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Introduction and summary

Policymakers are often required to make decisions in 
the face of uncertainty. For example, they may lack 
the timely data needed to choose the most appropriate 
course of action at a given point in time. Alternatively, 
they may be unable to gauge whether the models they 
rely on to guide their decisions can account for all of 
the issues that are relevant to their decisions. These 
concerns obviously arise in the formulation of mone-
tary policy, where the real-time data relevant for de-
ciding on policy are limited and the macroeconomic 
models used to guide policy are at best crude simpli-
fications. Not surprisingly, a long-standing practical 
question for monetary authorities concerns how to 
adjust their actions given the uncertainty they face. 

The way economists typically model decision-
making under uncertainty assumes that policymakers 
can assign probabilities to the various scenarios they 
might face. Given these probabilities, they can com-
pute an expected loss for each policy—that is, the  
expected social cost of the outcomes implied by each 
policy. The presumption is that policymakers would 
prefer the policy associated with the smallest expected 
loss. One of the most influential works on monetary 
policy under uncertainty based on this approach is 
Brainard (1967). That paper considered a monetary 
authority trying to meet some target—for example,  
an inflation target or an output target. Brainard showed 
that under certain conditions, policymakers who face 
uncertainty about their economic environment should 
react less to news that they are likely to miss their tar-
get than policymakers who are fully informed about 
their environment. This prescription is often referred 
to as “gradual” policy. Over the years, gradualism has 
come to be viewed as synonymous with caution. After 
all, it seems intuitive that if policymakers are unsure 
about their environment, they should avoid reacting 
too much to whatever information they do receive, 

given that they have only limited knowledge about 
the rest of the environment. 

Although minimizing expected loss is a widely 
used criterion for choosing policy, in some situations 
it may be difficult for policymakers to assign expected 
losses to competing policy choices. This is because it 
is hard to assign probabilities to rare events that offer 
little historical precedent by which to judge their exact 
likelihood. For this reason, some economists have con-
sidered an alternative approach to policymaking in 
the face of uncertainty that does not require knowing 
the probability associated with all possible scenarios. 
This approach is largely inspired by work on robust 
control of systems in engineering. Like policymakers, 
engineers must deal with significant uncertainty—
specifically, about the systems they design; thus they 
are equally concerned with how to account for such 
uncertainty in their models. Economic applications 
based on this approach are discussed in a recent book 
by Hansen and Sargent (2008). The policy recommen-
dations that emerge from this alternative approach are 
referred to as robust policies, reflecting the fact that 
this approach favors policies that avoid large losses in 
all relevant scenarios, regardless of how likely they 
are. Interestingly, early applications of robust control 
to monetary policy seemed to contradict the gradualist 
prescription articulated by Brainard (1967), suggesting 
that policymakers facing uncertainty should respond 
more aggressively to news that they are likely to miss 
their target than policymakers facing no uncertainty. 
Examples of such findings include Sargent (1999), 
Giannoni (2002), and Onatski and Stock (2002);  
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their results contradict the conventional wisdom based 
on Brainard (1967), which may help to explain the 
tepid response to robust control in some monetary 
policy circles. 

In this article, I argue that aggressiveness is not  
a general feature of robust control and that the results 
from early work on robust monetary policy stem from 
particular features of the economic environments those 
papers studied.1 Similarly, gradualism is not a generic 
feature of the traditional approach to dealing with un-
certainty based on minimizing expected losses—a point 
Brainard (1967) himself was careful to make. I explain 
that the way policymakers should adjust their response 
to news that they are likely to miss their target depends 
on asymmetries in the uncertain environment in which 
they operate. As we shall see, both the traditional and 
robust control approaches dictate gradualism in the 
environment Brainard (1967) considered, while both 
dictate being more aggressive in other environments 
that capture elements in the more recent work on ro-
bust control. 

My article is organized as follows. First, I review 
Brainard’s (1967) original result. Then, I describe the 
robust control approach, including a discussion of some 
of its critiques. Next, I apply the robust control approach 
to a variant of Brainard’s model and show that it implies 
a gradualist prescription for that environment—just 
as Brainard found when he derived optimal policy,  
assuming policymakers seek to minimize expected 
losses. Finally, using simple models that contain some 
of the features from the early work on robust monetary 
policy, I show why robustness can recommend aggres-
sive policymaking under some conditions. 

Brainard’s model and gradualism

I begin my analysis by reviewing Brainard’s (1967) 
model. Brainard considered the problem of a policy-
maker who wants to target some variable that he can 
influence so that the variable will equal some prespeci-
fied level. For example, suppose the policymaker wants 
to maintain inflation at some target rate or steer out-
put growth toward its natural rate. Various economic 
models suggest that monetary policy can affect these 
variables, at least over short horizons, but that other 
factors beyond the control of monetary authorities can 
also influence these variables. Meeting the desired 
target will thus require the monetary authority to in-
tervene in a way that offsets changes in these factors. 
Brainard focused on the question of how this interven-
tion should be conducted when the monetary authority is 
uncertain about the economic environment it faces 
but can assign probabilities to all possible scenarios  

it could encounter and acts to minimize expected 
losses computed using these probabilities.

Formally, let us refer to the variable the monetary 
authority wants to target as y. Without loss of gener-
ality, we can assume the monetary authority wants to 
target this variable to equal zero. The variable y is  
affected by a policy variable set by the policymaker, 
which I denote by r. In addition, y is affected by some 
variable x that the policymaker can observe prior to 
setting r. For simplicity, suppose y depends on these 
two variables linearly; that is,

1) y = x – kr,

where k measures the effect of changes in r on y and 
is assumed to be positive. For example, y could reflect 
inflation, and r could reflect the short-term nominal 
interest rate set by the monetary authority. Equation 1 
then implies that raising the nominal interest rate 
would lower inflation, but that inflation is also deter-
mined by other variables, as summarized by x. These 
variables could include shocks to productivity or the 
velocity of money. If x rises, the monetary authority 
would simply have to set r to equal x/k to restore y to 
its target level of 0. 

To incorporate uncertainty into the policymaker’s 
problem, suppose y is also affected by random variables 
whose values the policymaker does not know, but 
whose distributions are known to him in advance. 
Thus, let us replace equation 1 with

2) y = x – (k + εk) r + εu, 

where εk and εu are independent random variables with 
means 0 and variances σk

2 and σu
2 , respectively. This 

formulation assumes the policymaker is uncertain both 
about the effect of his policy, as captured by the εk 
term that multiplies his choice of r, and about factors 
that directly affect y, as captured by the additive term 
εu. The optimal policy depends on how much loss the 
policymaker incurs from missing his target. Suppose 
the loss is quadratic in the deviation between the ac-
tual value of y and its target—that is, the loss is equal 
to y2. The policymaker will then choose r so as to 
minimize his expected loss, that is, to solve

3 2 2
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Equation 4 is derived in appendix 1. Uncertainty 
about the effect of policy will lead the policymaker to 
attenuate his response to x relative to the case where 
he knows the effect of r on y with certainty. In partic-
ular, when σk

2 0= , the policymaker will set r to undo 
the effect of x by setting r = x/k. But when σk

2 0> , the 
policy will not fully offset x. This is what is common-
ly referred to as gradualism: A policymaker who is 
unsure about the effect of his policy will react less to 
news about missing the target than he would if he 
were fully informed. By contrast, the degree of uncer-
tainty about εu, as captured by σu

2 , has no effect on 
policy, as evident from the fact that the optimal rule 
for r in equation 4 is identical regardless of σu

2 .
To understand this result, note that the expected 

loss in equation 3 is essentially the variance of y. Hence, 
a policy that leads y to be more volatile will be con-
sidered undesirable given the objective of solving 
equation 3. From equation 2, the variance of y is equal 
to r k u

2 2 2σ σ+ , which is increasing in the absolute value 
of r. An activist (aggressive) policy that uses r to off-
set nonzero values of x thus implies a more volatile 
outcome for y, while a passive (gradual) policy that 
sets r = 0 implies a less volatile outcome for y. This 
asymmetry introduces a bias toward less activist poli-
cies. Even though a less aggressive response to x would 
cause the policymaker to miss the target on average, 
he is willing to do so in order to make y less volatile. 
Absent this asymmetry, there would be no reason to 
attenuate policy. This explains why uncertainty in εu 
has no effect on policy: It does not involve any asym-
metry between being aggressive and being gradual, 
since neither affects volatility. Although Brainard (1967) 
was careful to point out that gradualism is an optimal 
reaction to certain types of uncertainty, his result is 
sometimes misleadingly cited as a general rule for 
coping with uncertainty regardless of its nature. 

