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Abstract: I consider a real business cycle model in which agents have private information about

their stochastic value of leisure. For the case of logarithmic preferences I provide an analytical

characterization of the solution to the associated mechanism design problem. Moreover, I show

a striking irrelevance result: That the stationary behavior of all aggregate variables are exactly

the same in the private information economy as in the full information case. I then introduce a

new computational method to show that the irrelevance result holds numerically for more general

CRRA preferences.
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1 Introduction

At least since the seminal paper by Krusell et al. (1998) there has been a long literature analyzing

the effects of exogenous forms of market incompleteness on aggregate fluctuations. The purpose of

this paper is to take a more primitive approach by exploring the effects of restrictions to perfect risk

sharing but when these restrictions arise optimally in response to information frictions. In order

to do this the paper merges two basic benchmarks in the macroeconomics and private information

literatures: A standard real business cycle (RBC) model and a Mirleesian economy. The mechanism

design problem for the resulting economy is then solved for and its business cycle fluctuations

compared to those of the full information case. The paper is not only interested in evaluating the

*I thank V.V. Chari, Chris Phelan, Venky Venkateswaran and participants at various seminars and conferences

for useful comments. The views express here do not necessarily reflect the position of the Federal Reserve Bank of

Chicago or the Federal Reserve System. Address: Federal Reserve Bank of Chicago, Research Department, 230 South

LaSalle Street, Chicago, IL 60604. E-mail: mveracierto@frbchi.org. Phone: (312) 322-5695.
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effects of private information on aggregate fluctuations, but in characterizing the behavior of the

resulting optimal contracts and in exploring the implications for the optimal amount of consumption

and employment inequality over the business cycle.

The model used is a simple RBC model with private information. Agents value consumption

and leisure and receive idiosyncratic shocks to their value of leisure. These shocks, which are i.i.d.

over time and across individuals, are assumed to be private information. The production technology

is standard. Output, which can be consumed or invested, is produced with capital and labor using

a Cobb-Douglas production function subject to an aggregate productivity shock. The aggregate

shock follows an AR(1) process.

Following the literature, a dynamic contract is given a recursive formulation in which its state

is given by a promised value to the agent. Given the current state, the contract specifies current

consumption, current hours worked and next-period promised values as a function of the value of

leisure reported by the agent. Since the model has a large number of agents and the shocks to the

value of leisure are idiosyncratic, the social planner needs to keep track as a state variable the whole

distribution of promised values across individuals. Given this distribution, the aggregate stock of

capital and the aggregate productivity level, the social planner seeks to maximize the present dis-

counted utility of agents subject to incentive compatibility, promise keeping and aggregate resource

feasibility constraints.

For the case in which the utilities of consumption and leisure are both logarithmic (a benchmark

case in the RBC literature), the paper provides a sharp analytical characterization of the solution to

the mechanism design problem. Consumption, hours worked and next-period promised values are

decreasing functions of the reported value of leisure. Moreover, the utility of consumption, utility

of leisure and next-period promised values are all linear, strictly increasing functions of the current

promised value. The slopes of these functions are all independent of the reported value of leisure,

and while the utilities of consumption and leisure have a common slope less than one, the slope of

next-period promised values is equal to one (as a consequence, promised values follow a random

walk). Over the business cycle all of these functions shift vertically while maintaining constant

the differences between the high and low values of leisure. In turn, the distributions of promised

values and log-consumption levels shift horizontally over the business cycle while maintaining their

shapes. While consumption inequality is constant over the business cycle, the dispersion of the

distribution of log-hours worked is countercyclical. In terms of aggregate dynamics the paper finds

a striking irrelevance result: The business cycle fluctuations of all macroeconomic variables (i.e.

aggregate output, consumption, investment, hours worked and capital) are exactly the same under
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private information as under full information. That is, once the information frictions are dealt with

in an optimal way they have no implications for the aggregate dynamics of the economy.

For preferences other than the log-log case, analytical results are no longer available and the

model must be solved for numerically. The high dimensionality of the state space, which includes

the distribution of promised values across individuals, makes computations difficult. A second

contribution of the paper is to develop a strategy that makes this problem tractable. In fact, the

computational method described here is not only applicable to the model in this paper but to a

wide class of economies with heterogeneous agents and aggregate uncertainty.2 The basic strategy

is to parametrize individual decision rules as spline approximations and to keep long histories of

the spline coefficients as state variables. Starting from the deterministic steady state distribution,

the history of decision rules implied by the spline coefficients is then used to obtain the current

distribution of individuals across individual states. This is done performing a large number of Monte

Carlo simulations. I then linearize the first order conditions with respect to the coefficients of the

spline approximations and solve the resulting linear rational expectations model using standard

methods.

Applying this computational method to the economy with logarithmic preferences recovers all of

the analytical results proved earlier on. Since nothing in the computational method takes advantage

of the particular functional form of the utility function, this provides significant evidence about

the accuracy of the method. Having established its accuracy the method is then used to analyze

more general preferences. However, for all the CRRA preferences considered the same basic result

is obtained: The stationary behavior of all macroeconomic variables in an economy with private

information is numerically indistinguishable from the same economy with full information.

Dynamic optimal contracts under private information have been used to study a variety of issues

in macroeconomics. For example, they have been used to study optimal consumption inequality (e.g.

Atkeson and Lucas 1992, Green 1987, etc.), optimal unemployment insurance (e.g. Hopenhayn and

Nicolini 1997, Kocherlakota 2004, etc.), and taxation (e.g. Golosov et al. 2007, Farhi and Werning

2012, etc.). However, any interactions with aggregate fluctuations have been mostly neglected. A

notable exception is Phelan (1994) who considered a model in which agents take hidden actions

that, together with the realization of a public i.i.d. aggregate shock and an unobservable i.i.d.

idiosyncratic shock, determine their observed output levels. Assuming that actions are taken prior

2The computational method should be applicable to any model in which agents have smooth decision rules, are

subject to idiosyncratic uncertainty, and in which the aggregate shocks are small and follow autorregressive processes.
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to the realization of the aggregate shock, that agents have CARA preferences and that agents have

a constant probability of dying, he was able to characterize the model analytically. He found two

important results: that the cross-sectional distribution of consumption levels depends on the entire

history of aggregate shocks and that there is a well defined long-run distribution over cross-sectional

consumption distributions.

My model differs from Phelan (1994), not only because it has hidden types (adverse selection)

instead of hidden actions (moral hazard), but because it has a neoclassical production function

with persistent aggregate shocks. Besides these differences, an apparent similarity is that even in

my model with logarithmic preferences the cross-sectional distributions of consumption and leisure

depends on the entire history of aggregate shocks. However, this is only due to the presence of

capital. Without it I would get that these cross-sectional distributions only depend on the current

realization of aggregate productivity.

In fact the lack of memory in the case of no capital and logarithmic preferences has already been

shown by DaCosta and Luz (2013) in a related setting. In that paper DaCosta and Luz consider

a finite horizon version of Phelan’s economy in which actions are taken after the realization of

aggregate productivity, agents have CRRA preferences, and agents live as long as the economy.

Contrary to Phelan (1994), their cross-sectional distribution of consumption becomes degenerate

as the time horizon of the economy becomes large. Interestingly, DaCosta and Luz find that when

log preferences are used that the cross-sectional distribution of consumption does not depend on

the entire history of aggregate shocks but on the current realization. However, when the elasticity

of intertemporal substitution is different than one, the cross-sectional distribution of consumption

has memory of the past history. A major contribution of this paper over DaCosta and Luz (2013)

for the case of logarithmic preferences is that, in addition to analyzing an economy with capital and

persistent aggregate shocks, I provide a tight analytical characterization of the optimal contracts

and an equivalence result with the full information economy. For preferences different from the

logarithmic case, I am able to compute solutions for infinite horizon economies instead of two-

periods cases.

The equivalence with the full information economy in terms of aggregate variables is related to

a result in Farhi and Werning (2012). In that paper Fahri and Werning also consider a Mirleesian

economy similar to the one in this paper except that it has no aggregate productivity shocks,

idiosyncratic shocks are persistent and the social planner is only allowed to optimize with respect

to the consumption allocations (labor allocations are taken to be beyond his control). Starting

from the steady state of a Bewley economy they perform the dynamic public finance experiment
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of evaluating the welfare gains of moving to an optimal consumption plan. They show that when

preferences are logarithmic, along the transitionary dynamics of the model all aggregate variables

behave exactly the same as in a representative agent economy. Interestingly, I obtain a similar

equivalence result when optimizing with respect to labor as well as consumption and when the

economy is subject to aggregate productivity shocks. However, contrary to Farhi and Werning

(2012), the equivalence result with a representative agent economy only holds for the long-run

stationary equilibrium of the model. The transitionary dynamics from an arbitrary initial state

will generally differ from the representative agent case.3

The paper is organized as follows. Section 2 builds intuition for the main results in the paper by

analyzing a simple static economy. Section 3 describes the dynamic economy. Section 4 describes

the mechanism design problem for this economy in recursive form. Section 5 establishes the irrele-

vance result for the log-log case. Section 6 characterizes the cyclical behavior of the cross-sectional

amount of consumption and employment inequality in the log-log case. Section 7 describes the

computational method. Section 8 presents the numerical results. Finally, Section 9 concludes the

paper.

2 A static economy

This section analyzes the optimal provision of social insurance and incentives in a static economy.

The purpose is to build intuition towards one of the main results in the paper: The irrelevance of

private information for aggregate allocations in the case of logarithmic preferences.

