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Abstract

We develop methods to solve general equilibrium models in which forward-looking agents are subject

to waves of pessimism, optimism, and uncertainty that turn out to critically affect macroeconomic

outcomes. Agents in the model are fully rational, conduct Bayesian learning, and they know that

they do not know. Therefore, agents take into account that their beliefs will evolve according to what

they will observe. This framework accommodates both gradual and abrupt changes in beliefs and

allows for an analytical characterization of uncertainty. Shocks to beliefs affect economic dynamics

and uncertainty. We use a prototypical Real Business Cycle to illustrate the methods.
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1 Introduction

A centerpiece of the rational expectations revolution is that economic outcomes critically depend on

agents’beliefs about future events. Most general equilibrium models are solved assuming that agents

have perfect knowledge about the stochastic properties of all the realized events. These are certainly

strong restrictions imposed upon the dynamics of beliefs. For instance, the private sector is likely to have

limited information about the future path of policymakers’decisions, the dynamics of dividend payments,

or the likely duration of observed changes in the returns to labor and capital. These assumptions, in

turn, influence the expectations formation mechanism and hence the predictions we draw from rational

expectations models.

In this paper we develop methods to study dynamic general equilibrium models in which forward-

looking and fully rational agents learn about the stochastic properties of realized events. This modeling

framework captures waves of pessimism, optimism, and uncertainty that turn out to critically affect

macroeconomic outcomes. Such outbursts of pessimism, optimism, and uncertainty may happen abruptly

or may gradually unfold over a long period of time in response to the behavior of other agents or to

the realizations of economic outcomes. Furthermore, this framework is well-suited to study the effects

of shocks to beliefs and agents’uncertainty in Dynamic Stochastic General Equilibrium (DSGE) models.

All results are derived within a modeling framework suitable for structural estimation that will allow

researchers to bring the models to the data.

The evolution of agents’beliefs is modelled assuming the existence of different states of the world that

differ according to the statistical properties of the exogenous shocks or based on the behavior of some

of the agents in the model. Such regimes follow a Markov-switching process, which may be correlated

with other aspects of the model. For example, the government could be more likely to inflate debt away

when the level of spending is high. Agents are assumed to observe economic outcomes, but not the

regimes themselves. Agents will then adopt Bayesian learning to infer which regime is in place. This will

determine the evolution of agents’beliefs about future economic outcomes.

Our modeling framework goes beyond the assumption of anticipated utility that is often used in

models characterized by a learning process. Such an assumption implies that agents forecast future

events assuming that their beliefs will never change in the future. Instead, agents in our models know

that they do not know. Therefore, when forming expectations, they take into account that their beliefs

will evolve according to what they observe in the future. In our context, it is possible to go beyond the

anticipated utility assumption because there are only a finite number of relevant beliefs and they are

strictly linked to observable outcomes through the learning mechanism in a way that we can keep track

of their evolution. It should also be noted that the proposed approach is based on agents being fully

rational and hence their beliefs always being consistent in equilibrium. Rationality in our approach is

essential in that it puts discipline on beliefs so as to make it possible to draw precise predictions from

economic models.

The proposed model framework is flexible enough to encompass both abrupt and gradual changes in

beliefs. For example, augmenting the modeling framework with signals about the regime in place allows

one to capture the sharp effect of news on the evolution of the economy or to study the macroeconomic
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implications of changes in animal spirits about future events. At the same time, through the learning

process, we can model situations in which agents’beliefs gradually change in response to the behavior of

other agents or the realizations of stochastic events. This sluggish adjustment of public expectations is

hard to reproduce through rational expectations models in which the functioning of the whole economy is

common knowledge among agents. Furthermore, the methods introduced in this paper can be combined

with the techniques developed by Bianchi (2012) to obtain an analytical characterization of the evolution

of uncertainty in response to changes in agents’beliefs.

We show how to apply these methods using a prototypical Real Business Cycle (RBC) model. In the

model, total factor productivity (TFP) growth can assume two values: high or low. For each value of

TFP growth, we allow for a long-lasting and a short-lasting regime. Therefore, while agents can observe

the current TFP growth rate, they are uncertain about its future values, because they do not know if the

current value is likely to last for a short time or for a long time. We consider a wide range of specifications,

allowing for smooth transitions or abrupt changes in agents’optimism about future realizations of TFP

growth. Each of these different specifications can be easily captured with the appropriate transition

matrix governing the evolution of TFP growth. This has the important implication that the dynamics of

pessimism, optimism, and uncertainty are consistent in equilibrium. Whenever a short-lasting regime is

in fact realized, with the benefit of hindsight, agents’beliefs turn out to overreact to the regime change

because agents always take into account the possibility that the economy entered a long-lasting regime.

However, if, in fact, the regime is long-lasting, it takes time for agents’beliefs to line up with the actual

realization. This implies that although agents are fully rational, their beliefs are generally misaligned

with respect to the actual state of the economy. Such a misalignment is found to substantially influence

consumption and capital allocation in the RBC model.

Finally, we expand our analysis of the RBC model to study the case in which agents receive signals

about the likely duration of the current regime. In this environment, signals work as shocks to agents’

beliefs that have first-order and second-order effects. Uncertainty about macroeconomic events evolves

over time as agents’beliefs drift, creating interesting comovements between volatility and real activity.

This feature might shed further light on the link between uncertainty and macroeconomic outcomes with

respect to the seminal work by Bloom (2009).

The methods developed in this paper are based on the idea of expanding the number of regimes to

take into account the learning mechanism. The central insight consists of recognizing that the evolution

of agents’beliefs can be captured by defining an expanded set of regimes indexed with respect to agents’

beliefs themselves. Once this structure has been imposed, the model can be recast as a Markov-switching

dynamic stochastic general equilibrium (MS-DSGE) model with perfect information. If regime changes

enter additively the model can be solved with standard solution methods such as gensys (Sims, 2002) and

Blanchard and Kahn (1980), following the approach described in Schorfheide (2005) and Liu, Waggoner,

and Zha (2011). If instead regime changes enter multiplicatively the model can be solved with any of the

methods developed for solving MS-DSGE models, such as Davig and Leeper (2007), Farmer, Waggoner,

and Zha (2009), Cho (2012), and Foerster, Rubio-Ramirez, Waggoner, and Zha (2011).

In both cases, the resulting solution is suitable for likelihood-based estimation. This is because

even if the final number of regimes is very large, there is a tight link between observable outcomes and
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the evolution of agents’beliefs. In other words, the transition matrix governing the joint dynamics of

the economy and agents’ beliefs is highly restricted. For example, Bianchi and Melosi (2012) apply

these methods and Bayesian techniques to estimate a model in which agents are uncertain about the

future stance of monetary policy. This paper is therefore related to a growing literature that models

parameter instability to capture changes in the evolution of the macroeconomy. This consists of two

branches: Schorfheide (2005), Justiniano and Primiceri (2008), Bianchi (2013), Davig and Doh (2008),

and Fernandez-Villaverde and Rubio-Ramirez (2008) introduce parameter instability in DSGE models,

while Sims and Zha (2006), Primiceri (2005), and Cogley and Sargent (2005) work with structural VARs.

Finally, to the extent that we can model situations in which agents’beliefs evolve in response to policy-

makers’behavior, our work is also linked to papers that study how inflation expectations respond to policy

decisions, such as Mankiw, Reis, and Wolfers (2004), Nimark (2008), Del Negro and Eusepi (2010), and

Melosi (2013, Forthcoming).

Schorfheide (2005) pioneers a method to estimate general equilibrium models in which agents learn

the realization of a discrete Markov-switching process that affects the constants of the model-implied laws

of motion. In another pathbreaking contribution, Andolfatto and Gomme (2003) develop and calibrate a

DSGE model in which agents face a signal extraction problem to learn about the money growth regime.

Our work differs from each of these two papers in one or more of the following dimensions. First, our

framework can accommodate situations in which agents learn about regime changes that do not only

affect the constant terms of the model, but also its autoregressive component. For example, Bianchi

and Melosi (2012) use the proposed framework to estimate a model in which agents have to learn about

future policymakers’behavior. Second, in our framework agents have always enough information to infer

what the current state of the economy is or what other agents are doing: High or low growth, Hawkish or

Dovish monetary policy, etc. Nevertheless, agents face uncertainty about the statistical properties of what

they are observing. For example, agents could be uncertain about the persistence and the destination

of a particular state. As we shall show, in a model in which agents are forward looking these sources of

uncertainty have pervasive effects on the law of motion of the economy. Third, our approach mitigates a

tension that often arises in the learning literature when agents are assumed to understand the structure

of the economy. On the one hand, it would be desirable to have regimes that are very different in order

to induce significant changes on economic dynamics. On the other hand, this would make the learning

process relatively fast. Instead, in our approach even small differences in persistence have very large

effects on agents’expectations because regimes may be still very different in terms of the probability of

moving to alternative regimes. Therefore, our framework allows for both smooth or abrupt changes in

agents’beliefs and for the possibility of signals that play the role of shocks to beliefs, affecting agents’

expectations and uncertainty. Finally, our framework is suitable for likelihood estimation.

The remainder of the paper is organized as follows. Section 2 introduces the class of models and

derives the main results. In Section 3, we discuss the main advantages of the proposed methodology.

Section 4 applies the methods to an RBC model. Section 5 concludes.
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2 The Model Framework

In this section, we introduce the modeling environment to which our methods are applicable. The class

of models we focus on has three salient features:

1. A model that can be expressed or approximated in the following form:1

Γ0 (ξt)St = Γc (ξt) + Γ1 (ξt)St−1 + Ψ (ξt) εt + Πηt (1)

where St is a vector containing all variables of the model known at time t (including conditional

expectations formed at time t), ηt is a vector containing the endogenous expectation errors, and

the random vector εt contains the familiar Gaussian shocks. The hidden variable ξt controls the

parameter values in place at time, θ (ξt) , assumes discrete values ξt ∈ {1, . . . , n}, and evolves
according to a Markov-switching process with transition matrix P.

2. Agents have to forecast the dynamics of the endogenous variables St+1 on the basis of Model (1)

and their information set at time t, It. This includes the history of model variables and shocks, but
not the history of regimes, ξt: It ≡

{
St, εt

}
.

3. Some regimes are assumed to bring about the same model parameters, θ (ξt). Let us group the

regimes into m blocks bj = {ξt ∈ {1, . . . , n} : θ (ξt) = θbi}, for j ∈ {1, ...,m}.

Given that agents know the structure of the model (sub 1 ) and can observe the endogenous variables

and the shocks (sub 2 ), they can also determine which set of parameters is in place at each point in time.

However, while this is enough for agents to establish the history of blocks, agents cannot exactly infer the

realized regime ξt, because the regimes within each block share the same parameter values (sub 3 ). It is

very important to emphasize that regimes that belong to the same block are not identical in all respects,

as they can differ in their stochastic properties such as average persistence and the probability of switching

to other regimes. These properties are known to agents that will use them to learn about the regime in

place today and to form expectations about the future. Therefore, points 1-3 describe a model in which

agents learn about the latent variable ξt. As will be shown below, such a learning process affects the

equilibrium law of motion of the economy. However, agents cannot extract any additional information

about the underlying regime from observing the history of the endogenous variables St because this

reflects their own beliefs.

Henceforth, we will consider a benchmark case in which there are two blocks (m = 2) and two regimes

within each block. This choice is made in order to keep notation simple. The extension to the case

in which m > 2 is straightforward. The probabilities of moving across regimes are summarized by the

1The assumption of model linearity is not essential and can be actually relaxed as discussed in Subsection 3.3. We focus
on linear models because linearization is still the most popular approach to solve and estimate Markov-switching DSGE
models.

5



transition matrix:

P =


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44

 (2)

in which the probability of switching to regime j given that we are in regime i is denoted by pij . Without

loss of generality, we assume that regimes ξt = 1 and ξt = 2 belong to Block 1, while regimes ξt = 3

and ξt = 4 belong to Block 2. We consider only non-trivial blocks that satisfy p11 + p12 + p21 + p22 6= 0

and p33 + p34 + p43 + p44 6= 0. The excluded cases are trivial as both blocks would last only one

period. Furthermore, we require that the two regimes that belong to the same block differ either in their

persistence or in the probability of moving from one another; that is, we require that either p11 6= p22 or

p12 6= p21 and either p33 6= p44 or p34 6= p43. This condition makes the within-block Bayesian learning

non-trivial. Finally, we will impose that p11+p22 > 0 and p33+p44 > 0. This last assumption guarantees

that within a block at least one of the two regimes can last more than one period. Summarizing, for each

block, we will maintain the following benchmark assumptions throughout the paper:

A1 Non-triviality assumption: p11 + p12 + p21 + p22 6= 0 and p33 + p34 + p43 + p44 6= 0.

A2 Non-trivial-learning assumption: Either p11 6= p22 or p12 6= p21 and either p33 6= p44 or p34 6= p43.

A3 Non-jumping assumption: p11 + p22 > 0 and p33 + p44 > 0.

We will now proceed in two steps. First, in Subsection 2.1 we will characterize the evolution of agents’

beliefs within a block for given prior beliefs. Second, in Subsection 2.2 we will explain how agents’beliefs

are pinned down once the economy moves across blocks. The statistical properties of the economy, as

captured by the transition matrix, will allow us to distinguish two cases: Static and Dynamic priors. It is

worth emphasizing that in both cases the assumption of rationality will be maintained and all results will

be based on the Bayes’theorem. Finally, for each of these cases, we will describe how to recast the model

with information frictions as a perfect information rational expectations model obtained by expanding

the number of regimes to keep track of agents’beliefs.

2.1 Evolution of Beliefs Within a Block

In what follows, we will derive the law of motion of agents’beliefs conditional on being in a specific block.

The formulas derived below will provide a recursive law of motion for agents’beliefs based on Bayes’

theorem. Such recursion applies for any starting values for agents’beliefs. These will be determined by

agents’beliefs at the moment the system enters the new block. We will characterize these initial beliefs

in the next subsection.

As we have noticed in the previous section, agents can infer the history of the blocks. Therefore, at

each point in time, agents know the number of consecutive periods spent in the current block since the

last switch. Let us denote the number of consecutive realizations of Block i at time t as τ it, i ∈ {1, 2}.
To fix ideas, suppose that the system is in Block 1 at time t, implying that τ1t > 0 and τ2t = 0. Then,

there are only two possible outcomes for the next period. The economy can spend an additional period
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in Block 1, implying that τ1t+1 = τ1t + 1 and τ2t+1 = 0, or it can move to Block 2, implying τ1t+1 = 0 and

τ2t+1 = 1. In this subsection, we restrict our attention to the first case.