The robust control approach

An important assumption underlying Brainard’s 
(1967) analysis is that the policymaker knows the 
probability distribution of the variables that he is  
uncertain about. More recent work on policy under 
uncertainty is instead motivated by the notion that 
policymakers may not know what probability to at-
tach to scenarios they are uncertain about. For example, 
there may not be enough historical data to infer the 
likelihood of various situations, especially those that 
have yet to be observed but remain theoretically pos-
sible. Without knowing these probabilities, it will be 
impossible to compute an expected loss for different 
policy choices as in equation 3. This necessitates an 
alternative criterion to judge what constitutes a good 

policy. The robust control approach argues for picking 
the policy that minimizes the damage that the policy 
could possibly inflict—that is, the policy under which 
the largest possible loss across all potential outcomes 
is smaller than the largest possible loss under any  
alternative policy. A policy chosen under this criteri-
on is known as a robust policy (or a robust strategy). 
Such a policy ensures the policymaker will not incur 
a bigger loss than the unavoidable bare minimum. 
This rule is often associated with Wald (1950, p. 18), 
who argued that this approach, known as the minimax 
(or minmax) rule, is “a reasonable solution of the de-
cision problem when an a priori distribution ... does 
not exist or is unknown.” For a discussion of eco-
nomic applications of robust control as well as related 
references, refer to Hansen and Sargent (2008). 

Before I consider the consequences of adopting 
the robust control approach for choosing a target as  
in Brainard (1967), I first consider an example of an 
application of robust control both to help illustrate what 
it means for a policy to be robust in this manner and 
to discuss some of the critiques of this approach. The 
example is known as the “lost in a forest” problem, 
which was first posed by Bellman (1956) and which 
spawned a subsequent literature that is surveyed in 
Finch and Wetzel (2004).2 Although this example differs 
in several respects from typical applications of robust 
control in economics, it remains an instructive introduc-
tion to robust control. I will point out some of these 
differences throughout my discussion when relevant. 

The lost in a forest problem can be described as 
follows. A hiker treks into a dense forest. He starts  
his trip from the main road that cuts through the forest, 
and he travels in a straight line for one mile into the 
forest. He then lies down to take a nap, but when he 
wakes up he realizes he forgot which direction he came 
from. He wishes to return to the road—not necessari-
ly to the point where he started, but anywhere on the 
road where he can flag down a car and head back to 
town. He would like to do so using the shortest possi-
ble route, which if he knew the location of his start-
ing point would be exactly one mile. But he does not 
know where the road lies, and because the forest is 
dense with trees, he cannot see the road from afar. So, 
he must physically reach the road in order to find it. 
What strategy should he follow in searching for the 
road? A geometric description of the problem is pro-
vided in box 1, although these details are not essential 
for following the remainder of this discussion. 

Solving this problem requires establishing a crite-
rion by which a strategy can qualify as “best” among 
all possible strategies. In principle, if the hiker knew 
his propensity to lie down in a particular orientation 
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relative to the direction he travelled from, he could 
assign a probability that his starting point could be 
found in any given direction. In that case, an obvious 
candidate for the optimal strategy is the one that min-
imizes the expected distance to reach some point on 
the road. But most people would be unlikely to know 
their likelihood of lying down in any particular direc-
tion or the odds they don’t turn in their sleep. While it 
might seem tempting to simply treat all locations as 
equally likely, this effectively amounts to making as-
sumptions on just these likelihoods. It is therefore 
arguable that we cannot assign probabilities that the 
starting point lies in any particular direction, imply-
ing we cannot calculate an expected travel distance 
for each strategy and choose an optimum. As an alter-
native criterion, Bellman (1956) proposed choosing 
the strategy that minimizes the amount of walking  
required to ensure reaching the road regardless of 
where it is located. That is, for any strategy, we can 
compute the longest distance one would have to walk 
to make sure he reaches the main road regardless of 
where it is located. We then pick the strategy for which 
this distance is shortest. This rule ensures we do not 
have to walk any more than is absolutely necessary to 
reach the road. While other criteria have been proposed 
for the lost in a forest problem, many have found the 
criterion of walking no more than is absolutely neces-
sary to be intuitively appealing. But this is precisely 
the robust control approach. The worst-case scenario 
for any search strategy involves exhaustively search-
ing through every wrong location before reaching the 
true location. Bellman’s suggestion thus amounts to 
using the strategy whose worst-case scenario requires 
less walking than the worst-case scenario of any other 
strategy. In other words, the “best” strategy is the one 
that minimizes the amount of walking needed to run 
through the gamut of all possible locations for the 
hiker’s original starting point. 

Although Bellman (1956) first proposed this rule 
as a way of solving the lost in a forest problem, it was 
Isbell (1957) who derived the strategy that meets this 
criterion. His solution is presented in box 1. The hiker 
can ensure he finds the road by walking out one mile 
and, if he doesn’t reach the road, continue walking along 
the circle of radius one mile around where he woke 
up. While this strategy ensures finding the road even-
tually, it turns out that deviating from this scheme  
in a particular way still ensures finding the road  
eventually, but with less walking. 

Note that in the lost in a forest problem, the set 
of possibilities the hiker must consider to compute 
the worst-case scenario is an objective feature of the 
environment: The main road must lie somewhere 

along a circle of radius one mile around where the 
hiker fell asleep (we just don’t know exactly where). 
By contrast, in most economic applications, the re-
gion that a decision-maker is uncertain about is not 
an objective feature of the environment but an artificial 
construct. In particular, the decision-maker is assumed 
to contemplate the worst-case scenario from a restricted 
set of economic models that he believes can capture 
his environment. This setup has the decision-maker 
ruling out some models with certainty even as he  
admits other arbitrarily close models that would be 
hard to distinguish empirically from those he rejected.  
Unfortunately, changing the admissible set of models 
often affects the worst-case scenario and thus the im-
plied policy recommendation. The lost in a forest 
problem provides a relatively clean motivating exam-
ple in which we can apply the robust control  
approach, although this problem obscures important 
issues that arise in economic applications, such as 
how to construct the set of scenarios from which a 
decision-maker calculates the worst case. 

As noted previously, many mathematicians re-
gard the robust strategy as a satisfactory solution for 
the lost in a forest problem. However, this strategy 
has been criticized in ways that mirror the criticisms 
of robust control applications in economics. One such 
critique is that the robust policy is narrowly tailored 
to do well in particular scenarios rather than in most 
scenarios. This critique is sometimes described as 
“perfection being the enemy of the good”: The robust 
strategy is chosen because it does well in the one state 
of the world that corresponds to the worst-case sce-
nario, even if that state is unlikely and even if the 
strategy performs much worse than alternative strate-
gies in most if not all remaining states of the world.3 
In the lost in a forest problem, the worst-case scenar-
io for any search strategy involves guessing each and 
every one of the wrong locations first before finding 
the road. Arguably, guessing wrong at each possible 
turn is rather unlikely. But the robust policy is tailored 
to this scenario, and because of this, the hiker does 
not take advantage of shortcuts that allow him to search 
through many locations without having to walk a great 
distance. As discussed in box 1, such shortcuts exist, 
but they would involve walking a longer distance if 
the spot on the road where the hiker started from  
happened to be situated at the last possible location 
he tries, and so the robust strategy avoids them. Viewed 
this way, the robust strategy might seem less appealing. 

The problem with this critique is that the lost in a 
forest problem assumes it is not possible to assign a 
probability distribution to which direction the nearest 
point on the road lies. Absent such a distribution, one 
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BOX 1

The lost in a forest problem 

The lost in a forest problem formally amounts to 
choosing a path starting from an initial point (the hiker’s 
location when he wakes up) that must ultimately in-
tersect with an infinite straight line (the road that cuts 
through the forest) whose closest distance to the initial 
point is one mile. That is, we need to choose a path 
starting from the center of a circle of radius one mile 
to any point on a particular straight line that is tangent 
to this circle. The fact that the hiker forgot where he 
came from corresponds to the stipulation that the lo-
cation of the tangency point on the circle is unknown. 

This situation is illustrated graphically in panel A  
of figure B1, which shows three of the continuum  
of possible locations for the road. 