The economy is populated by a unit measure of agents with preferences given by

E {u (c) + sn (1− h)}

where c is consumption, h is hours worked, s is the idiosyncratic value of leisure and u and n are

continuously differentiable, strictly increasing and strictly concave utility functions. The idiosyn-

cratic value of leisure s takes two possible values: sL and sH , with sL < sH . Realizations of s are

i.i.d. across individuals and are distributed according to a distribution function ψ = (ψL, ψH). A

key assumption is that s is private information of the individual.

3Strictly speaking, the transitionary dynamics differ from those of a representative agent economy with stationary

preferences. Section 5 shows that the transitionary dynamics generally coincide with those of a representative agent

economy with preferences that shift over time.
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Output is produced according to the following production function:

Y = ezF (H),

where Y is aggregate output, H is aggregate hours worked and F is continuously differentiable,

strictly increasing, concave and satisfies the Inada conditions.

The mechanism design problem is the following:

max
∑
s

[us + sns]ψs (2.1)

subject to ∑
s

u−1 (us)ψs ≤ ezF (H), (2.2)

H ≤
∑
s

[
1− n−1 (ns)

]
ψs, (2.3)

uL + sLnL ≥ uH + sLnH , (2.4)

where equation (2.2) is the aggregate feasibility constraint for the consumption good, equation (2.3)

is the aggregate feasibility constraint for hours worked and equation (2.4) is the binding incentive

compatibility constraint.4 I formulate the planning problem in terms of the utilities of consumption

and leisure (instead of consumption and leisure levels) in order to obtain a convex feasible set, which

is crucial for characterizing the solution using first order conditions.

The unique solution to this problem satisfies equations (2.2)-(2.4) and the following first order

conditions:

0 = ψL − λ
1

u′ (cL)
ψL + λξ, (2.5)

0 = ψH − λ
1

u′ (cH)
ψH − λξ, (2.6)

0 = sLψL − λq
1

n′ (1− hL)
ψL + sLλξ, (2.7)

0 = sHψH − λq
1

n′ (1− hH)
ψH − sLλξ, (2.8)

q = ezF ′(H), (2.9)

where λ, λq, and λξ are the Lagrange multipliers of equations (2.2), (2.3) and (2.4), respectively,

and where cs = u−1 (us) and 1−hs = n−1 (ns). Observe that in these equations (and in the rest of

the paper) a variable xs is denoted xL when s = sL and xH when s = sH .

4It can be shown that the truth-telling constraint for an agent with the high value of leisure will not be binding

under the optimal allocation. See Section 2 in the Technical Appendix for the details.
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From equations (2.6) and (2.8) we have that

q
1

n′ (1− hH)
= sH

1

u′ (cH)
+

(sH − sL)λξ

λψH
.

Hence,

q > sH
n′ (1− hH)

u′ (cH)
. (2.10)

Since the marginal rate of substitution of leisure for consumption is less than the shadow wage rate

q, it follows that under an optimal plan agents with the high value of leisure are “taxed” their labor

supply. On the contrary, from equations (2.5) and (2.7) we have that

q = sL
n′ (1− hL)

u′ (cL)
. (2.11)

That is, the labor supply decision of agents with the low value of leisure is undistorted.

Consider now the social planner problem of this same economy but under full information.

This problem is to maximize equation (2.1) subject to equations (2.2) and (2.3). Setting ξ = 0 in

equations (2.5)-(2.9) we get that the optimal allocation under full information satisfies:

C∗ = ezF (H∗), (2.12)

H∗ = h∗LψL + h∗HψH , (2.13)

λ∗ = u′ (C∗) , (2.14)

0 = sL − λ∗q∗
1

n′
(
1− h∗L

) , (2.15)

0 = sH − λ∗q∗
1

n′
(
1− h∗H

) , (2.16)

q∗ = ezF ′(H∗). (2.17)

That is, under full information agents’ consumption is fully insured and, while h∗H < h∗L, equations

(2.14)-(2.16) imply that both types of agents face zero labor supply taxes.

A crucial question is under what conditions the aggregate allocation of the full information

economy (C∗, H∗) is identical to that of the private information economy. To see this, lets try to

seek a solution to equations (2.2)-(2.9) that satisfy that H = H∗. In fact, in doing so it will be

convenient to rewrite those equations as follows:

cLψL + cHψH = C∗ (2.18)

hLψL + hHψH = H∗ (2.19)
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u (cL) + sLn (1− hL) = u (cH) + sLn (1− hH) (2.20)

0 = ψL − λ
1

u′ (cL)
ψL + λξ, (2.21)

1 = λ

[
1

u′ (cL)
ψL +

1

u′ (cH)
ψH

]
(2.22)

0 = sLψL − λq∗
1

n′ (1− hL)
ψL + sLλξ, (2.23)

s̄

[
1

u′ (cL)
ψL +

1

u′ (cH)
ψH

]
= q∗

[
1

n′ (1− hL)
ψL +

1

n′ (1− hH)
ψH

]
(2.24)

where, using equations (2.9) and (2.17), q has already been substituted by q∗ and s̄ = sLψL+sHψH .

Observe that equation (2.22) is obtained by adding equations (2.5) and (2.6) and that equation

(2.24) is obtained by adding equations (2.7) and (2.8) and using (2.22).

Equations (2.18)-(2.24) form a system of 7 equations in 6 unknowns: cL, cH , hL, hH , λ and ξ.

As a consequence, a solution will generally not exist. In particular, suppose that we have a solution

(cL, cH , hL, hH , λ, ξ) to equations (2.18)-(2.23). Then only by chance equation (2.24) would also be

satisfied. However, there is an exception: when 1/u′ is a linear function of c and 1/n′ is a linear

function of 1− h. Observe that in this case equation (2.24) reduces to

s̄
1

u′ (cLψL + cHψH)
= q∗

1

n′ (1− hLψL − hHψH)
(2.25)

and, using equations (2.18) and (2.19), to the following:

s̄
1

u′ (C∗)
= q∗

1

n′ (1−H∗)
. (2.26)

But this equation is guaranteed to hold since C∗ and H∗ correspond to a solution of the full

information planning problem. To see this, multiply equation (2.15) by ψL and equation (2.16) by

ψH , add them and use equation (2.14) to get:

s̄
1

u′ (C∗)
= q∗

[
1

n′
(
1− h∗L

)ψL +
1

n′
(
1− h∗H

)ψH] . (2.27)

Equation (2.26) now follows from equation (2.27) and the linearity of 1/n′.

This argument has established that logarithmic functional forms for both u and n are gener-

ally needed to get identical aggregate allocations under private and full information. Moreover,

equation (2.26) indicates that under logarithmic preferences the aggregate allocation of the private

information economy coincides with the aggregate allocation of a representative agent model with

preferences given by

ln (C) + s̄ ln (1−H) .
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Furthermore, from equations (2.12), (2.17) and (2.26) it can be verified that aggregate hours worked

H∗ are independent of aggregate productivity z (a standard result under separable and log of

consumption preferences). In addition, equations (2.2)-(2.9) imply that hL and hH are independent

of z while cL and cH vary proportionately with it. It follows that the cross sectional variances of

log-hours worked and of log-consumption levels are independent of z.

It is also useful to observe from equations (2.14), (2.18) and (2.22) that under logarithmic

preferences λ = λ∗. From equations (2.5), (2.6), (2.14) and the concavity of u we then see that

cH < C∗ < cL. From equations (2.7), (2.8), (2.15), (2.16), the concavity of n and the fact that

q = q∗ we also see that 1−hL < 1−h∗L and that 1−h∗H < 1−hH . Since, 1−h∗L < 1−h∗H if follows

that under private information agents not only receive less insurance in terms of consumption levels

but also in terms of leisure levels. Thus, while aggregate allocations are identical in the private and

full information cases, there are important differences in the individual allocations.

3 The dynamic economy

The previous section showed that when preferences are logarithmic (both in consumption and

in leisure), that the presence of private information becomes irrelevant for the optimal aggregate

allocation of a static economy. In what follows I explore if this irrelevance result can be extended to

a dynamic setting. There are three reasons for doing this. First, a static economy with logarithmic

preferences is quite uninteresting from a macroeconomic point of view since, as was previously

mentioned, aggregate hours are not affected by the realization of aggregate productivity. Second, in

a dynamic setting the social planner uses intertemporal rewards and punishments to induce truthful

revelation in addition to the intratemporal elements already present in a static environment. It is

unclear whether logarithmic preferences will be able to jointly aggregate these intertemporal and

intratemporal margins into those of a representative agent economy with full information. Third,

even if private information under logarithmic preferences plays no role for aggregate allocations

it seems important to characterize the cyclical behavior of the optimal amount of cross-sectional

inequality in consumption and hours worked within the realm of a realistic business cycle model.

The reason is that the presence of private information may be able to explain cross-sectional cyclical

observations that a representative agent model is not able to address. For these reasons, this section

incorporates the private information structure of the previous section into a standard real business

cycle model and characterizes its optimal allocation.

The economy is populated by a unit measure of agents subject to stochastic lifetimes. Whenever
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an agent dies he is immediately replaced by a newborn, leaving the aggregate population level

constant.5 The preferences of an individual born at date T are given by

ET

{ ∞∑
t=T

βt−Tσt−T [u (ct) + stn (1− ht)]

}
, (3.1)

where σ is the survival probability, 0 < β < 1 is the discount factor, and u and n have the same

properties as in the static economy. Realizations of the idiosyncratic value of leisure st ∈ {sL, sH}

are assumed to be i.i.d. not only across individuals but also across time.6

Output, which can be consumed or invested, is produced with the following production function:

Yt = eztKγ
t−1H

1−γ
t

where Yt is output, zt is aggregate productivity, Kt−1 is capital and Ht is hours worked. The

aggregate productivity level zt follows a standard AR(1) process given by:

zt+1 = ρzt + εt+1,

where 0 < ρ < 1 and εt+1 is normally distributed with mean zero and standard deviation σε.

