristics. Our �nding

that, once we explicitly control for borrower risk through the inclusion of various credit-quality

measures (XSBI, internal score, PIR), collateral and guarantees reduce loan rates and, given our

speci�cation, credit spreads bears out this conjecture (see also Inderst and Müller, 2006). In fact,

Booth and Booth (2006) also �nd that, controlling for the interdependence between the decision to

pledge collateral and borrowing costs, secured loans typically carry lower spreads.

Taken together our results provide very strong empirical evidence for the predicted trade-o¤

between the availability and pricing of credit across lending modes. In their choice of loan type,

�rms face a choice between easier access to relationship debt and lower priced transactional debt.

Furthermore, we establish that di¤erent types of information lead to this trade o¤. The limited

ability to gather proprietary intelligence in transactional lending forces banks to rely more on public

information that further levels the playing �eld. Hence, online borrowing combines lower interest

rates with a lower probability of receiving credit ceteris paribus. By contrast, the bank�s ability

to collect private information and to strategically use it enhances the likelihood that an in-person

applicant receives credit albeit at the price of higher rates and informational capture, a topic we

turn to next.
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6 Lending Competition and Borrower Choice

By comparing credit o¤ers to actually booked loans and matching the observations with credit-

bureau information on competing loan o¤ers we identify 420 transactional and 915 relationship

borrowers that decline the bank�s terms and seek credit from a competitor around the same time.11

Table 6 provides summary statistics by debt type in function of the borrower�s decision to accept

or to decline the o¤er. We see that, on average, the declined loan o¤ers are very similar to accepted

ones for each lending channel.

When the degree of information asymmetry varies by borrower credit transactions become more

contested as the informational advantage of the better informed lender falls. Less precise credit

assessments decrease the threat of adverse selection so that less informed competitors can bid more

aggressively by o¤ering credit more often and at lower rates, thereby eroding the more informed

bank�s ability to earn information rents (see, e.g., Hauswald and Marquez, 2006). Hence, the

smaller our bank�s informational advantage becomes the more frequently borrowers should switch

lenders. In the limit, when all banks are symmetrically informed, price competition dissipates any

information rents and transactional borrowers frequently switch lenders. The implied switching

rates in Table 6 bear out this prediction: transactional borrowers are almost twice as likely as

relationship ones to decline a loan o¤er and seek credit elsewhere (13.39% against 6.98%).

To investigate di¤erences in competitiveness across debt type we next estimate a logistic discrete-

choice model of the successful loan applicant�s decision to switch lenders. Speci�cation 1 in Table 7

shows that, in line with theoretical predictions, transactional borrowers are almost 5% more likely

to decline loan o¤ers and seek credit elsewhere. As we conjectured earlier, the public credit-quality

signal (XSBI) is by far the most important factor in inducing applicants to decline loan o¤ers. The

higher a �rm�s public score, the easier it becomes to switch lenders explaining the variable�s high

marginal e¤ect even for inside borrowers whose decisions otherwise are more strongly correlated

with private or proprietary information revealed to them over the course of the business relationship

or origination process.

By contrast, private credit-quality signals (PIR), which act as proxies for the borrower�s per-

ception of the lender�s private credit assessment, have a large marginal e¤ect only in the in-person

11This decision is very di¤erent from borrower�s choice of single vs. multiple banking relationships; see Detragiache
et al. (2000) and Farinha and Santos (2002).
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equation of Speci�cation 2 in Table 7. Firms rationally anticipate that banks attempt to informa-

tionally capture inside borrowers and act accordingly so that the amount and quality of private

information predicts switching behavior. The better the bank�s own credit assessment of a relation-

ship borrower, who can infer the existence of a positive private credit-quality signal from the o¤er

alone, the more likely the latter is to switch lenders. As before, the �rm�s decision and the bank�s

private information should therefore be correlated, which explains why the Private-Information

Residual has such a large impact on the switching behavior of relationship borrowers.

Curiously, the relationship variables (Scope, Months on Books) reduce the likelihood of declining

a loan o¤er for both transactional and relationship borrowers. The large marginal e¤ects and high

statistical signi�cance of the relationship-PIR interaction terms in the in�person equation suggest

that informational e¤ects are at work. The bank�s desire to retain prior customers might explain a

similar e¤ect for transactional borrowers. Unsurprisingly, the higher the quoted loan rate the more

likely are �rms to decline the o¤er and seek credit elsewhere irrespective of the chosen loan type.

Not only is it easier for better credit risks to obtain competing loan o¤ers, they are also the primary

targets for rent extraction through loan pricing and, hence, have a larger incentive to switch lenders.

Consistent with theoretical predictions the e¤ect is more pronounced for relationship borrowers that

face a greater threat of informational capture.

We also see that competition matters but that the e¤ects display an interesting pattern across

loan products. For transactional borrowers, the likelihood of switching lenders increases in the

number of locally competing institutions presumably because of name recognition, geographically

targeted promotional campaigns, etc. By contrast, the switching behavior of relationship borrowers

rises in the number of locally competing branch o¢ ces so that branch-proliferation e¤ects and the

easier access to personal interaction they o¤er matter.

Our results are broadly consistent with strategic lending by inside banks that use private in-

formation to informationally capture high-quality relationship borrowers.12 The better the bank�s

information, i.e., the higher the quality of its credit screen or the closer a borrower is located

to a branch, the easier it becomes to extract rents because our lender has a larger informational

advantage over its competitors. Such attempts, however, fail in the transactional-loan segment

12See also Sharpe (1990), Rajan (1992), or von Thadden (2004) on this point. For evidence on the resulting winner�s
curse in banking see Sha¤er (1998).
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where symmetrically informed competitors can compete more aggressively for online borrowers. As

a result, the public perception of credit quality drives a �rm�s decision to switch lenders all the

more that borrowers are more likely than not aware of their own Experian scores, which is a good

indicator for the likelihood of receiving a competing loan o¤er.

7 Information Production and Credit Delinquency

Our credit-bureau data also allow us to trace type I (denying a loan to a good credit risk) and type

II (o¤ering a loan to a bad credit risk) errors in credit decisions across loan types. Regarding the

former, out of the 4,810 unsuccessful online applicants 3,321 �rms (69%) managed to obtain a loan

from another source within a month of their loan-application�s rejection. By contrast, less than half

(6,347 out of 12,808) in-person applicants were able to do so. Although transactional borrowers

have a lower ex ante probability of obtaining a loan (see Tables 3 and 4) their cost of seeking credit

online is lower, too so that they typically �le more loan applications than relationship borrowers

and, therefore, have a higher success probability ex post.