Because the forest is dense with trees, the hiker 
is assumed not to know where the main road is until 
he actually reaches it. Bellman (1956) was the first to 
suggest choosing the path that minimizes the longest 
distance needed to reach the line with absolute cer-
tainty regardless of the location of the tangency point 
on the unit circle. To better appreciate this criterion, 
consider the strategy of walking a straight path for 

FIguRE B1

The geometry of the lost in a forest problem
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cannot argue that exhaustively searching through all 
other paths is an unlikely scenario, since to make this 
statement precise requires a probability distribution as 
to where the road is located. One might argue that, even 
absent an exact probability distribution, we can infer from 
common experience that we do not often run through 
all possibilities before we find what we are searching 
for, so we can view this outcome as remote even with-
out attaching an exact probability to this event. But such 
intuitive arguments are tricky. Consider the popularity of 
the adage known as Murphy’s Law, which states that 
whatever can go wrong will go wrong. The fact that people 
view things going wrong at every turn as a sufficiently 
common experience to be humorously compared with 
a scientific law suggests they might not view looking 
through all of the wrong locations first as such a remote 
possibility. Moreover, in neither the lost in a forest prob-
lem nor many economic applications is it common 

that the robust strategy performs poorly in all scenar-
ios other than the worst-case one. By continuity, the 
strategy that is optimal in the worst-case scenario will 
be approximately optimal in similar situations—for 
example, exhausting most but not all possible locations 
before reaching the road in the lost in a forest problem. 
Such continuity is common to many economic appli-
cations. Hence, even if the probability of the worst-
case scenario is low, there may be other nearby states 
that are not as infrequent where the policy remains 
approximately optimal. In the lost in a forest problem, 
it also turns out that the robust strategy does well if 
the road lies in one of the regions to be explored first. 
But if the road lies in neither the first nor last regions 
to be explored, the robust strategy involves walking 
an unnecessarily long distance. Criticizing a policy 
because it performs poorly in some states imposes an 
impossible burden on policy. Even a policy designed 

BOX 1 (continued)

The lost in a forest problem 

one mile until reaching the circle along which the tan-
gency point must be located, then travelling counter-
clockwise along the circle until reaching the road. This 
strategy will reach the road with certainty, and the 
longest distance needed to ensure reaching the road 
regardless of its location corresponds to walking a mile 
plus the entire distance of the circle, that is, 1 + 2π  
≈ 7.28 miles. But it is possible to ensure we will reach 
the road regardless of its location with an even short-
er path. To see this, suppose we walk out a mile and 
proceed to walk counterclockwise along the circle as 
before, but after travelling for three-fourths of the 
circle, rather than continuing to walk along the circle, 
we instead walk straight ahead for a mile, as shown 
in panel B of figure B1. This approach also ensures 
we will reach the road with certainty regardless of 
where it is located, but it involves walking at most  
1 1 6 713

2+ + ≈ .π miles. It turns out that it is possible 
to do even better than this. The optimal path, derived 
by Isbell (1957), is illustrated in panel C of figure B1. 
This procedure involves walking out 2

3
1 15≈ .  miles, 

then turning clockwise 60 degrees and walking back 
toward the circle for another 1

3
0 58≈ .  miles until

reaching the perimeter of the circle of radius one mile 
around where the hike started, walking 210 degrees 
along the circle, and then walking a mile along the 
tangent to the circle at this point. The strategy requires 
walking at most 1 2

3
7
6 1 6 40+ + + ≈ .π miles. This is the 

absolute minimum one would have to walk and still 
ensure reaching the road regardless of its location. 

When he originally posed the lost in a forest 
problem, Bellman (1956) suggested as an alternative 

strategy the path that minimizes the expected distance 
of reaching the road, assuming the tangency point was 
distributed uniformly over the unit circle. To the best 
of my knowledge, this problem has yet to be solved 
analytically. However, Gluss (1961) provided some 
intuition as to the nature of this solution by numerically 
solving for the optimal path among a parameterized 
set of possible strategies. He showed that the robust 
path in panel C of figure B1 does not minimize the 
expected distance, and he demonstrated various strat-
egies that improve upon it. The general shape Gluss 
found to perform well among the paths he considered 
is demonstrated in panel D of figure B1. In order to 
minimize the expected distance, it turns out that it will 
be better to eventually stray outside the circle rather 
than always hewing close to it as Isbell’s (1957) path 
does. The reason is that one can cover more possibili-
ties walking outside the circle and reaching the road at a 
nontangency point than hewing to the circle and search-
ing for tangency points. This can be seen in panel D of 
figure B1, where walking along the proposed path up 
to point B covers all possible locations for the tangency 
point in the arc AC, whereas walking along the arc AC 
would have required walking a significantly longer 
distance. The drawback of straying from the circle this 
way is that if the road happens to be located at the last 
possible location, the hiker would have to cover a much 
greater distance to reach that point. But since the proba-
bility that the road will lie in the last possible location to 
be searched is small under the uniform distribution, it 
is worth taking this risk if the goal is to minimize the 
expected travel time rather than the maximal travel time. 
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to do well on average (assuming the distribution of 
outcomes is known) may perform poorly in certain 
states of the world. 

Another critique of robust control holds that, rather 
than choosing a policy that is robust, decision-makers 
should act like Bayesians; that is, they should assign 
subjective beliefs to the various possibilities they con-
template, compute an implied expected loss for each 
strategy, and then choose the strategy that minimizes 
the expected loss. For example, Sims (2001) argued 
decision-makers should avoid rules that violate the 
sure-thing principle, which holds that if one action is 
preferred to another action regardless of which event 
is known to occur, it should remain preferred if the event 
were unknown. The robust control approach can violate 
this principle, while subjective expected utility does 
not. The notion of assigning subjective probabilities 
to different scenarios is especially compelling in the 
lost in a forest problem, where assigning equal proba-
bilities to all locations seems natural given there is no 
information to suggest that any one direction is more 
likely than the other. In fact, when Bellman (1956) 
originally posed his question, he suggested both mini-
mizing the longest path (minimax) and minimizing the 
expected path assuming a uniform prior (min-mean) 
as ways of solving this problem. This approach need 
not contradict the policy recommendation that emerges 
from the robust control approach. In particular, if the 
cost of effort involved in walking rises steeply with 
the distance one has to walk, a policy that eliminates 
the possibility of walking very long distances would 
naturally emerge as desirable. But at shorter distanc-
es, assigning a probability distribution to the location 
of the road might lead to a different strategy from the 
robust one. This critique is not aimed at a particular 
strategy per se, but against using robustness as a cri-
terion for choosing which policy to pursue.4  

The problem with this critique is that it is not 
clear that decision-makers would always agree with 
the recommendation that they assign subjective prob-
abilities to scenarios whose likelihood they do not 
know. As an example, assigning a distribution to the 
location of the road in the lost in a forest problem is 
incompatible with the notion of Murphy’s Law. Inherent 
in Murphy’s Law is the notion that the location of the 
road depends on where the hiker chooses to search. 
But the Bayesian approach assumes a fixed distribu-
tion regardless of what action the hiker chooses. Thus, 
to a person who finds Murphy’s Law appealing, pro-
ceeding like a Bayesian would ring false. As another 
example, consider the “Ellsberg paradox,” which is 
due to Ellsberg (1961). This paradox is based on a 
thought experiment in which people are asked to 

choose between a lottery with a known probability  
of winning and another lottery featuring identical prizes 
but with an unknown probability of winning. Ellsberg 
argued that most people would prefer to avoid the lot-
tery whose probability of winning they do not know 
and would not choose as if they assigned a fixed sub-
jective probability to the lottery with an unknown prob-
ability of winning. In other words, the preferences 
exhibited by most people would seem paradoxical to 
someone who behaved like a Bayesian. Subsequent 
researchers who conducted experiments offering these 
choices to real-life test subjects, starting with Becker 
and Brownson (1964), confirmed this conjecture. The 
saliency of these findings suggests that the failure to 
behave like a Bayesian may reflect genuine discomfort 
by test subjects with the Bayesian approach of assign-
ing subjective probabilities to outcomes whose prob-
abilities they do not know. But if this is so, we cannot 
objectively fault decision-makers for not adopting the 
Bayesian approach, since any recommendation we 
make to them would have to respect their preferences. 