Capital is accumulated using a standard linear technology given by

Kt = (1− δ)Kt−1 + It,

where It is gross investment and 0 < δ < 1.

4 Recursive mechanism design problem

This section provides a recursive formulation to the problem of a social planner that seeks to maxi-

mize utility subject to incentive compatibility, promise keeping and resource feasibility constraints.

In order to do this it will be important to distinguish between two types of agents: young and old.

A young agent is one that has been born at the beginning of the current period. An old agent is

one that has been born in some previous period.

5As in Phelan (1994), the stochastic lifetimes guarantee that there will be a stationary distribution of agents across

individual states. While there are other ways to generate this outcome, the advantage of having stochastic lifetimes

will become apparent in Section 7 once the computational method is described.

6In principle it would be desirable to introduce persistence to the idiosyncratic shocks. However, this would

require specifying a mechanism design problem with not only promise keeping constraints, but with threat keeping

constraints as well (see Fernandes and Phelan 2000). As a consequence, all allocation rules would be two dimensional,

making the analysis and computations quite more complicated.
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The social planner decides recursive plans for both types of agents. The state of a recursive plan

is the value (i.e. discounted expected utility) that the agent is entitled to at the beginning of the

period. Given this promised value, the recursive plan specifies the current utility of consumption,

the current utility of leisure and next period promised values as functions of the value of leisure

currently reported by the agent. The social planner is fully committed to the recursive plans that

he chooses and agents have no outside opportunities available.

A key difference between the young and the old is in terms of promised values. Since during

the previous period the social planner has already decided on some recursive plan for a currently

old agent, he is restricted to deliver the corresponding promised value during the current period.

On the contrary, the social planner is free to deliver any value to a currently young agent since this

is the first period that he is alive. Reflecting this difference, I will specify the individual state of

an old agent to be his promised value v and his current value of leisure s. His current utility of

consumption, utility of leisure and next-period promised values are denoted by uos (v), nos (v) and

wos (v, z′), respectively. In turn, the individual state of a young agent is solely given by his current

value of leisure s. His current utility of consumption, utility of leisure and next-period promised

values are denoted by uys, nys and wys (z′), respectively. Observe that next-period promised values

of young and old agents are allowed to be contingent on the realization of next-period aggregate

productivity z′.

The aggregate state of the economy is given by the triplet (zt,Kt−1, µt), where zt is the aggregate

productivity level, Kt−1 is the stock of capital, and µt is a measure describing the number of old

agents across individual promised values v.7 The social planner seeks to maximize the weighted

sum of welfare levels of current and future generations of young agents (the welfare levels of old

agents are predetermined by their promised values at the beginning of the period). In recursive

form, the social planner problem is described by the following Bellman equation:

V (zt,Kt−1, µt) = max

{
(1− σ)

∑
s

[uyst + snyst + βσEt (wys,t+1)]ψs + θEtV (zt+1,Kt, µt+1)

}
(4.1)

subject to:

(1− σ)
∑
s

u−1 (uyst)ψs +

∫ ∑
s

u−1 [uost (v)]ψsdµt +Kt − (1− δ)Kt−1 ≤ eztKγ
t−1H

1−γ
t , (4.2)

Ht ≤ (1− σ)
∑
s

{
1− n−1 (nyst)

}
ψs +

∫ ∑
s

{
1− n−1 [nost (v)]

}
ψsdµt, (4.3)

7Throughout the paper I follow the convention that a variable is dated t if it becomes known at date t.
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uyLt + sLnyLt + βσEt [wyL,t+1] ≥ uyHt + sLnyHt + βσEt [wyH,t+1] (4.4)

uoLt (v) + sLnoLt (v) + βσEt [woL,t+1 (v)] ≥ uoHt (v) + sLnoHt (v) + βσEt [woH,t+1 (v)] , (4.5)

v =
∑
s

{uost (v) + snost (v) + βσEt [wos,t+1 (v)]}ψs, (4.6)

µt+1 (B) = σ
∑
s

∫
{(v,s): wos,t+1(v)∈B}

ψsdµt + (1− σ)σ
∑

s: wys,t+1∈B
ψs, (4.7)

where Et denotes expectation conditional on zt and βσ < θ < 1 is the welfare weight of the next-

period generation relative to the current-period generation. Equation (4.2) describes the aggregate

feasibility constraint for the consumption good. It states that the total consumption of young

and old agents, plus aggregate investment cannot exceed aggregate output.8 Equation (4.3) is the

aggregate labor feasibility constraint. It states that the input of hours into the production function

cannot exceed the total hours worked by young and old agents. Equations (4.4) and (4.5) are the

binding incentive compatibility constraints of young and old agents, respectively. Equation (4.6)

is the promise keeping constraint. It states that the recursive plan for an old agent with promised

value v must provide him an expected utility equal to that promised value. Equation (4.7) is the

law of motion for the measure of old agents across promised values. It states that the number of

old agents that at the beginning of the following period will have a promised value in the Borel

set B is given by the sum of two terms. The first term sums all currently old agents that receive

a next-period promised value in the set B and do not die. The second term does the same for all

currently young agents. Observe that since next-period promised values wos,t+1 (v) and wys,t+1 are

contingent on the realization of next-period aggregate productivity zt+1, that the same is true for

the measure µt+1.

Since the objective function in equation (4.1) is linear and increasing and equations (4.2)-(4.7)

define a convex feasible set, the solution to the social planning problem is unique.9 This solution

satisfies equations (4.2)-(4.7) and the following first order conditions:

0 = ψL − λt
1

u′ (cyLt)
ψL + λtξyt, (4.8)

0 = ψH − λt
1

u′ (cyHt)
ψH − λtξyt, (4.9)

0 = sLψL − λtqt
1

n′ [1− hyLt]
ψL + sLλtξyt, (4.10)

8Observe that, given the constant probability of dying 1 − σ and the immediate replacement with newborns, the

number of young agents in the economy is always equal to 1 − σ.

9For a proof, see Section 1 in the Technical Appendix.
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0 = sHψH − λtqt
1

n′ [1− hyHt]
ψH − sLλtξyt, (4.11)

0 = βσψL + λtβσξyt − θλt+1σψLηt+1 (wyL,t+1) , (4.12)

0 = βσψH − λtβσξyt − θλt+1σψHηt+1 (wyH,t+1) , (4.13)

0 = − 1

u′ [coLt (v)]
ψL + ξot (v) + ηt (v)ψL, (4.14)

0 = − 1

u′ [coHt (v)]
ψH − ξot (v) + ηt (v)ψH , (4.15)

0 = −qt
1

n′ [1− hoLt (v)]
ψL + sLξot (v) + ηt (v) sLψL, (4.16)

0 = −qt
1

n′ [1− hoHt (v)]
ψH − sLξot (v) + ηt (v) sHψH , (4.17)

0 = λtβσξot (v) + λtηt (v)βσψL − θλt+1σψLηt+1 [woL,t+1 (v)] , (4.18)

0 = −λtβσξot (v) + λtηt (v)βσψH − θλt+1σψHηt+1 [woH,t+1 (v)] , (4.19)

0 = qt − eztKγ
t−1 (1− γ)H−γt , (4.20)

0 = −λt + θEt

{
λt+1

[
ezt+1γKγ−1

t H1−γ
t+1 + 1− δ

]}
, (4.21)

where λt, λtqt, λtξyt, λtξot (v) and λtηt (v) are the Lagrange multipliers of equations (4.2)-(4.6),

respectively.

Since ηt+1 is strictly increasing, u and n are strictly concave, and equations (4.4) and (4.5) hold

with equality, equations (4.14)-(4.19) imply that

coHt (v) < coLt (v) , (4.22)

hoHt (v) < hoLt (v) , (4.23)

woH,t+1 (v) < woL,t+1 (v) , almost surely. (4.24)

and equations (4.8)-(4.13) imply a similar relation for young agents.10 These relations are quite

intuitive. They state that when an agent (young or old) reports a high value of leisure, the planner

allows him to enjoy more leisure but, in compensation, he receives less consumption and is promised

a worse treatment in the future.

Since equations (4.8)-(4.11) are the same as equations (2.5)-(2.8) it follows that equations (2.10)

and (2.11) hold for young agents. Actually, it is straightforward to verify that equations (4.14)-

(4.17) imply that equations (2.10) and (2.11) also hold for old agents. That is, similarly to the

10See Section 2 in the Technical Appendix for a proof that ηt+1 is strictly increasing and other details.
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static economy, agents with the high value of leisure have their labor supply decision distorted while

agents with the low value of leisure do not (irrespective of the agents being young or old).

From equations (4.14), (4.15), (4.18), (4.19) and (4.21) we get that for every s,

u′ [cost (v)] = βEt

 ezt+1γKγ−1
t Ht+1

1−γ + 1− δ
1

u′[coL,t+1(wos,t+1(v))]
ψL + 1

u′[coH,t+1(wos,t+1(v))]
ψH

 , (4.25)

a relation known in the Dynamic Public Finance literature as the Inverse Euler equation. Applying

Jensen’s inequality to equation (4.25) we get that

u′ [cost (v)] < βEt
{

(rt+1 + 1− δ)
[
u′ [coL,t+1 (wos,t+1 (v))]ψL + u′ [coH,t+1 (wos,t+1 (v))]ψH

]}
,

(4.26)

where rt+1 = ezt+1γKγ−1
t Ht+1

1−γ . That is, there is a wedge in the intertemporal Euler equations

of old agents. Using equations (4.8), (4.9), (4.12), (4.13) and (4.21) we derive similar relations to

equations (4.25) and (4.26) but for young agents. We conclude that, irrespective of being young or

old, under an optimal allocation agents have their intertemporal decisions distorted.

