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A simple model of gross worker flows across  
labor market states

Marcelo Veracierto

Introduction and summary

While standard macroeconomic models of labor mar-
kets typically assume two labor market states (employ-
ment/nonemployment or employment/unemployment), 
a recent literature has extended those models to incor-
porate three labor market states: employment, unem-
ployment, and nonparticipation (or out of the labor 
force). See, for example, Tripier (2004), Veracierto 
(2008), Christiano, Trabandt, and Walentin (2010), 
Haefke and Reiter (2011), and Shimer (2013). Most 
of these papers have focused on modeling the number 
of workers in each of these labor market states, but 
not the gross flows of workers across them. A notable 
exception is Krusell et al. (2012), which intro-
duces search frictions (for the process through which 
workers meet job opportunities) into a real business 
cycle model with borrowing constraints in the house-
hold sector. Their model is rich enough to explicitly 
determine the gross flows of workers across the three 
labor market states, potentially providing a deeper 
understanding of what drives unemployment and other 
labor market shifts.

Interestingly, Krusell et al. (2012) find that under 
certain specifications of aggregate shocks, their model 
is able to broadly reproduce the cyclical behavior of 
gross worker flows across labor market states in the 
U.S. economy. While this is an important result, the 
economic mechanisms behind it are somewhat obscured 
by the real business cycle structure and the borrowing 
constraints. The purpose of this article is to strip the 
model in Krusell et al. (2012) down to its bare bones—
that is, to develop (and analyze) a very simple version 
of it. The key difference between my model and theirs 
is that instead of embodying the search frictions in a 
real business cycle with borrowing constraints, I assume 
that technology and workers’ preferences (for con-
sumption and leisure) are linear. These assumptions 

allow for an analytical characterization of the model 
that makes the determination of gross worker flows 
transparent. Moreover, the simple structure of the 
model allows me to perfectly identify its shocks using 
U.S. data.

A key ingredient of any model useful for analyz-
ing unemployment behavior is the presence of search 
frictions. While search frictions typically create bilateral 
bargaining situations between workers and employers, 
I (like Krusell et al., 2012) introduce them in such a 
way that wages are determined in perfectly competitive 
labor markets.1 Moreover, the simple structure that is 
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assumed allows for a single wage rate in the whole 
economy. Both features are obtained by assuming that 
all firms in the economy produce in a single geographical 
location where workers can move from one firm to 
another in a frictionless way.

Not all workers are present in the production lo-
cation, though: Some of them are situated in a separate 
geographical location in which they are able to enjoy 
leisure. Search frictions are introduced by assuming 
that it is difficult to move from the leisure location to 
the production location. In particular, agents are assumed 
to be able to move from the leisure location to the 
production location with a fixed probability (interpreted 
as a job-finding rate). Also, workers who are present 
in the production location are forced to move to the 
leisure location with a fixed probability (interpreted 
as a job-separation rate). Aside from being subject to 
job-separation shocks that force individuals to move 
to the leisure location, workers always have the pos-
sibility of moving from the production location to the 
leisure location whenever they wish. Because workers 
are subject to idiosyncratic labor productivity shocks, 
they face nontrivial labor supply decisions. Also, 
because the shocks are idiosyncratic, workers end up 
moving in and out of employment in an unsynchro-
nized way, generating gross flows across the different 
labor market states.

It turns out that calibrating the steady state (or long-
run equilibrium) of the simple model’s economy to 
average monthly U.S. gross worker flow rates requires 
that I introduce errors in the classification of agents’ 
labor market states. Otherwise, the model would be 
inconsistent with those actual gross worker flows. The 
classification errors needed are somewhat more extreme 
than those indicated by the empirical evidence, but they 
are not vastly out of line. Once the model is calibrated, 
the equations describing the gross flows of workers 
are used to measure the reallocation shocks (that is, the 
job-finding and job-separation rates) and the aggregate 
productivity shocks that hit the economy. (In order to 
match the U.S. data, I find that the classification errors 
introduced into the model must also be allowed to 
vary over time.) A crucial test of the model is whether 
these measured aggregate shocks, classification errors, 
and gross worker flows are consistent with the optimal 
decisions of agents in the model. I find that they are. 
Thus, the model seems to provide a reasonable labor 
supply theory. However, the model does not provide 
a deep theory of labor market dynamics. The reason 
is that most of the success of the model at reproducing 
the labor market dynamics found in the U.S. economy 
relies on the realization of exogenous shocks: The op-
timal decisions of agents in the model economy play 

a minor role in generating endogenous fluctuations in 
the gross flows of workers across labor market states, 
as well as in employment and unemployment.

In the next section, I describe the simple model’s 
economy in greater detail. In the subsequent section, I 
discuss how its classification of workers into the three 
labor market states approximates that of the U.S. Bureau 
of Labor Statistics (BLS). Next, I calibrate the model 
to U.S. data. Then, I test how well the model does in 
reproducing U.S. business cycle data. After that, I 
compare these results with those of my previous work 
(Veracierto, 2008) and offer goals for future research.

The model economy

The model economy is populated by an interval 
[0,1] of workers, who are distributed across two islands: 
a production island and a leisure island.2 The produc-
tion island has a representative firm that produces 
output with a linear production function that uses labor 
as the only input of production. The productivity of a 
worker is given by p + z, where p is an aggregate pro-
ductivity level common to all workers and z is an idio-
syncratic productivity level. Because the production 
island is assumed to be competitive, the wage rate 
that the worker receives is equal to p + z. While p is 
assumed to be constant, the idiosyncratic productivity 
level z evolves stochastically over time according to a 
Markov process. In particular, I will assume that with 
probability 1 – γ, the next period’s idiosyncratic pro-
ductivity level zʹ will be equal to the current period’s 
idiosyncratic productivity level z and that with proba-
bility γ, the next period’s idiosyncratic productivity 
level zʹ will be drawn anew from a known distribution 
function F.

On the leisure island, workers do not produce but 
enjoy α units of leisure. Workers value consumption 
and leisure according to the following preferences:

where et ∈{0,1} is an indicator function that is equal 
to 1 when the worker is employed and 0 otherwise. 
Observe that, given the linear preferences assumed, 
the worker cares about the present value of his con-
sumption but not about its timing.

There are frictions to move from the leisure island 
to the production island. However, there are no frictions 
to move the other way.

The timeline within each time period is as follows: 
1) Workers start the period distributed in some way 
across the two islands; 2) the idiosyncratic productivity 
shock z of each worker is realized; 3) workers who 
are initially located on the production island become 
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exogenously relocated to the leisure island with prob-
ability σ; 4) each agent who is located on the leisure 
island at this point (including all those initially located 
on the leisure island and all those that were exogenously 
relocated from the production island) is exogenously 
relocated to the production island with probability λ; 
5) agents located on the production island at this point 
(including all those that have just arrived from the leisure 
island) must decide whether to stay on the production 
island or move back to the leisure island; and 6) con-
sumption and leisure are finally enjoyed. In what follows, 
I will refer to σ as the (exogenous) job-separation rate 
and to λ as the (exogenous) job-finding rate.