Of course, even accepting that policymakers may 
not always find the Bayesian approach appealing, it 
does not automatically follow that they should favor 
the robust control approach in particular. The relevant 
question is whether there is a compelling reason for 
decision-makers to specifically prefer the robust poli-
cy. One result often cited by advocates of robust con-
trol is the work of Gilboa and Schmeidler (1989). 
They show that if decision-makers’ preferences over 
lotteries satisfy a particular set of restrictions, it will 
be possible to represent their choices as if they chose 
the action that minimizes the largest possible expected 
loss across a particular set of probability distributions. 
However, this result is not an entirely satisfactory  
argument for why policymakers should adopt the  
robust control approach. First, there is little evidence 
to suggest that standard preferences obey the various 
restrictions derived by Gilboa and Schmeidler (1989). 
While the Ellsberg paradox suggests many people have 
preferences different from those that would lead them 
to behave like Bayesians, it does not by itself confirm 
that preferences accord with each one of the restrictions 
in Gilboa and Schmeidler (1989). Second, Gilboa and 
Schmeidler (1989) show that the set of scenarios from 
which the worst case is calculated depends on the pref-
erences of the decision-makers. This is not equivalent 
to arguing that policymakers, once they restrict the set 
of admissible models that could potentially account for 
the data they observe, should always choose the action 
that minimizes the worst-case outcome from this set. 

In the lost in a forest problem, Gilboa and  
Schmeidler’s (1989) result only tells us that if an  
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individual exhibited particular preferences toward lotter-
ies whose outcomes dictate distances he would have to 
walk, he would in fact prefer the minimax solution to 
this problem. It does not say that whenever he faces un-
certainty more generally—for example, if he also forgot 
how far away he was from the road when he lay down—
that he would still choose the strategy dictated by the 
robust control approach. In short, Gilboa and Schmeidler 
(1989) show that opting for a robust strategy is coherent 
in that we can find well-posed preferences that ratio-
nalize this behavior, but their analysis does not imply 
such preferences are common or that robustness is a 
desirable criterion whenever one is at a loss to assign 
probabilities to various possible scenarios.5

The theme that runs through the discussion thus 
far is that if the decision-makers cannot assign proba-
bilities to scenarios they are uncertain about, there is 
no inherently correct criterion on how to choose a 
policy. As Manski (2000, p. 421) put it, “there is no 
compelling reason why the decision maker should or 
should not use the maximin rule when [the probability 
distribution] is a fixed but unknown objective function. 
In this setting, the appeal of the maximin rule is a per-
sonal rather than normative matter. Some decision 
makers may deem it essential to protect against worst-
case scenarios, while others may not.”6 One can point 
to unappealing elements about robust control, but these 
do not definitively rule out this approach. Conversely, 
individuals with particular preferences toward lotteries 
might behave as if they were following a minimax rule, 
but this does not imply that they will adopt such a rule 
whenever they are unable to assign probabilities to possi-
ble scenarios. Among engineers, the notion of designing 
systems that minimize the worst-case scenario among 
the set of possible states whose exact probability is un-
known has carried some appeal. Interestingly, Murphy’s 
Law is also an export from the field of engineering.7 
The two observations may be related: If worst-case 
outcomes are viewed not as rare events but as common 
experiences, robustness would naturally seem like an 
appealing criterion. Policymakers who are nervous about 
worst-case outcomes would presumably find appeal 
in the notion of keeping the potential risk exposure to 
the bare minimum. More generally, studying robust 
policies can help us to understand the costs and bene-
fits of maximally aggressive risk management so that 
policymakers can contemplate their desirability. 

Recasting the Brainard model as a robust 
control problem

Now that I have described what it means for a  
policy to be robust, I can return to the question of how  
a policymaker concerned about robustness should act 

when trying to target a variable in an uncertain environ-
ment. In particular, I will now revisit the environment 
that Brainard (1967) considered, but with one key differ-
ence: The policymaker is assumed to be unable to  
assign probabilities to the scenarios he is uncertain 
about. In what follows, I introduce uncertainty in a 
way that Hansen and Sargent (2008) and Williams 
(2008) describe as structured uncertainty; that is, I  
assume the policymaker knows the model but is un-
certain about the exact value of one of its parameters. 
More precisely, he knows that the parameter lies in 
some range, but he cannot ascribe a probability distri-
bution to the values within this range. By contrast, un-
structured uncertainty corresponds to the case where  
a model is defined as a probability distribution over 
outcomes, and where the policymaker is unsure about 
which probability distribution from some set represents 
the true distribution from which the data are drawn.8 

Once again, I begin by assuming that the variable 
in question, y, is affected linearly by a policy variable, 
r; various factors that the policymaker can observe 
prior to setting policy, x; and other factors that the 
policymaker cannot observe prior to setting his policy 
but whose distribution is known, εu: 

5) y = x – kr + εu.

As before, I assume εu has mean 0 and variance σu
2 .  

To capture uncertainty about the effect of policy,  
I modify the coefficient on r to allow for uncertainty:

6) y = x – (k + εk) r +
 
εu. 

In contrast to Brainard’s (1967) setup, I assume that 
rather than knowing the distribution of εk, the policy-
maker only knows that its support is restricted to the
interval ε ε,  that includes 0, that is, ε ε< <0 .  In other 
words, the effect of r on y can be less than, equal to, or 
higher than k. Beyond this, he will not be able to assign 
probabilities to particular values within this interval. 

Since the support of εk will figure prominently in 
formulating the robust strategy, it is worth commenting 
on where it might come from. In practice, information 
about k + εk is presumably compiled from past data. 
That is, given time-series data on y, x, and r, we can 
estimate k + εk by using standard regression techniques. 
With a finite history, our estimate would necessarily 
be noisy due to variation from εu. However, we might 
still be able to reject some values for k + εk as implau-
sible—for example, values that are several standard 
errors away from our point estimate. Still, there is 
something seemingly arbitrary in classifying some 
values of k as possible while treating virtually identical 
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values as impossible. Although this may be consistent 
with the common practice of “rejecting” hypotheses 
whose likelihood falls below some set cutoff, it is 
hard to rationalize such dogmatic rules for including 
or omitting possible scenarios in constructing worst-
case outcomes. In what follows, I will treat the sup-
port for εk as given, sidestepping these concerns.9

The robust control approach in this environment 
can be cast as a two-step process. First, for each value 
of r, we compute its worst-case scenario over all values 
ε ε εk ∈ ,  ,  or the largest expected loss the policymaker
could incur. Define this expected loss as W(r); that is,

W r E y x k r
k k

k u( ) ≡ = − +( ) +
∈ , 





 ∈ , 

( )
max max

ε ε ε ε ε ε
ε σ2 2 2
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Second, we choose the policy r that implies the smallest 
value for W(r). The robust strategy is defined as the 
value of r that solves minr W(r); that is,

7
2 2) min max .
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x k r
ε ε ε

ε σ
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I explicitly solve equation 7 in appendix 2. In what 
follows, I limit myself to describing the robust strate-
gy and providing some of the intuition behind it. It 
turns out that the robust policy hinges on the lowest 
value that εk can assume. If ε < −k,  which implies that 
the coefficient k + εk can assume either positive or 
negative values, the solution to equation 7 is given by

8) r = 0.

If instead ε > −k, so the policymaker is certain that 
the coefficient k + εk is positive (but is still unsure of 
its value), the solution to equation 7 is given by

9
2

) .r
x

k
=

+ +( ) /ε ε

Thus, if the policymaker knows the sign of the  
effect of r on y, he will respond to changes in x in  
a way that depends on the extreme values εk can 
assume, that is, the endpoints of the interval ε ε,  .
But if the policymaker is unsure about the sign of  
the effect of policy on y, he will not respond to 
changes in x at all. 

To better understand why concerns about robust-
ness lead to this rule, consider first the result that if 
the policymaker is uncertain about the sign of k + εk, 
he should altogether abstain from responding to x. 

This is related to Brainard’s (1967) original attenuation 
result: There is an inherent asymmetry in that a passive 
policy where r = 0 leaves the policymaker unexposed 
to risk from εk, while a policy that sets r ≠ 0 leaves him 
exposed to such risk. When the policymaker is suffi-
ciently concerned about the risk from εk, which turns 
out to hinge on whether he knows the sign of the co-
efficient on r, he is better off resorting to a passive policy 
that protects him from this risk than trying to offset 
nonzero values of x. However, the attenuation here is 
both more extreme and more abrupt than what Brainard 
found. In Brainard’s formulation, the policymaker will 
always act to offset x, at least in part, but he will mod-
erate his response to x continuously with σk

2 .  By con-
trast, robustness considerations imply a threshold level 
for the lower support of εk, which, if crossed, leads the 
policymaker to radically shift from actively offsetting 
x to passively not responding to it at all. 