5 An irrelevance result under logarithmic preferences

The previous section described the mechanism design problem in recursive form. However, date

0 is special because it has no ongoing recursive plans in place on which promised values must be

delivered. As a consequence, all agents at date 0 must be treated as young. The date-0 mechanism

design problem is thus given by

max

{∑
s

[uys0 + snys0 + βσEt (wys1)]ψs + θE0V (z1,K0, µ1)

}
(5.1)

subject to ∑
s

u−1 (uys0)ψs +K0 − (1− δ)K−1 ≤ ez0Kγ
−1H

1−γ
0 , (5.2)

H0 ≤
∑
s

{
1− n−1 (nys0)

}
ψs (5.3)

uyL0 + sLnyL0 + βσE0 [wyL,1] ≥ uyH0 + sLnyH0 + βσE0 [wyH,1] (5.4)

µ1 (B) = σ
∑

s: wys1∈B
ψs, (5.5)

where V is the value function in equation (4.1) and (z0,K−1) is taken as given. The solution to this

problem satisfies equations (4.2)-(4.21) for t ≥ 1, equations (5.2)-(5.5), and equations (4.8)-(4.13)

and (4.20)-(4.21) for t = 0.
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By contrast, consider the following non-stationary representative agent planning problem:

maxE0

{ ∞∑
t=0

αtθ
t [u (Ct) + s̄n (1−Ht)]

}
(5.6)

subject to:

Ct +Kt − (1− δ)Kt−1 ≤ eztKγ
t−1H

1−γ
t . (5.7)

where αt > 0 is a deterministic preference shifter with positive limit and (z0,K−1) is taken as given.

Its solution is characterized by equation (5.7) and the following first order conditions:

s̄n′ (1−Ht) = u′ (Ct) e
ztKγ

t−1 (1− γ)H−γt , (5.8)

1 = θ
αt+1

αt
Et

{
u′ (Ct+1)

u′ (Ct)

[
ezt+1γKγ−1

t H1−γ
t+1 + 1− δ

]}
. (5.9)

In what follows I show that when u and n are both logarithmic, the optimal aggregate allocation

of the economy with private information coincides with the solution to the representative agent

planning problem (5.6) under a particular sequence {αt}∞t=0.

Under logarithmic u equations (4.8)-(4.9) imply that the average consumption of young agents

is given by

Cyt =
∑
s

cystψs =
1

λt
, for t ≥ 0, (5.10)

and equations (4.14)-(4.15) imply that the average consumption of old agents is given by

Cot =
1

σ

∫ ∑
s

cost (v)ψsdµt =
1

σ

∫
ηt (v) dµt, for t ≥ 1. (5.11)

From equations (4.10)-(4.11) and the integral of equations (4.16)-(4.17) we have under logarith-

mic n that

(1− σ) s̄
1

λt
+ s̄

∫
ηt (v) dµt = (1− σ) qt [(1− hyLt)ψL + (1− hyHt)ψH ] (5.12)

+ qt

∫
[(1− hoLt (v))ψL + (1− hoHt (v))ψH ] dµt, for t ≥ 1

and

s̄
1

λ0
= q0 [(1− hyL0)ψL + (1− hyH0)ψH ] . (5.13)

Since aggregate consumption is given by

Ct =

 (1− σ)Cyt + σCot , for t ≥ 1,

Cy0 , for t = 0,
(5.14)

it follows from equations (4.3),(5.3) and (5.10)-(5.14) that

s̄Ct = qt (1−Ht) , for t ≥ 0, (5.15)
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which is the representative agent intratemporal condition (5.8). Observe that we have obtained this

aggregate optimality condition for the same reason as in the static economy: The intratemporal

optimality conditions in the private information economy are linear under logarithmic preferences.

Deriving the representative agent intertemporal Euler equation (5.9) for a suitable sequence

{αt}∞t=0 is somewhat more involved. From equations (4.7), (4.12)-(4.13), (4.18)-(4.19) and (5.5) we

have that∫
ηt+1 (v) dµt+1 = σ

∫ ∑
s

ηt+1 [wos,t+1 (v)]ψsdµt + (1− σ)σ
∑
s

ηt+1 (wys,t+1)ψs

=
λtβσ

θλt+1

∫
ηt (v) dµt + (1− σ)

βσ

θλt+1
, for t ≥ 1 (5.16)

and ∫
η1 (v) dµ1 = σ

∑
s

η1 (wys,1)ψs =
βσ

θλ1
. (5.17)

Let {ρt}∞t=1 be defined as follows:

ρ1 =
βσ

θ
, (5.18)

ρt+1 =
βσ

θ
ρt + (1− σ)

βσ

θ
, for t ≥ 1.

From equations (5.16) and (5.17) it follows that

ρt = λt

∫
ηt (v) dµt, for t ≥ 1.

Then, the ratio of the average consumption of old agents to the average consumption of young

agents is given by
Cot
Cyt

=
1
σ

∫
ηt (v) dµt

1
λt

=
1

σ
ρt, for t ≥ 1,

and consequently,

Ct
Ct+1

=
(1− σ)Cyt + σCot

(1− σ)Cyt+1 + σCot+1

=
(1− σ) + ρt

(1− σ) + ρt+1

Cyt
Cyt+1

=
(1− σ) + ρt

(1− σ) + ρt+1

λt+1

λt
, for t ≥ 1. (5.19)

Also, observe that

C0

C1
=

Cy0
(1− σ)Cy1 + σCo1

=
1

(1− σ)Cy1 + ρ1C
y
1

1

λ0
=

1

(1− σ) + ρ1

λ1

λ0
. (5.20)

Defining {αt}∞t=0 as

αt =

 1, for t = 0

(1− σ) + ρt, for t ≥ 1,
(5.21)
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equations (5.19) and (5.20) can then be written as

Ct
Ct+1

αt+1

αt
=
λt+1

λt
, for t ≥ 0. (5.22)

From equations (4.21) and (5.22) it follows that the intertemporal Euler equation of the repre-

sentative agent (5.9) holds for t ≥ 0. Since equations (4.2) and (5.2) imply equation (5.7), we have

thus established the following Lemma.

Lemma 1 Suppose that u and n are logarithmic. Define α = {αt}∞t=0 as in equation (5.21). Then,

the optimal aggregate allocation of the economy with private information is identical to the

optimal allocation of the representative agent economy with preference shifters α.

Observe that the optimal allocation of the full information economy can be obtained by dropping

the incentive compatibility constraints (4.4), (4.5) and (5.4) and setting ξyt and ξot (v) to zero in

all first order conditions. Also observe that none of those incentive compatibility constraints or

positive values for ξyt or ξot (v) were used in the derivations of equations (5.15) and (5.22). We

thus have a second important Lemma.

Lemma 2 Suppose that u and n are logarithmic. Define α = {αt}∞t=0 as in equation (5.21). Then,

the optimal aggregate allocation of the economy with full information is identical to the optimal

allocation of the representative agent economy with preference shifters α.

Since the optimal aggregate allocations of the economy with private information and the econ-

omy with full information are equal to the same object we have the following Corollary:

Corollary 3 Suppose that u and n are logarithmic. Then, the optimal aggregate allocation of the

economy with private information is identical to the optimal aggregate allocation of the economy

with full information.

The reason why the allocations of the private information and full information economy do not

aggregate to a representative agent economy with stationary preferences (and preference shifters

are generally needed) is because the social planner is allowed to discount the welfare of future

generations at a different rate than private agents discount future utility. In fact, if we set the

relative Pareto weight θ to the private discount factor β we see from equation (5.18) that ρt = σ for

all t ≥ 1 and from equation (5.21) that αt = 1 for all t ≥ 0. That is, in this case the representative

agent economy has standard stationary preferences.
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Independently of the value of θ, however, from equation (5.18) we verify that ρt converges to a

positive value and, therefore, that αt converges to a positive value as well.11 Since it is well known

that the solution to the representative agent economy with stationary preferences (constant αt)

converges to a stationary stochastic process, from Lemmas 1 and 2 we can say the same about the

aggregate optimal allocations of the economies with private and full information. Thus, we have

the following Corollary.

Corollary 4 Suppose that u and n are logarithmic. Then, the aggregate optimal allocations of the

economies with private and full information converge to a stationary stochastic process. Moreover,

this stationary process is the one associated to a representative agent economy with stationary

preferences (zero preference shifters).

6 Cross-sectional heterogeneity under logarithmic preferences

The previous section showed that private information is irrelevant for aggregate business cycle

fluctuations when preferences are logarithmic. However, even in this case the lack of perfect in-

surance generates endogenous heterogeneity across individual agents that may help understand

cross-sectional features of the business cycle that economies with full information cannot address.

In order to study cross-sectional properties of the business cycle we need a sharper character-

ization of the private information optimal stationary allocation. The next Lemma provides such

characterization. In what follows, for any variable xt, ∆xt is defined to be the differences between

xt and its deterministic steady state value x̄.