Using Bayes’theorem and the fact that prob
(
ξt−1 = 2|τ1t−1

)
= 1−prob

(
ξt−1 = 1|τ1t−1

)
, the probabil-

ity of being in Regime 1 given that we have observed τ1t consecutive realizations of Block 1, prob
(
ξt = 1|τ1t

)
,

is given by:2

prob
(
ξt = 1|τ1t

)
=

prob
(
ξt−1 = 1|τ1t−1

)
(p11 − p21) + p21

prob
(
ξt−1 = 1|τ1t−1

)
(p11 + p12 − p21 − p22) + p21 + p22

(3)

where τ1t = τ1t−1 + 1 and for τ1t > 1. Notice that for τ1t = 1, prob
(
ξt = 1|τ1t

)
denotes the initial beliefs

that will be discussed in Subsection 2.2. Equation (3) is a rational first-order difference equation that

allows us to recursively characterize the evolution of agents’beliefs about being in Regime 1 while the

system is in Block 1. The probability of being in Regime 3 given that we have observed τ2t consecutive

realizations of Block 2, prob
(
ξt = 3|τ2t

)
, can be analogously derived:

prob
(
ξt = 3|τ2t

)
=

prob
(
ξt−1 = 3|τ2t−1

)
(p33 − p43) + p43

prob
(
ξt−1 = 3|τ2t−1

)
(p33 + p34 − p43 − p44) + p43 + p44

. (4)

where τ2t = τ2t−1 + 1 and for τ2t > 1.

The recursive equations (3) and (4) characterize the dynamics of agents’beliefs in both blocks for a

given set of prior beliefs. The following proposition states that under the benchmark assumptions A1-A3,

these recursive equations converge. This convergence result will be key to being able to recast Model

(1)-(2) in terms of a finite dimensional set of regimes indexed with respect to agents’beliefs.

Proposition 1 Convergence. Under the benchmark assumptions A1-A3, for any ε > 0 there exists a

τ∗1 ∈ N and τ∗2 ∈ N such that:

prob (ξt = 1|τ∗1)− prob (ξt = 1|τ∗1 + 1) < ε

prob (ξt = 3|τ∗2)− prob (ξt = 3|τ∗2 + 1) < ε

Proof. See Appendix B.
In what follows, we denote the converging probabilities for prob (ξt = 1|τ1) and prob (ξt = 3|τ2) as

λ̃b1and λ̃b2 , respectively.

2.2 Evolution of Beliefs Across Blocks

In the previous subsection, we characterized the evolution of agents’beliefs conditional on being in a

specific block. The formulas derived above apply to any set of initial beliefs. In this subsection, we will

pin down agents’beliefs at the moment the economy moves across blocks. These beliefs will serve as

starting points for the recursions (3) and (4) governing the evolution of beliefs within a block.

Suppose for a moment that before switching to the new block, agents could observe the regime that

was in place in the old block. Notice that in this case the transition matrix conveys all the information

2A detailed derivation of equation (3) is provided in Appendix A.
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necessary to pin down agents’prior beliefs about the regime in place within the new block. Specifically,

we have that if the economy moves from Block 2 to Block 1, the probability of being in Regime 1 is given

by

prob
(
ξt = 1|ξt−1 = 3, τ1t = 1

)
=

p31
p31 + p32

,

if the economy was under Regime 3 in the previous period, or by

prob
(
ξt = 1|ξt−1 = 4, τ1t = 1

)
=

p41
p41 + p42

if the economy was under Regime 4 in the previous period. Symmetrically, the probability of being in

Regime 3 given that the economy just moved to Block 2 is given by

prob
(
ξt = 3|ξt−1 = 1, τ2t = 1

)
=

p13
p13 + p14

,

if the economy was under Regime 1 in the previous period, or by

prob
(
ξt = 3|ξt−1 = 2, τ2t = 1

)
=

p23
p23 + p24

if the economy was previously under Regime 2.

However, in the model, agents never observe the regime that is in place. Therefore, their beliefs at the

moment the economy moves from one block to the other will be a weighted average of the probabilities

outlined above. The weights, in turn, will depend on agents’beliefs at the moment of the switch. In

what follows we will focus on three cases:

1. Static prior beliefs. In this case, the transition matrix P is such that every time the economy enters
a new block, agents’beliefs about which regime has been realized do not depend on their beliefs

right before the switch. Thus, what has been observed in the past block does not help rational

agents to form expectations in the new block. Such a transition matrix has the virtue of delivering

a nice closed-form analytical characterization for the dynamics of beliefs.3

2. Dynamic prior beliefs. In this case, the transition matrix P is such that beliefs about which regime
is prevailing within a block affect prior beliefs the moment the economy moves to the new block.

3. Signals. Exogenous signals $t about the current regime are also observed by agents. Signals are

assumed to be distributed according to p ($t|ξt).

It is worth clarifying that nothing prevents the researcher from combining the three cases described

above. For example, static prior beliefs could characterize one block but not another or agents could

receive a signal every time the economy enters a new block.

3A simplified version of this problem with three regimes is studied by Barlevy (1998) within a partial equilibrium
framework.
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2.2.1 The Case of Static Prior Beliefs

In the case of static prior beliefs, the transition matrix P implies that every time the system enters a

new block, rational agents’beliefs are the same regardless of the history of past beliefs. It is immediate

to show that necessary and suffi cient conditions for this to happen are:

prob
(
ξt = 1|ξt−1 = 3, τ1t = 1

)
=

p31
p31 + p32

=
p41

p41 + p42
= prob

(
ξt = 1|ξt−1 = 4, τ1t = 1

)
(5)

prob
(
ξt = 3|ξt−1 = 1, τ2t = 1

)
=

p13
p13 + p14

=
p23

p23 + p24
= prob

(
ξt = 3|ξt−1 = 2, τ2t = 1

)
(6)

In other words, the transition matrix P is such that when the economy leaves a block, the relative

probability of the two regimes in the new block is not affected by the regime that was in place before.

Agents’beliefs are uniquely pinned down by (5) and (6) because agents are fully rational and know the

transition matrix governing the evolution of regimes.

The recursive equations (3) and (4) combined with the initial conditions (5) and (6) uniquely char-

acterize the dynamics of agents’beliefs in each block. To see this, notice that for each block, there is a

unique path for the evolution of agents’beliefs, given that (5) and (6) make agents’beliefs before entering

the block irrelevant. Furthermore, Proposition 1 guarantees that there exists a τ∗1 ∈ N and τ∗2 ∈ N such
that agents’beliefs converge for an arbitrary level of accuracy. Therefore, in the case of static priors the

number of consecutive periods spent in a block (τ it) is a suffi cient statistic to pin down the dynamics

of beliefs in both blocks. Equipped with this important result, we can re-cast Model (1)-(2) in terms

of a new set of regimes indexed with respect to the number of consecutive periods spent in a block τ it,

i ∈ {1, 2}:

Γ0 (τ t)St = Γc (τ t) + Γ1 (τ t)St−1 + Ψ (τ t) εt + Πηt (7)

where εt ∼ N (0,Σε) is a vector of exogenous Gaussian shocks, ηt is a vector of endogenous expectation

errors, and the τ∗1 + τ∗2 regimes τ t ≡
(
τ1t , τ

2
t

)
evolve according to the transition matrix

P̃ =

[
P̃11 P̃12
P̃21 P̃22

]
,

where the matrices P̃11 and P̃12 are given by

P̃11 ≡



0 prob
{
τ1t+1 = 2|τ1t = 1

}
. . . 0 0

0 0 . . . 0 0
...

...
. . . 0 0

0 0 . . . 0 prob
{
τ1t = τ∗|τ1t = τ∗ − 1

}
0 0 . . . 0 prob

{
τ1t+1 > τ∗|τ1t = τ∗

}


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P̃12 ≡


1− prob

{
τ1t+1 = 2|τ1t = 1

}
01×(τ∗−1)

...
...

1− prob
{
τ1t+1 > τ∗|τ1t = τ∗

}
01×(τ∗−1)


with the elements of the matrices given by

prob
{
τ it+1 = τ it + 1|τ it

}
= prob

(
ξt = 1|τ1t

)
(p11 + p12) +

(
1− prob

(
ξt = 1|τ1t

))
(p21 + p22) (8)

where prob
(
ξt = 1|τ1t

)
can be obtained from the recursive equation (3) and equation (5). The matrices

P̃21 and P̃22 can be analogously derived.
Notice that the newly defined set of regimes keeps track of both the parameters in place at each

point in time and the evolution of agents’beliefs. Since Model (7) is a Markov-switching DSGE model

with perfect information, it can be solved using the techniques developed by Schorfheide (2005), Liu,

Waggoner, and Zha (2011), Davig and Leeper (2007), Farmer, Waggoner, and Zha (2009), Cho (2012),

and Foerster, Rubio-Ramirez, Waggoner, and Zha (2011). The result is an MS-VAR in the DSGE state

vector St:

St = c
(
τ t, P̃

)
+ T

(
τ t, P̃

)
St−1 +R

(
τ t, P̃

)
εt (9)

where the law of motion of the economy depends on agents’beliefs as captured by τ t. With the results

of Proposition 1 at hand, the solution of Model (7) with a truncated number of regimes τ t approximates

the solution of the original model (1) with learning. Notice that the accuracy of this approximation can

be made arbitrarily precise simply by increasing the number of regimes τ∗. Furthermore, it is worth

pointing out that in the case of static priors the approximation error stems only from truncating agents’

learning process. For all regimes such that τ it < τ∗i agents’beliefs exactly coincide with the analytical

values derived using (3) and (4) and conditions (5) and (6).

It is important to notice that the case of static prior belief does not constitute a deviation from

rationality or from the Bayes theorem. In fact, it directly stems from the application of the Bayes

theorem. Given condition (5), agents would be irrational to have different beliefs when the system enters

Block 1 in different periods. Condition (6) leads to this exact implication all the times the system enters

Block 2. We single out the case of static prior because when conditions (5)-(6) hold, the approximation

error from truncating agents’learning process is negligible. This is for two reasons. First, Proposition

1 ensures that the change in agents’beliefs is negligible once the system has spent a suffi ciently long

period of time in a block. Second, the initial beliefs can be pinned down analytically thanks to conditions

(5)-(6).

2.2.2 The Case of Dynamic Prior Beliefs

When conditions (5) and (6) do not hold, past beliefs always influence current beliefs. In this case, the

number of consecutive periods τ t spent in a block is no longer a suffi cient statistic for agents’beliefs.

However, as pointed out before, the recursive equations (3) and (4) hold for any prior beliefs. Therefore,

these equations still capture the dynamics of beliefs while the system stays in a block. Furthermore, it

follows that the suffi cient conditions for convergence derived in Subsection 2.1 still apply. Nevertheless,
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the initial conditions are now different from (5) and (6) as they will depend on beliefs in the past block.

Specifically, agents’starting beliefs upon the shift from Block 2 to Block 1 are given by

prob {ξt = 1|It} =
prob

{
ξt−1 = 3|It−1

}
p31 +

(
1− prob

{
ξt−1 = 3|It−1

})
p41

prob
{
ξt−1 = 3|It−1

}
(p31 + p32) +

(
1− prob

{
ξt−1 = 3|It−1

})
(p41 + p42)

(10)

while if the system just entered Block 2, starting beliefs read

prob {ξt = 3|It} =
prob

{
ξt−1 = 1|It−1

}
p13 +

(
1− prob

{
ξt−1 = 1|It−1

})
p23

prob
{
ξt−1 = 1|It−1

}
(p13 + p14) +

(
1− prob

{
ξt−1 = 1|It−1

})
(p23 + p24)

(11)

Notice that, using their information set It, agents can keep track of both the number of consecutive
deviations and their starting beliefs. Therefore, in the case of dynamic prior beliefs two variables pin

down the dynamics of beliefs over time: how many consecutive periods the system has spent in the

current block and the initial beliefs agents had when the system entered the current block. We then

tackle the problem of solving Model (1)-(2) when prior beliefs are dynamic by making a grid for agents’

beliefs. Denote the grid for beliefs prob {ξt = 1|It} as Gb1= {G1, ...,Gg1} and for beliefs prob {ξt = 3|It}
as Gb2= {Gg1+1, ...,Gg1+g2} where 0 ≤ Gi ≤ 1, all 1 ≤ i ≤ g = g1 + g2. Furthermore, we denote the

whole grid as G = Gb1 ∪ Gb2. Endowed with such a grid, we can recast the original model in terms of a
new set of regimes ζt ∈ {1, ..., g1 + g2}, any t. The new regime ζt captures the knot of the grid G that
best approximates agents’beliefs; that is, in our notation prob {ξt = 1|It} when the system is in Block

1 and prob {ξt = 3|It} when the system is in Block 2. The transition probability matrix for these new

regimes can be pinned down using the recursions (3) and (4) and the initial conditions (10) and (11).

The algorithm below illustrates how exactly to perform this task.

Algorithm Initialize the transition matrix P̂ for the new regimes ζt, setting P̂ = 0g×g.

Step 1 For each of the two blocks, do the following steps (without loss of generality we describe the
steps for Block 1):

Step 1.1 For any grid point Gi ∈ Gb1 , 1 ≤ i ≤ g1, compute

P̂ (i, j) = prob
{
ξt−1 = 1|It−1

}
(p11 + p12) +

(
1− prob

{
ξt−1 = 1|It−1

})
(p21 + p22)

where prob
{
ξt−1 = 1|It−1

}
= Gi and j ≤ g1 is set so as to min |prob {ξt = 1|It} − Gj |, where

prob {ξt = 1|It} is computed using the recursive equation (3) by approximating prob
{
ξt−1 = 1|It−1

}
=

Gi. To ensure the convergence of beliefs, we correct j as follows: if j = i and Gi 6= λ̃b1 , then

set j = min (j + 1, g1) if Gi < λ̃b1 or j = max (1, j − 1) if Gi > λ̃b1 .

Step 1.2 For any grid point Gi ∈ Gb1 , 1 ≤ i ≤ g1, compute P̂ (i, l) = 1 − P̂ (i, j) with l > g1

satisfying

min

∣∣∣∣∣ prob
{
ξt−1 = 1|It−1

}
p13 +

(
1− prob

{
ξt−1 = 1|It−1

})
p23

prob
{
ξt−1 = 1|It−1

}
(p13 + p14) +

(
1− prob

{
ξt−1 = 1|It−1

})
(p23 + p24)

− Gl

∣∣∣∣∣
11



where prob
{
ξt−1 = 1|It−1

}
= Gi.

Step 2 If no column of P̂ has all zero elements, stop. Otherwise, go to Step 3.