The abrupt shift in policy in response to small 
changes in εk demonstrates one of the criticisms of  
robust control cited earlier—namely, that this approach 
formulates policy based on how it performs in specific 
states of the world rather than how it performs in  
general. When ε  is close to −k, it turns out that the 
policymaker is almost indifferent among a large set 
of policies that achieve roughly the same worst-case 
loss. When ε  is just below −k, setting r = 0 performs 
slightly better under the worst-case scenario than  
setting r according to equation 9.  When ε  is just 
above −k, setting r according to equation 9 performs 
slightly better under the worst-case scenario than set-
ting r = 0. When ε  is exactly equal to −k, both strate-
gies perform equally well in the worst-case scenario, 
as does any other value of r. However, the two strate-
gies lead to different payoffs in scenarios other than 
the worst case, that is, for values of εk that are between 
ε  and ε.  Hence, concerns for robustness might ad-
vocate dramatic changes in policy to eke out small 
gains under the worst-case scenario, even if these 
changes result in substantially larger losses in most 
other scenarios. A dire pessimist would feel perfectly 
comfortable guarding against the worst-case scenario 
in this way. But in situations such as this, where the 
policymaker chooses his policy based on minor dif-
ferences in how the policies perform in one particular 
case even when the policies result in enormous differ-
ences in other cases, the robust control approach has 
a certain tail-wagging-the-dog aspect to it that makes 
it seem less appealing. 

Next, consider what robustness considerations dic-
tate when the policymaker knows the sign of k + εk but 
not its precise magnitude. To see why r depends on the 
endpoints of the interval ε ε,  , consider figure 1. This 
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figure depicts the expected loss [ ]
2 2x k rk u− +( ) +( )ε σ  

for a fixed r against different values of εk. The loss 
function is quadratic and convex, which implies the 
largest loss will occur at one of the two extreme val-
ues for εk. Panel A of figure 1 illustrates a case in 
which the expected losses at ε εk =  and ε εk =  are 
unequal: The expected loss is larger for ε εk = .  But if 
the losses are unequal under some rule r, that value 
of r fails to minimize the worst-case scenario. This is 
because, as illustrated in panel B of figure 1, chang-
ing r will shift the loss function to the left or the right 
(it might also change the shape of the loss function, 
although this can effectively be ignored). The policy-
maker should thus be able to reduce the largest possi-
ble loss over all values of εk in ε ε, .[ ]  Although 
shifting r would lead to a greater loss if εk happened 
to equal ε, since the goal of a robust policy is to re-
duce the largest possible loss, shifting r in this direc-
tion is desirable. Robustness concerns would 
therefore lead the policymaker to adjust r until the 
losses at the two extreme values were balanced, that 
is, until the loss associated with the policy being 
maximally effective was exactly equal to the loss as-
sociated with the policy being minimally effective. 

When there is no uncertainty, that is, when
ε ε= = 0,  the policymaker would set r = x/k, since 
this would set y exactly equal to its target. When 
there is uncertainty, whether the robust policy will  
respond to x more or less aggressively than this bench-
mark depends on how the lower and upper bounds 
are located relative to 0. If the region of uncertainty 
is symmetric around 0 so that ε ε= − , uncertainty has 
no effect on policy. To see this, note that if we were 
to set r = x/k, the expected loss would reduce to 
( / ) ,x k k u

2 2 2ε σ+  which is symmetric in εk. Hence,  
setting r to offset x would naturally balance the loss 
at the two extremes. But if the region of uncertainty 
is asymmetric around 0, setting r = x/k would fail to 
balance the expected losses at the two extremes, and  
r would have to be adjusted so that it either responds 
more or less to x than in the case of complete certain-
ty. In particular, the response to x will be attenuated if  
ε ε> − ,  that is, if the potential for an overly powerful 
stimulus is greater than the potential for an overly weak 
stimulus, and will be amplified in the opposite scenario. 

This result begs the question of when the support 
for εk will be symmetric or asymmetric in a particular 
direction. If the region of uncertainty is constructed us-
ing past data on y, x, and r, any asymmetry would 
have to be driven by differences in detection probabili-
ties across different scenarios—for example, if it is 
more difficult to detect k when its value is large than 

when it is small. This may occur if the distribution of 
εu were skewed in a particular direction. But if the dis-
tribution of εu were symmetric around 0, policymakers 
who rely on past data should find it equally difficult 
to detect deviations in either direction, and the robust 
policy would likely react to shocks in the same way 
as if k were known with certainty. 

Deriving the robust strategy in Brainard’s (1967) 
setting reveals two important insights. The first is that 
the robustness criterion does not inherently imply that 
policy should be more aggressive in the face of uncer-
tainty. Quite to the contrary, the robust policy exhibits 

FIguRE 1

Loss functions for the robust Brainard (1967) model

A. Expected loss function with unequal expected  
 losses at extremes

Expected loss
( ( ) )x k rk u− + +ε σ2 2

B. Adjusting r to balance expected losses  
 at the two extremes

Expected loss
( ( ) )x k rk u− + +ε σ2 2

 

ε ε
εk

ε ε
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by these papers to illustrate some of the relevant 
asymmetries. The first assumes the policymaker is 
uncertain about the persistence of shocks, following 
Sargent (1999). The second assumes the policymaker 
is uncertain about the trade-off between competing 
objectives, following Giannoni (2002). As I show 
next, both of these features could tilt a policymaker 
who is uncertain about his environment in the direc-
tion of overreacting to news about missing a particu-
lar target, albeit for different reasons. 

Uncertain persistence
One of the first to argue that concerns for robust-

ness could dictate a more aggressive policy under un-
certainty than under certainty was Sargent (1999). In 
discussing a model proposed by Ball (1999), Sargent 
asked how optimal policy would be affected when we 
account for the possibility that the model is misspeci-
fied—in particular that the specification errors are se-
rially correlated. To gain insight into this question,  
I adapt the model of trying to meet a target I described 
earlier to allow for the possibility that the policymaker 
is uncertain about the persistence of the shocks he faces, 
and I examine the implied robust policy. I show that 
there is an asymmetry in the loss from underreacting 
to very persistent shocks and the loss from overreacting 
to moderately persistent shocks. Other things being 
equal, this tilts the policymaker toward reacting more 
to past observable shocks when he is uncertain about 
the exact degree of persistence. 

Formally, consider a policymaker who wants to 
target a variable that is affected by both policy and other 
factors. Although Sargent (1999) considers a model 
in which the policymaker is concerned about multiple 
variables, it will be simpler to assume there is only 
one variable he cares about. Let yt denote the value at 
date t of the variable that the policymaker wishes to 
target to 0. As in equation 5, I assume yt is linear in the 
policy variable rt and in an exogenous shock term xt:

10) yt = xt − krt.

Here, I no longer assume the policymaker is uncertain 
about the effect of his policy on y. As such, it will be 
convenient to normalize k to 1. However, I now assume 
he is uncertain about the way xt is correlated over 
time. Suppose

11) xt = ρxt−1 + εt,

where εt are independent and identically distributed 
over time with mean 0 and variance σε

2 .  At each date t, 
the policymaker can observe xt–1 and condition his 

a more extreme form of the same attenuation principle 
that Brainard demonstrated, for essentially the same 
reason: The asymmetry between how passive and  
active possibilities leave the policymaker exposed to 
risk tends to favor passive policies. More generally, 
whether facing uncertainty about the economic envi-
ronment leads to a more gradual policy or a more  
aggressive policy depends on asymmetries in the un-
derlying environment. If the policymaker entertains 
the possibility that policy can be far too effective but 
not that it will be very ineffective, he will naturally 
tend to attenuate his policy. But if his beliefs are re-
versed, he will tend to magnify his response to news 
about potential deviations from the target level.10

The second insight is that, at least in some cir-
cumstances, the robust strategy can be described as 
one that balances the losses from different risks. Con-
sider the case where ε > −k: In that case, the robust 
strategy will be the one that equates the loss from the 
risk of policy being overly effective with the loss 
from the risk of policy being insufficiently effective. 
This suggests that, in some cases, robustness amounts 
to a recommendation of keeping opposing risks in 
balance, in line with what monetary authorities often 
cite as the principle that guides their policies in prac-
tice. That said, the notion that concerns for robustness 
amount to balancing losses in this way is not common 
to all environments. The next section presents an  
example in which robustness considerations would 
recommend proceeding as if the policymaker knew 
the worst-case scenario to be true rather than to keep 
different risks in balance. Moreover, the notion of 
balancing losses or risks is implicit in other approaches 
to modeling decision-making under uncertainty. For 
example, choosing a policy to minimize expected losses 
will typically call on the policymaker to equate expected 
marginal losses across states of the world or to other-
wise balance expected costs and benefits of particular 
policies. Hence, robust control is neither uniquely nor 
fundamentally a recommendation to balance risks. 
Nevertheless, in some circumstances it involves  
balancing opposing risks in a way that mirrors some 
of the stated objectives of monetary authorities. 