Lemma 5 Suppose that u and n are logarithmic. Then, the stationary solution to the private

information planning problem satisfies that

uyst = ūys −∆ lnλt (6.1)

nyst = n̄ys −∆ lnλt −∆ ln qt (6.2)

wys,t+1 = w̄ys −
∆ lnλt+1 + ∆πt+1

b
(6.3)

uost (v) = ūos + bv + ∆πt (6.4)

nost (v) = n̄os + bv + ∆πt −∆ ln qt (6.5)

wos,t+1 (v) = w̄os + v +
∆ lnλt + ∆πt

b
− ∆ lnλt+1 + ∆πt+1

b
(6.6)

ln ηt (v) = π̄ + bv + ∆πt (6.7)

11Recall that θ was assumed to be greater than βσ.

18



where 0 < b = 1−βσ
1+s̄ < 1.

Proof: Guess that

0 = ∆πt + s̄∆not + βσEt [∆wo,t+1]

∆ ln ξyt = −∆ lnλt

ln ξost (v) = ξ̄os + bv + ∆πt

∆ lnVt = −∆ lnλt −∆πt,

where Vt =
∫
ebvdµt, and verify that all constraints and first order conditions are satisfied both on

and off steady state.12�

Equations (6.1)-(6.3) indicate that for young agents the utility of consumption, the utility of

leisure and next-period promised values shift over the business cycle by amounts that are inde-

pendent of the reported type. Equation (6.4) states that uoLt (v) and uoHt (v) are linear parallel

functions that shift vertically over the business cycle by amounts that are independent of the re-

ported type. While, equations (6.5) and (6.6) show that the same is true for the utility of leisure

and next-period promised values, the slopes of woL,t+1 (v) and woH,t+1 (v) are equal to one. Thus,

promised values follow a random walk process with innovations that depend on the realization of

the idiosyncratic and aggregate shocks.13

I now turn to characterize the behavior of the distributions of promised values, consumption

levels and hours worked implied by the optimal allocation rules described in Lemma 5. Observe,

from equations (4.7) and (6.6) that for every interval (a1, a2) the steady state distribution µ̄ satisfies

that:

µ̄ [(a1, a2)] = σ
∑
s

ψsµ̄ [(a1 − w̄os, a2 − w̄os)] + (1− σ)σ
∑

s: w̄ys∈(a1,a2)

ψs. (6.8)

Define

∆t =
∆ lnλt + ∆πt

b
. (6.9)

12See Section 3 in the Technical Appendix for the details.

13Even with no aggregate fluctuations promised values follow a random walk. However, contrary to Atkeson and

Lucas (1992) an immizerizing result is not obtained because of the stochastic lifetimes. As people die and are replaced

by young agents, there is enough “reversion to the mean” in promised values that an invariant distribution is obtained

(see Phelan 1994). The immizerizing result actually applies within each cohort of agents: Within each cohort the

distribution of promised values keeps spreading out more and more over time.
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From equations (4.7), (6.3) and (6.6) we then have that for every interval (a1 −∆t+1, a2 −∆t+1):

µt+1 [(a1 −∆t+1, a2 −∆t+1)] = σ
∑
s

ψsµt [(a1 −∆t − w̄os, a2 −∆t − w̄os)]

+ (1− σ)σ
∑

s: w̄ys∈(a1,a2)

ψs. (6.10)

From equations (6.8) and (6.10) it then follows that for every interval (a1, a2):

µt [(a1 −∆t, a2 −∆t)] = µ̄ [(a1, a2)] . (6.11)

That is, µt is merely a ∆t horizontal translation of the steady state distribution µ̄. In particular,

since promised values increase during a boom, µt shifts to the right during such an episode. We

thus have the following Lemma.

Lemma 6 The dispersion of the cross-sectional distribution of promised values is constant over

the business cycle.

Now let’s consider the associated behavior of the cross-sectional distribution φt of utilities of

consumption ut. From equations (6.1) and (6.4) we have that φt satisfies that for every Borel set

B,

φt (B) =
∑
s

∫
{v: ūos+bv+∆πt ∈ B}

ψsdµt +
∑

s: ūys−∆ lnλt ∈ B

ψs.

It follows that for every interval (a1, a2),

φ̄ [(a1, a2)] =
∑
s

ψsµ̄

[(
a1 − ūos

b
,
a2 − ūos

b

)]
+

∑
s: ūys ∈ (a1,a2)

ψs

and

φt [(a1 −∆ lnλt, a2 −∆ lnλt)]

=
∑
s

ψsµt

[(
a1 −∆ lnλt − ūos −∆πt

b
,
a2 −∆ lnλt − ūos −∆πt

b

)]
+

∑
s: ūys ∈ (a1,a2)

ψs.

From equations (6.9) and (6.11) we then have that

φt [(a1 −∆ lnλt, a2 −∆ lnλt)] = φ̄ [(a1, a2)] . (6.12)

Thus, φt is also a ∆ lnλt horizontal translation of the steady state distribution φ̄. Since u is

logarithmic, we then have the following Lemma.

Lemma 7 The dispersion of the cross-sectional distribution of log-consumption levels is constant

over the business cycle.
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Finally, let’s turn to characterizing the behavior of the cross-sectional distribution ζt of utilities

of leisure nt. From equations (6.1) and (6.2) we have that cyclical shifts in nyst differ from the

cyclical shifts in uyst by the amount −∆ ln qt. From equations (6.4) and (6.5) we also see that

nost (v) is parallel to uost (v) and that its vertical shifts differ from those in uost (v) by the amount

−∆ ln qt. Following the same steps as those used to derive equation (6.12) we thus have that,

ζt [(a1 −∆ lnλt −∆ ln qt, a2 −∆ lnλt −∆ ln qt)] = ζ̄ [(a1, a2)] .

That is, ζt is a ∆ lnλt + ∆ ln qt horizontal translation of the steady state distribution ζ̄. Since the

utilities of leisure decrease during a boom, it follows that ζt shifts to the left during such an episode.

Observe that the log of hours worked are related to utilities of leisure according to ln(h) =

ln(1 − en). Since this is a strictly decreasing and strictly concave function it follows that when

the distribution of utilities of leisure shifts to the left, that the dispersion of the distribution of log

hours decreases. Thus, we have our last Lemma.

Lemma 8 The dispersion of the cross-sectional distribution of log-hours worked is countercyclical.

There is a considerable empirical literature analyzing the behavior of consumption and labor

income inequality over time. While most of the literature has focused on trends a few studies

have considered business cycle frequencies as well. Heathcote et al. (2010) is a recent example. A

key finding in that paper is that U.S. labor earnings inequality widens sharply in recessions and

that this is driven by an increase in labor supply inequality (since the cross-sectional distribution

of wages is not much affected). Krueger et al. (2010) reported similar findings for eight other

countries considered in their study. This empirical evidence is broadly in line with the theoretical

results obtained in this section. In particular, Lemma 8 indicates that the model’s labor supply

inequality increases during recessions and, since all agents earn the same wage rate q, that this

translates into an increase in labor income inequality.14 The empirical evidence on the cyclical

behavior of consumption inequality is less clear. Summarizing the international evidence, Krueger

et al. (2010) reported that most recessions are accompanied by an uptick in consumption inequality

that is much smaller than the associated increase in earnings inequality. Focusing on the U.S. Great

14Discussing labor income and wages actually requires specifying a decentralization. To fix concepts it may be

useful to consider a simple decentralization in which households have a continuum of members and all the dynamic

contracting is done within the family. Output is produced by competitive firms and the market structure consists of

spot markets for labor and capital, and a complete set of Arrow securities.
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Recession of 2007-2009, Krueger et al. (2016) found that consumption inequality increased during

that recession as well. However, using a structural factor model Giorgi and Gambetti (2017)

found that TFP shocks generate pro-cyclical movement in U.S. consumption inequality. Given

these opposing results it seems that the acyclical consumption inequality described in Lemma 7

represents a rough compromise between the different empirical studies.

7 Computations

The previous sections were able to provide a full characterization of the solution to the mechanism

design problem because of the particular preferences considered. However, when preferences differ

from the logarithmic case such characterization is no longer possible and the model must be solved

for numerically. This is a nontrivial task because of the high dimensionality of the state space. In

this section I introduce a new method for computing equilibria of models with heterogeneous agents

and aggregate shocks and apply it to the model considered in this paper. An important advantage

of this computational method over existing alternatives in the literature is not only that it keeps

track of an arbitrarily good approximation to the distribution of agents over individual states,

but that the law of motion for this distribution is exact (no approximation errors are introduced

there).15 Thus, the method promises to be extremely useful for computing equilibria in cases where

the distribution of individual states matters.16

Before proceeding to describe its details it will be useful to sketch the main ingredients of the

computational method. Instead of keeping track of the distribution of promised values µ as a state

variable, what the computational method keeps track of is a long history of individual decision rules

wos and wys. Since the individual decision rules wos are parametrized as spline approximations, the

computational method only needs to keep track of a long but finite history of spline coefficients.

The current distribution of promised values is then recovered by simulating the evolution of a

large number of agents (and their descendants) over time using the history of individual decision

15See Algan et al. (2014) for a survey of alternatives. A recent method that parametrizes the distribution of agents

but still linearizes its law of motion is described in Winberry (2016).

16While incorporating the exact law of motion for the distribution of agents is a big gain in accuracy, the method

is extremely slow compared to the alternatives. While this makes estimation unfeasible, calibration works perfectly

fine. The reason is that by calibrating the deterministic steady state of the model the method needs to be applied

only once, after all parameters have been determined.
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rules kept as state variables.17 The next period distribution of promised values is then obtained

by simply updating by one period the history of individual decision rules using the decision rules

chosen during the current period. All first order conditions and aggregate feasibility constraints are

then linearized with respect to the spline coefficients describing current and past individual decision

rules.18 This delivers a linear rational expectations model which, despite of its high dimensionality,

can be solved for using standard methods.