Step 3 Construct the matrix T as follows. Set j = 1 and l = 1. While j ≤ g, if
∑g

i=1 P̂ (i, j) = 0 set

j = j + 1. Otherwise, if
∑g

i=1 P̂ (i, j) 6= 0: (1) set T (j, l) = 1, (2) set T (j, v) = 0 for any 1 ≤ v ≤ g
and v 6= l, (3) set l = l + 1 and j = j + 1.

Step 4 Write the transition equation as P̂R = T · P̂ · T ′. If no column of P̂R has all zero elements, set
P̂ = P̂R and stop. Otherwise, go to step 3.

Step 1.1 determines the regime j the system will go to if it stays in Block 1 next period and fills up the

appropriate element (i, j) of the transition matrix P̂ with the probability of moving to Regime j. Step
1.2 computes the regime l the system will go to if it leaves Block 1 and fills up the appropriate element

(i, l) of matrix P̂. Steps 2-4 are not necessary but help to keep the dimension of the grid small, getting
rid of regimes that will never be reached. For computational convenience, we always add the convergence

points for the two blocks (i.e., λ̃b1 in the case of Block 1) to the grid G. On many occasions, it is a good
idea to make the grid near the convergence knot very fine to improve the precision of the approximation.

Once the transition matrix P̂ for the new set of regimes is characterized, the original Model (1) can
be recast in terms of the new set of regimes ζt:

Γ0 (ζt)St = Γc (ζt) + Γ1 (ζt)St−1 + Ψ (ζt) εt + Πηt (12)

where ζt ∈ {1, ..., g1 + g2}. Therefore, up to an approximation error that can be made arbitrarily small,
the task of solving the model with learning in (1)-(2) boils down to solving the perfect-information model

(12) using solution algorithms for MS-DSGE models.4 The resulting law of motion is once again an

MS-VAR:

St = c
(
ζt, P̂

)
+ T

(
ζt, P̂

)
St−1 +R

(
ζt, P̂

)
εt (13)

2.2.3 Signals

Let us assume that agents observe signals about the realized regime. To fix notation, denote the signal

as $t and, for simplicity, assume that it can have only two values, 1 or 2. We denote the probabil-

ity that the signal is equal to q ∈ {1, 2}, conditional on the regime being equal to h ∈ {1, 2, 3, 4} as
prob {$t = q|ξt = h}. The model with signals can be solved by introducing a new system of regimes ζt,

which indexes the grid points corresponding to the probabilities prob
{
ξt = 1|It, $t

}
and prob

{
ξt = 3|It, $t

}
,

and following the same logic used in the previous subsection. As we shall show, signals will allows us

to introduce shocks to beliefs; that is, exogenously driven changes in beliefs that are not associated with

changes in the economy’s state ξt.

4 In Subsection 4.2.1 we present an example for which both the approximation error and the time required to solve the
model turn out to be very small.

12



To fill up the transition matrix P̂ for the new set of regimes, one can implement the algorithm detailed
in Subsection 2.2.2 with only the little tweak of updating beliefs using the information contained in the

observed signal. For instance, we compute the ex-post-probability prob
(
ξt = 1|It, $t

)
prob

(
ξt = 1|It, $t−1, $t = q

)
=

prob ($t = q|ξt = 1) prob
(
ξt = 1|It, $t−1)∑2

i=1 prob ($t = q|ξt = i) prob (ξt = i|It, $t−1)
, q ∈ {1, 2} (14)

where prob
(
ξt = 1|It, $t−1) is computed using the recursive equation (3) for a given initial point in the

grid G that approximates prob
(
ξt−1 = 1|It−1, $t−1). We use the probability computed in equation (14) to

determine the appropriate destination points of the grid G, which we denote as jq, q ∈ {1, 2}. Note that for
any given initial belief prob

(
ξt−1 = 1|It−1, $t−1) ∈ G, the (ex-post) belief prob (ξt = 1|It, $t−1, $t = q

)
now pins down the grid points, depending on the realization of the signal $t. Once these two destination

points in the grid are determined, we can fill up the transition probability as follows:

P̂ (i, jq) =
∑2

v=1 prob
{
ξt = v|It−1, $t−1} prob {$t = q|ξt = v} , q ∈ {1, 2} (15)

where

prob
{
ξt = v|It−1, $t−1} =

∑2
u=1 prob

{
ξt−1 = u|It−1, $t−1} puv (16)

and we approximate prob
{
ξt−1 = 1|It−1, $t−1} ∈ G. Note that in the case of binary signals, each row of

the transition matrix P̂ has up to four non-zero elements. This completes the derivation of the submatrix
P̂11, which governs the evolution of beliefs within Block 1. How to obtain the other submatrices P̂12,
P̂21, and P̂22 is detailed in Appendix C.

3 Discussion

Summarizing, the methods outlined above show that one can recast the Markov-switching DSGE model

with learning as a Markov-switching rational expectations system in which the regimes are indexed with

respect to agents’beliefs. In the case of static priors, the number of consecutive realizations of a block

represents a suffi cient statistic to index agents’ beliefs. In the case of dynamic priors, agents’ beliefs

are mapped into a grid. In both cases, a new transition matrix that characterizes the joint evolution of

agents’beliefs and model parameters is derived.

Section 3.1 highlights the main differences of our approach from the tradition learning literature.

In Section 3.2, we discuss about the tractability of the proposed method and assess its suitability for

econometric applications. In Section 3.3, we deal with the applicability of our method to nonlinear

models.

3.1 Agents Know That They Do Not Know

It is worth emphasizing that this way of recasting the learning process allows us to easily model economies

in which agents know that they do not know. In other words, agents form expectations taking into account

that their beliefs will change in the future according to what they will observe in the economy. This is
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why the laws of motion (9) and (13) characterizing the behavior of the model depend on the current

beliefs and the expanded transition matrix defining the joint evolution of agents’ beliefs and model

parameters. This represents a substantial difference with the anticipated utility approach in which agents

form expectations without taking into account that their beliefs about the economy will change over time

(e.g., Evans and Honkapohja, 2001; Cogley, Matthes, and Sbordone, 2011). Furthermore, the approach

described above differs from the one traditionally used in the learning literature in which agents form

expectations according to a reduced-form law of motion that is updated recursively using the discounted

least-squares estimator (Eusepi and Preston, 2011). The advantage of adaptive learning is the extreme

flexibility given that, at least in principle, no restrictions need to be imposed on the type of parameter

instability characterizing the model. However, such flexibility does not come without a cost, given that

agents are not really aware of the model they live in, but only of the implied law of motion. Instead, in

this paper agents fully understand the model, they are uncertain about the future, and they are aware

of the fact that their beliefs will evolve over time based on what they observe.

3.2 Likelihood Estimation

It is also important to emphasize the extreme tractability of the approach taken in this paper. The

solutions (9) and (13) can be easily combined with an observation equation and used in an estimation

algorithm. For example, Bianchi and Melosi (2012) estimate a prototypical New-Keynesian DSGE model,

in which agents form beliefs about the likely duration of deviations from active inflation stabilization

policies. The estimation of this new class of models is possible for three main reasons. First, even if the

final number of regimes can be extremely high, the model imposes very specific restrictions on the allowed

regime paths and on the link between observable outcomes and agents’beliefs. This implies that when

evaluating the likelihood, a relatively small number of regime paths has to be taken into account. Second,

the statistical properties of the different regimes can vary substantially and depend on the probability of

moving across regimes. Therefore, identification of the transition matrix is not only given by the frequency

with which the different regimes occur, but also by the laws of motion characterizing the different regimes.

Finally, the number of extra parameters with respect to a model with perfect information is very low, if

not zero, while the resulting dynamics can be substantially enriched. For example, Bianchi and Melosi

(forthcoming) show that a period of fiscal distress can lead to a run-up in inflation that lasts for decades.

From a computational point of view, there might be a concern about the time required to solve the

model when the final number of regimes becomes very large. This turns out not to be a problem. If

regime changes enter in an additive way, affecting only the matrix Γc, the model can be solved with

standard solution algorithms such as gensys (Sims, 2002) or Blanchard and Kahn (1980) and the high

dimensionality of the transition matrix is not found to give rise to computational hurdles. However, in

many situations we might want to model regime changes that enter in a multiplicative way. For example,

we might want to allow for changes in the Taylor rule parameters. In this case, the matrices Γ0 and Γ1

are also affected and we need to rely on solution methods developed to solve MS-DSGE models. However,

according to our experience based on the use of the approach proposed by Farmer, Waggoner, and Zha

(2009), even in this case a solution can be obtained in a matter of seconds because the transition matrix

governing the evolution of the regimes is very sparse. Therefore, the methods described in this paper
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provide a promising tools for modeling information frictions, animal spirits, and shocks to agents’beliefs

in a general equilibrium framework suitable for structural estimation.

3.3 Extension to Nonlinear Models

To illustrate our methods, we have referred to linear models of the form (1) because this is currently the

most popular modeling framework when it comes to solving and estimating general equilibrium models

subject to parameter instability. However, this restriction can be easily relaxed. In fact, it can be shown

that all the results about the dynamics of agents’beliefs in Section 2 apply to the nonlinear case as well.

To see this, one should notice that we maintain the assumption that agents fully understand the model

and can observe the endogenous variables and the shocks. Therefore, at each point in time they are able

to infer the block that is in place. Once the history of the realizations of the two blocks is known, the

dynamics of agents’beliefs are pinned down by the properties of the transition matrix P that is known
to agents. Therefore, the evolution of beliefs does not depend on the model under consideration or the

order of approximation.

It is worthwhile emphasizing that application of our method to nonlinear models sets a promising

research agenda aimed to investigate the macroeconomic effects of swings in uncertainty due to changes

in fundamentals or policy-makers’behavior. In light of this, the progresses made in effi ciently estimating

DSGE model through perturbation methods (e.g., Fernandez-Villaverde and Rubio-Ramirez, 2006 and

Foerster, Rubio-Ramirez, Waggoner, and Zha, 2011) have to be regarded as important complementary

to this line of studies.

4 Applications

In this section, we introduce a prototypical RBC model to illustrate the properties of the methods detailed

above. Central to our discussion will be the evolution of optimism and pessimism and the implications

thereof for consumption and saving decisions. The representative household chooses the sequence of

consumption ct and capital kt:

max
ct,kt

Ẽ0
∑∞

t=0 β
t ln ct

subject to the resource constraint ct + kt = ztk
α
t−1 + (1− δ) kt−1 with α < 1 and 0 < δ < 1. Let Ẽt (·)

denote the expectation operator conditional on households’information set at time t. We assume that

total factor productivity (TFP) zt follows an exogenous process, such that

ln zt = µ (ξt) + ln zt−1 + σzεt (17)

where εt
iidv N (0, 1) and ξt denotes a discrete Markov process affecting the drift of TFP. This process

evolves according to the transition probability matrix P. We assume that ξt can take four values; that is,
ξt ∈ {1, 2, 3, 4}. These values map into values for the TFP drift µ (ξt) as follows ξt ∈ {1, 2} =⇒ µt (ξt) =

µH and ξt ∈ {3, 4} =⇒ µt (ξt) = µL, where µL < µH . In Block 1, Regimes 1 and 2 differ in their likely

persistence: p11 < p22. The same applies to Regimes 3 and 4 in Block 2: p33 < p44. We call Regimes 1
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and 2 high-growth regimes and Regimes 3 and 4 low-growth regimes. Households are assumed to observe

the history of the model variables (kt, ct, and zt) and that of the TFP shocks (εt). Therefore, households

can establish whether the economy is in the high-growth block or in the low-growth block.

We introduce the stationary variables µt ≡ ln (zt/zt−1), c̃t ≡ ct/z
1/(1−α)
t , k̃t ≡ kt/z

1/(1−α)
t and,

following Schorfheide (2005) and Liu, Waggoner, and Zha (2011), we define the steady state as the

stationary equilibrium in which all shocks are shut down, including the regime shocks to the growth rate

of TFP. We then derive a log-linear approximation to the equilibrium equations around the steady-state

equilibrium for these stationary variables. The log-linearized Euler equation reads:5

ĉt = Ẽtĉt+1 − (α− 1)
(

1 + (δ − 1)βM
1

α−1
)
k̂t −

(
1

α− 1
+ βM

1
α−1 (δ − 1) + 1

)
Ẽtµ̂t+1 (18)

where M ≡ exp (µ), µ ≡ (p1 + p2)µH + (p3 + p4)µL being the ergodic mean of the log growth rate of the

economy, and pi stands for the ergodic probability of being in regime i, µ̂t, ĉt and k̂t denote log-deviations

of the stationary TFP growth, consumption, and capital, respectively, from their steady-state value, and

µ̂ (ξt) ≡ µt (ξt)− µ is the log-deviation of TFP drift from its ergodic mean µ. The resource constraint is

cssĉt + kssk̂t =

(
M

α
α−1kαss

α

α− 1
+

1− δ
α− 1

M
1

α−1kss

)
µ̂t +

(
M

α
α−1kαssα+ (1− δ)µ

1
α−1kss

)
k̂t−1 (19)

Finally, the log-deviation of the growth rate of TFP from its ergodic level follows

µ̂t = µ̂ (ξt) + σzεt (20)

As is standard for any RBC model, households adjust capital so as to smooth consumption intertempo-

rally. The occurrence of TFP shocks and the succession of low-growth and high-growth regimes challenge

households’ability to smooth consumption over time. When the economy is in the high-growth regime,

households expect that, with some probability, the economy will enter into the low-growth regime in the

future, making it harder to raise future consumption. Therefore, ceteris paribus agents raise capital today

so as to raise future expected consumption Ẽtĉt+1 vis-a-vis current consumption ĉt. When the economy

is in the low-growth regime, agents expect that, with some probability, the economy will enter into the

high-growth regime in the future, making it easier to raise future consumption. Therefore, ceteris paribus

agents reduce capital today so as to raise current consumption ĉt vis-a-vis expected future consumption

Ẽtĉt+1.

Clearly, the persistence of the regime in place critically affects consumption and capital decisions.

When the current regime is expected to be short lasting, households generally adjust capital more ag-

gressively than when it is expected to be long lasting, because they deem that a switch in the next period

is more likely. In contrast, households do not adjust capital so aggressively if they expect the regime to

be very long lasting. When households expect that low growth or high growth has become a structural

characteristic of the environment, they understand that consumption cannot be effectively smoothed out

over time by adjusting capital. Thus, very persistent regimes are mostly characterized by structural

5A detailed derivation of the steady-state equilibrium for the stationary variables and the log-linearized equations is
provided in Appendix D.
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changes in the level of consumption.

Given that households have limited information, the log-linearized Model (18)-(20) cannot be solved

using the existing techniques that are used to solve Markov-switching models with perfect information.