Robustness and aggressive rules

Since robustness considerations can lead to policies 
that are either more gradual or more aggressive, depend-
ing on the underlying asymmetry of the environment, 
it seems natural to ask which asymmetries tended to 
favor aggressive policies in the original work on robust 
monetary policy. The papers cited earlier consider differ-
ent environments, and their results are not driven by one 
common feature. I now offer two examples inspired 
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policy on its realization. However, he must set rt  
before observing xt. He will be uncertain about xt for 
two reasons: He must act before getting to observe εt, 
and he may not know the value of ρ with certainty. 

I assume the policymaker discounts future losses 
at rate β < 1 so that his expected loss is given by

E y E x r
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If the policymaker knew ρ with certainty, his optimal 
strategy would be to set rt = ρxt–1, which is the expected 
value of xt+1. Suppose instead that he knew ρ fell in 
some interval ρ ρ,  .  Let ρ* denote the midpoint of 
this interval; that is,

ρ ρ ρ∗ = +( ) /2.

To emphasize asymmetries inherent to the loss function 
as opposed to the region of uncertainty, suppose the in-
terval of uncertainty is symmetric around the certainty 
benchmark; that is, in assessing whether the robust 
policy is more aggressive, we will compare it to the 
policy the monetary authority would pursue if it knew 
ρ = ρ*. An important and empirically plausible assump-
tion in what follows is that ρ* > 0; that is, the beliefs 
of the monetary authority are centered around the pos-
sibility that shocks are positively correlated. 

Once again, we can derive the robust strategy in two 
steps. First, for each rule rt , define W(rt) as the biggest 
loss possible among the different values of ρ; that is,

W r E yt
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We then choose the policy rule rt that minimizes W(rt); 
that is, we solve
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Following Sargent (1999), I assume the policymaker 
is restricted in the type of policies rt he can carry  
out: The policymaker must choose a rule of the form 
rt = axt−1, where a is a constant that cannot vary over 
time. This restriction is meant to capture the notion 
that the policymaker cannot learn about the parameters 
about which he is uncertain and then change the way 
policy reacts to information as he observes xt over time 
and potentially infers ρ. I further assume the expectation 

in equation 12 is the unconditional expectation of  
future losses; that is, the policymaker calculates his 
expected loss from the perspective of date 0. To sim-
plify the calculations, I assume x0 is drawn from the 
stationary distribution for xt. 

The solution to equation 12, subject to the constraint 
that rt = axt−1, is derived in appendix 3. The key result 
shown in that appendix is that as long as ρ* > 0, the robust
policy would set a to a value in the interval ρ ρ,  that
is strictly greater than the midpoint ρ*. In other words, 
starting with the case in which the policymaker knows 
ρ = ρ*, if we introduce a little bit of uncertainty in a 
symmetric fashion, so the degree of persistence can 
deviate equally in either direction, the robust policy 
would react more to a change in xt−1 in the face of  
uncertainty than it would react to such a change if  
the degree of persistence were known with certainty. 

To understand this result, suppose the policymaker 
instead set ρ = ρ*. As in the previous section, the loss 
function is convex in ρ, so the worst-case scenario will 
occur when ρ assumes one of its two extreme values, 
that is, either when ρ ρ=  or ρ ρ= .  It turns out that 
when a = ρ*, setting ρ ρ=  imposes a bigger cost on 
the policymaker than setting ρ ρ= .  Intuitively, for any 
given ρ, setting a = ρ* will imply yt = (ρ − ρ*) xt−1 + εt. 
The expected deviation of yt from its target given xt−1 
will have the same expected magnitude in both cases; 
that is, ( )*ρ ρ− −xt 1  will be the same when ρ ρ=  and
ρ ρ= ,  given ρ ρ,   is symmetric around ρ*. However, 
the process xt will be more persistent when ρ is higher, 
and so deviations from the target will be more persis-
tent when ρ ρ=  than when ρ ρ= .  More persistent 
deviations imply more volatile yt and hence a larger ex-
pected loss. Since the robust policy tries to balance 
the losses at the two extreme values of ρ, the policy-
maker should choose a higher value for a to reduce 
the loss when ρ ρ= .

The basic insight is that, while the loss function 
for the policymaker is symmetric in ρ around ρ = 0,  
if we focus on an interval that is centered in either  
direction of ρ = 0, the loss function will be asymmet-
ric. This asymmetry will tend to favor policies that 
react more to past shocks. In fact, this feature is not 
unique to policies guided by the robustness criterion: 
If we assumed the policymaker assigned symmetric
probabilities to values of ρ in the interval ρ ρ,   and 
acted to minimize expected losses, the asymmetry in 
the loss function would tilt his policy toward being 
more aggressive; that is, the value of a that solves  

min
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function allows us to express the policymaker’s prob-
lem as choosing π to minimize the loss

α
π
λ

π
−( )

+
x

2

2

2 .

Taking the first-order condition with respect to π gives 
us the optimal choices for y and π as

15
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Suppose the policymaker were uncertain about λ, 
knowing only that it lies in some interval λ λ,  .  
Given a choice of π, the worst-case scenario over this 
range of λ is given by

max .
λ λ λ
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π

λ
π
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+
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2
2x

The worst case always corresponds to λ λ= , except 
when π = x, in which case the value of λ has no effect 
on the loss function. The robust strategy, therefore, is to 
set π and y to their values in equation 15 as if the pol-
icymaker knew λ λ= , the lowest value λ can assume. 
Thus, as long as the certainty benchmark λ lies in the 
interior of the uncertainty interval λ λ, ,  concerns for 
robustness will lead the policymaker to have y respond 
less to x, as well as π respond more to x. The robust-
ness criterion leads the policymaker to stabilize y more 
aggressively against shocks to x and stabilize π less 
aggressively against these same shocks. The reason is 
that when a shock x causes π to deviate from its tar-
get, a lower value of λ implies that pushing π back to 
its target would require y to deviate from its target by 
a greater amount. The worst-case scenario is if y de-
viates to the largest extent possible, and so the robust 
policy advocates stabilizing y more aggressively while 
loosening up on π. 

Figure 2 illustrates this result graphically. The 
problem facing the policymaker is to choose a point 
from the line given by π = λy + x. Ideally, it would 
like to move toward the origin, where π = y = 0. 
Changing λ will rotate the line from which the policy-
maker must choose as depicted in the figure. A lower 
value of λ corresponds to a flatter curve. Given the 
policymaker prefers to be close to the origin, a flatter 
curve leaves the policymaker with distinctly worse 
options that are farther from the origin, since one can 
show that the policymaker would only choose points 

While my example highlights a force that gener-
ally favors more aggressive policies, it should be em-
phasized that my exercise is not quite equivalent to the 
one in Sargent (1999). Sargent allowed the policymaker 
to entertain stochastic processes that are correlated as 
in my example, but he also allowed the policymaker 
to entertain the possibility that the mean of the process 
is different from zero. In addition, the region of uncer-
tainty Sargent posited was not required to be symmetric 
around the certainty benchmark; rather, it was con-
structed based on which types of processes are easier 
to distinguish from the certainty benchmark case.  
The analysis here reveals an asymmetry in the loss 
function that magnifies concerns about more persis-
tent processes and thus encourages reacting more  
to past shocks, but the nature of the robust policy  
depends crucially on the set of scenarios from which 
the worst-case is constructed. 

Uncertain trade-off parameters
Following Sargent (1999), other papers also argued 

that robust policies tended to be aggressive. While these 
papers reached the same conclusion as Sargent (1999), 
they considered different environments. For example, 
Giannoni (2002) assumed that the policymakers know 
the persistence of shocks but are uncertain about param-
eters of the economic model that dictate the effect of 
these shocks on other economic variables. This leaves 
policymakers uncertain about the trade-off between their 
competing objectives. In this environment, Giannoni too 
found that the robust policy is more aggressive in the 
face of uncertainty than when policymakers know the 
trade-off parameters with certainty. 

To provide some insight behind these results, con-
sider the following simplified version of Giannoni’s (2002) 
model. Suppose the monetary authority cares about 
two variables, denoted y and π; in Giannoni’s model, 
y and π are the output gap and inflation, respectively. 
The monetary authority has a quadratic loss function:

13) αy2 + π2.