In terms of type II errors in screening, our sample contains 91 transactional loans (about 3.5%)

and 319 relationship ones (2.7%) that have fallen 60 days past-due, which corresponds to our data

provider�s internal de�nition of a non-performing loan, within 18 months of origination.13 We �rst

note that the incidence of credit delinquency is signi�cantly higher in the transactional subsample.

To put the respective default rates into perspective, we also trace the credit delinquency of successful

applicants that switched lenders. Their default rates are 4.5% and 5.8% for arm�s-length and

relationship loans, respectively, which is much worse than our bank�s own loan performance. Default

rates for unsuccessful applicants that were able to obtain a loan elsewhere are very high but do not

vary much by lending channels: 24.79% and 24.63% for online and in-person (denied) applications,

respectively. We interpret these default frequencies as evidence that our lender minimizes type II

error in credit decisions by trying to avoid lending to bad credit risks. In doing so, the bank is

more successful for relationship loans than transactional ones, for which intermediaries generally

13We choose this window so that the likelihood of a loan becoming overdue is still related to the initial credit
assessment and not to subsequent economic events beyond the bank�s control. Although the technical de�nition of
default is 180 days past-due lenders typically take action after at most 60 days past-due either writing o¤ the loan,
selling it o¤, or assigning it for collection. As a result we do not know which of the delinquent loans ultimately
experience default although over 90% of loans that are 60 days overdue eventually do according to our data provider.
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su¤er higher adverse-selection problems.

To investigate the di¤erences in loan performance across transactional and relationship lending

we estimate a logistic model of credit delinquency in terms of our usual information, relationship,

and control variables by lending channel. Table 8 shows that transactional borrowers are up to

2.9% more likely to default than relationship ones ceteris paribus. The results also exhibit the

usual pattern in information e¤ects across equations. Public information (XSBI score) has by far

the largest impact on the likelihood of default for both loan types. Positive private information

(internal score, PIR) only a¤ects the performance of relationship loans in an economically signi�cant

manner. Again, proprietary intelligence is primarily useful for mitigating credit risk in relationship

lending but adds less to the bank�s ability to predict the performance of transactional loans.

The marginal e¤ects of the relationship variables that are much larger for in-person than online

loans and, especially, the PIR-relationship interaction terms con�rm this e¤ect. Banks bene�t

from lending relationships through better private information that allows them to decrease their

borrower-speci�c credit exposure. Similarly, the Months in Business variable has quite a large and

statistically signi�cant marginal e¤ect on decreasing the risk of default across both lending modes

presumably because there is more information - private or public - available for older �rms. The

loan amount has a large negative e¤ect on the likelihood of default that is more or less constant

across lending channels and speci�cations. In contrast to DeYoung et al. (2004) who report that

the probability of default on small-business loans increases in the distance between borrower and

lender we do not �nd any signi�cant distance e¤ects for either loan type.

The small but highly signi�cant positive marginal e¤ects of the competitiveness measures are

consistent with theoretical predictions that more competition implies more adverse selection and,

hence, more default. The informational e¤ects, however, suggest that di¤erent forces are responsible

for each lending channel. In transactional lending, more competition decreases the average quality

of the borrower pool so that each lender su¤ers more adverse selection (Broecker, 1990). When

competition increases for relationship borrowers, the informed lender has less of an incentive to

acquire private information and the overall quality of its loan portfolio falls (see, e.g., Gehrig,

1998).
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8 Conclusion

This paper presents an in-depth comparative analysis of the respective roles of private and public

information in arm�s-length and inside-debt transactions. The advent of online lending and banks�

distinct operational practices across lending channels o¤er the opportunity to unambiguously iden-

tify transactional loans that match in all other respects traditional relationship debt. Using an

exhaustive sample of online and in-person loan requests by small businesses we are able to deter-

mine the relative importance of private and public information for each debt type. At the same

time, our data also allows us to investigate how the chosen form of bank-borrower interaction a¤ects

the lender�s acquisition of private and proprietary information, its strategic use in credit decisions,

and the borrowers�response for each form of debt.

Our results reveal that banks rely on di¤erent types of information for each lending mode.

Public information primarily drives credit availability and pricing in transactional lending whereas

private information determines credit decisions for relationship loans. Since banks have less oppor-

tunity to generate borrower-speci�c information from arm�s-length debt they compete on a more

symmetrically informed basis and rely more heavily on public information in their transactional

credit decisions. The opposite is true for relationship loans. We �nd strong evidence that banks

disregard publicly available information when they have access to better �soft�private information

through inside lending that becomes the foundation of their relationship-credit decision and pricing.

By the same token, borrowers base their choice of debt type mainly on public credit-quality

information that is readily available to them and provides them with a sense of their success chances

in each credit-market segment. Furthermore, we �nd evidence that inside borrowers anticipate on

the existence and consequences of private information. Longstanding business relationships imply

more inside information together with preferential treatment so that the likelihood that a �rm

will seek a relationship loan increases in the lender�s private credit-worthiness signal. Similarly, a

�rm�s decision to decline relationship debt or to default on it depends more on the bank�s private

information than transactional debt although public information retains some importance for these

choices, too. These �ndings are consistent with the notion that borrowers recognize the value of

lending relationships for banks�ability to acquire proprietary information and to strategically use

it.
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However, the bene�ts of a lending relationship must ultimately outweigh the cost of informa-

tional capture for �rms that otherwise would not selfselect into inside debt. Hence, our �ndings

also provide support for the contention that relationship borrowers bene�t from the closer ties with

their banks. The fact that in-person loan applicants have, on average, a much longer and deeper

relationship with their bank than online applicants lends additional credence to this interpreta-

tion. Such bene�ts typically revolve around intertemporal transfers between the parties, i.e., the

notion that banks are more willing to �nance borrowers that would otherwise not be able to �nd

funding if they can recover the initial costs through future rent extraction or better loan perfor-

mance. To directly investigate the existence of such bene�ts, however, one would need panel data

on bank-borrower interaction over a longer time period. We leave this question for future research.
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Table 1: Descriptive Statistics for All Loan Applications

Lending Channel Online Application In-Person Application t-Test
Variable Mean Median Std Dev Mean Median Std Dev P -val