However, we proceed as described in the previous sections, by introducing a new set of regimes that

capture the evolution of the representative household’s beliefs over time. It is important to notice that

in the RBC model described above, regime changes enter additively. In other words, they only affect

the vector of constants Γc (·) in the canonical forms (7) or (12). In this case, the state space can be
augmented with a series of dummy variables as in Schorfheide (2005), Liu, Waggoner, and Zha (2011),

and Bianchi, Ilut, and Schneider (2012) and the models under imperfect information can be easily solved

using standard solution methods for DSGE model, such as gensys (Sims, 2002) and Blanchard and Kahn

(1980). When regime changes enter multiplicatively, the matrices Γ0 and Γ1 are also affected. In this

case, the model can be solved with any of the solution methods that have been developed for MS-DSGE

models. Bianchi and Melosi (2012a, Forthcoming) consider these cases and solve the model using the

algorithm developed by Farmer, Waggoner, and Zha (2009).

In what follows, we adopt a standard calibration of the RBC model. We set capital’s share parameter

α to equal 0.33. The discount factor β is equal to 0.9976 and the parameter for the physical depreciation

of capital is set to equal 0.0250. The standard deviation of the TFP shock σ is set to 0.007. We set

the growth rate of TFP in the high-growth state to equal the annualized rate of 4%: µH = .01. We

assume that under low-growth, the growth rate of TFP is simply zero: µL = 0. Furthermore, we consider

several parameterizations of the transition matrix P, allowing us to illustrate a number of different model
economies that can be potentially used to address a large set of empirical issues. In actual applications,

the parameterization of the transition will depend on the data and the associated empirical moments the

researcher is interested to match. In this paper, we do not address any specific empirical issue as our

objective is to show the scope of application of the methodology we propose.

Section 4.1 studies an economy in which agents have to learn about the likely persistence of the

observed TFP growth. In Section 4.2, we consider an economy that goes through two types of phases

over time: a high-growth phase that is mostly characterized by long-lasting high-growth periods with

rare short-lasting low-growth periods and a low-growth phase that is mostly characterized by persistent

periods of low-growth and high-growth periods of rather short duration. In Section 4.3, we study the

effects of shocks to beliefs on aggregate dynamics and uncertainty.

4.1 Learning the Persistence of TFP Growth

In what follows, we consider an RBC model as described by equations (18)-(20) in which the economy

fluctuates repeatedly between short-lasting periods of high growth and short-lasting periods of low growth.

However, once in a while a prolonged phase of high growth or low growth may occur. Agents are able to

infer what the growth rate is today, but they are uncertain about its likely duration. Whenever a change

in the level of growth occurs, the statistical properties of the macroeconomy, which are captured by the

transition matrix P, imply that rational agents’pessimism and optimism are invariant with respect to

previous realizations of TFP growth. Notice that this corresponds to the case of static prior. We will first

assume that periods of high growth and low growth are symmetric. We will then consider the asymmetric
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case.

4.1.1 The symmetric case

Let us assume that the persistence of the short-lasting regimes is the same in the two blocks: p11 = p33 =

0.5. Analogously, we set the probabilities of staying in the long-lasting regimes so that p22 = p44 = 0.95.

For simplicity we assume that regimes belonging to the same block do not communicate with each other;

that is, p12 = p21 = p34 = p43 = 0. We will be more general later on. Furthermore, the transition matrix

implies that once a switch to a new block occurs, agents always attach a 95% probability to being in the

short-lasting regime:

p31
p31 + p32

=
p41

p41 + p42
= 0.95 (21)

p13
p13 + p14

=
p23

p23 + p24
= 0.95 (22)

Notice that conditions (21)-(22) imply static prior beliefs: agents always enter the high-growth block and

the low-growth block with the same beliefs. In summary, we work with the following transition matrix:

P =


0.50 0 0.475 0.025

0 0.95 0.0475 0.0025

0.475 0.025 0.50 0

0.0475 0.0025 0 0.95


To illustrate the consequences of fluctuations in agents’beliefs, we simulate the economy assuming a

typical path for the regimes and setting all Gaussian shocks εt to zero. We assume that consumption and

capital are initialized at its steady-state value. The results are reported in Figure 1. In each panel, the

gray and white areas correspond to periods of low and high growth, respectively. Short-lasting regimes

last for their typical duration of 2 quarters. Long-lasting regimes last for their typical duration of 20

quarters. The two right graphs report the evolution of consumption and capital in the model with learning

compared to the model with perfect information in which agents can observe the current regime. The

panel in the upper-left corner shows the evolution of agents’beliefs about being in the long-lasting high-

growth regime and in the long-lasting low-growth regime. The panel in the lower-left corner reports the

evolution of expected average TFP growth at 4-, 8-, 20-, and 40- quarter horizons. Notice that this is a

convenient measure of agents’optimism/pessimism that takes into account uncertainty about the regime

in place today and the possibility of regime changes.

Three features of Figure 1 deserve to be emphasized. First, right after a switch to a new block, agents

believe that this switch is most likely to be short lasting. This can be seen in the top left graph when

switches to new blocks occur. The reason is that agents are rational and hence are aware that regardless

of whether the past regime was short lasting or long lasting, the probability of switching to the short-

lasting regime in the new block is always as high as 95%. This stems from the restrictions in (21)-(22),

which imply static prior beliefs. Second, whenever a short-lasting regime is in fact realized, with the

benefit of hindsight, agents’beliefs turn out to be slightly misaligned with the truth in the upper left
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Figure 1: Beliefs and Allocations. Top left graph : Evolution of beliefs of being in the long-lasting high-growth regime (red
solid line) and in the long-lasting low-growth regime (blue dashed line). Top right graph : Log-deviations of consumption from

the perfect-information benchmark. Bottom left graph : Expected average growth rate of technology (annualized percentage)

at various horizons. Bottom right graph : Log-deviations of capital from the perfect-information benchmark. In all graphs,

gray areas denote periods of low growth.

graph because agents rationally attach a non-zero probability to being in the long-lasting regime. Third,

the probability of being in the long-lasting regime smoothly increases as more realizations of the same

block are observed. The top left graph shows that the probability of being in the long-lasting regime rises

monotonically with the number of consecutive realizations of a particular growth rate. For instance, from

t = 117 to t = 136, the economy is in a long-lasting low-growth regime. While agents initially attach a

small probability to being in the long-lasting regime, they become fully convinced after 12 consecutive

periods of low TFP growth.

Furthermore, Figure 1 shows the evolution of optimism and pessimism and the associated dynamics

of the consumption gap and the capital gap, which are defined as the log-deviation of consumption and

capital from their corresponding levels under perfect information. When the economy enters the long-

lasting low-growth period imperfectly informed agents are not very pessimistic about the duration of the

low-growth regime. This is reflected in their expectations about the average growth rate of TFP that

barely moves in the bottom left graph. Given that they expect that the low-growth period will be short

lasting, they decide to slow down capital accumulation so as to smooth consumption. In contrast, if

agents knew the actual realization of the low-growth regime, they would have adjusted their stock of

capital less aggressively and consequently consumption would have fallen more dramatically. This is why

in Figure 1 we observe a positive consumption gap and a negative capital gap when the economy enters

a period of long-lasting low growth.

As the period of low-growth consolidates, imperfectly informed agents update their beliefs until they

eventually become convinced that they are in the long-lasting regime. This happens in roughly 12 quarters
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Figure 2: Evolution of Uncertainty about Consumption, Capital, and TFP Growth. The horizon ranges from one quarter

ahead (i.e., lightest blue line) through five years ahead (i.e., darkest red line). The darker the color of a line, the longer the

horizon of the uncertainty. Uncertainty at an horizon h is measured as the standard deviation of the variable of interest in
period t+ h conditional on agents’information set at time t, It.

after the switch. As illustrated in the bottom left graph, such slow-moving beliefs cause the expected

average growth rate of TFP over the next few years to also adjust sluggishly. This eventually determines

an adjustment in the path for consumption and the consumption gap slowly fades away. Interestingly,

at the end of the long-lasting low-growth period, the consumption gap becomes negative. The reason

is that the sluggish evolution of pessimism prompted households to decumulate capital rapidly at the

beginning of the period of low growth. The relatively small capital stock depresses consumption as

households become pessimistic, leading to a negative consumption gap. A specular pattern characterizes

the economy the moment it enters the long-lasting high-growth period at the beginning of the simulation.

As pointed out before, even when the economy repeatedly alternates between short-lasting periods,

agents’beliefs are slightly misaligned with the truth. Let us focus on the first 16 quarters during which

a sequence of short-lasting regimes are realized. While the economy is in the short-lasting high-growth

regime, imperfectly informed households consume more and accumulate less capital than in the case

of perfect information. The reason is that imperfectly informed agents attach some non-negligible -

albeit small - probability to being in the long-lasting regime. By the same token, when the economy is

going through a short-lasting period of low growth, imperfectly informed households consume less and

accumulate more capital than under perfect information.

Figure 2 shows the evolution of uncertainty about consumption, capital, and TFP growth rate. The

horizon ranges from one quarter ahead, light blue line, through five years ahead, dark red line. The darker

the color of a line, the longer the horizon of the uncertainty. Uncertainty at an horizon h is measured

using the standard deviation of the variable of interest at time t+h conditional on agents’information set
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at time t, It. It is worth emphasizing that this measure of uncertainty is computed taking into account
the possibility of regime changes and the evolution of agents’beliefs, using the methods described in

Bianchi (2012). Let us focus first on the evolution of uncertainty about future TFP growth during the

long-lasting period of high growth, captured by the large white area on the lowest panel. It should be

observed that when agents are mostly convinced to be in the short-lasting high-growth regime (i.e., in

the narrow white areas or at the beginning of the broad white areas), uncertainty is generally higher and

remarkably similar at all horizons. Furthermore, uncertainty about future TFP growth falls at all horizons

as agents become more convinced to be in the long-lasting regime. These two findings are not surprising,

since expecting a shorter (longer) duration of the current block raises (reduces) uncertainty about future

TFP developments. Furthermore, when long-lasting regimes occur, long-horizon uncertainty falls less

dramatically than short-horizon uncertainty. The reason is that as agents become more convinced to be

in a long-lasting regime, they deem a switch to a short-lasting regime as relatively more likely at longer

horizons.6

As far as the dynamics of uncertainty about consumption and capital (the highest and middle panels),

it is important to notice that the main source of uncertainty about future allocations is due to the need of

establishing whether and when big adjustments in allocations will occur. As shown in the right panel of

Figure 1, such large adjustments are observed when long-lasting regimes occur because beliefs adjust only

sluggishly to the truth. Long-horizon uncertainty about future allocations appears to be always higher

than short-horizon uncertainty, because agents know that such large adjustments are more likely to

happen as the considered horizon gets longer and longer. Quite interestingly, we observe that uncertainty

follows a hump-shaped pattern during a typical long-lasting regime. On the one hand, uncertainty rapidly

rises as agents gets more and more convinced of being in a long-lasting regime that is associated with

a large adjustment in allocations. On the other hand, as agents become more convinced to be in the

long-lasting regime, their uncertainty about future allocations falls because they become less uncertain

about future TFP growth. See the lowest graph of Figure 2. Finally, note that the hump-shaped becomes

more pronounced as the horizon grows large.

4.1.2 An Asymmetric Case

So far we have analyzed the case in which the stochastic properties of the short-lasting and the long-

lasting regimes are exactly the same across blocks. Now we study a situation in which the persistence of

the short-lasting regime is different across the two blocks. More specifically, we calibrate the probability

of staying in the short-lasting high-growth regime to be p11 = 0.75 > 0.5. The probability of staying

in the long-lasting high-growth regime is unchanged (p22 = 0.95). We shall show that optimism and

pessimism now evolve at differential speed in this model. The speed of learning within a block is affected

by the relative persistence of the corresponding two regimes. As we shall show, if the persistences of the

two regimes become more similar, it takes longer for rational agents to figure out which regime is in place.

Figure 3 shows the dynamic of beliefs, the expected average growth rate of TFP at various horizons

(4, 8, 20, and 40 quarters), the consumption gap, and the capital gap when the economy goes through

6Recall that the parameterization of the transition matrix P implies that the long-lasting regimes of both blocks are
always followed by short-lasting regimes, which are associated with relatively higher uncertainty.
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Figure 3: Beliefs and Allocations. Top left graph : Evolution of beliefs of being in the long-lasting high-growth regime (red
solid line) and in the long-lasting low-growth regime (blue dashed line). Top right graph : Log-deviations of consumption from

the perfect-information benchmark. Bottom left graph : Expected average growth rate of technology (annualized percentage)

at various horizons. Bottom right graph : Log-deviations of capital from the perfect-information benchmark. In all graphs,

gray areas denote periods of low growth.

the same sequence of regimes as that in Figure 1 with the only difference that now the typical duration of

the short-lasting high-growth regime is longer: 4 quarters instead of 2. The typical duration of all other

regimes is the same as that in the example of the previous subsection. The crucial point to notice is that

in Figure 3 the typical realization of 20 quarters of high growth is not enough for agents to figure out

that the realized regime is of the long-lasting type. Agents attach only 80% probability of being in the

long-lasting regime after having observed 20 consecutive periods of high growth. In contrast, when the

economy is going through a period of long-lasting low growth, it takes roughly 12 quarters for households

to be fully convinced that they are in the long-lasting regime, exactly as in Figure 1.

Differential speeds of learning have an impact on the dynamics of consumption and capital. During

the long-lasting high-growth regime, the misalignment of agents’beliefs is more persistent than in the case

of the low-growth regime. This implies a more persistent negative consumption gap because agents raise

capital more aggressively when they are quite convinced to be in the short-lasting high-growth regime.

Moreover, the consumption gap is less pronounced than that under a symmetric speed of learning because

the expected duration of the short-lasting high-growth regime is now more similar to that of the long-

lasting high-growth regime compared to the previous subsection.

Figure 4 shows the evolution of uncertainty about consumption, capital, and TFP growth rate. Two

facts deserve to be emphasized in the lower graph depicting the evolution of uncertainty about future

TFP growth. First, uncertainty about future TFP initially increases at all horizons during periods of

low-growth (gray areas). This outcome was not observed in the symmetric case depicted in Figure 2.

The reason is that now the two high-growth regimes are more similar in terms of their likely duration.
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Figure 4: Evolution of Uncertainty about Consumption, Capital, and TFP Growth. The horizon ranges from one quarter

ahead (lightest blue line) through five years ahead (darkest red line). The darker the color of a line, the longer the horizon

of the uncertainty.