The variables y and π are related linearly

14) π = λy + x,

where x is an observable shock.11 This relationship 
implies a trade-off between π and y. If we set π = 0  
as desired, then y would vary with x and deviate from 
0. If we set y = 0, then π would vary with x and devi-
ate from 0. Substituting equation 14 into the loss 
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By contrast, early applications of robust control were 
concerned with uncertainty over the persistence of 
shocks or parameters that govern the trade-off between 
conflicting policy objectives. In that case, robustness 
concerns suggest amplifying the response of policy  
to shocks. But so would the expected utility criterion 
that Brainard considered. Whether the policymaker 
should change his policies in the face of uncertainty 
depends on the nature of that uncertainty—specifically 
whether it involves any inherent asymmetries that 
would tilt policy from its benchmark when the policy-
maker is fully informed. These considerations can be 
as important as the criterion by which a policy is 
judged to be optimal. 

Ultimately, whether policymakers will find the 
robust control approach appealing depends on their 
preferences and on the particular application at hand. 
If policymakers are pessimistic and find an appeal in 
the dictum of Murphy’s Law, which holds that things 
that can go wrong quite often do go wrong, they will 
find minimizing the worst-case scenario appealing. 
But in an economic environment where monetary 
policy has little impact on the worst-case scenario 
and has substantial impact on other scenarios, as in 
one of the examples presented here, even relatively 
pessimistic policymakers might find alternative ap-
proaches to robust control preferable for guiding the 
formulation of monetary policy.

in the upper left quadrant of the figure. This explains 
why the worst-case scenario corresponds to the flattest 
curve possible. If we assume the policymaker must 
choose his relative position on the line before know-
ing the slope of the line (that is, before knowing λ), 
then the flatter the line could be, the greater his incen-
tive will be to locate close to the π-axis rather than 
risk deviating from his target on both variables, as  
indicated by the path with the arrow. This corresponds 
to more aggressively insulating y from x. 

Robustness concerns thus encourage the policy-
maker to proceed as if he knew λ was equal to its lowest 
possible value. Note the difference from the two earlier 
models, in which the robust policy recommended bal-
ancing losses associated with two opposing risks. Here, 
by contrast, the policy equates two marginal losses (the 
loss from letting y deviate a little more from its target 
and the loss from letting π deviate a little more) for a 
particular risk, namely, that λ will be low. Thus, robust-
ness does not in general amount to balancing losses 
from different risks as in my two previous examples. 

Conclusion

In recent years, economists have paid increasing 
attention to the problem of formulating policy under 
uncertainty, particularly when it is not possible to at-
tach probabilities to the scenarios that concern policy-
makers. One recommendation for policy in these 
circumstances, often attributed to Wald (1950), is the 
robust control approach, which argues for choosing 
the policy that achieves the most favorable worst-case 
outcome. Recent work has applied this notion to eco-
nomic questions, especially in dynamic environments. 
However, there seem to be only limited references to 
this literature in monetary policy circles. 

One reason for the limited impact of this literature 
appears to be that early applications of robust control 
to monetary problems focused on applications in which 
policymakers should amplify rather than attenuate 
their responses to shocks, in contrast with the theme 
emphasized by Brainard (1967) in his model. One of 
the points of my article is that comparing these appli-
cations of robust control to Brainard’s result is some-
what misleading, since the policymaker is guarding 
against different types of uncertainty in the two models. 
Brainard examined the case of a policymaker who 
was unsure as to the effect of his policy on the variable 
he wanted to target; the policymaker found that atten-
uating his response to shocks would be optimal. But 
applying a robustness criterion in the same environment 
would suggest attenuating policy even more drastically, 
not responding at all to shocks when the range of pos-
sibilities that the policymaker is uncertain about is large. 
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NOTES

1Onatski and Stock (2002) also argue that aggressiveness is not a 
generic feature of robust policies, but they note that in their framework, 
aggressiveness will arise for many classes of perturbations.

2The problem is sometimes referred to as the “lost at sea” problem. 
Richard Bellman, who originally posed the problem, is well-known 
among economists for his work on dynamic programming, a tool 
used by economists to analyze sequential decision problems that 
unfold over time. I refer to this example only because of its intui-
tive appeal and not to draw any analogies between the practice of 
conducting monetary policy and the situation of being lost.

3An example of this critique can be found in Svensson (2007), who 
writes “if a Bayesian prior probability measure were to be assigned 
to the feasible set of models, one might find that the probability  
assigned to the models on the boundary are exceedingly small. 
Thus, highly unlikely models can come to dominate the outcome 
of robust control.” Bernanke (2007) also refers to (but does not  
invoke) this critique of robust control.

4In this spirit, Sims (2001) suggested using robust control to aid 
Bayesian decision-makers who for convenience rely on procedural 
rules rather than explicit optimization. The idea is to figure out  
under what prior beliefs about the models it would be optimal to 
pursue the robust strategy, and then reflect on whether this prior 
distribution seems sensible. As Sims notes, deriving the robust 
strategy “may alert decision-makers to forms of prior that, on re-
flection, do not seem far from what they actually might believe,  
yet imply decisions very different from that arrived at by other 
simple procedures.” Interestingly, Sims’ prescription cannot be  
applied to the lost in a forest problem: There is no distribution over 
the location of the road for which the minimax path minimizes  
expected distance. However, an analogous argument can be made 
regarding the cost of effort needed to walk various distances.  
If the hiker relies on procedural rules, he can back out how steeply 
the cost of effort must rise with distance to justify the minimax 
path. This will alert him to paths that are different from recommen-
dations arrived at by other simple procedures but rely on plausible 
cost of effort functions.

5Strictly speaking, Gilboa and Schmeidler (1989) only consider  
a static one-shot decision, while the lost in a forest problem is a  
dynamic problem in which the hiker must constantly choose how 
to search given the results of his search at each point in time. 
However, the problem can be represented as a static decision in 
which the hiker chooses his search algorithm before starting to 
search. This is because he would never choose to revise his plans 
as a result of what he learns; if he did, he could have designed his 
search algorithm that way before starting to search. This will not 
be true in many economic applications, where there may be prob-
lems with time inconsistency that complicate the task of how to  
extend the minimax notion to such choices. For a discussion of  
axiomatic representations of minimax behavior in dynamic envi-
ronments, see Epstein and Schneider (2003) and Maccheroni, 
Marinacci, and Rustichini (2006).

6For the purposes of this article, the terms “minimax rule” and  
“robust strategy” can be viewed as interchangeable with the term 
“maximin rule” that Manski (2000) uses.

7According to Spark (2006), the law is named after aerospace  
engineer Edward Murphy, who complained after a technician  
attached a pair of sensors in a precisely incorrect configuration  
during a crash test Murphy was observing. Engineers on the team 
Murphy was working with began referring to the notion that things 
will inevitably go wrong as Murphy’s Law, and the expression 
gained public notoriety after one of the engineers used it in a  
press conference.

8For example, the set of distributions the policymaker is allowed  
to entertain might be those whose relative entropy to the distribu-
tion of some benchmark model falls below some threshold. There 
are other papers that similarly focus on structured uncertainty  
because of its simplicity—for example, Svensson (2007).

9One way to avoid this issue is to model concerns for robustness  
in a different way. In particular, rather than restrict the set of sce-
narios policymakers can entertain to some set, we can allow the  
set to be unrestricted but introduce a penalty function that punishes 
scenarios continuously depending on how much they differ from 
some benchmark scenario—for example, the point estimates from 
an empirical regression. This formulation is known as multiplier 
preferences, since the penalty function is scaled by a multiplicative 
parameter that captures concern for model misspecification. See 
Hansen and Sargent (2008) for a more detailed discussion.

10Rustem, Wieland, and Zakovic (2007) also consider robust con-
trol in asymmetric models, although they do not discuss the impli-
cations of this for gradual policy versus aggressive policy.

11This relationship is a simplistic representation of the New 
Keynesian Phillips curve Giannoni (2002) uses, in which inflation 
at date t depends on the output gap at date t, expected inflation at 
date t + 1, and a shock term; that is, πt = λyt + βEtπt+1+ xt. If xt is in-
dependent and identically distributed over time, expected inflation 
would just enter as a constant, and the results would be identical  
to those in the simplified model I use.
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This appendix derives the optimal policy that solves 
equation 3 (on p. 39). Using the fact that d

dr E y2





 
= 





E yd
dr

2 , we can write the first-order condition for the 
problem in equation 3 as E[2y × dy/dr] = 0. This implies

E [−2 (x − (k + εk) r + εu) (k + εk)] = 0.