The method is actually a generalization of the approach used in Veracierto (2002) for computing

business cycles of (S,s) economies. In that paper, histories of past decision rules were also used as

state variables. However, under (S,s) adjustments lower and upper adjustment thresholds could be

used to parametrize the complete individual decision rules. In this paper, decision rules are smooth

functions and therefore parametrized as spline approximations. Also, in Veracierto (2002) the (S,s)

adjustments together with a finite number of idiosyncratic shocks led to a finite support for the

distribution of agents and, therefore, to a finite dimensional aggregate state. Here, the support of

the distribution of agents is a continuum.

7.1 Computing the deterministic steady state

While computing the deterministic steady state of the model is completely standard, this section

describes the algorithm in detail since this will introduce objects and notation that will be needed

later on.

Observe that the shadow value of labor q is known from the steady state versions of equations

(4.20) and (4.21). In particular it is given by

q = (1− γ)

{
1

γ

[
1

θ
− 1 + δ

]} γ
1−γ

.

Given this value of q, the steady state decision rules for old agents can then be solved for. To

this end, I find it convenient to use cubic spline approximations and iterate with the steady state

17Because of the stochastic lifetimes, the truncation introduced by the finite history of decision rules generates

arbitrarily small approximation errors as the length of the history becomes large. In fact, when this length becomes

large the distribution used for drawing initial promised values for the simulations becomes irrelevant (although, in

practice, I use the invariant distribution of the deterministic steady state).

18This is the computationally most intensive part of the method. The reason is that we need to take numerical

derivatives with respect to each spline coefficient in the history, and each of these calculations requires simulating the

evolution of a large panel of agents over the entire history of individual decision rules kept as state variables.

23



versions of equations (4.14)-(4.19).19 In order to do this, I first restrict the promised values to

lie on a closed interval [vmin, vmax] and define an equidistant vector of grid points (vj)
J
j=1, with

v1 = vmin and vJ = vmax.20 Given the function η from the previous iteration, which is used

to value next period promised values in the steady state versions of equations (4.18) and (4.19),

the values of [uos (vj) , nos (vj) , wos (vj) , ξo (vj) , η (vj)]
J
j=1 that satisfy the steady state versions of

equations (4.14)-(4.19) are then solved for at the grid points (vj)
J
j=1. Once these values are found,

the functions are extended to the full domain [vmin, vmax] using cubic splines.21 The iterations

continue until the values for [uos (vj) , nos (vj) , wos (vj) , ξo (vj) , η (vj)]
J
j=1 converge. Observe, that

this solution does not depend on any other endogenous values, so it forms part of the steady state.

Given the steady state solution for η the steady state decisions for young agents can be solved for

next. This is straightforward: conditional on a value for λ, the steady state versions of equations

(4.8)-(4.13) can be solved for the finite numbers of unknowns (uys, nys, wys, ξy) in one step (no

iterations are needed here). Later on I will have to provide the side condition that λ must satisfy

for this to form part of the steady state.

The steady state version of equation (4.7) describes the recursion that the invariant µ has

to satisfy. This equation corresponds to the case of a continuum of agents. However, I find it

convenient to work with a large, but finite number of agents, and perform the recursion for this

case. In particular, consider a large but finite number of agents I and endow them with promised

values in the interval [vmin, vmax]. Using the functions wos and the values wys already obtained,

simulate the evolution of the promised values of these I agents and their descendants for a large

number of periods T . To be precise, if agent i was promised a value v at the beginning of the

current period (conditional on being alive), then his promised value (or his descendant’s, in case

the agent dies) at the beginning of the following period will be given by:

v′ =

 wos (v) , with probability σψs,

wys, with probability (1− σ)ψs,
(7.1)

Simulating the I agents for T periods using equation (7.1) we obtain a realized distribution

(v̄i)
I
i=1 of promised values (conditional on being alive) across the I agents. Observe that the last

iteration of equation (7.1) also gives the corresponding realized values of leisure (s̄i)
I
i=1 across the I

19Observe that the shadow value of consumption λ does not appear in the steady state version of these equations,

20When restricting promised values to lie in the interval [vmin, vmax], the first order conditions (4.12)-(4.13) and

(4.18)-(4.19) change by incorporating inequalities that check for corner solutions.

21In practice, I use the monotonicity preserving cubic splines described by Steffen (1990).
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agents. The joint realized distribution of promised values and values of leisure (v̄i, s̄i)
I
i=1 can then be

used to compute statistics under the invariant distribution. In particular, aggregate consumption

can be obtained as

C = σ
1

I

I∑
i=1

u−1 [uo,s̄i (v̄i)] + (1− σ)
∑
s

u−1 (uys)ψs. (7.2)

To understand this expression, suppose that we are at the beginning of period T + 1. The joint

realized distribution (v̄i, s̄i)
I
i=1 now corresponds to agents that were alive in the previous period, and

thus a fraction σ of them will have survived and a fraction (1− σ) of them will have died. The first

term in equation (7.2) corresponds to those who have survived. It averages the consumption of these

agents and multiplies the result by the probability of surviving σ. The second term corresponds to

those who have died and thus have been replaced by young agents. It averages the consumption of

young agents and multiplies the result by the probability of dying (1− σ).

Aggregate hours worked can be similarly computed as

H = σ

∑I
i=1

[
1− n−1 [no,s̄i (v̄i)]

]
I

+ (1− σ)
∑
s

[
1− n−1 (nys)

]
ψs. (7.3)

Observe that by a law of large numbers equations (7.2) and (7.3) will become arbitrarily good

approximations to the steady state versions of equations (4.2) and (4.3) as I and T tend to infinity.

Given aggregate hours worked, aggregate capital can be then obtained from the fact that the

social planner equates the marginal productivity of capital to its shadow price. In particular, from

the steady state version of equation (4.21) we have that aggregate capital is given by

K =

(
γ

1
θ − 1 + δ

) 1
1−γ

H. (7.4)

The last equation that needs to be satisfied is the feasibility condition for consumption,

C + δK = KγH1−γ . (7.5)

This is the side condition mentioned above for the shadow value of consumption λ. The shadow

value of consumption determines the consumption, hours worked and promised values of young

agents, and therefore each of the variables in equation (7.5). Therefore, λ must be changed until

equation (7.5) holds.

7.2 Computing business cycle fluctuations

As has already been mentioned, computing business cycle fluctuations requires linearizing the first

order conditions and aggregate feasibility constraints with respect to a convenient set of variables.
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Linearizing equations (4.2)-(4.21) present different types of issues. As a consequence, I classify

them into different categories.

The first category is constituted by equations that only involve scalar variables. Equations

(4.4), (4.8)-(4.11) and (4.20)-(4.21) fall into this category. For example, consider equation (4.9).

This equation is a function of {λt, uyHt, ξyt}, which are all scalars. Linearizing this equation around

the deterministic steady state values
{
λ̄, ūyHt, ξ̄yt

}
poses no difficulty.22

The second category is constituted by a continuum of equations that only involve scalar vari-

ables. Equations (4.5)-(4.6) and (4.14)-(4.17) fall into this category. Consider, for example, equa-

tion (4.15). This equation depends on {uoHt (v) , ξot (v) , ηt (v)} which are all scalars. The problem

is that there is one of these equations for every value of v in the interval [vmin, vmax]. In this case

the “curse of dimensionality” is solved by considering this equation only at the grid points (vj)
J
j=1

that were used in the computation of the deterministic steady state. It is now straightforward to

linearize each of these J equations with respect to {uoHt (vj) , ξot (vj) , ηt (vj)} at their determin-

istic steady state values
{
ūoH (vj) , ξ̄o (vj) , η̄ (vj)

}
. Extending {uoHt (v) , ξot (v) , ηt (v)} to the full

domain [vmin, vmax] using cubic splines will make equation (4.15) hold only approximately outside

of the grid points (vj)
J
j=1. The quality of this approximation will depend on how many grid points

J we work with.

The third category is constituted by equations that involve both scalars and functions. Equa-

tions (4.12) and (4.13) fall in this category. For example, consider equation (4.13). This equation

depends on λt, ξyt, λt+1, wyH,t+1 and on the function ηt+1, which is a high dimensional object.

In this case the “curse of dimensionality” is broken by considering that ηt+1 is a spline approxi-

mation and, therefore, is completely determined by the finite set of values {ηt+1 (vj)}Jj=1, i.e. the

value of the function at the grid points. The equation can then be linearized with respect to[
λt, ξyt, λt+1, wyH,t+1, {ηt+1 (vj)}Jj=1

]
at the steady state values

[
λ̄, ξ̄y, λ̄, w̄yH , {η̄ (vj)}Jj=1

]
.

The fourth category is a combination of the previous two: it is constituted by a continuum

of equations that involve both scalars and functions. Equations (4.18) and (4.19) fall in this

category. For example, consider equation (4.19). Similarly to the third category, this equation

depends on the scalars λt, ξot (v), λt+1, woH,t+1 (v) and on the function ηt+1. Similarly to the

second category there is one of these equations for every value of v in the interval [vmin, vmax].

Given these similarities we can use the same strategy. In particular, we can consider this equa-

22Although in this case derivatives can be taken analytically, throughout the section derivatives are assumed to be

numerically obtained.
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tion only at the grid points (vj)
J
j=1 and linearize each of these J equations with respect to[

λt, ξot (vj) , λt+1, woH,t+1 (vj) , {ηt+1 (vk)}Jk=1

]
at the deterministic steady state values

[
λ̄, ξ̄o (vj) , λ̄ ,

w̄oH (vj) , {η̄ (vk)}Jk=1

]
.