Therefore, agents are relatively less uncertain about the likely duration of TFP growth during high-growth

periods. It follows that when the system switches from high growth to low growth, agents’uncertainty

soars to reflect the higher uncertainty inherent in the low-growth block. Second, as agents become more

and more convinced to be in the long-lasting regimes, uncertainty declines, especially at shorter horizons.

This happened in the symmetric case too. These two facts explain why agent’s uncertainty about future

TFP follows a hump-shaped pattern during long-lasting low-growth regimes.

Finally note that uncertainty about future consumption and capital does not substantially change as

the economy experiences a long-lasting period of fast TFP growth (large white area). The reason is that

in this asymmetric case the persistence of the short-lasting high-growth regime is fairly similar to that

of the relative longer lasting regime. Thus even though agents are uncertain about which high-growth

regime is actually in place, this turns out to have relatively smaller practical implications for allocations

as it emerges from comparing the rights graphs of Figures 1 and 3.

4.2 A Two-Phase RBC Model

We will now model an economy that goes through two types of phases over time: a high-growth phase that

is mostly characterized by long-lasting high-growth periods with rare short-lasting low-growth periods

and a low-growth phase that is mostly characterized by persistent periods of low-growth and high-growth

periods of rather short duration. In such an economy waves of optimism and pessimism will spur from

the past realizations of TFP growth. Therefore, we need to keep track of agents beliefs before a change in

growth. This corresponds to the case of dynamic priors. In what follows, we study three RBC economies

featuring low- and high-growth phases. In Subsection 4.2.1, switches to a new phase are always preceded
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Figure 5: Expected Growth Rate of Technology at Various Horizons as a Function of Beliefs. Lighter blue areas capture
expected rates that are lower than the ergodic rate. Darker red areas capture expected rates that are higher than the ergodic

rate. The horizontal axes report beliefs about being in the long-lasting high-growth regime (LL-HG) and beliefs about being

in the long-lasting low-growth regime (LL-LG).

by a changes in TFP growth.7 In Subsection 4.2.2, we study an economy in which switches to the low-

growth phase are not necessarily marked by a changes in TFP growth. In Subsection 4.2.3, we consider

the case of an economy in which switches to both phases may occur with no apparent changes in TFP

growth. Note that whether changes of phases are preceded or not by change in TFP growth is important

because agents perfectly observe changes in TFP growth.

4.2.1 Changes of Phase Preceded by a Change in Growth

In order to model the two phases of the business cycle, we introduce the following restrictions on the

parameters of the transition matrix P:

p31
p31 + p32

= 0.05 <
p41

p41 + p42
= 0.95 (23)

p13
p13 + p14

= 0.05 <
p23

p23 + p24
= 0.95 (24)

Furthermore, we assume that the probability of staying in the short-lasting regimes is p11 = p33 = 0.75.

We set the probabilities of staying in the long-lasting regimes so that p22 = p44 = 0.95. We also assume

that the regimes belonging to the same block do not communicate with each other: p12 = p21 = p34 =

p43 = 0. This has the important implication that a change of phase is always preceded by an observable

change in growth. We will relax this restriction in the next two subsections. To sum up, the transition

7Of course, this does not mean that every time that a change in growth occurs, agents immediately conclude that the
phase changed. They still have to learn about the nature of the observed change in growth.
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matrix reads:

P =


0.75 0 0.0125 0.2375

0 0.95 0.0475 0.0025

0.0125 0.2375 0.75 0

0.0475 0.0025 0 0.95


It is important to emphasize that, in this model, the fact that the economy is currently in the high-

growth or low-growth regime plays a minor role in affecting agents’beliefs. Most of the action stems from

whether agents believe that the economy has been going through a high-growth phase or a low-growth

phase. Figure 5 shows agents’ expectations about the growth rate of TFP µt in deviations from its

ergodic level µ at different horizons and for various initial levels of probability of being in the long-lasting

high-growth regime (left plot) and low-growth regime (right plot). Notice that when agents expect to be

in the long-lasting high-growth (low-growth) regime, the expected growth rate of technology differs from

that in the short-lasting low-growth (high-growth) regime only at very short horizons. This is because

agents are rational and are aware of conditions (23)-(24), implying that short-lasting regimes are more

likely to be followed by the long-lasting regime of the opposing block.

It should be noted that conditions (23)-(24) imply that agents’ beliefs are dynamic in this model.

Suppose that agents mostly expect to be in the long-lasting high growth period. Then if in the next

period the economy moves to the low-growth block, agents will mainly expect to be in the short-lasting

low-growth regime. In contrast if agents believe to be in the short-lasting high growth today, then a

switch to the low-growth block tomorrow will lead them to believe that the low-growth period is most

likely to be long-lasting.

The upper left graph of Figure 6 reports the evolution of agents’beliefs, consumption, and capital for

the case of dynamic prior beliefs. We simulate a typical path for the regimes where a low graph phase is

followed by a high-growth phase. Furthermore, we initialize agents’beliefs so that agents are confident

of being in a high-growth phase.8 As agents observe 4 quarters of high growth, followed by 20 quarters

of low growth, agents start to fear that the economy has switched to the low-growth phase. As a result,

households are less optimistic when the economy returns to the high-growth regime. When the second

realization of the long-lasting low-growth regime occurs, households become immediately convinced that

the long-lasting low-growth regime is in place. Symmetrically, when the economy returns to the short-

lasting high-growth regime for the third time, households believe that the high-growth regime will be

long-lasting with only a 6% probability. Afterwards, the economy enters the high-growth phase by going

through a short-lasting low-growth regime. Households are initially very pessimistic about the persistence

of this regime expecting the low-growth regime to be long lasting. It takes two realizations of the long-

lasting high-growth regimes to make them fully confident that the economy has shifted to the high-growth

phase.

The lower left graph of Figure 6 provides further evidence that households slowly learn about changes

in the two paths. Observe that when the economy enters the first long-lasting low-growth period, house-

holds mostly believe that they are still in the high-growth phase and expect an average growth rate

8This can easily happen if the economy went through a typical high-growth phase in the past and agents have finally
learned about this phase.
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Figure 6: Beliefs and Allocations. Top left graph : Evolution of beliefs of being in the long-lasting high-growth regime (red
solid line) and in the long-lasting low-growth regime (blue dashed line). Top right graph : Log-deviations of consumption from

the perfect-information benchmark. Bottom left graph : Expected average growth rate of technology (annualized percentage)

at various horizons. Bottom right graph : Log-deviations of capital from the perfect-information benchmark. In all graphs,

gray areas denote periods of low growth.

of TFP over the next 20 or 40 quarters that is above the ergodic level. The same sluggishness in the

expected average growth rate of TFP can be observed as the economy enters the first long-lasting high-

growth period. Furthermore, the sluggish dynamics of optimism and pessimism are confirmed by a quick

comparison of the expected average growth rate of TFP across short-lasting periods.

The behavior of consumption and capital during the low-growth and the high-growth phase is analyzed

in the right graphs of Figure 6. We observe that at the beginning of the first short-lasting high-growth

regime, which is associated with high optimism, the consumption gap is positive. The reason is that

imperfectly informed households expect this regime to be much longer lasting than what it actually turns

out to be. This implies that imperfectly informed households do not raise capital as aggressively as they

would if they knew that the high-growth regime is, in fact, short lasting. This leads to a negative capital

gap and a positive consumption gap. When the economy enters the long-lasting low-growth regime for the

first time, households mainly expect a short-lasting regime at first. As a result, households decide to cut

capital fairly aggressively to sustain current consumption. Households would do otherwise, if they knew

that the economy just entered the long-lasting low-growth regime, leading to a positive consumption gap

and a negative capital gap.

During the first long-lasting low-growth spell households update their beliefs until they realize that

this regime is most likely long lasting, signifying that the economy must have switched to the low-growth

phase. This change in agents’beliefs causes consumption and capital (the latter with some sluggishness)

to become similar to the perfect-information benchmark. Interestingly, the consumption gap changes

sign and becomes negative at the end of the first long-lasting low-growth spell and throughout the second
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Figure 7: Evolution of Uncertainty about Consumption, Capital, and TFP Growth. The horizon ranges from one quarter

ahead (lightest blue line) through five years ahead (darkest red line). The darker the color of a line, the longer the horizon

of the uncertainty.

low-growth period. This is due to the fact that capital adjusts sluggishly to its perfect-information level.

When the second short-lasting high-growth regime occurs, agents are more convinced to have entered a

low-growth phase and then optimism is smaller than in the previous high-growth period, resulting in a

more contained hike in the consumption gap. The dynamics of the consumption gap and the capital gap

are clearly reversed during the high-growth phase.

Figure 7 shows the evolution of uncertainty about consumption, capital, and TFP growth rate during

the typical simulation. At time t = 1, agents mostly expect to be in a high-growth phase that is is

typically characterized by long-lasting high-growth regimes. Since agents expect to be in a long-lasting

regime, their uncertainty about future TFP growth is on the low side. As the economy switches to a

low-growth period at time t = 5, agents initially expect it to be short lasting because they are still quite

convinced to live in a high-growth phase in which the typical duration of low-growth periods is relatively

short. This conviction prompts agents to expect that the TFP growth is likely to change shortly. Thus,

their uncertainty sharply increases as the system enters the first low-growth spell, as shown in the lower

panel of Figure 7. At the end of the first long-lasting low-growth period, agents have mostly learned by

now that the system is going through a low-growth phase and therefore the current low-growth regime

is likely to last for a fairly long period. Consequently, uncertainty about future TFP at all horizons fall

down at the end of this long-lasting low-growth period. The initial rise in uncertainty and its subsequent

fall during the first long-lasting low growth regime explain the hump-shaped pattern that can be observed

in the bottom panel of Figure 7.

As the system switches to the second high-growth period, uncertainty suddenly soars because by then

agents have learned to be in the low-growth phase, implying that the realized high-growth regime is most

27



Absolute Forecast Error

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

x 10 ­4

pr
ob

( ξ
t+

h=1
|B

t=B
H

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

x 10 ­4

prob( ξ
t
=1|B

H,t
)

pr
ob

( ξ
t+

h=3
|B

t=B
H

)

h=1
h=2
h=3
h=4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

x 10 ­4

pr
ob

(ξ
t+

h=1
|B

t=B
L)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

x 10 ­4

pr
ob

(ξ
t+

h=3
|B

t=B
L)

prob( ξ
t
=3|B

L,t
)

Figure 8: Absolute Forecast Errors. Left panel: Absolute forecast error about the probability of being in the short-lasting
regimes prob

{
ξt+h = 1|It

}
(upper graphs) and prob

{
ξt+h = 3|It

}
(lower graphs), in h = 1, 2, 3, and 4 quarters

from period t conditional on being in the high-growth block with initial beliefs prob {ξt = 1|It}, which are reported
on the horizontal axes. Right panel: Absolute forecast error about the probability of being in the short-lasting regimes

prob
{
ξt+h = 1|It

}
(upper graph) and prob

{
ξt+h = 3|It

}
(lower graph), in h = 1, 2, 3, and 4 quarters from period

t conditional on being in the low-growth block with initial beliefs prob {ξt = 3|It}, which are reported on the horizontal
axes. Different color bars denote different horizons h of forecast. Bt denotes the block in place at time t, which can be the
high-growth one, BH , or the low-growth one, BL.

likely to be short lasting. This is the opposite of what happened during the first high-growth period

where agents were still convinced to be in the high-growth phase. When the system switches to the low

growth regime for the second time, agents are now fairly sure to be in the low-growth phase and hence

the likely duration of the current low growth in TFP is long. Consequently, uncertainty plummets at all

horizons. Uncertainty keeps falling as agents gets more and more convinced to be in the long-lasting low

growth regime.

Furthermore, it is interesting to notice the evolution of the short-horizon uncertainty about TFP

growth relatively to the long-horizon one. When agents expect an observed regime to be long-lasting

(short-lasting), short-horizon uncertainty is generally lower (higher) than long-horizon uncertainty. If the

current regime is long lasting, a switch to the short-lasting regime, which would sharply raise uncertainty

about future TFP growth, is likely to occur only at long horizons. Therefore, long-horizon uncertainty

becomes higher than the short-horizon one when agents expect the current regime to be long lasting. In

particular, note that during the first long-lasting regime of the two phases uncertainty is initially higher

at shorter horizon. After a few periods of these long-lasting regimes, high-horizon uncertainty turns

out to be higher than the short-horizon one. Again, this is explained by the sharp swings in agents’

beliefs occurring during these two long-lasting regimes. Agents start expecting a short-lasting regime but
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eventually end up updating their beliefs in favor of a long-lasting regime.

Uncertainty about future consumption and capital follow a hump-shaped patter, when the economy

goes through a long-lasting regime that agents initially believed to be short-lasting. The reason is similar

to that we discussed in Section 4.1. On the one hand, uncertainty rapidly rose as agents gets more and

more convinced to be in a long-lasting regime that would prompt a large adjustment in allocations. On

the other hand, as agents become more convinced to be in the long-lasting regime, their uncertainty

about future allocations falls because they become less uncertainty about future TFP growth.

While the approximation error can be shown to be extremely tiny in the model with static prior

studied in Section 4.1, it is not obvious that the approximation error made in this application in which

agents’priors are dynamic is small. When agents’priors is dynamic, the approximation error is tightly

related to how fine is the grid G that approximates agents’ beliefs, prob (ξt|It). We initially set 100
equally spaced knots in our grid for each block. Furthermore, we add 194 knots to make the grid finer

for beliefs near the convergence points for prob
{
ξt = 1|τ1t

}
and prob

{
ξt = 3|τ1t

}
, which are zero for both

blocks. After the refinement of the grid of beliefs introduced in steps 3-4 of Section 2.2.2, we are left with

213 grid points per block. Even if the number of regimes seems enormous, solving the model takes 5.23

seconds in Matlab on a 64-bit desktop endowed with an Intel core processor i7-2600 CPU at 3.40 GHz.9.

Figure 8 reports the absolute forecast error, which is computed by taking the absolute difference between

prob
{
ξt+h|It

}
approximated using the matrix P̂ and the true probability that can be easily worked out

using equations (3) and (4). The forecast errors are computed using various initial beliefs of being in

the short-lasting regime of a given block, prob (ξt = 1|It) and prob (ξt = 3|It), which are reported on the
horizontal axes of the plots in Figure 8. The left panel refers to the situation in which the economy is

initially in the high-growth block, while the right panel shows the approximation errors when the initial

state of the economy is low growth. Approximation error appears to be very small at all horizons.10

Finally note that the plots are symmetric (i.e., the upper left one is identical to the lower right one

and the lower left one is identical to the upper right one) because the primitive transition matrix P is
symmetric and the initial grids for the beliefs in the two blocks are chosen to be identical.