Expanding the term inside the expectation operator,  
we get

E [2(−x (k + εk) + (k + εk)
2r − εu (k + εk))] = 0.

Using the fact that E[εk] = E[εu] = 0 and that εk and εu are 
independent so E [εk 

εu] = E [εu] E [εk] = 0, the preced-
ing equation reduces to 

APPENDIX 1. DErIvING ThE OPTIMAL rULE IN BrAINArD’S (1967) MODEL

− + + =





2 2 02 2xk r k kσ .

Rearranging and setting this expression to 0 yields the 
value of r described in the text (on p. 39):

r
x

k kk

=
+ /σ2

.

Note that dr
dx

 is decreasing in σk
2 ;  that is, greater 

uncertainty leads the policymaker to attenuate his  
response to shocks. 

 

APPENDIX 2. DErIvING ThE rOBUST STrATEGy IN BrAINArD’S (1967) MODEL

This appendix derives the policy that solves equation 7 
(on p. 46), that is,

min max .
r k u

k

x k r
ε ε ε

ε σ
∈ , 

( )










− +( ) +

2 2

For ease of exposition, let us rewrite this problem as

min ,
r

W r( )
where

W r x k r
k

k u( ) = − +( ) +
∈ , 

( )










max .

ε ε ε
ε σ

2 2

Since the second derivative of (x − (k + εk) r)2 with re-
spect to εk is just 2r2 ≥ 0 , the function W r( ) is convex 
in εk. It follows that the maximum value must occur at 
one of the two endpoints of the support, that is, either 
when ε εk =  or when ε εk = .  

Next, I argue that if r* solves equation 7, then we 
can assume without loss of generality that W(r*) takes 
on the same value when ε εk =  as when ε εk = .  Sup-
pose instead that at the value r*  that solves equation 7, 
W(r*) is unequal at these two values. Let us begin first 
with the case where 

ε ε ε εk k

W r W r
=

∗







=

∗





> . This implies

2 2

x k r x k r− +( ) > − +( )∗







∗







ε ε .

I obtain a contradiction by establishing there exists  
an r ≠  r*  that achieves a lower value of W(r) than 
W r x k r u

∗







∗





= − +( ) +
2 2ε σ .  If this is true, then r*  

could not have been the solution to equation 7, since  
the solution requires that W(r*) ≤ W r( )  for all r. 

Differentiate 
2

x k r− +( )( )ε with respect to r  
and evaluate this derivative at r = r*. If this derivative,

2 k k r x+( ) +( ) −( )∗ε ε ,
 
is different from 0,  then we  

can change r in a way that lowers 
2

x k r− +( )( )ε . By 
continuity, we can find an r close enough to r* to ensure that

2 2

x k r x k r− +( )( ) > − +( )( )ε ε .

It follows that there exists an r ≠  r* such that W r( )
 = − +( )( ) + < ∗








2 2x k r W ruε σ ;
 
this is a contradiction. 

This leaves us with the case where 2 k +( ) ×ε
k r x+( ) −( )∗ε  is equal to 0. If k r x+( ) =∗ε ,  then  

we have

0 0
2 2

= − +( )( ) > − +( )( ) ≥x k r x k rε ε ,

which once again is a contradiction. The last remaining 
case involves k + =ε 0.  In that case, W(r) = x2. But we 
can achieve this value by setting r = 0, and since W(0) 
does not depend on εk, the statement follows trivially. 
That is, when k + =ε 0  and ε εk =  solves the maximi-
zation problem that underlies W(r), there will be multi-
ple solutions to equation 7, including one that satisfies 
the desired property. 

The case where 
ε ε ε εk k

W r W r
=

∗







=

∗





>  leads to a 

similar result, without the complication that k + ε  might 
vanish to 0. 

Equating the losses at ε εk =  and ε εk = , we have

2 2

2 2 2 2
2

22 2

x k r x k r

x k r x k r x k r

− +( )( ) = − +( )( )
+ +( ) − +( ) = + +( ) −

ε ε

ε ε ε

,

xx k r

k k r x k r k k r x k r

k

+( )
+ +( ) − +( ) = + +( ) − +( )

ε

ε ε ε ε ε ε

ε

,

,2 2 2 2 2 22 2 2 2

2 −−( ) + −( ) = −( )
+ +( ) =

ε ε ε ε ε

ε ε

2 2 2

2

2

2 2

r x r

k r xr

,

.
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The roots of this quadratic equation are r = 0 and 
r

x

k
=

+ +( ) /ε ε 2
.  Substituting in each of these two 

values yields

W r

x r

k
x r

x

k

u

u

( ) =

+ =

−
+ +









 + =

+ +( ) /










2 2

2

2 2

0

2 2

σ

ε ε
ε ε

σ
ε ε

if

if 


.

Define

Φ = −
+ +
ε ε

ε ε2k
.

Of the two candidate values for r, the one where r = 0 
will minimize W(r) if Φ > 1 and the one where 

r
x

k
=

+ +( ) /ε ε 2
 will minimize W(r) if Φ < 1.. 

Since ε ε< <0 ,  the numerator for Φ is always positive. 
Hence, Φ will be negative if and only if  2 0k + + <ε ε .  
But if 2 0k + + <ε ε ,  then Φ < −1.  The solution to 
equation 7 will thus set r = 0 when Φ < 0. Since ε > 0,  
a necessary condition for Φ  < 0 is for 

ε < −2k.

The only case in which the optimal policy will set  
r ≠ 0 is if  0 1≤ <Φ .  This in turn will only be true  
if 2k + + > −ε ε ε ε,  which reduces to 

ε > −k.

This implies the robust strategy will set r = 0 whenever 
ε > −k but not otherwise. 

APPENDIX 3. DErIvING ThE rOBUST rULE WITh UNCErTAIN PErSISTENCE

This appendix derives the policy that solves equation 12 
(on p. 49). Substituting in for yt, xt, and rt = axt−1, we can 
rewrite equation 12 as 

A1
0

2

1) min max .
a

t

t
t tE a x

ρ
β ρ ε

=

∞

−




















∑ −( ) +

Since x0 is assumed to be drawn from the stationary dis-
tribution, the unconditional distribution of xt is the same 
for all t. In addition, xt−1 and εt are independent. Hence, 
equation A1 can be rewritten as

min max
a

t

t

a
ρ

ε
εβ

ρ σ
ρ

σ
=

∞

∑ −( )
−

+










0

2 2

2
2

1

or just

min max .
a

a
ρ

ε
εβ

ρ σ
ρ

σ1

1 1

2 2

2
2

−
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−
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By differentiating the function 
 

2

21

ρ
ρ

−( )
−

a
, one can show 

that it is convex in ρ for ρ ∈ [−1,1]  and a ∈ [−1,1]. 
Hence, the biggest loss will occur at the extreme values,  
that is, when ρ is equal to either ρ  or ρ. By the same 
argument as in appendix 2, the robust strategy must  
set a in order to equate the losses at these two extremes, 

which are given by 
2

2
1

ρ

ρ

−( )
−

a
when ρ ρ=  and to 

 
2

2
1

ρ

ρ

−( )
−

a
 when ρ ρ= .  If we equate these two expressions

and rearrange, the condition a would have to satisfy

A2
1

1

2 2

2) .
ρ
ρ

ρ
ρ

−
−









 =

−
−

a

a

Given that ρ  and ρ  are symmetric around ρ* > 0, the 
expression on the right-hand side of equation A2 is less 
than 1. Then the left-hand side of equation A2 must be 
less than 1 as well. Using the fact that a ∈ , ρ ρ ,  it  
follows that this in turn requires

ρ ρ− < −a a

or, upon rearranging,

a > +( ) / = ∗ρ ρ ρ2 .

By contrast, if the policymaker knew ρ = ρ* with certainty, 
he would set a = ρ*. The policymaker thus responds more 
aggressively to past shocks with uncertainty than if he 
knew ρ was equal to the midpoint of the set with certainty. 

Finally, note that if ρ* = 0, the symmetry require-
ment would imply ρ ρ= − ,  in which case the solution to 
equation A2 would imply a = 0 = ρ*. Hence, the aggres-
sive response stems from the fact that ρ* is assumed to 
be strictly positive; that is, the region of uncertainty is 
parameterized to be asymmetric with respect to no auto-
correlation. This asymmetry drives the result that the  
robust strategy is more aggressive under uncertainty 
than under certainty. 
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