Loan Amount $37,333 $34,320 $124,921 $46,877 $39,749 $42,693 0.0000
Maturity (years) 5.43 5.18 2.05 6.74 6.20 5.34 0.0000
Term Loan (vs. Credit-Line) 19.57% 38.01% 28.06% 46.86% 0.0000
Collateral 41.54% 41.75% 54.91% 48.64% 0.0000
Primary Guarantor 17.09% 39.83% 36.59% 47.59% 0.0000
Primary Guarantor�s Monthly Salary $23,745 $20,821 $107,148 $35,164 $32,012 $88,582 0.0000
SBA Guarantee 3.74% 14.59% 6.41% 15.90% 0.0000
Internal Credit Score 899.22 902.05 73.40 930.51 949.38 133.29 0.0000
Public (XSBI) Credit Score 723.57 704.67 55.87 716.74 703.78 57.55 0.0000
Private-Information Residual 0.0059 0.0003 0.4975 0.0003 0.0005 0.6316 0.4676
Scope of Banking Relationship 19.92% 35.03% 30.40% 43.66% 0.0000
Months on Books 27.68 23.32 48.52 30.79 22.65 43.20 0.0000
Monthly Deposit Account Balance $12,649 $10,835 $16,040 $14,363 $11,014 $41,669 0.0003
Months in Business 63.88 54.30 41.62 103.56 89.24 103.08 0.0000
Firm�s Monthly Net Income $64,734 $58,521 $77,808 $101,109 $90,108 $315,463 0.0000
Case-Shiller House Price Index 168.53 152.10 36.08 166.40 154.79 31.14 0.0000
Firm-Bank Distance (miles by car) 91.74 31.90 80.91 10.29 2.82 25.12 0.0000
Firm-Comp Distance (miles by car) 0.89 0.54 1.16 1.02 0.52 1.53 0.0000
State CT 8.32% 10.32% 12.89% 35.04% 0.0000
State MA 23.53% 41.26% 15.18% 35.73% 0.0000
State ME 2.32% 14.36% 3.14% 17.28% 0.0001
State NH 2.88% 16.34% 2.58% 15.67% 0.1500
State NJ 16.32% 34.85% 24.53% 42.62% 0.0000
State NY 35.53% 45.73% 35.77% 47.61% 0.6947
State PA 0.27% 5.08% 3.08% 17.07% 0.0000
State RI 4.86% 21.29% 3.20% 17.46% 0.0000
Other States 2.00% 1.76% 0.17% 4.00% 0.0000
Q1 2002 17.02% 34.62% 18.34% 38.43% 0.0062
Q2 2002 15.19% 36.00% 18.61% 38.99% 0.0000
Q3 2002 17.45% 36.03% 17.48% 37.70% 0.9577
Q4 2002 20.62% 37.80% 19.01% 38.66% 0.0011
Q1 2003 23.99% 35.06% 27.13% 32.96% 0.0000
SIC 0: Agriculture, Forestry, Fishing 2.20% 14.49% 3.02% 16.99% 0.0001
SIC 1: Mining, Construction 9.93% 27.70% 13.29% 33.62% 0.0000
SIC 2: Manufacturing (Consumer) 2.80% 15.49% 2.41% 15.20% 0.0486
SIC 3: Manufacturing (Industrials) 3.38% 17.09% 3.05% 17.02% 0.1341
SIC 4: Transport., Comm., Gas, Elect. 4.26% 19.33% 4.94% 21.66% 0.0124
SIC 5: Wholesale and Retail Trade 25.94% 42.21% 31.01% 45.78% 0.0000
SIC 6: Finance, Insurance, Real Estate 4.48% 19.94% 3.35% 17.64% 0.0000
SIC 7: Personal & Business Services 19.68% 37.61% 19.19% 39.10% 0.3235
SIC 8: Professional Services 13.62% 31.33% 13.21% 33.28% 0.3264
SIC 9: Administration 0.30% 5.46% 0.13% 3.51% 0.0006
Number of Branches 4.51 2.77 4.53 4.78 3.00 5.36 0.0000
Number of Institutions 3.58 2.57 4.15 3.55 2.99 3.38 0.4629
Number of Observations 7,945 25,910 33,855

This table presents summary statistics for the variables described in Section 3 for our full sample of 33,855 data points
in function of the �rm�s choice of lending channel. The last column indicates the P -values of a two-sided t-test for the
equality of the variables�mean conditional on the loan�s type (wherever appropriate).
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Table 2: The Choice of Lending Channel and Loan Type

Speci�cation 1 2 3 4
Variable Coe¤ P -val Marg Coe¤ P -val Marg Coe¤ P -val Marg Coe¤ P -val Marg

Constant -2.1933 0.0001 -2.0659 0.0001 -2.0708 0.0001 -2.0612 0.0001
ln(1+XSBI) 0.5347 0.0001 21.46% 0.4646 0.0001 14.15% 0.4502 0.0001 14.18% 0.4502 0.0001 14.30%
ln(1+Internal Score) 0.3582 0.0001 3.80%
Private-Info. Res. -0.8958 0.0001 -9.83% -0.9009 0.0001 -9.77%
Scope -0.1345 0.7590 -0.03% -0.1202 0.5331 -0.02% -0.1201 0.7879 -0.03% -0.1194 0.7920 -0.03%
ln(1+M. on Books) -0.6809 0.0001 -6.88% -0.6896 0.0001 -6.29% -0.6959 0.0001 -7.14% -0.6796 0.0001 -7.03%
Scope�PIR -0.3522 0.0346 -2.58%
ln(1+MOB)�PIR -0.1014 0.1179 -1.80%
ln(1+M. in Business) 0.1193 0.9820 0.15% 0.1048 0.8862 0.10% 0.1104 0.9080 0.17% 0.1096 0.9011 0.17%
ln(1+Net Income) -0.0738 0.4932 -0.98% -0.0756 0.4871 -1.01% -0.0789 0.5000 -1.00% -0.0776 0.4987 -0.98%
ln(1+CSHPI) -0.1020 0.9223 -0.78% -0.1007 0.9210 -0.71% -0.1049 0.9270 -0.81% -0.1035 0.9860 -0.81%
ln(1+F-B Dist) 0.9874 0.0001 1.87% 1.0053 0.0001 1.93% 1.0121 0.0001 1.92% 1.0183 0.0001 1.90%
ln(1+F-C Dist) -0.2644 0.0001 -1.04% -0.2663 0.0001 -0.95% -0.2912 0.0001 -1.05% -0.2863 0.0001 -1.05%
Collateral -0.2148 0.6349 -0.71% -0.2162 0.6400 -0.75% -0.2356 0.6893 -0.73% -0.2311 0.6780 -0.72%
Primary Guarantor -0.0444 0.9320 -0.01% -0.0480 0.7368 -0.01% -0.0480 0.9110 -0.01% -0.0481 0.9170 -0.01%
SBA Guarantee -0.0791 0.0158 -0.32% -0.0766 0.0001 -0.37% -0.0842 0.0130 -0.34% -0.0834 0.0136 -0.34%
Term Loan -0.0769 0.9202 -0.08% -0.0818 0.9447 -0.09% -0.0823 0.9848 -0.09% -0.0821 0.9740 -0.09%
ln(1+#Branches) 0.1929 0.7745 0.03% 0.2135 0.6971 0.03% 0.2060 0.7760 0.03% 0.2071 0.7760 0.03%
ln(1+#Competitors) 0.1001 0.6338 0.02% 0.1013 0.6329 0.02% 0.1094 0.6377 0.02% 0.1093 0.6351 0.02%
4 Quarterly Dum. Yes Yes Yes Yes
8 State Dummies Yes Yes Yes Yes
38 SIC Dummies Yes Yes Yes Yes
Number of Obs 33,855 33,855 33,855 33,855
Pseudo R2 4.84% 5.30% 5.21% 5.23%