4.2.2 Low-Growth Phases Not Necessarily Preceded by a Change in Growth

We have considered so far transitions between high-growth and low-growth phases that are always marked

by an observable change in TFP growth. This feature is due to the fact that so far we have assumed

that the probability of switching between regimes belonging to the same block is zero. In this section we

relax this assumption.

Let us use the baseline calibration and the same values for the transition matrix P as those used

in Subsection 4.2.1, with the only exception that now the probability of switching to the short-lasting

high-growth regime conditional on being in the long-lasting high-growth regime is nonzero. Specifically,

we set p21 = 0.04. The probabilities p23 and p24 are re-scaled so that (24) is satisfied. In this context,

a switch from the high-growth phase to the low-growth phase may happen without the agents observing

9 In the case with static prior beliefs, which was analyzed in Section 4.1, it takes 0.10 second to compute the matrix P̂
and to solve the model with gensys.
10We also checked stability of the law of motion as the number of grid points increases. The approximation turns out to

be accurate even using this criterion. We report results for the absolute forecast errors because these are not model specific.
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Figure 9: Beliefs and Allocations. Top left graph : Evolution of beliefs of being in the long-lasting high-growth regime (red
solid line) and in the long-lasting low-growth regime (blue dashed line). Top right graph : Log-deviations of consumption from

the perfect-information benchmark. Bottom left graph : Expected average growth rate of technology (annualized percentage)

at various horizons. Bottom right graph : Log-deviations of capital from the perfect-information benchmark. In all graphs,

gray areas denote periods of low growth.

any change in growth: The economy simply moves from the long-lasting high-growth regime to the short-

lasting high-growth regime. Although the probability that such an unobserved switch would happen is

quite small (p21 = 0.04), such a possibility turns out to deeply influence the dynamics of agents’beliefs

and allocations.

Figure 9 reports the evolution of beliefs, average expected growth rate, consumption gap, and capital

gap conditional on the same simulated path of regimes as that analyzed in the previous example.11 Let

us focus on the second half of the simulation when the economy enters the high-growth phase. The top

left graph of Figure 9 shows that agents’beliefs about being in the long-lasting high-growth regime do

not converge to unity even when a large number of high-growth periods occur. This is different from

what we observe in Figure 6. Thus, an important implication of introducing unobserved switches to the

low-growth phase is that agents will never become fully convinced to be in the high-growth phase.12

Furthermore, as short-lasting low-growth regimes occur, agents are relatively more concerned about the

possibility of having entered a long-lasting low-growth period. The reason is that agents are aware that

an unobserved switch to the low-growth phase may have occurred during the last spell of high-growth.

The right panels of Figure 9 show the consumption and capital gaps with respect to the perfect-

information benchmark. As we allow for the possibility of unobserved switches, the high-growth phase is

11To ease the comparison with the previous case with no unobservable switches, the scale of the y-axes is set to be the
same as that in Figure 6.
12Note that this is different from the case of slow learning analyzed in Subsection 4.1.2. In that case, agents can become

fully convinced to be in the long-lasting high-growth regime provided that they observe a suffi ciently long spell in the
high-growth block.
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Figure 10: Evolution of Uncertainty about Consumption, Capital, and TFP Growth. The horizon ranges from one quarter

ahead (lightest blue line) through five years ahead (darkest red line). The darker the color of a line, the longer the horizon

of the uncertainty. The gray areas denote periods of low TFP growth.

characterized by recurrent negative consumption gaps as the economy is going through short-lasting low-

growth regimes. This is different from the case of observed switches in Figure 6 in which we observe only

one large negative consumption gap that fades away as the economy remains in the high-growth phase.

The reason is that the possibility of unobserved switches to the low-growth phase prompts households to

persistently interpret short-lasting low-growth regimes as long lasting. As a result, imperfectly informed

agents adjust their capital stock less aggressively than what they would have done if they knew that

the economy is going through a short-lasting low-growth regime. When long-lasting high-growth periods

occur, agents are initially not very optimistic, expecting a quite short-lasting period of high TFP growth.

As a result, they speed up capital accumulation. Quite interestingly and unlike the example in Figure

6, high pessimism during short-lasting low-growth periods causes the capital gap to not exhibit mean

reversion during a typical high-growth phase. In other words, the possibility of unobserved switches

induces households to hoard capital during high-growth phases. Capital hoarding during high-growth

phases is due to households’ inability to fully learn when the economy is in the high-growth phase

because of the possibility of unobserved switches to the low-growth phase. Finally, in the low-growth

phase, households learn faster that the economy is on a low-growth path than in Figure 6. The reason

is that agents take into account that an unobserved switch may have occurred during one of the short-

lasting periods of high TFP growth. This results in beliefs that are less misaligned with the truth and

consequently smaller departures of consumption and capital allocations from the perfect-information

benchmark.

Figure 10 shows the evolution of uncertainty about consumption, capital, and the TFP growth rate

during the typical simulation. As usual, the gray areas denote periods of low TFP growth. Three impor-
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tant results regarding the evolution of uncertainty about future TFP growth stand out. First, uncertainty

is generally higher in the high-growth phase because the possibility of hidden switches to the low-growth

phase makes the learning about the duration of the regime in place harder. Second, periods of low-growth

are generally characterized by monotonically decreasing uncertainty, with long-horizon uncertainty higher

than short-horizon uncertainty. Instead, periods of high-growth are associated with short-horizon uncer-

tainty that is initially higher than long-horizon uncertainty. These patterns are explained by the overall

rising in pessimism due to the possibility of hidden switches to the low-growth phase. As discussed earlier,

when agents expect an observed regime to be long-lasting (short-lasting), short-horizon uncertainty is

generally lower (higher) than long-horizon uncertainty. Since low-growth regimes are suddenly interpreted

as long-lasting by agents, who become more convinced about that as the system stays in this regime,

short-horizon uncertainty will be quite low and declining over time. In contrast, high-growth regimes are

initially interpreted as short-lasting, implying higher uncertainty especially at shorter horizons. Third,

long-lasting high-growth regimes are characterized by hump-shaped dynamics of short-horizon uncertainty

and a monotonically-increasing evolution of long-horizon uncertainty, which ends up being higher than

short-horizon uncertainty. Unlike in Figure 7, long-horizon uncertainty never falls during the high-growth

regimes because the possibility of hidden switches cause agents to never get fully convinced to be in the

long-lasting regime. The hump-shaped dynamics of short-horizon uncertainty during the long-lasting

high-growth regimes is due to the swing in agents’beliefs. Agents initially believe to be in a short-lasting

regime and eventually become convinced to be most likely in the long-lasting regime. When this happens,

short-horizon uncertainty falls while long-horizon uncertainty plateaus.

4.2.3 Changes of Phases Not Necessarily Preceded by a Change in Growth

Let us now consider a two-phase RBC economy in which switches to both the low-growth phase and the

high-growth phase may be hidden. Specifically, consider the transition probability matrix:

P =


0.75 0 0.0125 0.2375

0.04 0.95 0.0475 0.0025

0.0125 0.2375 0.75 0

0.0475 0.0025 0.15 0.80

 .

It should be noted that this parameterization is exactly the same as that in Section 4.2.2 apart from

two features. First, the long-lasting low-growth regime is relatively shorter lasting than in Section 4.2.2.

Second, there is a non-zero probability that a switch from the long-lasting low-growth regime to the

short-lasting low-growth regime occurs, since p43 = 0.15 > 0.

The matrix P captures an economy that alternates a high-growth phase (Regime 2 and Regime 3) to a
low-growth phase (Regime 1 and Regime 4) that is characterized by high-growth periods and low-growth

periods of roughly the same typical duration. Furthermore, switches from one phase to the other may

happen even though agents do not observe any changes in the TFP growth rate.

Consider the same sequence of regimes as that of the previous subsection; that is, a typical low-

growth phase, in which the economy stagnates, followed by a typical high-growth phase. As in the
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Figure 11: Beliefs and Allocations. Top left graph : Evolution of beliefs of being in the long-lasting high-growth regime (red
solid line) and in the long-lasting low-growth regime (blue dashed line). Top right graph : Log-deviations of consumption from

the perfect-information benchmark. Bottom left graph : Expected average growth rate of technology (annualized percentage)

at various horizons. Bottom right graph : Log-deviations of capital from the perfect-information benchmark. In all graphs,

gray areas denote periods of low growth.

previous subsection, agents mostly expect to be in a high-growth phase at time 0, perhaps reflecting an

economy that went through a high-growth phase in the past. Figure 11 reports the evolution of beliefs,

average expected growth rate, consumption gap, and capital gap in this economy conditional on this

typical path of regimes. Note that the third gray areas starting from left coincides with the beginning of

the high-growth phase.

A quick comparison of Figures 9 and 11 reveals that the possibility of hidden switches to the high-

growth phase has important implication for the dynamics of beliefs. First, compared to the case depicted

in Figure 9, agents react more optimistically to the economy entering a high-growth regime, expecting

that this regime will last for longer. Second, the dynamics of beliefs in the simulation seem to be less

sensitive to the phase the economy is going through, suggesting that the presence of unobservable switches

make it harder for agents to learn about the phase and the type of regime that are currently in place.

Third, pessimism, captured by the blue dashed line in the upper left graph, overshoots as the system

enters a low-growth regime and then gradually falls as the economy remains in that regime. Note that

this pattern is not observed in the economy we have studied so far. Importantly, the direction of learning

now goes from the long-lasting regime to the short-lasting regime as the system stays in the low-growth

regime. This is opposite to what is observed in all the previous examples, in which pessimism always

increases as the system stays in the low-growth regime.

To understand why the direction of learning is opposite in this example, one should realize that

agents largely expect a long-lasting low-growth regime as they observe low TFP growth. Furthermore,

the probability about being in the long-lasting regime does not converge to unity as the spell in the
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low-growth block goes to infinity. This happens because agents are rational and are aware that the

probability of a hidden switch gets higher as the number of consecutive periods in the block grow large.

It follows that the possibility of a hidden switch to the short-lasting low-growth regime reduces agents’

ability to learn about the likely duration of low-growth regimes from observing the number of consecutive

periods spent in that block. These dynamics of beliefs during the low-growth regimes crucially affect the

evolution of the average growth rate (lower left plot of Figure 11). Precisely, unlike the previous example

shown in Figure 9, agents raises their expected growth rate of TFP as the economy stays longer and

longer in a low-growth regime.

Comparing the right panels of Figure 9 and 11, consumption and capital allocations are generally less

far off from their perfect-information level in the latter graph. The reason is that now the two low-growth

regimes are quite similar in terms of their relative persistence. Furthermore, unlike the previous example

with no hidden switch to the high-growth phase, capital gap steadily decreases during the low-growth

phase. The capital gap starts increasing only when the economy enters the high-growth phase; that is,

at the beginning of the third gray area in our simulation. The reason why the capital gap widens during

the low-growth phase is the high optimism about the likely duration of the high-growth regime during

the low-growth phase. In other words, agents overestimate the likely duration of the high-growth regime

during the low-growth phase, leading agents to adjust their capital stock less aggressively than what they

would have done if they knew that the realized high-growth regimes are actually short lasting. Recall that

the possibility of unobserved switches from the low-growth phase to the high-growth phase is the culprit

for such a higher optimism about the duration of high-growth regimes during the low-growth phases.

Figure 12 reports the evolution of uncertainty about future allocations and future TFP growth at

different horizons. We observe that low-growth regimes are associated with higher short-horizon un-

certainty (light blue lines). Since the two regimes are characterized by very similar persistence, this

result may seem surprising at first. However, this outcome reflects the possibility of hidden switches to

a high-growth phase that is characterized by a growth rate that is substantially higher than that in the

stagnating phase. At longer horizon (dark red lines), uncertainty seems remarkably insensitive to regime

switches and quite anchored to its ergodic level even when the low-growth regimes occur. We observe

this pattern because hidden switches make agents’ task of predicting the growth rate of TFP at long

horizon harder. Uncertainty about allocations is fairly stable across all horizons, reflecting the fact that

the presence of hidden switches makes it harder for agents to learn about the likely duration of realized

regimes.

4.3 Disasters and Shocks to Beliefs

We want to model an economy in which there exists a fairly rare chance that a disaster occurs. The goal

is to study the effects of the possibility of such a disaster on the dynamics of beliefs and, in turn, on

the aggregate variables. We expand the RBC model introduced in Section 4 so as to include a disaster

regime that causes the economy to contract sharply. We have a total of four regimes: Regime 1 and 2

are high-growth regimes, µH = 0.01, and Regime 3 and 4 are low-growth regimes, µL = −0.05. Let us
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Figure 12: Evolution of Uncertainty about Consumption, Capital, and TFP Growth. The horizon ranges from one quarter

ahead (lightest blue line) through five years ahead (darkest red line). The darker the color of a line, the longer the horizon

of the uncertainty.

consider the following transition matrix:

P =


0.85 0.1 0.045 0.005

0.05 0.9 0.05 0

0 0.99 0.01 0

0.20 0 0 0.80

 .

While the high-growth regimes exhibit similar persistence, the low-growth regimes have markedly different

persistence. There is a very small probability that, once the system is in Regime 3, it will stay in the

low-growth block next period; most likely it will switch to the long-lasting high-growth regime. Regime

4 is more persistent, leading to a severe contraction which is expected to last for four quarters. We

dubbed Regime 4 as the disaster regime. Also, note that the probability of staying in the high-growth

block is 0.95 for both the short-lasting and long-lasting high-growth regimes. However, Regime 1 has a

larger downside risk with a non-zero probability of moving to the disaster regime in the next period. The

disaster regime is quite unlikely to occur, with an ergodic probability of 0.96%.

When under the high-growth block, households receive a public signal $t about the regime in

place. The signal can take two values: 1 or 2. We assume that prob {$t = 1|ξt = 1} = 0.80 and

prob {$t = 1|ξt = 2} = 0.20, implying that receiving a signal $t = 1 is more likely when the econ-

omy is the short-lasting high-growth Regime 1. Conversely, receiving a signal $t = 2 is more likely when

the economy is in the long-lasting high-growth Regime 2. We study the evolution of allocations and

beliefs when Regime 2 is in place for its typical duration of 10 quarters. Households always receive the

same signal $t = 2 during the period except at time t = 3 and t = 6, when they receive $t = 1. Figure
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Figure 13: Beliefs, Allocations, and Uncertainty. Top graph : Evolution of beliefs of being in the long-lasting high-growth
regime in the case of shocks to beliefs at time t=3 and t=6 (black dashed line) and in the case of no shock to beliefs (solid

blue line). Middle left graph : Expected average growth rate of technology (annualized percentage points) at various horizons

(4 quarters, 8 quarters, 20 quarters, and 40 quarters) for the case of shocks to beliefs at t=3 and t=6. From top to bottom:

the solid blue line denotes the horizon of 4 quarters, the solid black line denotes the horizon 40 quarters. Middle center

graph : Log deviations of consumption from the case of no shock to beliefs. Middle right graph : Log-deviations of capital

from the case of no shock to beliefs. Bottom graphs : Uncertainty about future TFP growth, consumption, capital at horizons

from 4 quarters to 20 quarters. Lighter blue areas denote shorter horizons. Darker red areas denote longer horizons.