Next, I analyze the problem that workers face in 
this economy.

Workers’ problem
Consider the decision problem of a worker situ-

ated on the production island during stage 5 of the 
timeline just described (this is the only situation in 
which a worker must make a decision). At this point, 
the worker already knows the realization of his idio-
syncratic productivity for the current period (that is, 
z). Given this information, the worker must decide 
whether to stay on the production island and work or 
go back to the leisure island and enjoy leisure. Let his 
value of staying on the production island be W(z) and 
his value of moving back to the leisure island be L(z). 
Then, his optimal value V(z) is given by

V(z) = max {W(z), L(z)}.

The value of being on the production island is 
given by the following equation:

This equation states that if the worker stays on 
the production island, he receives the wage rate p + z 
during the current period and starts the following pe-
riod on the same island. Different things can happen 
from that point on. With probability σ(1 – λ), the worker 
gets exogenously relocated to the leisure island and is 
not able to come back. In this case, with probability 1 – γ, 
his idiosyncratic productivity level in the next period 
does not change and he obtains the value of being on 
the leisure island L(z). However, with probability γ, 
he draws a new idiosyncratic productivity level and 

obtains the expected value ∫L(zʹ) dF(zʹ). The alterna-
tives, which happen with probability 1 – σ(1 – λ), are 
either that the worker is not exogenously relocated to 
the leisure island or that if he is, he is able to come 
back to the production island. In either case, he starts 
stage 5 in the following period on the production island. 
Then, with probability 1 – γ, he obtains the value 
V(z), and with probability γ, he obtains the expected 
value ∫V(zʹ) dF(zʹ).

The value of being on the leisure island is given 
by the following equation:
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This equation states that if the worker is on the leisure 
island during the current period, he receives the value 
of leisure α during the current period and starts the 
following period on the same island. Different things 
can happen from then on. With probability 1 – λ, the 
worker is not able to relocate to the production island 
and gets the expected value (1 – γ) L(z) + γ ∫ L(zʹ) dF. 
However, with probability λ, the worker is able to re-
locate to the production island and obtains the expected 
value (1 – γ) V(z) + γ ∫V(zʹ) dF.

With equations 1 and 2, I can show straightfor-
wardly that Wʹ(z) > 0 and that Lʹ(z) > 0 (that is, both 
value functions are strictly increasing in z). Thus, the 
optimal decision for the worker is characterized by 
a threshold idiosyncratic productivity level z* that 
satisfies that

   W(z*) = L(z*),
   
  W(z) < L(z), for z < z*,
   
  W(z) > L(z), for z > z*.

That is, at the threshold level z*, the worker is indifferent 
between staying on the production island and going 
back to the leisure island. For values of z lower than the 
threshold, the worker prefers to go back to the leisure 
island; and for values of z higher than the threshold, 
the worker prefers to stay on the production island.

Evaluating the condition W(z*) = L(z*) using 
equations 1 and 2, I get that
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Hence, I get the familiar condition that the reservation 
wage rate p + z* (that is, the lowest wage rate acceptable 
to the worker) is less than the value of leisure α because 
of the possibility that z may improve over time (the 
value of this possibility is called its “option value”).

Evaluating equations 1 and 2 for z ≥ z* and 
differentiating with respect to z, I get that 

′ ′( ) − ( ) =
− −( ) −( ) −( )

W z L z 1
1 1 1 1β γ λ σ

,

for z ≥ z*. Integrating by parts in equation 3 thus re-
sults in the following:
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which implicitly gives the idiosyncratic productivity 
threshold z* as a function of the fundamental parame-
ters of the model.

Figure 1 provides a graphic representation of the 
determination of z*. It shows the left-hand side (LHS) 
of equation 4 as a horizontal line, independent of z. The 
right-hand side (RHS) of equation 4 is depicted as a 
decreasing function.3 The intersection of both lines 
determines the idiosyncratic productivity threshold z*.

When either the aggregate productivity level p 
increases or the value of leisure α decreases, the 
RHS of equation 4 is not affected but the LHS of 
that equation shifts up, lowering the value of z*. This 
is quite intuitive, since in both cases the value of 
being employed increases relative to the value of en-
joying leisure, inducing the worker to become less 

picky and accept employment with lower values of 
idiosyncratic productivity.

When either the probability of being exogenously 
relocated to the leisure island σ or the probability of 
being exogenously relocated to the production island 
λ goes up, the LHS of equation 4 is not affected but 
the RHS of that equation shifts up. Similar effects take 
place when the probability of obtaining a new draw 
for the idiosyncratic productivity level γ decreases. In 
all three cases, the idiosyncratic productivity threshold 
z* increases.

To get intuition about these effects, recall from 
equation 3 that the reservation wage rate p + z* is less 
than the value of leisure α because of the option value 
of z improving over time. In all three cases, the option 
value of waiting for an improvement in the idiosyn-
cratic productivity level happens to decrease, making 
the worker less tolerant of low realizations of the id-
iosyncratic productivity level. When the probability 
of being exogenously relocated to the leisure island σ 
increases, the option value of waiting decreases because 
it is more likely that the worker will find himself on 
the leisure island at the time that the idiosyncratic 
productivity level z improves. When the probability of 
being exogenously relocated to the production island 
λ increases, the option value of waiting decreases 
because it becomes easier to get back to the production 
island in the future (once an improvement in z takes 
place). When the probability of obtaining a new draw 
for the idiosyncratic productivity level γ decreases, the 
option value of waiting decreases because productivity 
improvements become less frequent.

Measuring labor market states
Given the idiosyncratic productivity threshold z* 

described in the previous subsection, it is straightfor-
ward to describe the evolution of aggregate employ-
ment in the economy.

Let E–1 be the total number of workers that have 
been employed in the previous period. Then, the total 
number of workers that are employed during the cur-
rent period is given by

5) E =  (1 – σ + σλ) (1 – γ)E–1 + (1 – σ + σλ)γ
  ×[1 – F(z*)]E–1 + λ(1 – γ) [1 – E–1 – F(z*)] 
  + λγ[1 – F(z*)] (1 – E–1).

The first term is the total number of workers employed 
in the previous period that continued with the same 
idiosyncratic productivity level during the current 
period and that either were not exogenously relocated 
to the leisure island or, if they were, were able to come 
back to the production island within the same period. 

FIGURE 1

Optimal threshold for idiosyncratic productivity 

Note: See the text for further details.