This table reports the results from estimating a logistic discrete-choice model of the �rm�s choice of loan type by full-
information maximum likelihood for our full sample (33,855 observations). The dependent variable is the �rm�s decision
to apply online for a transactional loan (Y = 1: 7,945 observations) or in-person for a relationship loan (Y = 0: 25,910
observations). We estimate the speci�cation Pr fYi = 1 jxi g = �(x0i�+1eloan � x0i), where 1eloan = 1 for online applica-
tions and 0 otherwise and � is the logistic distribution function � (x0ik�k) =

expfx0ik�kgP
n expfx0in�ng

, with branch �xed e¤ects and

compute clustered standard errors that are adjusted for heteroskedasticity across branch o¢ ces and correlation within.
The explanatory variables are our proxies for public (Experian�s Small Business Intelliscore XSBI), proprietary (In-

ternal Score) and private (Private-Information Residual) information, bank-borrower relationship characteristics (Scope,
Months on Books abbreviated �MOB�in the interaction terms), �rm attributes, the competitiveness of local credit mar-
kets (number of competing lenders and competing branches), proxies for the ease of transacting with lenders (�rm-bank
and �rm-competitor distances abbreviated F-B and F-C Dist, respectively), and control variables for local economic
conditions (Case-Shiller house-price index abbreviate CSHPI), the business cycle (quarterly dummies), state, and �rm�s
industry (see Section 3 for a description of the variables).
The Private-Information Residual (abbreviated �PIR" in the interaction terms) measures the bank�s pure private infor-

mation that we obtain from orthogonalizing the internal and Experian scores. Speci�cally, the PIR for each observation
is the residual ûi of the branch �xed-e¤ects regression ln (IntScorei) = �p + �p �XSBIi + 1eloan (�e + �e �XSBIi) + ui.
We report the coe¢ cients ( �Coe¤�), their P -values (�P -val�), and marginal e¤ects (�Marg�) for the decision to apply

online (Y = 1) but suppress the results for the business-cycle, state, and industry control variables in the interest of read-
ability. Since the probabilities of applying online or in person sum to 1 the marginal e¤ects for the choice of a relationship
loan are simply the opposite of the reported ones. We obtain the marginal e¤ects by simply evaluating @ Pr

@xj
= �0 (x0i�)�j

at the regressors�sample means and coe¢ cient estimates �̂. The pseudo-R2 is McFadden�s likelihood ratio index 1� logL
logL0

.
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Table 3: Descriptive Statistics for the Credit Decision by Lending Channel

Panel A: Online Loan Applications

Loan-Application Outcome Accept Reject t-Test
Variable Mean Median Std Dev Mean Median Std Dev P -val

Loan Rate (APR: all-in cost of loan) 6.91% 6.86% 1.93% N/A N/A N/A N/A
Loan Amount $37,102 $34,270 $124,787 N/A N/A N/A N/A
Maturity (years) 5.42 5.16 2.03 N/A N/A N/A N/A
Term Loan (vs. Credit-Line) 14% 34% 23.33% 40.36% 0.0000
Collateral 51% 32% 35.92% 48.15% 0.0000
Primary Guarantor 26.87% 34.30% 10.74% 43.37% 0.0000
SBA Guarantee 0.80% 2.37% 5.64% 22.53% 0.0000
Internal Credit Score 1040.85 1022.32 80.70 804.46 822.01 68.97 0.0000
Public (XSBI) Credit Score 729.96 717.40 47.95 717.99 702.93 60.48 0.0000
Private-Information Residual 0.0289 0.0180 0.4764 -0.0183 -0.0098 0.5813 0.0002
Scope of Banking Relationship 22.12% 30.33% 18.42% 37.83% 0.0000
Months on Books 38.53 30.35 54.04 20.94 18.77 45.01 0.0000
Monthly Deposit Account Balance $13,902 $12,075 $15,499 $11,925 $9,939 $16,318 0.0000
Months in Business 73.57 60.22 43.57 57.93 50.30 39.87 0.0000
Firm�s Monthly Net Income $80,948 $75,409 $102,184 $54,033 $47,538 $61,859 0.0000
Firm-Bank Distance (miles by car) 82.40 31.18 82.45 98.32 32.49 79.76 0.0000
Firm-Comp Distance (miles by car) 0.95 0.51 1.25 0.86 0.56 1.12 0.0010
Maturity-Matched UST Yield 4.12% 3.74% 2.35% N/A N/A N/A N/A
5Y - 3M UST Yield Spread (bpts) 202.40 196.32 55.87 N/A N/A N/A N/A
Number of Observations 3,135 4,810 7,945

Panel B: In-Person Loan Applications

Loan-Application Outcome Accept Reject t-Test
Variable Mean Median Std Dev Mean Median Std Dev P -val