13 shows the dynamics of beliefs and allocations (black dashed line) and compare them with those of an

economy in which households always receive $t = 2 at any time (solid blue line).

Receiving signals $3 = 1 and $6 = 1 influences agents’beliefs by reducing their optimism. Note

that nothing is really changed in the economy’s fundamentals as the economy remains in Regime 2 at

all times. Hence, the signals $3 = 1 and $6 = 1 play the role of shocks to beliefs with the effect of

reducing optimism. If agents did not receive these two signals, their beliefs would have not changed (see

the black dashed line). Such shocks to beliefs change consumption and capital allocations. The first

shock to beliefs reduces consumption by 0.22% in quarterly rates and the second one by 0.25% three

quarters later. Furthermore, Figure 13 shows that shocks to beliefs have delayed effects on consumption

by prompting agents to accumulate more capital. The higher accumulated capital pushes consumption

up at the end of the simulated periods, when the effects of the signals $3 = 1 and $6 = 1 on agents’

beliefs fade away.

Importantly, the two shocks to beliefs have interesting second-order effects. In this simulation, bad

news ($3 = 1 and $6 = 1) raise the downside risk and uncertainty. The bottom middle panel and the

bottom right panel show that the increase in downside risk translates into a spike in uncertainty about
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future consumption and future capital at all horizons. Upon the arrival of the two bad pieces of news,

short-horizon uncertainty (light blue lines) about TFP growth increases whereas the long-horizon one

(dark red lines) is substantially unaffected. The reason is that the disaster regime is not very persistent,

lasting only four quarters on average. Note that such changes in uncertainty are not supported by any

changes in the economy’s fundamentals, but rather are due to signals that change the perceived probability

of entering the disaster regime in the near future.

While this is not the first paper to use signals as shocks to beliefs (e.g., Lorenzoni, 2009, Angeletos

and La’O, 2010 and Forthcoming) the approach proposed in this paper has the important advantage

of keeping the model very tractable. This feature makes our methods potentially suitable for studying

shocks to beliefs in likelihood-based estimated large-scale DSGE models (e.g., Christiano, Eichenbaum,

and Evans, 2005 and Smets and Wouters, 2007).

5 Concluding Remarks

This paper has developed methods to solve general equilibrium models in which agents are subject to

waves of optimism, pessimism, and uncertainty. Agents in the model are fully rational, understand the

structure of the economy, and know that they do not know. Therefore, when forming expectations they

take into account that their beliefs will evolve in response to realized observable economic outcomes, the

behavior of other agents in the model, or both. The central insight consists of creating an expanded

number of regimes indexed with respect to agents’beliefs. The resulting law of motion reflects agents’

uncertainty and can be expressed in state space form. Therefore, the framework proposed in this paper

is suitable for structural estimation. Another important contribution of the paper is to show the large

role played by changes in agents’beliefs in shaping the predictions we draw from rational expectations

models. The applications studied in this paper aim to show the scope of applicability of the proposed

methods. Finally, note that we have confined our analysis to the case of a primitive transition matrix of

four regimes. Nothing prevents us from constructing a larger transition matrix with a potentially richer

scope for learning. The choice of the transition matrix depends on the feature of the stochastic process

the researcher wishes to estimate. The results of this paper can be easily extended to more articulated

transition matrices.

As scholars develop methods to effi ciently solve and estimate DSGE models through high-order per-

turbation (e.g., Fernandez-Villaverde and Rubio-Ramirez, 2006 and Foerster, Rubio-Ramirez, Waggoner,

and Zha, 2011), the methods developed in this paper lay down a convenient framework for investigating

the effects of changes in economic fundamentals or animal spirits on uncertainty and the feedback effects

of such swings in uncertainty on the economic dynamics.
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Appendices

The appendices are organized as follows. Appendix A works out the recursions (3) and (4) that pin down

the dynamics of beliefs within blocks. Appendix B proves Proposition 1 that ensures the convergence

of the difference equations (3)-(4). Appendix C details the algorithm to construct the transition matrix

P̂ when agents receive signals. Appendix D characterizes the steady-state equilibrium for stationary

variables in the RBC model and obtains the log-linearized equations of this model.

Note that the convergence results, which are proven in Appendices B, could be derived by working

on the submatrices of each block. However, we have decided to work with the solution of the difference

equations (3) and (4) because this approach is familiar to a wider audience.

A Deriving the Law of Motion for Beliefs

In this appendix, we want to show two propositions.

Proposition 2 The rational difference equations (3) and (4) hold true

Proof. Recall that equation (3) describes the dynamics of beliefs within Block 1. Consequently, this equation
holds when τ1t > 1. The Bayes’theorem can be applied to characterize the probability of being in Regime 1 given
that the system is in Block 1 (τ1t > 1):

prob
(
ξt = 1|τ1t

)
=

p
(
τ1t = τ1t−1 + 1|ξt = 1

)
p
(
ξt = 1|τ1t−1

)∑4
i=1 p

(
τ1t = τ1t−1 + 1|ξt = i

)
p
(
ξt = i|τ1t−1

)
But if τ1t = τ1t−1 + 1, then the likelihood is such that

p
(
τ1t = τ1t−1 + 1|ξt = 1

)
= p

(
τ1t = τ1t−1 + 1|ξt = 2

)
> 0

and
p
(
τ1t = τ1t−1 + 1|ξt = 3

)
= p

(
τ1t = τ1t−1 + 1|ξt = 4

)
= 0

The equality in the first expression reflects the fact that agents cannot distinguish regimes belonging to the same
block. The inequality sign in the first expression and the equality sign in the second expression are due to the fact
that the system is in Block 1 at time t, ruling out the possibility that either Regime 3 or Regime 4 is realized.
These results allow us to write:

prob
(
ξt = 1|τ1t

)
=

p
(
ξt = 1|τ1t−1

)∑2
i=1 p

(
ξt = i|τ1t−1

)
Since p

(
ξt = i|τ1t−1

)
=
∑2
j=1 p

(
ξt−1 = j|τ1t−1

)
pji, then

prob
(
ξt = 1|τ1t

)
=

∑2
j=1 p

(
ξt−1 = j|τ1t−1

)
pj1∑2

i=1

∑2
j=1 p

(
ξt−1 = j|τ1t−1

)
pji

Furthermore, note that p
(
ξt−1 = 2|τ1t−1

)
= 1− p

(
ξt−1 = 1|τ1t−1

)
and after straightforward manipulations leads to

equation (3). Equation (4) can be proved analogously.

B Proof of Proposition 1

We will characterize the convergence of prob
(
ξt = 1|τ1t

)
as the number of consecutive periods spent in Block 1, τ1t ,

grows large. We will denote lim
τ1t→∞

prob
(
ξt = 1|τ1t

)
= x using prob

(
ξt = 1|τ1t

)
−→ x and the characteristic roots of
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equation (3) with :

λ̃1 ≡
p11 − p22 − 2p21 −

√
(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)
(25)

λ̃2 ≡
p11 − p22 − 2p21 +

√
(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)
(26)

The following propositions provide the conditions under which the difference equation (3) converges to the stable
root λ̃2. An analogous pair of roots, λ̃3 and λ̃4, with λ̃4 being the stable root, can be derived for Block 2. Similarly,
all results that follow will also apply to Block 2.

Proposition 3 If (i) p11 + p12 − p21 − p22 6= 0, (ii) p11p22 6= p21p12, (iii) p11 6= p22 or both p12 6= 0 and p21 6= 0,
and the initial probability is such that prob

(
ξt = 1|τ1t = 1

)
6= λ̃1, then prob

(
ξt = 1|τ1t

)
−→ λ̃2 ∈ [0, 1]. If conditions

(i), (ii), and (iii) hold and the initial probability is such that prob
(
ξt = 1|τ1t = 1

)
= λ̃1, then prob

(
ξt = 1|τ1t

)
= λ̃1

for any τ1t .

Proof. The difference equation (3) can be expressed as

prob
(
ξt = 1|τ1t

)
=
a · prob

(
ξt−1 = 1|τ1t−1

)
+ b

c · prob
(
ξt−1 = 1|τ1t−1

)
+ d

(27)

where

a ≡ p11 − p21, b ≡ p21
c ≡ p11 + p12 − p21 − p22, d ≡ p21 + p22

Condition (i) ensures that the difference equation of interest is rational because it implies c > 0. We will deal with
the case of c = 0 later on. We then proceed as follows. Denote prob

(
ξt = 1|τ1t

)
+ d
c as xt and re-write the difference

equation above as

xt = α− β

xt−1
(28)

where

α ≡ p11 + p22
p11 + p12 − p21 − p22

β ≡ p11p22 − p21p12
(p11 + p12 − p21 − p22)2

Condition (ii) ensures that β 6= 0. The case of β = 0 will be studied later. The above equation can be reduced to
a homogeneous linear difference equation by defining xt = ϕt/ϕt−1 where:

ϕt − αϕt−1 + βϕt−2 = 0 (29)

If λ1 and λ2 are the solutions of the characteristic equation, namely 1
2α±

1
2

√
α2 − 4β, then the general solution of

(29) is

ϕt = C1λ
t
1 + C2λ

t
2, if λ1 6= λ2 (30)

ϕt = (C1 + C2t)λ
t
1, if λ1 = λ2 (31)

The general solution of (28) is then:

xt =
C1λ

t
1 + C2λ

t
2

C1λ
t−1
1 + C2λ

t−1
2

(32)
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when C2 = 0, xt = λ1 for all t. When C1 = 0, xt = λ2 for all t. When neither C1 nor C2 is zero, then

xt = λ2

(
λ1
λ2

)t+1
+ C(

λ1
λ2

)t
+ C

, C 6= 0 (33)

Note that α2 ≥ 4β is required for the characteristic roots λ1 and λ2 to be real. This condition is[
p11 + p22

p11 + p12 − p21 − p22

]2
≥ 4

p11p22 − p21p12
(p11 + p12 − p21 − p22)2

and after simplifying
p211 + p222 + 2p11p22 ≥ 4p11p22 − 4p21p12

Some straightforward manipulation leads us to

(p11 − p22)2 ≥ −4p21p12 (34)

From condition (iii), the inequality above is strict and the characteristic roots are unequal. The case in which
the characteristic roots are identical is tackled by the next proposition. Let |λ2| > |λ1| then |λ1/λ2|t → 0
and (33) implies that xt → λ2 as long as x1 6= λ1. The root with highest absolute value can be seen to be

always p11+p22+
√
(p11−p22)2+4p21p12

2(p11+p12−p21−p22) . Recall that xt ≡ prob
(
ξt = 1|τ1t

)
+ d

c . After some straightforward algebraic
manipulations we obtain:

prob
(
ξt = 1|τ1t

)
→ λ̃2 =

p11 − p22 − 2p21 +

√
(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)

where λ̃2 is the stable root for the variable of interest prob
(
ξt = 1|τ1t

)
. The unstable root for prob

(
ξt = 1|τ1t

)
can

be easily seen to be:

λ̃1 =
p11 − p22 − 2p21 −

√
(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)

We only need to show that λ̃2 ∈ [0, 1]. We want to show that

p11 − p22 − 2p21 +

√
(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)
≥ 0

If p11+p12−p21−p22 > 0 and p11−p22−2p21 ≥ 0, then the statement is clearly true. When p11+p12−p21−p22 > 0
and p11 − p22 − 2p21 < 0, then √

(p11 − p22)2 + 4p21p12 ≥ − (p11 − p22 − 2p21)

Since the right-hand side is positive we can square both sides of this equation:

(p11 − p22)2 + 4p21p12 ≥ (p11 − p22 − 2p21)
2

4p21p12 ≥ 4p221 − 4 (p11 − p22) p21

If p21 = 0, the statement is true. If p21 > 0

p12 − p21 + (p11 − p22) ≥ 0

which is true. If p11 + p12 − p21 − p22 < 0, then p11 − p22 − 2p21 < 0. We need to show that

p11 − p22 − 2p21 ≤ −
√

(p11 − p22)2 + 4p21p12

43



Since both sides of the inequality are negative, then

(p11 − p22 − 2p21)
2 ≥ (p11 − p22)2 + 4p21p12

and after manipulating:
−4 (p11 − p22) p21 + 4p221 ≥ 4p21p12

If p21 = 0, the inequality is obviously verified. If p21 > 0, then

0 ≥ (p11 − p22) + p12 − p21

which is true. We want to show that

p11 − p22 − 2p21 +

√
(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)
≤ 1

If p11 + p12 − p21 − p22 > 0, then after some manipulations√
(p11 − p22)2 + 4p21p12 ≤ p11 + 2p12 − p22

Note that p11 + 2p12 − p22 > p11 + p12 − p21 − p22 > 0. Hence, taking the square on both sides of the inequality
yields:

(p11 − p22)2 + 4p21p12 ≤ (p11 + 2p12 − p22)2

and finally
4p21p12 ≤ 4p212 + 4 (p11 − p22) p12

If p12 = 0, this is true. If p12 > 0, then
p21 ≤ p12 + (p11 − p22)

which is true. If p11 + p12 − p21 − p22 < 0, then after some manipulations√
(p11 − p22)2 + 4p21p12 ≥ p11 + 2p12 − p22

If p11 + 2p12 − p22 < 0, this inequality is obviously true. If p11 + 2p12 − p22 ≥ 0, then

(p11 − p22)2 + 4p21p12 ≥ (p11 + 2p12 − p22)2

and then
4p21p12 ≥ 4p212 + 4 (p11 − p22) p12

If p12 = 0, this is true. If p12 > 0, then
p21 ≥ p12 + p11 − p22

which is true.
The next proposition relaxes condition (iii) of the above proposition.

Proposition 4 If (i) p11 + p12 − p21 − p22 6= 0, (ii) p11p22 6= p21p12, (iii) p11 = p22 and either p12 = 0 or p21 = 0,
then prob

(
ξt = 1|τ1t

)
→ λ̃1 = λ̃2 and the roots are either equal to zero (if p21 = 0) or one (if p12 = 0).