The fifth category is much more complicated. It is constituted by equations that involve scalars

and integrals of variables with respect to the distribution µt. Equations (4.2) and (4.3) fall in this

category. For example, consider equation (4.2). This equation depends on the real numbers uyL,t,

uyH,t, zt, Kt, Kt−1, and Ht, and on the integrals
∫
u−1 [uost (v)] dµt. To make progress it will be

important to represent these integrals with a convenient finite set of variables. In order to do this,

I will follow a strategy that is closely related to the one that was used in Section 7.1 for computing

statistics under the invariant distribution. In particular, consider the same large but finite number

of agents I that was used in that section and endow them with the same realized distribution of

promised values (v̄i)
I
i=1 that was obtained when computing the steady state. Now, assume that

these agents populated the economy M time periods ago and consider the history

{woL,t−m, woH,t−m, wyL,t−m, wyH,t−m}Mm=0 ,

which describes the allocation rules for next-period promised values that were chosen during the

last M periods (where t is considered to be the current period). Observe that since woL,t−m and

woH,t−m are spline approximations, this history can be represented by the following finite list of

values: {
[woL,t−m (vj)]

J
j=1 , [woH,t−m (vj)]

J
j=1 , wyL,t−m, wyH,t−m

}M
m=0

. (7.6)

Using the history of allocation rules for next-period promised values, we can simulate the evo-

lution of promised values for the I agents and their descendants during the last M time periods to

update the distribution of promised values from the initial (v̄i)
I
i=1 to a current distribution (vi,t)

I
i=1.

In particular, we can initialize the distribution of promised values at the beginning of period

t−M − 1 as follows:

vi,t−M−1 = v̄i,

for i = 1, ..., I. Given a distribution of promised values at the beginning of period t −m − 1, the

distribution of promised values at period t−m is then obtained from the following equation:

vi,t−m =

 wos,t−m (vi,t−m−1) , with probability σψs,

wys,t−m, with probability (1− σ)ψs,
(7.7)

for i = 1, ..., I. Proceeding recursively for m = M,M − 1, ..., 0, we obtain a realized distribution of

promised values (vi,t)
I
i=1 at the beginning of period t.
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Observe that the last iteration of equation (7.7) also gives the corresponding realized values of

leisure (sit)
I
i=1 across the I agents. The joint realized distribution of promised values and values of

leisure (vit, sit)
I
i=1 can then be used to compute statistics under the distribution µt. In particular,

equation (4.2) can be re-written as:

0 = (1− σ) [euyL,tψL + euyH,tψH ] + σ
1

I

I∑
i=1

euosit (vit) +Kt − (1− δ)Kt−1 − eztKγ
t−1H

1−γ
t . (7.8)

Since uoL,t and uoH,t are splines approximations, they can be summarized by their values at the

grid points (vj)
J
j=1. Therefore, equation (7.8) can be linearized with respect to

zt,Kt,Kt−1, Ht, uyL,t, uyH,t, [uoL,t (vj)]
J
j=1 , [uoH,t (vj)]

J
j=1 , (7.9){

[woL,t−m (vj)]
J
j=1 , [woH,t−m (vj)]

J
j=1 , wyL,t−m, wyH,t−m

}M
m=0

at their deterministic steady state values.

Observe that equation (7.9) provides a large but finite list of variables. In particular, there are

(M + 1) (2J + 2) variables in the second line of equation (7.9). Taking numerical derivatives with

respect to each of these variables requires simulating I agents over M periods. As a consequence,

linearizing equation (7.8) requires performing a massive number of Monte Carlo simulations. While

this seems a daunting task it is easily parallelizable. Thus, using massively parallel computer

systems can play an important role in reducing computing times and keeping the task manageable.23

The last category of equations has only one element: equation (4.7), which describes the law

of motion for the distribution µt. While daunting at first sight, this equation is greatly simplified

by our approach of representing the distribution µt using the history of values given by equation

(7.6). In fact, updating the distribution µt is merely reduced to updating this history. In partic-

ular, the date-(t + 1) history can be obtained from the date-t history and the current values of

[woL,t+1 (vj)]
J
j=1, [woH,t+1 (vj)]

J
j=1, wyL,t+1 and wyH,t+1 using the following equations:

[
wos,(t+1)−m (vj)

]J
j=1

=
[
wos,t−(m−1) (vj)

]J
j=1

(7.10)

wys,(t+1)−m = wys,t−(m−1) (7.11)

for s = L,H and m = 1, ...,M . Observe that the law of motion described by equations (7.10) and

(7.11) is already linear, so no further linearization is needed. Also observe that the variables that

are M periods old in the date-t history are dropped from the date-(t + 1) history. Thus, the law

of motion described by equations (7.10)-(7.11) introduces a truncation. However, the consequences

23In practice, I heavily rely on GPU computing for performing the Monte Carlo simulations.
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of this truncation are expected to be negligible. The reason is that the truncation only affects

the agents that had survived for M consecutive periods, and given a sufficiently small survival

probability σ and/or a sufficiently large M there will be very few of these agents. Aside from this

negligible truncation there are no further approximations errors in the representation of the law of

motion given by equation (4.7). As has been already stated, this is the crucial benefit of using the

computational method described here.

Once equations (4.2)-(4.21) have been linearized with respect to the variables described above,

we are left with a linear rational expectations model that is large but that can be solved using

standard methods.

8 Numerical results

This section uses the computational method just described to explore the quantitative properties

of different private information economies and compare them to those of their full information

counterparts. In order to do this I first select parameter values for the benchmark economy with

logarithmic preferences. Economies with more general preferences will be considered later on.

8.1 Parametrization

Except for the private information, the basic structure of the model corresponds to a standard

real business cycle model. In fact, under logarithmic preferences the basic structure of the model

is identical to the one in Cooley and Prescott (1995). For this reason, I calibrate all parameters

associated with the neoclassical growth model to the same observations as theirs. In order to

simplify computations, the model time period is selected to be one year.

Following Cooley and Prescott (1995) the labor share parameter 1 − γ is set to 0.60, the

depreciation rate δ is chosen to reproduce an investment-capital ratio I/K equal to 0.076, and

the social discount factor θ is chosen to reproduce a capital-output ratio K/Y equal to 3.32. The

values of leisure sL and sH are chosen to satisfy two criteria: that aggregate hours worked H equal

0.31 (another observation from Cooley and Prescott 1995) and that the hours worked by old agents

with the high value of leisure and the highest possible promised value noH (vmax) be a small but

positive number. The rationale for this second criterion is that I want to maximize the relevance

of the information frictions while keeping an internal solution for hours worked. The probability of

drawing a high value of leisure ψH is chosen to maximize the standard deviation of the invariant

distribution of promised values. It turns out that a value of ψL = 0.50 achieves this. The survival
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probability σ is chosen to generate an expected lifespan of 40 years. In turn, the individual discount

factor β is chosen to be the same as the social discount factor θ. In terms of the parameters for the

aggregate productivity stochastic process, ρ is chosen to be 0.95 and the variance of the innovations

to aggregate productivity σ2
ε is chosen to be 4× 0.0072 (as in Cooley and Prescott 1995).

Table 1

Parameter values

Structural Computational

sL = 1.513 vmin = −28.5

sH = 2.047 vmax = −11

ψL = 0.50 T = 1, 000

θ = 0.9574 M = 273

β = 0.9574 I = 8, 388, 608

σ = 0.975 J = 20

γ = 0.40

δ = 0.076

ρ = 0.95

σε = 0.014

While the above parameters are structural, there are a number of computational parameters

to be determined. The number of grid points in the spline approximations J , the total number of

agents simulated I, the length of the simulations for computing the invariant distribution T , and

the length of the histories kept as state variables when computing the business cycles M are all

chosen to be as large as possible, while keeping the computational task manageable and results

being robust to non-trivial changes in their values.24 The lower and upper bounds for the range

of possible promised values vmin and vmax in turn were chosen so that the fraction of agents in

the intervals [v1, v2] and [vJ−1, vJ ] are each less than 0.1%. Thus, truncating the range of possible

values at vmin and vmax should not play an important role in the results.

Table 1 describes all parameter values. It turns out that under the computational parameters

specified in this table the linearized system described in Section 7.2 has about 12, 000 variables, a

24Given the value selected for the survival probability σ, less than 0.1% of individuals survive more than M

periods. Thus, the truncation imposed by keeping track of a finite history of decision rules introduces a very small

approximation error.
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large system indeed.

8.2 Results under log-log preferences

Before turning to business cycle dynamics I illustrate different features of the model at its deter-

ministic steady state. Figure 1.A shows the invariant distribution of promised values across the

J−1 intervals [vj , vj+1]J−1
j=1 defined by the grid points of the spline approximations. While it is hard

to see at this coarseness level, the distribution is approximately symmetrical. More importantly,

we see that the invariant distribution puts very little mass at extreme values. As a consequence, in

what follows I will report allocation rules only between the 7th and 15th ranges of the histogram.

The reason is not only that there are very few agents at the tails of the distribution for them to

matter, but being close to the artificial bounds vmin and vmax greatly distorts the shape of the

allocation rules.