Loan Rate (APR: all-in cost of loan) 8.46% 8.13% 2.72% N/A N/A N/A N/A
Loan Amount $46,648 $39,881 $42,479 N/A N/A N/A N/A
Maturity (years) 6.71 6.19 5.38 N/A N/A N/A N/A
Term Loan (vs. Credit-Line) 22.49% 46.72% 33.79% 47.11% 0.0000
Collateral 60.12% 48.23% 49.98% 48.60% 0.0000
Primary Guarantor 34.14% 46.80% 39.23% 48.48% 0.0000
SBA Guarantee 0.56% 4.68% 12.32% 27.23% 0.0000
Internal Credit Score 1039.64 1045.41 138.47 817.65 855.09 128.33 0.0000
Public (XSBI) Credit Score 716.89 709.96 57.62 715.19 698.66 57.67 0.0173
Private-Information Residual 0.0379 0.0112 0.7157 -0.0350 -0.0106 0.5806 0.0000
Scope of Banking Relationship 35.37% 43.87% 25.55% 43.32% 0.0000
Months on Books 43.26 30.65 56.28 17.69 14.50 29.60 0.0000
Monthly Deposit Account Balance $17,127 $11,845 $62,579 $11,652 $10,108 $20,964 0.0000
Months in Business 116.30 96.86 107.20 91.79 81.80 98.83 0.0000
Firm�s Monthly Net Income $110,525 $95,203 $255,740 $92,210 $85,187 $373,508 0.0000
Firm-Bank Distance (miles by car) 9.97 2.64 21.42 10.68 2.99 28.68 0.0228
Firm-Comp Distance (miles by car) 1.11 0.55 1.59 0.94 0.48 1.46 0.0000
Maturity-Matched UST Yield 3.93% 3.86% 1.94% N/A N/A N/A N/A
5Y - 3M UST Yield Spread (bpts) 220.78 210.80 57.11 N/A N/A N/A N/A
Number of Observations 13,102 12,808 25,910

This table reports descriptive statistics for the key variables described in Section 3 in terms of the lending channel (7,945
online applications in Panel A and 25,910 in-person ones in Panel B) and the bank�s decision to o¤er or to deny credit.
The last column indicates the P -values of a two-sided t-test for the equality of the variables�mean conditional on the
bank�s decision (wherever appropriate). For summary statistics of the control variables by lending channel see Table 1.
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Table 4: The Credit Decision by Loan Type

Speci�cation 1 2
Loan Type eLoans In-Person Loans eLoans In-Person Loans
Variable Coe¤ P -val Marg Coe¤ P -val Marg Coe¤ P -val Marg Coe¤ P -val Marg

Constant -2.0817 0.0001 -2.1270 0.0001
eLoan (1eloan = 1) -1.6314 0.0001 -9.33% -1.6037 0.0001 -11.19%
ln(1+XSBI) 0.4259 0.0001 19.99% 0.2556 0.1460 0.25% 0.4019 0.0001 18.63% 0.2629 0.0397 3.43%
ln(1+Internal Score) 0.1419 0.0046 2.63% 0.1683 0.0001 11.40%
Private-Info. Res. 0.1928 0.0425 1.03% 0.6425 0.0001 15.79%
Scope 0.2714 0.2228 0.27% 0.9190 0.0001 2.53% 0.2560 0.3032 0.33% 0.8737 0.0001 2.29%
ln(1+M. on Books) 0.3797 0.7968 0.12% 0.9313 0.0001 1.65% 0.3559 0.7968 0.12% 0.8594 0.0001 1.79%
Scope�PIR 0.0636 0.4529 0.42% 0.1488 0.0657 1.72%
ln(1+MOB)�PIR 0.3019 0.3960 0.24% 0.0415 0.0001 1.63%
ln(1+M. in Business) 0.9189 0.0001 0.67% 0.3772 0.0001 2.71% 0.8907 0.0001 0.67% 0.3630 0.0001 2.74%
ln(1+Net Income) 0.6910 0.0001 1.38% 0.8964 0.0001 1.17% 0.6577 0.0001 1.67% 0.8767 0.0001 1.00%
ln(1+CSHPI) 0.0884 0.1314 0.23% 1.0297 0.0390 0.52% 0.0908 0.0900 0.23% 0.9659 0.0145 0.18%
ln(1+F-B Dist) -0.4299 0.8420 -0.02% -0.8729 0.0515 -1.15% -0.4238 0.8220 -0.02% -0.8956 0.0440 -0.99%
ln(1+F-C Dist) 0.0894 0.4177 0.02% 0.6474 0.6820 0.22% 0.0899 0.3832 0.02% 0.6012 0.6380 0.23%
Collateral 0.5451 0.0001 2.40% 0.6006 0.0001 2.01% 0.5473 0.0001 2.81% 0.5879 0.0001 1.87%
Primary Guarantor 0.0510 0.0147 0.19% 0.6481 0.0001 4.12% 0.0513 0.0133 0.25% 0.5646 0.0001 4.02%
SBA Guarantee -0.3711 0.9280 -0.34% -0.1260 0.4330 -0.41% -0.3419 0.9148 -0.36% -0.1197 0.5343 -0.32%
Term Loan -0.0263 0.0791 -0.07% -0.5006 0.0001 -0.66% -0.0263 0.0839 -0.07% -0.4655 0.0001 -0.64%
ln(1+#Branches) -1.2680 0.0001 -1.14% -0.5528 0.0342 -1.60% -1.2836 0.0001 -1.21% -0.4720 0.0390 -1.77%
ln(1+#Competitors) -1.0295 0.0001 -1.07% -0.0701 0.0085 -2.11% -1.0031 0.0001 -1.18% -0.0640 0.0073 -1.96%
4 Quarterly Dum. Yes Yes Yes Yes
8 State Dummies Yes Yes Yes Yes
38 SIC Dummies Yes Yes Yes Yes
Number of Obs 33,855 33,855
Pseudo R2 12.06% 12.04%

This table reports the results from estimating a logistic discrete-choice model of the bank�s credit decision by loan type
for our full sample (33,855 observations) using maximum likelihood. We estimate the speci�cation Pr fYi = 1 jxi g =
�(x0i�+1eloan � x0i), where 1eloan = 1 for online applications and 0 otherwise and � is the logistic distribution function,
with branch �xed e¤ects and compute clustered standard errors that are adjusted for heteroskedasticity across branch
o¢ ces and correlation within. The dependent variable is the bank�s decision to o¤er (Y = 1: 3,135 and 13,102 observations
for online and in-person loans, respectively) or to deny (Y = 0: 4,810 and 12,808 observations for online and in-person
loans, respectively) credit. The explanatory variables are our proxies for public, proprietary, and private information, bank-
borrower relationship characteristics, �rm attributes, measures of the local credit market�s competitiveness and various
control variables. See Section 3 for a description of the variables and the notes to Table 2 for further methodological
details.
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Table 5: Determinants of the O¤ered Loan Rate

Speci�cation 1 2 3
Loan Type eLoans In-Person Loans eLoans In-Person Loans eLoans In-Person Loans
Variable Coe¤ P -val Coe¤ P -val Coe¤ P -val Coe¤ P -val Coe¤ P -val Coe¤ P -val