р – α
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The second term is the total number of workers em-
ployed in the previous period that received a new 
idiosyncratic productivity above the threshold z*and 
that either were not exogenously relocated to the lei-
sure island or, if they were, were able to come back 
to the production island within the same period. The 
third term is all those workers not employed in the 
previous period, even though they had an idiosyncratic 
productivity level higher than the threshold z*, who did 
not receive a new productivity draw during the current 
period and were relocated to the production island. 
The last term is all those workers not employed in the 
previous period who received a new idiosyncratic pro-
ductivity level above the threshold z* during the current 
period and were relocated to the production island.

Defining employment and nonemployment is quite 
natural in this two-island model; however, dividing 
nonemployed workers into the unemployed and non-
participants is less obvious. Hereon I will follow 
Krusell et al. (2012) and perform the classification by 
surveying workers at the end of the period with the 
following questionnaire:

1)  Are you employed?

2)  If you are not employed, do you wish you had 
been employed?

If the worker answers yes to the first question, he is 
classified as employed. If he answers no to the first 
question but yes to the second question, he is classified 
as unemployed. If he answers no to both the first and 
second questions, he is classified as not in the labor 
force (nonparticipant). 

The total number of nonparticipants in the econ-
omy will then be given by

6) N = F(z*);

that is, it is the total number of workers with idiosyn-
cratic productivity levels below the threshold z*. 
Irrespective of whether these agents had the opportu-
nity of becoming employed or not, they end the period 
being nonemployed and answering that they do not 
wish to be employed. Observe that absent changes in 
total productivity and other parameter values, the total 
number of nonparticipants in the economy is constant 
over time.

The total number of unemployed workers is then 
given by

7) U = 1 – E – F(z*);

that is, it is the total number of nonemployed workers 
that have a productivity level above the threshold z*. 
Observe that U changes over time because E (the total 
number of employed workers) does. In the long run, 
as employment converges to a constant level, unem-
ployment will also converge. In particular, by setting 
E = E ̶ 1 in equation 5, I get that the long-run employ-
ment level is equal to

E
F z

F z
=
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*
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From equation 7, I get that the long-run unemploy-
ment level is then equal to

U
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Measuring gross flows of workers across labor 
market states

Given the classification of workers into employ-
ment (E), unemployment (U), or nonparticipation (N) 
described in the previous subsection, I can now define 
the flow rates of workers across the different labor 
market states. The flow rates of workers are as follows:

8) fEN = γF(z*),

9) fUN = γF(z*),

10) fUE = λ(1 – fUN),

11) fNE = λγ[1 – F(z*)],

12) fEU = σ(1 – λ)(1– fEN),

13) fNU = (1 – λ)γ[1 – F(z*)],

where fij is the flow rate from labor market state i 
(E, U, or N) to labor market state j (E, U, or N). The 
flow rate fEN is given by the probability that an employed 
worker receives a new idiosyncratic productivity level 
times the probability that this level is below the thresh-
old z*. The flow rate fUN is similarly given by the proba-
bility that an unemployed worker receives a new idio-
syncratic productivity level times the probability that 
this level is below the threshold z*. The flow rate fUE 
is given by the probability that an unemployed worker 
does not transition into nonparticipation times the 
probability of moving to the production island. The 
flow rate fNE is given by the product of the probability 
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that a nonparticipant draws a new idiosyncratic pro-
ductivity level, the probability that this productivity 
level is above the threshold z*, and the probability that 
the worker moves to the production island. The flow 
rate fEU is given by the product of the probability that 
an employed worker does not transition into nonpar-
ticipation, the probability that he is exogenously relo-
cated to the leisure island, and the probability that he 
is not able to make it back to the production island 
within the same period. The flow rate fNU is given by 
the product of the probability that a nonparticipant 
worker draws a new idiosyncratic productivity level, 
the probability that this productivity level is above 
the threshold z*, and the probability that the worker is 
not able to move to the production island.

Observe that absent changes in total productivity 
and other parameter values, the flow rates described 
by equations 8–13 are constant over time.

Using the BLS classification of labor  
market states

The U.S. Bureau of Labor Statistics classifies people 
into employment, unemployment, and nonparticipation 
by essentially asking the following two questions:

 1)  Are you employed?

 2)  If you are not employed, did you search for a 
job in the past four weeks?

If the person answers yes to the first question, he is 
classified as employed. If he answers no to the first 
question but yes to the second one, he is classified as 
unemployed. If he answers no to both questions, he is 
classified as being a nonparticipant. In the model of 
this article as well as that of Krusell et al. (2012), there 
is no search activity. As a consequence, there is no dis-
tinction between unemployment and nonparticipation 
in the BLS sense.

This article, as well as Krusell et al. (2012), works 
around this difficulty by substituting the second BLS 
question with the following one: If you are not em-
ployed, do you wish you had been employed? As shown 
in the previous section, this rephrasing led to a very 
clear classification between unemployment and non-
participation in the model. But how well does the model’s 
classification approximate the BLS’s classification? 
Krusell et al. (2012) argue that it does this very well.

To see why this is the case, consider changing the 
relocation from the leisure island to the production 
island from being exogenous to being endogenous (for 
stage 4 in the timeline described near the beginning 
of the previous section). In particular, assume that 

agents now have to pay an infinitesimal cost in order 
to make such a transition with probability λ. If they 
choose not to pay that infinitesimal cost, then the agents 
remain on the leisure island.

Consider now the same productivity threshold z* as 
in the original equilibrium, which determined who would 
work and who would relocate to the leisure island (at 
stage 5 of the timeline). Because idiosyncratic produc-
tivity shocks are realized at the beginning of the period 
(during stage 1 of the timeline), it is clear that agents 
located on the leisure island at stage 4 of the timeline with 
a z < z* will not want to pay the infinitesimal search cost 
(because they would not want to stay on the production 
island anyway). Because these agents will end the 
period not employed and will not have not searched, 
they will be correctly classified as nonparticipants.

In turn, someone located on the leisure island at 
stage 4 of the timeline with a z > z* will be willing to 
pay the infinitesimal search cost in order to move to 
the production island with probability λ. However, 
some of these agents will not be lucky enough to move 
to the production island. These agents will end the 
period not employed but will have searched. Hence, 
they will be correctly classified as unemployed.

Finally, those agents who were employed in the 
previous period and who get to stage 5 of the timeline 
while located on the production island with a z < z* 
will decide to move to the leisure island. Because these 
workers will end the period nonemployed and will not 
have searched, they will be correctly classified as non-
participants. Thus, it’s clear that if an infinitesimal search 
cost is introduced into the model, the Krusell et al. 
(2012) classification of labor market states, which I 
use for my model, coincides with the BLS classification.