While not apparent in Figure 1.A, the invariant distribution of promised values generates too

little heterogeneity. The standard deviation of the cross-sectional distribution of log-consumption

levels and log-hours worked are 0.04 and 0.35, respectively. This compares with values of 0.50 and

0.82 reported by Heathcote et al. (2010) for 1981 (the year of lowest consumption heterogeneity in

their sample).25 The reason for the small amount of heterogeneity is that there is no persistence in

the idiosyncratic shocks: The only way that the model can generate large deviations from the mean

is through long streams of repeated bad shocks or good shocks, and these are unlikely to happen.26

Figure 1.B reports the utility of consumption for old agents uoL (v) and uoH (v) across promised

values v, as well as those of young agents uyL and uyH (which are independent of v). We see that,

in all cases the utility of consumption is higher when the value of leisure is low. Both uoL and uoH

are strictly increasing in the promised value v, are linear (with slope less than one) and parallel to

each other. Moreover, the vertical difference between uoL and uoH is the same as between uyL and

uyH .

Figure 1.C reports the utility of leisure for old agents noL (v) and noH (v) across promised values

v, as well as those of young agent nyL and nyH . We see that in all cases leisure is lower when the

value of leisure is low. Both noL and noH are strictly increasing in the promised value v, are linear

(with slope less than one) and parallel to each other. Moreover, the vertical difference between noL

25See their Figures 10 and 13.

26Given the unrealistic amount of cross-sectional heterogeneity that the model generates there is no point in

reporting other features of the cross section, such as optimal labor and capital wedges.
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and noH is the same as between nyL and nyH . In turn, Figure 1.D reports the next-period promised

values for old agents woL (v) and woH (v) across promised values v, as well as those of young agent

wyL and wyH . We see that in all cases next-period promised values are higher when the value of

leisure is low. Both woL and woL are strictly increasing in the promised value v, are linear (with

slope equal to one) and parallel to each other. We also see that the vertical difference between woL

and woH is the same as between wyL and wyH . Thus, Figure 1 verifies the analytical results given

by the steady state versions of equations (4.22)-(4.24) and Lemma 5.

The discussion of business cycle dynamics that follows will be centered around the analysis

of the impulse responses of different variables to a one standard deviation increase in aggregate

productivity. Figure 2.A shows the impulse responses of the utility of consumption of young agents

uyL and uyH . We see that both impulse responses are identical and that their shape qualitatively

resembles one for aggregate consumption in a standard RBC model. Figure 2.B shows the impulse

response of the utility of consumption of old agents with a low value of leisure uoL (v), at each of

the eleven grid points (vj)
16
j=6. While the figure shows eleven impulse responses, only one of them

is actually seen because they happen to overlap perfectly. This means that, in response to the

aggregate productivity shock, the function uoL depicted in Figure 1.B shifts vertically over time.

Figure 2.C, which does the same for uoH , is identical to Figure 2.B. Thus, uoH also shifts vertically

over time and its increments are the same as those of uoL.

Figure 3 is analogous to Figure 2, except that they depict the behavior of the utility of leisure.

Figure 3.A shows that the impulse responses of nyL and nyH are identical and that they resemble

the response of leisure in a standard RBC model, while Figures 3.B and 3.C indicate identical

vertical shifts of the functions noL and noH in response to the aggregate productivity shock.

Turning to promised values, Figure 4.A shows that the impulse responses of wyL and wyH

coincide. In turn, Figures 4.B and 4.C show that woL and woH shift vertically by identical amounts

in response to an aggregate productivity shock. Thus, taken together, we see that Figures 2 -4

reproduce the analytical results of Lemma 5.

Figure 5.A shows the impulse responses of the cross sectional standard deviations of promised

values, log-consumption and log-hours worked. We see that in response to a positive aggregate

productivity shock the standard deviations of promised values and log-consumption remain flat

while the standard deviation of log-hours worked decreases. Thus, Figure 5.A reproduces the

analytical results of Lemmas 6, 7 and 8.

Finally, Figure 5.B shows the impulse responses of aggregate output Y , aggregate consumption

C, aggregate investment I, aggregate hours worked H and aggregate capital K in the benchmark
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economy with private information. Figure 5.C reports the impulse responses for the same variables

but for the representative agent economy. We see that both sets of impulse responses are identical.

Thus, Figures 5.B and 5.C reproduce the analytical result of Corollary 4.

We have verified that while the computational method was not designed to exploit any of the

properties of the logarithmic case, it is able to exactly reproduce the analytical results derived

for this case. This suggests that the computational method introduced in this paper could be

quite useful not only for analyzing other functional forms, but as a general method for computing

aggregate fluctuations of economies with heterogeneous agents.

8.3 Extension to other preferences

This section generalizes the preferences of agents to the following form:

ET

{ ∞∑
t=T

βt−Tσt−T

[
c1−ϕ
t − 1

1− ϕ
+ st

(1− ht)1−α − 1

1− α

]}
,

where ϕ 6= 1 and α 6= 1. Since under this general functional form analytical results are no longer

available the computational method becomes essential to evaluate these preferences.

Table 2

Steady state macroeconomic variables

(α,ϕ) Information Y C I H K

(1, 1) Private 0.69155 0.51706 0.17449 0.31074 2.2959

Full 0.69155 0.51706 0.17449 0.31074 2.2959

(1, 2) Private 0.56302 0.42096 0.14206 0.25299 1.8692

Full 0.56305 0.42098 0.14207 0.25300 1.8693

(2, 1) Private 0.89539 0.66947 0.22592 0.40234 2.9727

Full 0.89551 0.66956 0.22595 0.40239 2.9731

(2, 2) Private 0.76319 0.57062 0.19257 0.34293 2.5338

Full 0.76327 0.57068 0.19259 0.34297 2.5341

Without recalibrating other parameters different values for ϕ and α have been considered.

However, in all cases similar results were obtained. For concreteness I here report results for unit

deviations from the ϕ = 1 and α = 1 case. For each of these cases Table 2 reports the deterministic

steady state values of all macroeconomic variables for the economies with private information and
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full information. We see that in each parametrization all variables are nearly identical in both

information scenarios.

In order to streamline the analysis of business cycle dynamics I consider the ϕ = 2 and α = 2

as a representative case. Figure 6.A reports that, contrary to the log-log case, the cross sectional

distribution of promised values now follows a non-trivial dynamics: Instead of being constant, the

standard deviation of promised values decreases significantly in response to a positive aggregate

productivity shock. Despite of this the information frictions still turn out to be irrelevant for

aggregate dynamics. Figure 6.B reports the impulse responses of all macroeconomic variables in

the economy with private information while Figure 6.C does the same for the economy with full

information. We see that both sets of impulse responses are identical. Thus, similarly to the log-

log case, the stationary behavior of the aggregate variables of the economy is not affected by the

presence of information frictions.

9 Conclusions

The paper analyzed the effects of restrictions to risk sharing on macroeconomic dynamics when

these restrictions are not exogenously imposed but arise endogenously as the optimal response to

the presence of private information. For this purpose, the paper brought together two benchmark

models in the microeconomics and information economics literatures, respectively: A real business

cycle model and a Mirleesian economy. In particular, the paper considered a RBC model in which

agents are subject to i.i.d. idiosyncratic shocks to their value of leisure and these shocks are private

information. In this framework the paper analyzed the mechanism design problem of maximizing

utility subject to incentive compatibility, promise keeping and aggregate feasibility constraints.

For the case of log-log preferences, a standard case in the RBC literature, the paper obtained

sharp analytical characterizations. In particular, the utility of consumption, the utility of leisure and

next-period promised values are all linear functions of current promised values. Over the business

cycle these functions shift vertically in such a way that the distributions of promised values and log-

consumption shift horizontally while maintaining their shapes. However, consistent with empirical

evidence, the cross-sectional dispersion of log-hours worked is countercyclical. A striking result of

the paper is that under logarithmic preferences the business cycle fluctuations of all macroeconomic

variables are exactly the same under private information as under full information.

For preferences other than the log-log case analytical results are no longer available. To analyze

these other cases the paper developed a novel method for computing equilibria of economies with
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heterogeneous agents. Its basic strategy is to parametrize individual decision rules as spline approx-

imations and to keep long histories of the spline coefficients as state variable. The model is then

linearized with respect to these variables and solved. Two advantages of the computational method

over alternatives is that it approximates the current distribution of promised values arbitrarily well

and that the law of motion for this distribution is exact. While the method does not take advan-

tage of the log-log structure of preferences it is shown to reproduce all the analytical results for

this case, providing significant evidence of its accuracy. Applying this method to other preference

specifications still produces an irrelevance result for aggregate dynamics: While the distribution of

promised values may now change its shape over the business cycle, the business cycle fluctuations

of all macroeconomic variables are still unaffected by the presence of private information.

The paper opens wide possibilities for future research. The irrelevance result for macroeconomic

dynamics was obtained under i.i.d shocks. It would be extremely interesting to explore if this

result extends to the case of persistent shocks, specially given the small amount of cross-sectional

heterogeneity that the i.i.d. shocks were found to generate. Also, the irrelevance result was obtained

under a very particular framework (although a very interesting one, since the Mirleesian structure

considered constitutes a benchmark case in the public finance literature). It is an open question

if information frictions could play an important role in aggregate dynamics in alternative settings,

such as economies with moral hazard and unemployment insurance. The computational method

developed in this paper should prove extremely useful not only to evaluate these alternatives but

to compute more general models with heterogeneous agents and aggregate fluctuations.
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Figure 1: Deterministic steady state
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Figure 2: Impulse responses of utility of consumption
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Figure 3: Impulse responses of utility of leisure
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Figure 4: Impulse responses of promised values
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Figure 5: Cross-sectional distributions and macro variables
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Figure 6: Cross-sectional distributions and macro variables
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