Constant 7.8736 0.0001 7.4440 0.0001 7.7973 0.0001
eLoan (1eloan = 1) -1.3454 0.0001 -1.2883 0.0001 -1.3791 0.0001
ln(1+XSBI) -1.2408 0.0001 -0.6463 0.0001 -1.2904 0.0001 -0.6844 0.0001
ln(1+Internal Score) -0.2695 0.0001 -1.6531 0.0001
Private-Info. Res. -0.1488 0.2720 -0.4764 0.0001
Scope -0.4919 0.0001 -0.3281 0.0001 -0.4614 0.0001 -0.2988 0.0001 -0.4309 0.0012 -0.3091 0.0001
ln(1+M. on Books) -0.7862 0.0457 -0.3787 0.0001 -0.7186 0.0466 -0.3573 0.0001 -0.7367 0.0330 -0.3807 0.0001
Scope�PIR -0.0311 0.7882 -0.1985 0.0001
ln(1+MOB)�PIR -0.0522 0.7008 -0.1289 0.0188
ln(1+M. in Business) -0.9037 0.0877 -0.1458 0.2950 -0.8338 0.1816 -0.1374 0.3741 -0.8329 0.0560 -0.1455 0.3932
ln(1+Net Income) -0.3180 0.2907 -0.7772 0.0001 -0.3075 0.3167 -0.7621 0.0001 -0.2994 0.3842 -0.7600 0.0001
ln(1+CSHPI) -0.5259 0.0590 -0.6326 0.0001 -0.5180 0.0953 -0.5737 0.0001 -0.5487 0.1345 -0.5847 0.0001
ln(1+F-B Dist) -1.7713 0.0010 -1.9030 0.0012 -1.1433 0.5154 -1.0574 0.4736 -1.1096 0.5960 -1.0688 0.5194
ln(1+F-C Dist) 0.7113 0.0001 0.9647 0.0052 0.1970 0.9350 0.5463 0.2450 0.1880 0.9161 0.6134 0.4235
Collateral -2.3422 0.0001 -2.3782 0.0001 -2.3203 0.0001 -2.2421 0.0001 -2.4330 0.0001 -2.1043 0.0001
Primary Guarantor -0.8130 0.0290 -0.2991 0.0009 -0.7462 0.0459 -0.2815 0.0012 -0.7275 0.0248 -0.2788 0.0002
SBA Guarantee 0.4457 0.3134 0.3260 0.0247 0.4257 0.3878 0.3057 0.0260 0.4032 0.3830 0.3231 0.0283
Term Loan 1.3000 0.0370 0.3586 0.0001 1.2480 0.0408 0.3508 0.0001 1.2241 0.0493 0.3171 0.0001
ln(1+Maturity) -0.3996 0.0001 -0.7342 0.0001 -0.3752 0.0001 -0.6924 0.0001 -0.3019 0.0001 -0.5951 0.0001
ln(1+#Branches) -0.1847 0.8730 -0.0534 0.7580 -0.1752 0.8977 -0.0515 0.8930 -0.1701 0.8911 -0.0544 0.9015
ln(1+#Competitors) -0.3311 0.9314 -0.3531 0.3885 -0.3197 0.8997 -0.3244 0.5000 -0.2989 0.9616 -0.3113 0.4671
UST Yield 0.2622 0.0001 0.2925 0.0001 0.2472 0.0001 0.2723 0.0001 0.2691 0.0001 0.3016 0.0001
Term Spread 0.2788 0.0001 0.4356 0.0041 0.2739 0.0001 0.4184 0.0081 0.2704 0.0001 0.4516 0.0003
Lambda 0.6642 0.0463 -0.3814 0.0062 0.5893 0.2420 -0.2920 0.4678 0.5861 0.2489 -0.2960 0.4689
4 Quarterly Dum. Yes Yes Yes Yes Yes Yes
8 State Dummies Yes Yes Yes Yes Yes Yes
38 SIC Dummies Yes Yes Yes Yes Yes Yes
Number of Obs 16,237 16,237 16,237
Adjusted R2 14.06% 17.28% 17.15%

This table reports the results from estimating linear models of the o¤ered loan rate (APR: all-in cost of the loan) of
the form ri = x0i�+1eloan � x0i + "i, where 1eloan = 1 for online applications and 0 otherwise, by OLS with branch
�xed e¤ects and clustered standard errors that are adjusted for heteroskedasticity across branch o¢ ces and correlation
within. The explanatory variables are our proxies for public, proprietary, and private information, bank-borrower
relationship characteristics, �rm attributes, and various control variables. Lambda is the inverse Mills ratio (hazard
rate) for the logistic distribution required by the Heckman procedure for sample-selection bias. See Section 3 for a
description of the variables.
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Table 6: Descriptive Statistics for Accepted and Declined Credit O¤ers

Panel A: Online (Transactional) Loan O¤ers

Loan-O¤er Decision Accept Decline t-Test
Variable Mean Median Std Dev Mean Median Std Dev P -val

Loan Rate (APR: all-in cost of loan) 6.81% 6.63% 1.85% 7.65% 8.16% 2.58% 0.0000
Loan Amount $37,789 $34,987 $124,485 $32,833 $32,737 $138,135 0.4546
Maturity (years) 5.34 5.20 2.02 5.87 5.36 2.51 0.0000
Term Loan (vs. Credit-Line) 14% 33% 13% 41% 0.6450
Collateral 54% 31% 34% 39% 0.0000
Primary Guarantor 28.55% 33.88% 18% 42% 0.0000
SBA Guarantee 0.76% 2.33% 1.08% 2.85% 0.0115
Internal Credit Score 1062.51 1027.93 79.75 987.04 1070.79 97.66 0.0000
Public (XSBI) Credit Score 728.31 716.08 45.24 734.82 726.94 49.24 0.0067
Private-Information Residual 0.03 0.02 0.46 0.03 0.02 0.56 0.8598
Scope of Banking Relationship 23.29% 30.03% 16% 36% 0.0000
Months on Books 37.88 30.79 53.57 44.59 30.62 65.75 0.0208
Monthly Deposit Account Balance $14,050 $12,056 $15,067 $14,071 $12,756 $18,660 0.9797
Months in Business 76.15 60.66 43.27 56.60 60.43 53.23 0.0000
Firm�s Monthly Net Income $81,123 $75,927 $101,117 $85,128 $75,440 $124,760 0.4652
Firm-Bank Distance (miles by car) 84.22 31.31 81.20 75.50 31.86 100.00 0.0476
Firm-Comp Distance (miles by car) 0.97 0.51 1.21 0.88 0.53 1.52 0.1743
Maturity-Matched UST Yield 4.33% 3.67% 2.31% 2.94% 4.28 2.87% 0.0000
5Y - 3M UST Yield Spread (bpts) 207.35 196.46 55.14 184.49 216.48 66.99 0.0000
Number of Observations 2,715 420 3,135