The particular timeline assumed plays a critical 
role in obtaining this equivalence. To see why, consider 
changing it slightly. In particular, instead of assuming 
that idiosyncratic productivity shocks are realized at 
the beginning of the period, assume that they are real-
ized after the search decisions are made.4 Assuming 
the infinitesimal search cost would now produce a 
stark result: Nobody in the economy would be classi-
fied as a nonparticipant by the BLS. To see why, ob-
serve that all the agents would be willing to pay the 
infinitesimal search cost to see if they are lucky enough 
to draw an idiosyncratic productivity shock z > z*. If 
they aren’t, they would move to the leisure island and 
remain nonemployed. However, because they searched, 
all of these agents will be classified as unemployed. 
Thus, with this slight change in the timeline, one can 
see that the Krusell et al. (2012) classification would 
be widely different from the BLS classification.
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I conclude that both the infinitesimal search cost 
and the particular timeline assumed are necessary for 
using the model to analyze U.S. data in a meaningful way.

Calibration of the model

In principle, data on transition rates between em-
ployment, unemployment, and nonparticipation could 
be used to determine the four “parameters” that appear 
in equations 8–13: γ, λ, σ, and F(z*). To this end, I 
present in table 1 the average monthly transition rates 
between the three labor market states reported by the 
BLS in its Current Population Survey (CPS) between 
April 1992 and October 2014. It turns out that these 
average transition rates are not in line with the simple 
model considered so far because they are inconsistent 
with two key testable implications of the model.

The first testable implication of the model is 
obtained from equations 8 and 9:

14) fEN = fUN ;

that is, the transition rate from employment to non-
participation is exactly the same as the transition rate 
from unemployment to nonparticipation. However, 
table 1 indicates that in the data, fUN is about eight 
times larger than fEN : 22.07 percent versus 2.71 per-
cent. Krusell et al. (2012) faced similar difficulties in 
generating a large fUN relative to fEN, but here the diffi-
culty indicated by equation 14 is even more striking 
because of the particular stochastic process for idio-
syncratic productivity assumed.

The second testable implication of the model is 
obtained from equations 10, 11, and 13. From equa-
tions 11 and 13, I have that

f fNU NE=
−
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Using the values for fUN, fUE, and fNE in table 1, I get 
from equation 15 an implied value for fNU of 9.97 per-
cent. However, table 1 shows an empirical value of 
2.78 percent for this transition rate.

Given that the results of the simple model do not 
align with the empirical data thus far, I will follow 
Krusell et al. (2012) and introduce classification error 
as in Poterba and Summers (1986).5 In particular, I 
will introduce two probabilities, ψUN and ψNU , which 
represent the probability of classifying as a non-
participant someone who actually is unemployed and 
the probability of classifying as unemployed someone 
who actually is a nonparticipant, respectively. Employ-
ment is assumed to be measured without error.

When classification error is introduced, I must 
make a distinction between true unemployment and 
nonparticipation, U and N, and measured unemploy-
ment and nonparticipation, U  and N.  (The true labor 
market states do not account for any classification 
error, whereas the measured labor market states do.) 
In particular, by a law of large numbers, I have the 
following relations:

16 1) ,U U NUN NU= −( ) +ψ ψ

17 1) .N N UNU UN= −( ) +ψ ψ

Equation 16 states that measured unemployment U  
is constituted by a fraction 1 – ψUN of unemployed 
workers U that do not get misclassified and a fraction 
ψNU of nonparticipants N that get misclassified as un-
employed. Equation 17 states that measured nonpar-
ticipation N is constituted by a fraction 1 – ψNU of 
nonparticipants N that do not get misclassified and a 
fraction ψUN of unemployed workers U that get mis-
classified as nonparticipants.

With classification error introduced into the model, 
the measured transition rates become the following:

18 1) ,f f fEN EN NU EU UN= −( ) +ψ ψ

19 1) ,f f fEU EU UN EN NU= −( ) +ψ ψ
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TABLE 1

U.S. monthly transition rates

  To

From E U N

E 0.9559 0.0140 0.0271
U 0.2503 0.5290 0.2207
N 0.0472 0.0278 0.9250

Notes: This table presents the average monthly transition rates 
between the three labor market states—employment (E), 
unemployment (U), and nonparticipation (N)—reported by the  
BLS in the CPS between April 1992 and October 2014. See the  
text for further details.
Source: Author’s calculations based on data from the U.S. Bureau 
of Labor Statistics (BLS), Current Population Survey (CPS), from 
Haver Analytics.
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Equation 18 states that the probability that an employed 
worker makes a transition to measured nonparticipation 
fEN  is given by the probability of transitioning to 

nonparticipation fEN times the probability of not being 
misclassified 1 – ψNU , plus the probability of transi-
tioning to unemployment fEU times the probability of 
being misclassified as a nonparticipant ψUN. Equation 
19 is similar to equation 18, but it is for the transition 
rate from employment to measured unemployment 
fEU .  Equation 20 states that the probability that a work-

er measured as an unemployed worker makes a tran-
sition to employment fUE

 is given by the probability 
 
that the worker is truly unemployed 

U
U

UN1−( )ψ
 

times the probability of transitioning into employment 
fUE, plus the probability that the worker is actually  
 
a nonparticipant 

N
U

NUψ
 times the probability of  

transitioning into employment fNE. Equation 21 is 
similar to equation 20, but it is for the transition rate 
from measured nonparticipation to employment fNE .  
Equation 22 states that the probability of transitioning 
from measured unemployment to measured nonpar-
ticipation fUN  is given by the sum of two terms. The 
 
first term is that with probability 

U
U

UN1−( )ψ
,  the 

worker is truly unemployed—in which case he makes 
a transition to measured nonparticipation if he remains 
unemployed and this lack of change in labor market 
status is mismeasured, fUUψUN, or if he transitions to 
nonparticipation and this change is not mismeasured, 
fUN (1 – ψNU). The second term is that with probability 
 
 N

U
NUψ

, the worker is truly a nonparticipant—in  

which case he makes a transition to measured non-
participation if he remains a nonparticipant and this 
lack of change in labor market status is not mismea-
sured, fNN (1 – ψNU), or if he transitions into unem-
ployment and this change is mismeasured, fNUψUN. 
Equation 23 is similar to equation 22, but it is for the 
transition rate from measured nonparticipation to 
measured unemployment.

Because I am interested in reproducing the tran-
sition rates in table 1, which are monthly averages 
over a long time period, I will impose the following 
steady-state conditions:

24) (fUE + fUN)U = fEU E + fNU N,

25) (fNE + fNU)N = fEN E + fUNU,

26) U + N + E = 1.

Equation 24 states that the total flows out of unem-
ployment must be equal to the total flows into unem-
ployment. Equation 25 states that the total flows out 
of nonparticipation must be equal to the total flows 
into nonparticipation. Finally, equation 26 states that 
the sum of all workers across the three labor market 
states must add up to the total population.