Panel B: In-Person (Relationship) Loan O¤ers

Loan-O¤er Decision Accept Decline t-Test
Variable Mean Median Std Dev Mean Median Std Dev P -val

Loan Rate (APR: all-in cost of loan) 8.58% 8.16% 2.59% 8.52% 8.28% 2.76% 0.5266
Loan Amount $46,833 $39,970 $42,806 $49,300 $41,089 $57,307 0.1017
Maturity (years) 6.25 6.15 5.41 6.46 6.29 5.36 0.2462
Term Loan (vs. Credit-Line) 21.97% 47.48% 29.66% 37.45% 0.0000
Collateral 62.07% 48.51% 60.97% 45.84% 0.5093
Primary Guarantor 35.45% 47.68% 33.21% 45.35% 0.1689
SBA Guarantee 0.52% 4.56% 1.39% 3.46% 0.0000
Internal Credit Score 1046.79 1046.92 141.72 1047.86 1066.65 85.15 0.8216
Public (XSBI) Credit Score 715.94 708.63 54.03 719.03 713.03 58.94 0.0968
Private-Information Residual 0.04 0.01 0.68 0.04 0.01 0.75 0.8812
Scope of Banking Relationship 35.66% 43.67% 35.29% 41.79% 0.8023
Months on Books 43.81 30.48 58.79 46.78 31.31 48.51 0.1358
Monthly Deposit Account Balance $18,013 $11,954 $65,413 $19,238 $11,942 $48,615 0.5788
Months in Business 118.47 97.83 111.38 103.14 97.91 93.35 0.0000
Firm�s Monthly Net Income $114,131 $94,861 $271,336 $114,889 $96,580 $175,969 0.9337
Firm-Bank Distance (miles by car) 10.11 2.64 21.87 10.02 2.17 23.75 0.9107
Firm-Comp Distance (miles by car) 1.12 0.55 1.62 1.12 0.39 1.72 0.9879
Maturity-Matched UST Yield 3.39% 3.37% 1.16% 3.87% 3.70% 1.04% 0.0000
5Y - 3M UST Yield Spread (bpts) 216.19 208.40 55.65 240.21 211.66 61.23 0.0000
Number of Observations 12,187 915 13,102

This table provides summary statistics for key variables described in Section 3 as a function of the borrower�s decision
to accept (online and in-person applications: 2,715 and 12,187 observations, respectively) or to decline (420 and 915
observations, respectively) the bank�s loan o¤er by lending channel. The last column indicates the P -values of a two-sided
t-test for the equality of the variables�mean conditional on the applicant�s decision.
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Table 7: The Decision to Decline a Loan O¤er

Speci�cation 1 2
Loan Type eLoans In-Person Loans eLoans In-Person Loans
Variable Coe¤ P -val Marg Coe¤ P -val Marg Coe¤ P -val Marg Coe¤ P -val Marg

Constant -4.4031 0.0001 -4.8724 0.0001
eLoan (1eloan = 1) 1.0927 0.0001 4.88% 1.1135 0.0001 4.28%
ln(1+XSBI) 1.6612 0.0001 22.89% 0.7772 0.0001 25.52% 1.6532 0.0001 27.10% 0.7697 0.0001 30.35%
ln(1+Internal Score) 0.2839 0.0001 2.75% 0.5800 0.0001 8.72%
Private-Info. Res. 0.3753 0.0200 3.65% 0.5379 0.0001 10.70%
Scope -2.5589 0.0001 -4.96% -1.0172 0.0242 -3.98% -2.4749 0.0001 -4.91% -1.0038 0.0390 -3.20%
ln(1+M. on Books) -1.5607 0.0001 -3.52% -1.8461 0.0001 -4.17% -1.6741 0.0001 -3.69% -1.7965 0.0001 -4.09%
Scope�PIR 0.1303 0.6991 0.44% 0.6093 0.0001 3.63%
ln(1+MOB)�PIR 0.0627 0.9680 0.23% 0.7223 0.0001 3.32%
ln(1+M. in Business) -0.2590 0.3837 -0.30% -0.3124 0.0207 -0.20% -0.2741 0.3005 -0.34% -0.3325 0.0289 -0.22%
ln(1+Net Income) 2.3368 0.0001 1.72% 1.9730 0.0001 2.48% 2.3335 0.0001 2.62% 1.9760 0.0001 2.43%
ln(1+CSHPI) 0.9326 0.0088 0.66% 0.0262 0.95 0.31% 1.0016 0.0004 0.65% 0.0276 0.9315 0.34%
ln(1+F-B Dist) 2.1461 0.0001 1.82% 2.0528 0.0001 0.97% 2.0690 0.0001 1.66% 2.0314 0.0001 0.85%
ln(1+F-C Dist) -1.0768 0.0001 -0.31% -1.0918 0.0001 -0.27% -1.0525 0.0001 -0.35% -1.0580 0.0001 -0.25%
Collateral 0.0422 0.9850 0.15% 0.1780 0.5530 0.20% 0.0431 0.9240 0.15% 0.1812 0.7690 0.28%
Primary Guarantor 2.0609 0.0001 3.92% 2.1411 0.0001 4.94% 2.0262 0.0001 4.00% 2.2082 0.0001 4.98%
SBA Guarantee 1.2450 0.0001 0.03% 0.2710 0.0248 0.11% 1.2261 0.0001 0.08% 0.2630 0.0289 0.11%
Term Loan -0.7127 0.0001 -0.38% -0.0122 0.9890 -0.03% -0.6795 0.0001 -0.34% -0.0116 0.9276 -0.07%
APR 0.2651 0.0001 9.48% 0.3955 0.0001 12.82% 0.2587 0.0001 9.62% 0.3752 0.0001 11.80%
ln(1+Loan Amount) -2.0620 0.0001 -4.12% -2.0135 0.0001 -2.27% -2.1222 0.0001 -4.59% -1.9767 0.0001 -2.63%
ln(1+Maturity) -0.1770 0.0001 -0.95% -0.2959 0.0001 -1.37% -0.1793 0.0001 -1.01% -0.2752 0.0001 -1.66%
ln(1+#Branches) 0.4441 0.4853 0.16% 0.4857 0.0440 0.35% 0.4024 0.7751 0.17% 0.4835 0.0204 0.34%
ln(1+#Competitors) 0.6081 0.0222 0.29% 0.0237 0.9307 0.13% 0.6429 0.0229 0.27% 0.0251 0.9586 0.18%
UST Yield 0.8489 0.0001 2.36% 1.1566 0.0001 3.50% 0.8587 0.0001 2.69% 1.1876 0.0001 3.80%
Term Spread -1.0548 0.0290 -1.70% -1.0086 0.0001 -2.65% -1.0109 0.0479 -1.66% -0.9967 0.0001 -2.78%
4 Quarterly Dum. Yes Yes Yes Yes
8 State Dummies Yes Yes Yes Yes
38 SIC Dummies Yes Yes Yes Yes
Number of Obs 16,237 16,237
Pseudo R2 6.72% 6.83%

This table reports the results from estimating a logistic discrete-choice model of the borrower�s decision to refuse the
bank�s loan o¤er and to seek credit elsewhere by full-information maximum likelihood for the subsample of successful
loan applications (15,897 observations). As before, we use branch �xed e¤ects and clustered standard errors that are
adjusted for heteroskedasticity across branch o¢ ces and correlation within. The dependent variable is the applicant�s
decision to decline (Y = 1: 420 online and 915 in-person observations) or to accept (Y = 0: 2,715 online and 12,187
in-person observations) the bank�s o¤er; the explanatory variables are our usual proxies for public, proprietary, and private
information, bank-borrower relationship characteristics, �rm attributes, and various control variables. See Section 3 for a
description of the variables and the notes to Table 2 for further details.
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Table 8: The Likelihood of Credit Delinquency

Speci�cation 1 2
Loan Type eLoans In-Person Loans eLoans In-Person Loans
Variable Coe¤ P -val Marg Coe¤ P -val Marg Coe¤ P -val Marg Coe¤ P -val Marg

Constant -1.1865 0.0001 -1.1872 0.0001
eLoan (1eloan = 1) 1.1476 0.0001 2.72% 1.1523 0.0001 2.95%
ln(1+XSBI) -1.8501 0.0001 -19.97% -0.9446 0.0001 -21.35% -1.7680 0.0001 -22.79% -0.9028 0.0001 -20.31%
ln(1+Internal Score) -0.2720 0.0001 -4.49% -0.4469 0.0001 -9.82%
Private-Info. Res. -0.2656 0.0001 -4.12% -0.1027 0.0001 -12.88%
Scope -0.4961 0.0001 -1.06% -0.7620 0.0001 -2.78% -0.5133 0.0001 -1.20% -0.7598 0.0001 -2.94%
ln(1+M. on Books) -0.9643 0.0289 -0.96% -0.3010 0.0001 -3.50% -1.0539 0.0001 -0.91% -0.3225 0.0001 -3.18%
Scope�PIR -0.5721 0.0001 -1.84% -0.3474 0.0001 -3.38%
ln(1+MOB)�PIR -0.4899 0.3507 -0.32% -0.2096 0.0140 -1.62%
ln(1+M. in Business) -0.8820 0.0582 -2.87% -0.0165 0.8617 -3.24% -0.8561 0.0770 -3.50% -0.0172 0.8720 -3.83%
ln(1+Net Income) -0.5422 0.0001 -2.18% -0.0842 0.0001 -1.97% -0.5806 0.0001 -2.59% -0.0919 0.0001 -1.83%
ln(1+CSHPI) -0.8409 0.0001 -0.63% -0.0706 0.0001 -0.49% -0.9012 0.0070 -0.70% -0.0736 0.0001 -0.47%
ln(1+F-B Dist) 0.2819 0.5480 0.11% 0.2339 0.3728 0.12% 0.2674 0.6844 0.12% 0.2529 0.2015 0.19%
ln(1+F-C Dist) -0.7299 0.3930 -0.04% -0.2175 0.5770 -0.04% -0.6994 0.6510 -0.04% -0.2308 0.4900 -0.08%
Collateral -0.5385 0.0001 -1.43% -0.1912 0.0001 -1.91% -0.5871 0.0001 -1.82% -0.1967 0.0001 -2.35%
Primary Guarantor -0.3894 0.0001 -2.80% -0.5462 0.0001 -1.31% -0.3952 0.0001 -2.48% -0.5377 0.0001 -1.63%
SBA Guarantee 2.9317 0.0001 0.33% 0.5753 0.0001 2.95% 3.0405 0.0001 0.23% 0.5554 0.0001 3.20%
Term Loan 0.2625 0.0001 0.42% 0.6510 0.0001 0.26% 0.2733 0.0001 0.59% 0.6747 0.0001 0.34%
APR 2.0545 0.0001 4.99% 1.1254 0.0191 7.06% 1.9412 0.0001 4.97% 1.1269 0.0121 7.02%
ln(1+Loan Amount) -0.9771 0.0001 -8.57% -1.5777 0.0001 -9.79% -1.0305 0.0001 -10.88% -1.5018 0.0001 -9.37%
ln(1+Maturity) -0.4464 0.0001 -1.09% -0.8171 0.0001 -1.44% -0.4987 0.0001 -1.29% -0.8007 0.0001 -1.59%
ln(1+#Branches) 2.7084 0.0001 0.20% 0.1071 0.0001 0.37% 2.6964 0.0001 0.25% 0.1146 0.0001 0.41%
ln(1+#Competitors) 3.7498 0.0001 0.51% 0.1644 0.0001 0.12% 3.8523 0.0001 0.47% 0.1691 0.0001 0.15%
UST Yield 0.4750 0.2840 0.47% 0.4661 0.0001 0.71% 0.4515 0.3355 0.42% 0.4427 0.0001 0.75%
Term Spread 1.1993 0.0001 1.47% 1.8662 0.0001 1.43% 1.2402 0.0001 1.71% 1.8641 0.0001 1.09%
4 Quarterly Dum. Yes Yes Yes Yes
8 State Dummies Yes Yes Yes Yes
38 SIC Dummies Yes Yes Yes Yes
Number of Obs 14,902 14,902
Pseudo R2 12.44% 12.11%

This table reports the results from estimating a logistic model of the likelihood that a loan becomes 60 days overdue
within 18 months of origination by full-information maximum likelihood for the subsample of actual loans booked by
the bank (14,613 observations). Again, we use branch �xed e¤ects and clustered standard errors that are adjusted for
heteroskedasticity across branch o¢ ces and correlation within. The dependent variable is the performance status of the
loan during its �rst 18 months: at most 60 days overdue (corresponding to our bank�s internal de�nition of a delinquent
loan Y = 1: 91 and 319 online and in-person observations, respectively), or current (Y = 0: 2,624 and 11,868 online
and in-person observations, respectively). The explanatory variables are our proxies for public, proprietary, and private
information, bank-borrower relationship characteristics, �rm attributes, and various control variables; see Section 3 for a
description of the variables and the notes to Table 2 for further details.
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