The system of nonlinear equations 14–26 could 
in principle be solved for the 13 unknowns U , N , U, 
N, E, fEN, fEU, fUN, fUE, fNE, fNU, ψUN, and ψNU with the 
target values for fEN , fEU ,  fUE , fNE , fUN ,  and fNU  
being taken from table 1. However, performing an 
exhaustive computer analysis indicates that such a 
solution does not exist. Instead, the best approximate 
solution is obtained by setting ψNU to 0 (representing 
a corner solution), ψUN to 0.2733, and the true transition 
probabilities fEN, fEU, fUN, fUE, fNE, and fNU to the values 
given in table 2. Based on equations 14–26, these tran-
sition probabilities and misclassification probabilities 
imply the measured transition probabilities that are 
given in table 3. Many of the values in table 3 do 
exactly match those in table 1, and those that do not 
are not that far apart. In fact, only fNE  and fNU  miss 
their target values—and not by much. Also, while the 
classification errors ψNU = 0 and ψUN = 0.2733 are more 

   

TABLE 2

Model’s true transition rates

  To

From E U N

E 0.9588 0.0193 0.0219
U 0.2503 0.7278 0.0219
N 0.0068 0.0198 0.9734

Notes: This table presents the monthly transition rates between 
the three true (without classification error) labor market states—
employment (E), unemployment (U), and nonparticipation (N)—in the 
model economy. See the text for further details.
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extreme than those reported by Poterba and Summers 
(1986) (their reported values are ψNU = 0.0064 and 
ψUN = 0.1146), they are not completely out of line.

Given the transition rates estimated in table 2, I 
can use equations 8 and 10–12 to back up the values 
for F(z*), λ, γ, and σ consistent with them. In particu-
lar, from equation 10, I have that

λ =
−

=
−

=
f

f
UE

UN1
0 2503

1 0 0219
0 2558.

.
. .

In turn, from equation 11, I have that

fNE = λγ – λγF(z*) = λγ – λfEN .

Hence,

γ
λ
λ

=
+

=
+ ×

=
f fNE EN 0 0068 0 2558 0 0219

0 2558
0 0484. . .

.
. .

From equation 8, I then have that 

In addition, from equation 12, I get that

σ
λ

=
−( ) −( )

=
−( ) −( )

=

f
f

EU

EN1 1
0 0193

1 0 2558 1 0 0219
0 0265.

. .
. .

In order to calibrate the difference between aggre-
gate productivity and the value of leisure (p – α) that 
appears in equation 4, I must take a stance on the shape 
of the distribution function of idiosyncratic productivity 
levels F. For the sake of convenience, I will assume 
that it is exponential:

28) F(z) = 1 – e–ɸz.

27 0 0219
0 0484

0 4513) .
.

. .*F z
fEN( ) = = =
γ

Equation 4 allows for a normalization. I will there-
fore normalize the threshold value z* to 1 and find the 
parameter value ɸ that satisfies equation 27; that is,

 F(z*) = 1 – e–ɸz* = 1 – e–ɸ = 0.4513.

From this, I get ɸ = 0.6003.
Observe that

1 1 1
− ( )  = = −




 =

∞ −∞ −
∞

−∫ ∫F z dz e dz e e
z

z

z

z

z

z
* *

*

*

.φ φ φ

φ φ

Substituting this expression in equation 4 yields the 
following equation:

29
1 1

1 1 1 1
1) .* *

p z e z− = − −
−( ) −( )

− −( ) −( ) −( )
−α

βγ σ λ
β γ σ λ φ

φ

Using the values calibrated in this section, the normal-
ization z* = 1, and a discount rate β = 0.9967 (which 
implies an annual interest rate of 4 percent), I get a 
value of p – α = –1.1021.

Observe that aggregate labor productivity is given 
by the following:

Y
E

p
F z

zF z dz
z

= +
− ( ) ( )′

∞

∫
1

1 *
.

*

That is, it is given by the aggregate labor productivity 
level common to all workers p plus the average idio-
syncratic productivity z of employed workers. Using 
the functional form for the distribution function F in 
equation 28 and integrating by parts, I find that aggre-
gate labor productivity is given as follows:

30 1) .*Y
E

p z= + +
φ

In order to determine the value of leisure α, I 
follow Shimer (2005) and assume that it is equal to 
40 percent of aggregate labor productivity Y/E. That is,

Because it has already been determined that  
p – α = –1.1021, it follows that

p p z

p

+ = + +










= + +
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TABLE 3

Model’s measured transition rates

  To

From E U  N

E 0.9559 0.0140 0.0271
 0.2503 0.5290 0.2207
 0.0163 0.0344 0.9493

Notes: This table presents the monthly transition rates between the 
three measured (including classification error) labor market states—
employment (E ), unemployment (U  ), and nonparticipation (N)—in 
the model economy. See the text for further details.
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where I have used the values for z* and ϕ already de-
termined. It follows that p = –0.0596 and α = 1.0425. 
The resulting value for aggregate productivity Y/E in 
equation 30 is 2.6063.

Business cycles

In this section, I test how well the model does in 
reproducing U.S. business cycle data. To this end, I 
will follow Krusell et al. (2012) and allow the proba-
bility of being relocated to the production island λ, the 
probability of being relocated to the leisure island σ, 
and aggregate productivity p to fluctuate over time. 
All other parameters, including those describing the 
stochastic process for idiosyncratic productivity levels, 
will be assumed to be constant.

The plan is to use monthly data on measured gross 
flow rates to infer true gross flow rates in the model. 
These true gross flow rates will then be used to con-
struct monthly time series for the probability of being 
relocated to the production island λ, the probability of 
being relocated to the leisure island σ, and the idio-
syncratic productivity threshold z*. Given that I have 
an empirical time series for aggregate labor produc-
tivity Y/E, I will then use equation 30 to construct a 
time series for the aggregate productivity p. A key test 
of the model will be to compare this time series with 
the time series for p that is obtained from equation 29, 
using the already determined time series for z*, λ, and 
σ. This is a key test because equation 29 reflects the 
optimal decision of agents in the model economy.

In order to obtain empirical counterparts for true 
gross flow rates, I will use equations 18, 19, 20, and 22. 
The reason for using these equations is that these are 
the four equations among equations 18–23 that happen 
to hold with equality in the calibration performed in the 
previous section. Because the classification error ψNU 
that best described the data was equal to 0 (that is, 
was a corner solution), I will impose that it is 0 over 
the business cycle fluctuations. In contrast, I will allow 
the classification error ψUN not only to be positive but 
to fluctuate over the business cycle.6

Under the assumption that the classification error 
ψNU is equal to 0, which implies that U = U (1 – ψUN), 
equations 18, 19, 20, and 22 become the following:

f f f
f f
f f
f f f f

EN EN EU UN

EU EU UN

UE UE

UN UE UN UN

= +

= −

=

= − − +

ψ

ψ

ψ

,
( ),
,

( )

1

1 UUN ,

where, from equation 14, 

fUN = fEN  .

This system of equations turns out to have the 
following solution:

31) ψUN
UN EN

UE EN EU

f f
f f f

=
−

− − −1
,

32
1

) ,f
f

EU
UN

EU=
−ψ

33) ,f f f fEN EN EUEU= + −

35) fUN = fEN .

With monthly CPS data for fUN , fEN , fEU , and 
fUE ,  I can then construct monthly time series for ψUN, 
fEU, fEN, fUE, and fUN using equations 31–35. Panels A–D 
of figure 2 show the time series for these true transition 
rates as well as the corresponding measured transition 
rates (which coincide, by construction, with U.S. data). 
On the one hand, one can see from panels A and B that 
fEU is higher than fEU ,  and that fEN is lower than fEN  
(which was expected from tables 2 and 3) but that the 
true transition rates track the measured transition rates 
quite closely. On the other hand, panel C shows that 
fUE and fUE  coincide (as indicated by equation 34). A 
large discrepancy shows up in panel D, where one can 
see that fUN is not only much smaller than fUN  (as was 
expected from tables 2 and 3) but that fUN hardly fluc-
tuates at all. In fact, panel E shows that most of the 
fluctuations in fUN

 are accounted for by fluctuations 
in the classification error ψUN  .

7 
Given the constructed monthly time series for fUN 

and fUE, I can obtain the probability of being relocated 
to the production island λ from equation 10 as follows:

λ =
−
f

f
UE

UN1
.

In turn, I can obtain the probability of being relo-
cated to the leisure island σ from equation 12 and the 
constructed time series for fEU ,  fEN ,  and λ as follows:

σ
λ

=
−( ) −( )

f
f

EU

EN1 1
.

From the constructed monthly time series for fEN 
and the calibrated value for γ in the previous section, I 
can measure the time series for F(z*) from equation 8 as

F z
fEN* .( ) =
γ

34) ,f fU UE E=
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Using this time series, equation 28, and the calibrated 
value for ϕ from the previous section, I can then con-
struct a monthly time series for z* from the following 
equation:

ln .= − − ( ) 
1 1
φ

z* F z*

Given this constructed time series for z* and an 
empirical time series for aggregate labor productivity 
Y/E, I can then use equation 30 to construct a time series 
for p. For an empirical time series for aggregate out-
put Y, I use the forecasting firm Macroeconomic 
Advisers’ monthly real gross domestic product (GDP) 
series, which is a monthly indicator of real aggregate 

output that is conceptually consistent with GDP in the 
U.S. Bureau of Economic Analysis’s national income 
and product accounts (NIPAs).8 For aggregate employ-
ment E, I use employment of the civilian noninstitutional 
population aged 16 years and over from the CPS pro-
vided by the BLS. The aggregate labor productivity 
Y/E obtained from dividing both time series happens 
to grow over time. Because aggregate labor produc-
tivity is constant in the model economy, I detrend the 
data using a linear regression. The deviations from 
trend thus obtained are then used to construct a time 
series for Y/E with an average value of 2.6063, which 
was the value for Y/E implied by the calibration of 
the previous section.

FIGURE 2

True versus measured transition rates

Notes: Panels A–D present the monthly true and measured transition rates between the three labor market states—employment, 
unemployment, and nonparticipation—in the model economy. True transition rates do not account for classification error, while 
measured transition rates do. (The measured rates coincide, by construction, with U.S. data.) Panel E shows the measured 
unemployment-to-nonparticipation transition rate and the unemployment-to-nonparticipation classification error. See the text for 
further details on the panels.
Source: Author’s calculations based on data from the U.S. Bureau of Labor Statistics, Current Population Survey, from Haver Analytics.
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Table 4 reports summary statistics for the joint 
stochastic behavior of the time series for λ, σ, and p 
obtained through the equations discussed in this section. 
One can see that the probability of being exogenously 
relocated to the production island λ is highly persistent, 
the probability of being exogenously relocated to the 
leisure island σ is less so, and aggregate productivity 
p is much less persistent than usually assumed (see the 
second row of table 4 reporting autocorrelation statis-
tics). All three shocks are pairwise weakly positively 
correlated (see the final three rows of table 4). This 
contrasts with Krusell et al. (2012), who assumed 
perfect correlations between the shocks. In particular, 
their “good-times/bad-times” assumption implies that 
ρ(λ, σ) = –1, ρ(λ, p) = 1, and ρ(σ, p) = –1.

Panel A of table 5 reports business cycle statistics 
for U.S. data. The labels u and lfpr denote the unemploy-
ment rate and labor force participation rate, respectively. 
All statistics correspond to monthly time series. Before 
any statistics were computed, the data were logged 
and applied a Hodrick–Prescott filter with smoothing 
parameter of 105 in order to obtain their cyclical com-
ponents (that is, their deviations from a slow-moving 
trend that reflect their fluctuations at business cycle 
frequencies). The labels σ(xt), ρ(xt, Yt ), and ρ(xt, xt–1) 
denote the standard deviation of variable xt, the con-
temporaneous correlation of the variable xt with out-
put Yt , and the serial autocorrelation of the variable xt, 
respectively. I note that compared with output, employ-
ment is somewhat less variable, the unemployment rate 
is much more variable, and the labor force participa-
tion rate is much less variable (see the first column of 
table 5, panel A). Employment is strongly procyclical 
(that is, rising when economic times are good and 
falling when they are bad), the unemployment rate is 
strongly countercyclical (that is, falling when economic 
times are good and rising when they are bad), and the 

labor force participation rate is roughly acyclical (that 
is, moving independently of the overall state of the 
economy) (see the second column of table 5, panel A). 
All of these variables are significantly persistent, as 
shown by the serial autocorrelation statistics (see the 
third column of table 5, panel A). Reviewing the sta-
tistics for the transition rates, I note that all of them 
are highly volatile. The fUE transition rate is strongly 
procyclical and persistent, while the fEU and fNU
transition rates are countercyclical and somewhat per-
sistent. All other transition rates display weak cyclical 
patterns and have little persistence.

Panel B of table 5 reports similar statistics for 
artificial data generated using the following procedure. 
Given the monthly time series for z*, λ, and σ con-
structed earlier, equations 8–13 were used to con-
struct monthly time series for the true transition rates 
fEN, fUN, fUE, fNE, fEU, and fNU  . Given these time series, 
monthly paths for true employment E, true unemploy-
ment U, and true nonparticipation N were constructed 
using the following equations:

Ut = (1 – fUE,t–1 – fUN,t–1)Ut–1 + fEU,t–1Et–1 + fNU,t–1Nt–1,

Nt = (1 – fNE,t–1 – fNU,t–1)Nt–1 + fEN,t–1Et–1 + fUN,t–1Ut–1,

Et = 1 – Ut – Nt .
 
Given the time series for these variables and for the 
classification error ψUN obtained earlier, paths for mea-
sured unemployment U  and measured nonparticipation 
N  were obtained from equations 16 and 17. Given all 
these series, paths for the measured transition rates
fUN , fNU , fNE , fEN , fEU ,  and fUE were constructed 

using equations 18–23. In turn, given the time series 
for z* and p constructed earlier, aggregate labor pro-
ductivity Y/E was obtained from equation 30. Output 
Y was then obtained by multiplying aggregate labor 
productivity Y/E by employment E. Finally, the un-
employment rate was calculated as u U E U= +( )  
and the labor force participation rate as lfpr E U= + .

I see many similarities between panels A and B of 
table 5. To some extent this is not surprising because the 
monthly time series for p, z*, λ, and σ were constructed 
in such a way that this would be the case. Indeed, the 
values of Y/E, fEU , fEN , fUE ,  and fUN  must necessarily 
be identical in both cases (because these variables have 
been used as targets in the construction of the shocks).9 
Interestingly, similarities are also apparent in the rest 
of the variables. While the transition rate fNU  and the 
unemployment rate are right on target, the transition 
rate fNE , output Y, employment E, and the labor force 
participation rate lfpr are more volatile in the artificial 

   

TABLE 4

Stochastic properties of shocks

   p

Standard deviation  0.0490  0.0024  0.0914  
Autocorrelation  0.97  0.68  0.28  

 Correlation matrix  

λ 1.00  0.40  0.26
σ  1.00  0.34
p   1.00

Note: See the text for further details.
Sources: Author’s calculations based on data from Macroeconomic 
Advisers and the U.S. Bureau of Labor Statistics, Current Population 
Survey, all from Haver Analytics.

λλ σσ
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data than in the U.S. economy. However, the differ-
ences are not large and the correlations with output 
and serial autocorrelation statistics are quite similar 
in both cases.

While this is all quite satisfactory, it does not repre-
sent a test of the model yet. The reason is that the re-
lationship between the productivity threshold z* and 
the shocks p, λ, and σ that has been used so far has 
been determined by the data (and by part of the model 
structure); but it is not clear that such a relationship is 
completely consistent with the model economy. To 
fully test the empirical plausibility of the model, I must 
use equation 29, which represents the optimal decision 
of agents.10 The way that I implement such a test is to 
plug into equation 29 the time series for z*, λ, and σ 
constructed earlier in this section and to solve for the 
theoretical aggregate productivity level p implied by the 
equation.11 The resulting time series is then compared 
with the empirical time series for p constructed earlier 
in this section. The comparison is displayed in figure 3, 
panel A. The result is striking. Not only do both time 
series display similar properties, but they align on top 
of each other quite well. This is better seen in figure 3, 
panel B, which displays a scatter plot of both the the-
oretical and empirical aggregate productivity levels. 
While the points are not perfectly aligned along the 
45-degree line (which should be the case if both time 
series were identical), they are not far from it. I inter-
pret this as a surprising success of the labor supply 
theory embodied in the model.

While my analysis thus far has demonstrated that 
the optimal decisions of agents (summarized by the 
idiosyncratic productivity threshold z*) are consistent 

with empirical observations, it is natural to wonder 
about the role that the endogenous fluctuations in z* 
play in business cycle dynamics. I evaluate this role by 
comparing two scenarios, whose results are reported 
in table 6. Panel A of table 6—which I label “Variable 
z*”—reproduces the statistics of panel B of table 5 (the 
business cycle statistics of the benchmark economy). 
Panel B of table 6—which I label “Constant z*”—
reports business cycle statistics under the assumption 
that the productivity threshold z* is constant at its steady-
state value while all exogenous shocks (including the 
classification error) remain the same as in the bench-
mark case. One can see that the constant z* significantly 
reduces the fluctuations in fEN  and increases its per-
sistence (see the first and third columns of both pan-
els A and B of table 6); however, the behavior of all 
other gross worker flow rates is largely unchanged. The 
constant z* hardly affects the behavior of employment 
or unemployment: Their standard deviations and serial 
autocorrelations remain largely the same (see the first 
and third columns of both panels A and B of table 6). 
However, fluctuations in labor force participation are 
considerably dampened. This is not surprising because 
equation 6 indicates that true nonparticipation N is 
constant whenever z* is. What is largely affected by the 
constant z* is aggregate labor productivity Y/E, which 
becomes about four times more variable and completely 
loses its persistence (see the first and third columns of 
both panels A and B of table 6). Because aggregate 
output Y is given by aggregate employment E (which 
is hardly affected by the constant z*) times aggregate 
labor productivity Y/E, Y also becomes more volatile 
and less persistent.

   

TABLE 5

Monthly business cycle statistics

 A. U.S. data B. Artificial data

      

 (percent) (percent)

Y  1.12 1.00 0.88 1.47 1.00 0.92
E  0.95 0.74 0.98 1.23 0.85 0.97
u  10.79 –0.84 0.98 10.70 –0.75 0.96
lfpr  0.28 0.22 0.76 0.75 0.30 0.91
Y/E  0.77 0.55 0.69 0.77 0.55 0.69
  7.68 –0.70 0.64 7.68 –0.63 0.64
f
EN     4.30 0.16 0.07 4.30 0.14 0.07
 7.96 0.77 0.81 7.96 0.66 0.81
  5.75 0.53 0.52 5.75 0.46 0.52
f
NE    4.79 0.43 0.30 7.96 0.58 0.61
 7.65 –0.68 0.66 6.93 –0.62 0.90

Notes: All statistics correspond to monthly time series and are for the period April 1992–October 2014. See the text for further details.
Sources: Author’s calculations based on data from Macroeconomic Advisers and the U.S. Bureau of Labor Statistics, Current Population Survey, 
all from Haver Analytics.

f
EU

f
UE

f
UN

f
NU

σσ( )xt ρρ( , )xt tY ρρ( )x xt t, −−1 σσ( )xt ρρ( , )xt tY ρρ( )x xt t, −−1



51Federal Reserve Bank of Chicago

I conclude that while the model described in this 
article captures salient features of labor market dynamics, 
it does so by relying almost completely on exogenous 
shocks. The only endogenous margin in the model, the 
choice of the productivity threshold z*, provides little 
insight into such dynamics. Conditional on observed 
labor market dynamics, the main role of the endogenous 
fluctuations in z* is to generate empirically relevant 
fluctuations in aggregate output and labor productivity. 

Discussion

The results in this article are widely different from 
those in Veracierto (2008). In that paper, I studied a 

business cycle model with three labor market states 
but found that the model generated counterfactual 
business cycle dynamics. In particular, I found that 
unemployment was procyclical and that labor force 
participation was highly volatile (in fact, as much as 
employment). The intuition for why I got such a result 
is straightforward. In that model, being out of the labor 
force provided agents more leisure than being unem-
ployed. Therefore, when a bad aggregate shock hit the 
economy that made leisure more attractive than working, 
workers made transitions from employment to non-
participation instead of making transitions from employ-
ment to unemployment (as the data largely indicate). 

FIGURE 3

Theoretical versus empirical aggregate productivity level p  

Notes: Panel B displays a scatter plot of both the theoretical and empirical aggregate productivity levels. See the text for further 
details on how to interpret both panels.
Sources: Author’s calculations based on data from Macroeconomic Advisers and the U.S. Bureau of Labor Statistics, Current 
Population Survey, all from Haver Analytics.
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As a consequence, fluctuations in labor force partici-
pation ended up mirroring fluctuations in employment, 
while unemployment became procyclical. Moreover, 
when the negative shock reversed, there was a surge 
of unemployment because agents needed to search in 
order to become employed. This reinforced the pro-
cyclicality of unemployment.

In principle, the model in this article would be sub-
ject to the same difficulties. To see why, suppose that a 
negative aggregate productivity shock hits the economy 
that lowers p. Because this makes working less attractive 
than enjoying leisure, the threshold productivity level 
z* will increase. As a consequence, fewer people will 
choose to work (if given the opportunity); and of those 
not working, fewer will say that they would like to 
work. Thus, when the negative aggregate productivity 
shock hits the economy, employment and unemploy-
ment will decrease and nonparticipation will increase. 
When the aggregate productivity shock reverses, more 
of those on the production island will decide to work. 
And of those not making it to the production island, 
more of them will report that they would like to be em-
ployed. Thus, employment and unemployment will 
increase and nonparticipation will decrease. It is clear 
that with aggregate productivity shocks alone, the model 
will tend to generate procyclical unemployment and 
variations in labor force participation that mirror those 
in employment. That is, the model would display the 
same counterfactual behavior found in Veracierto (2008).

The reason why the model does not experience 
these difficulties is because there are exogenous vari-
ations in the job-separation rate σ and the job-finding 
rate λ. While in Veracierto (2008) these rates varied 
endogenously in response to an aggregate productivity 

shock, here they were chosen to fluctuate as much as 
needed to reproduce U.S. observations. In fact, the 
previous section showed that most of the success of 
the model at reproducing labor market dynamics relied 
on the exogenous variations in job-separation and 
job-finding rates, with little role for the endogenous 
decisions. The challenge for future researchers will 
be to develop models that generate exactly those same 
variations, but endogenously. This promises to be an 
exciting area of research.

Conclusion

In this article, I develop and analyze a simple model 
of the gross flows of workers across labor market states 
that is based on a model by Krusell et al. (2012). The 
simplicity of the model allows for analytical derivations 
that make the determination of these flows transparent. 
Moreover, this same simplicity allows me to perfectly 
identify the shocks that drive labor market fluctuations 
in the model by using U.S. data. I find that if errors in 
the classification of agents’ labor market states are in-
troduced and allowed to vary over time, the model has 
the ability to generate business cycle dynamics similar 
to those observed in the U.S. data. However, the labor 
market dynamics generated by the model are essentially 
driven by exogenous factors; the endogenous labor 
supply decisions embodied in the model barely affect 
them. The challenge for the future will be to develop 
models that reproduce actual labor market dynamics 
like my model did—but through endogenous factors. 
Such models may help further our understanding of 
what may be driving unemployment and other shifts 
in the labor market.

   

TABLE 6

Variable versus constant z*

 A. Variable z* B. Constant z*

      

 (percent) (percent)

Y  1.47 1.00 0.92 3.16 1.00 0.09
E  1.23 0.85 0.97 1.29 0.30 0.98
u  10.70 –0.75 0.96 10.60 –0.34 0.96
lfpr  0.75 0.30 0.91 0.23 –0.07 0.57
Y/E  0.77 0.55 0.69 3.03 0.92 0.01
  7.68 –0.63 0.64 7.67 –0.21 0.64
f
EN     4.30 0.14 0.07 1.87 0.27 0.34
f
UE  7.96 0.66 0.81 7.98 0.28 0.81
f
UN   5.75 0.46 0.52 5.78 0.36 0.52
f
NE    7.96 0.58 0.61 7.85 0.32 0.69
f
NU  6.93 –0.62 0.90 6.02 –0.26 0.94

Notes: All statistics correspond to monthly time series and are for the period April 1992–October 2014. See the text for further details.
Sources: Author’s calculations based on data from Macroeconomic Advisers and the U.S. Bureau of Labor Statistics, Current Population Survey, 
all from Haver Analytics.
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1A perfectly competitive labor market is a market comprising many 
well-informed buyers (firms) and sellers (individuals) of labor that 
take the wage rate as given. Competitive wage determination in 
models with search frictions was first introduced by Phelps (1970) 
and, more systematically, by Lucas and Prescott (1974).

2For the rest of the article, I will follow the Lucas and Prescott (1974) 
tradition of referring to geographically distinct locations as “islands.”

3The slope of the right-hand side of equation 4 is equal to 

− +
−( ) −( )

− −( ) −( ) −( )
− ( )



 <1

1 1
1 1 1 1

1 0
βγ σ λ
β γ λ σ

F z* .

4This alternative timeline seems quite natural. In fact, standard 
search models assume that agents search without knowing the 
wage offer that they will receive (for example, McCall, 1970).

5Krusell et al. (2012) introduce classification error in an appendix 
to show that it can improve certain failures of their benchmark 
calibration.

6Here I depart from Krusell et al. (2012) because in an appendix, 
they only consider the case of constant classification error.

7It is difficult to take a stance on the plausibility of the classifica-
tion error ψUN fluctuating over the business cycle by this 
magnitude.

8In fact, the quarterly growth rate of the Macroeconomic Advisers’ 
GDP time series closely resembles the growth rate of real GDP in 
the NIPAs.

9In fact, only the standard deviations and serial autocorrelations of 
these variables must be the same in both cases. Their correlations 
with output will generally differ because output has not been used 
as a target in the construction of the shocks.

10Equation 29 has been used to calibrate the model, but it has not 
been used so far to analyze business cycle fluctuations.

11This “theoretical” aggregate productivity level should be inter-
preted as the aggregate productivity level p that is needed to recon-
cile the model with the data.
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