Proof. We want to show that if (i) p11 + p12− p21− p22 6= 0, (ii) p11p22 6= p21p12, (iii) p11 = p22 and either p12 = 0

or p21 = 0, then prob
(
ξt = 1|τ1t

)
→ λ̃1 = λ̃2 and the roots are either equal to zero (if p21 = 0) or one (if p12 = 0).

This result follows from observing that condition (iii) implies that condition (34) delivers coincident characteristic
roots λ̃1 and λ̃2; that is,

λ̃1 = λ̃2 =
p21

p21 − p12
If p12 = 0, then prob

(
ξt = 1|τ1t

)
→ λ̃1 = λ̃2 = 1. If p21 = 0, then prob

(
ξt = 1|τ1t

)
→ λ̃1 = λ̃2 = 0.

If the two regimes have the same persistence (p11 = p22) and the system has remained in Block 1 for suffi ciently
long, then agents will eventually believe they are in the regime that is an absorbing state (conditional on staying
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in the block). The next proposition relaxes condition (ii) of the previous propositions.

Proposition 5 If (i) p11 + p12 − p21 − p22 6= 0, (ii) p11p22 = p21p12, then prob
(
ξt = 1|τ1t

)
= p11−p21

p11+p12−p21−p22 .

Proof. We want to show that if (i) p11 + p12 − p21 − p22 6= 0, (ii) p11p22 = p21p12, then prob
(
ξt = 1|τ1t

)
=

p11−p21
p11+p12−p21−p22 . Condition (ii) implies β = 0 in equation (28) and hence (using the notation introduced above)

xt = α ≡ p11 + p22
p11 + p12 − p21 − p22

Recall that xt = prob
{
ξt = 1|τ1t

}
+ d/c, then it follows that

prob
{
ξt = 1|τ1t

}
=

p11 − p21
p11 + p12 − p21 − p22

.

Note that if conditions (i) and (ii) are satisfied, prob
(
ξt = 1|τ1t

)
suddenly converges by jumping to p11−p21

p11+p12−p21−p22
as the system enters Block 1. The recursion (3) can be shown to become a linear difference equation. The solution
of this equation is characterized in the following two propositions.

Proposition 6 If (i) p11 + p12 − p21 − p22 = 0 and (ii) p11 6= p21, then prob
(
ξt = 1|τ1t

)
→ p21

p22−p11+2p21 , with
p21

p22−p11+2p21 ∈ [0, 1] .

Proof. We want to show that if (i) p11+p12−p21−p22 = 0 and (ii) p11 6= p21, then prob
(
ξt = 1|τ1t

)
→ p21

p22−p11+2p21 ,
with p21

p22−p11+2p21 ∈ [0, 1] . If p11 + p12− p21− p22 = 0, then c = 0 in the difference equation (27), which hence boils
down to the first-order linear difference equation below:

prob
(
ξt = 1|τ1t

)
=
a

d
· prob

(
ξt−1 = 1|τ1t−1

)
+
b

d
(35)

where a = p11 − p21, b = p21, d = p21 + p22. Stability is ensured by
∣∣a
d

∣∣ =
∣∣∣p11−p21p21+p22

∣∣∣ < 1. First note that the

benchmark assumption A1 combined with condition (i) implies that d 6= 0 and hence the ratio
∣∣a
d

∣∣ is well-defined.
Condition (ii) rules out the possibility that the ratio

∣∣a
d

∣∣ is zero. We will tackle this case in the next proposition.
The condition p11 + p12 − p21 − p22 = 0 allows us to re-write the stability condition

∣∣a
d

∣∣ =
∣∣∣p11−p21p21+p22

∣∣∣ as ∣∣∣p11−p21p11+p12

∣∣∣.
Hence, showing that p12 + p21 > 0 implies stability. Recall that the benchmark assumption A2 requires that either
p11 6= p22 or p12 6= p21. If the latter condition is satisfied, then p12+p21 > 0 trivially follows. If the latter condition
is not satisfied, then it must be that p11 6= p22, which, combined with condition (i), implies that p12 + p21 > 0. It
is easy to see that the difference equation (35) implies that prob

(
ξt = 1|τ1t

)
→ b

d

(
1− a

d

)−1
, that is,

prob
(
ξt = 1|τ1t

)
→ p21

p21 + p22

(
1− p11 − p21

p21 + p22

)−1
After easy algebraic manipulations

prob
(
ξt = 1|τ1t

)
→ p21

p22 − p11 + 2p21
.

Note that
0 ≤ p21

p22 − p11 + 2p21
≤ 1

To see that, recall that in this case, p11 + p12 − p21 − p22 = 0, implying that p22 − p11 = p12 − p21. Substituting
this result into the inequalities above yields

0 ≤ p21
p12 + p21

≤ 1

which is clearly verified.
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Proposition 7 If (i) p11 + p12 − p21 − p22 = 0, (ii) p11 = p21, then prob
(
ξt = 1|τ1t

)
= p21

p22+p21
.

Proof. We want to show that if (i) p11 + p12 − p21 − p22 = 0, (ii) p11 = p21, then prob
(
ξt = 1|τ1t

)
= p21

p22+p21
.

Condition (i) implies that c = 0 in the difference equation (27), which hence boils down to the first-order linear
difference equation below:

prob
(
ξt = 1|τ1t

)
=
a

d
· prob

(
ξt−1 = 1|τ1t−1

)
+
b

d
(36)

where a = p11 − p21, b = p21, d = p21 + p22. Condition (ii) implies that a = 0 and hence prob
(
ξt = 1|τ1t

)
= b/d =

p21/ (p21 + p22).
It should be noted that when p11 = p21, beliefs prob

(
ξt = 1|τ1t

)
suddenly jump to p21

p22+p21
for any τ1t ≥ 1 (as

the system enters Block 1).
To sum up, given the benchmark assumptions A1-A3, we have shown that equation (3) always converges. Note

that Proposition 2 implies that beliefs do not converge to λ̃2, if the starting beliefs prob
(
ξt = 1|τ1t = 1

)
= λ̃1. The

next two propositions show that either λ̃1 ≤ 0 or λ̃1 ≥ 1, implying that the only admissible values for probabilities
are either zero or one. Therefore, there are only a few limiting cases in which equation (3) does not converge to
λ̃2. It can be shown that it is suffi cient to set the probability ratios 0 < pi3/ (pi3 + pi4) < 1 for any i ∈ {1, 2} to
rule out these cases that are not very relevant in practice.

Recall that

λ̃1 ≡
p11 − p22 − 2p21 −

√
(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)

We want to show that 0 ≤ λ̃1 ≤ 1. This claim is implied by the following two propositions.

Proposition 8 If p11 + p12 − p21 − p22 > 0, then λ̃1 ≤ 0.

Proof. We want to show that

p11 − p22 − 2p21 −
√

(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)
≤ 0

If p11 + p12 − p21 − p22 > 0, then the above implies

p11 − p22 − 2p21 ≤
√

(p11 − p22)2 + 4p21p12

Note that the benchmark assumption A3 excludes that p11 − p22 − 2p21 = 0. Hence there are two possible cases
left: (a) if p11 − p22 − 2p21 < 0, then the above is true; (b) if p11 − p22 − 2p21 > 0, then we can take the square on
both sides of the above equation to get

(p11 − p22 − 2p21)
2 ≤ (p11 − p22)2 + 4p21p12

Straightforward manipulations lead to

p221 − p11p21 + p22p21 ≤ p21p12

If p21 = 0, then the above is true. Otherwise, we can divide both sides of the above inequality by p21 to get

p11 + p12 − p21 − p22 ≥ 0

that is obviously true because p11 + p12 − p21 − p22 > 0.

Proposition 9 If p11 + p12 − p21 − p22 < 0, then λ̃1 ≥ 1.

Proof. We want to show that

p11 − p22 − 2p21 −
√

(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)
≥ 1
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Since p11 + p12 − p21 − p22 < 0, the above implies

p11 − p22 − 2p21 −
√

(p11 − p22)2 + 4p21p12 ≤ 2 (p11 + p12 − p21 − p22)

and after simplifying

−
√

(p11 − p22)2 + 4p21p12 ≤ p11 − p22 + 2p12

Note that the benchmark assumption A3 excludes that p11 − p22 + 2p21 = 0. If p11 − p22 + 2p12 > 0, the above is
obviously true. If p11 − p22 + 2p12 < 0, then taking the square on both sides

(p11 − p22)2 + 4p21p12 ≥ (p11 − p22 + 2p12)
2

After some manipulations:
p12 + p11 − p12 − p22 ≤ 0

that is obviously true because p11 + p12 − p21 − p22 < 0.

C Algorithm for the Case with Signals

Algorithm Set i = 1 and initialize the matrix P̂ = 0g×g

Step 1 Find j1 ≤ g1 and j2 ≤ g1 so as to min
∣∣prob{ξt = 1|It, $t−1, $t = q

}
− Gjq

∣∣ with q ∈ {1, 2} where
prob

(
ξt = 1|It, $t−1, $t = q

)
=

prob ($t = q|ξt = 1) prob
(
ξt = 1|It, $t−1)∑2

j=1 prob ($t = q|ξt = j) prob (ξt = j|It, $t−1)
, q ∈ {1, 2} (37)

and agents’beliefs about being in Regime 1 before observing the signal read:

prob
(
ξt = 1|It, $t−1) =

prob
(
ξt−1 = 1|It−1, $t−1) (p11 − p21) + p21

prob
(
ξt−1 = 1|It−1, $t−1

)
(p11 + p12 − p21 − p22) + p21 + p22

(38)

using the approximation prob
{
ξt−1 = 1|It−1, $t−1} = Gi. To ensure convergence of beliefs, we correct j1

and j2 as follows. If jq = i and Gi 6= λ̃2 (q ∈ {1, 2}), then set jq = jq + 1 if Gi < λ̃2 and jq = max (1, jq − 1)

if Gi > λ̃2.

Step 2 Setting prob
(
ξt−1 = 1|It−1, $t−1) = Gi, the (ex-ante) transition probability can be computed as:

P̂ (i, jq) =
∑2
v=1 prob

{
ξt = v|It−1, $t−1} prob {$t = q|ξt = v} , q ∈ {1, 2} (39)

where
prob

{
ξt = v|It−1, $t−1} =

∑2
u=1 prob

{
ξt−1 = u|It−1, $t−1} puv (40)

Step 3 Find j1 > g1 and j2 > g1 so as to min
∣∣prob{ξt = 3|It, $t−1, $t = q

}
− Gjq

∣∣ with q ∈ {1, 2}, where
prob

(
ξt = 3|It, $t−1, $t = q

)
=

prob ($t = q|ξt = 3) prob
(
ξt = 3|It, $t−1)∑4

j=3 prob ($t = q|ξt = j) prob (ξt = j|It, $t−1)
, q ∈ {1, 2}

and the beliefs about being in Regime 3 upon the shift to Block 2 (before having observed the signal $t) are
given by:

prob
{
ξt = 3|It, $t−1} =

∑
j∈b1 prob

{
ξt−1 = j|It−1, $t−1} pj3∑

i∈b2
∑
j∈b1 prob

{
ξt−1 = j|It−1, $t−1

}
pji

=
prob

{
ξt−1 = 1|It−1, $t−1} p13 +

(
1− prob

{
ξt−1 = 1|It−1, $t−1}) p23

prob
{
ξt−1 = 1|It−1, $t−1

}
(p13 + p14) +

(
1− prob

{
ξt−1 = 1|It−1, $t−1

})
(p23 + p24)

using the approximation that prob
(
ξt−1 = 1|It−1, $t−1) = Gi. Setting prob

(
ξt−1 = 1|It−1, $t−1) = Gi, the
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(ex-ante) transition probabilities as

P̂ (i, jq) = P̂ (i, jq) +

4∑
v=3

(
2∑

u=1

prob
{
ξt−1 = u|It−1, $t−1} puv) prob {$t = q|ξt = v} , q ∈ {1, 2} (41)

Step 4 If i = g1 then set i = i+ 1 and go to step 6; otherwise, set i = i+ 1 and go to step 1.

Step 5 Find j1 > g1 and j2 > g1 so as to min
∣∣prob{ξt = 3|It, $t−1, $t = q

}
− Gjq

∣∣ with q ∈ {1, 2} where
prob

(
ξt = 3|It, $t−1, $t = q

)
=

prob ($t = q|ξt = 3) prob
(
ξt = 3|It, $t−1)∑4

j=3 prob ($t = q|ξt = j) prob (ξt = j|It, $t−1)
, q ∈ {1, 2}

and agents’beliefs about being in Regime 3 before observing the signal read:

prob
(
ξt = 3|It, $t−1) =

prob
(
ξt−1 = 3|It−1, $t−1) (p33 − p43) + p43

prob
(
ξt−1 = 3|It−1, $t−1

)
(p33 + p34 − p43 − p44) + p43 + p44

(42)

using the approximation prob
{
ξt−1 = 3|It−1, $t−1} = Gi. To ensure convergence of beliefs, we correct j1

and j2 as follows. If jq = i and Gi 6= λ̃4 (q ∈ {1, 2}), then set jq = min (jq + 1, g) if Gi < λ̃4 and jq = jq − 1

if Gi > λ̃4.

Step 6 Setting prob
(
ξt−1 = 3|It−1, $t−1) = Gi, the (ex-ante) transition probability can be computed as:

P̂ (i, jq) = P̂ (i, jq) +

4∑
v=3

(
4∑

u=3

prob
{
ξt−1 = u|It−1, $t−1} puv) prob {$t = q|ξt = v} , q ∈ {1, 2} (43)

Step 7 Find j1 ≤ g1 and j2 ≤ g1 so as to min
∣∣prob{ξt = 1|It, $t−1, $t = q

}
− Gjq

∣∣ with q ∈ {1, 2}, where
prob

(
ξt = 1|It, $t−1, $t = q

)
=

prob ($t = q|ξt = 1) prob
(
ξt = 1|It, $t−1)∑2

j=1 prob ($t = q|ξt = j) prob (ξt = j|It, $t−1)
, q ∈ {1, 2}

and the beliefs about being in Regime 1 upon the shift to Block 1 (before having observed the signal $t) are
given by:

prob
{
ξt = 1|It, $t−1} =

∑
j∈b2 prob

{
ξt−1 = j|It−1, $t−1} pj1∑

i∈b1
∑
j∈b2 prob

{
ξt−1 = j|It−1, $t−1

}
pji

=
prob

{
ξt−1 = 3|It−1, $t−1} p31 +

(
1− prob

{
ξt−1 = 3|It−1, $t−1}) p41

prob
{
ξt−1 = 3|It−1, $t−1

}
(p31 + p32) +

(
1− prob

{
ξt−1 = 3|It−1, $t−1

})
(p41 + p42)

using the approximation that prob
(
ξt−1 = 3|It−1, $t−1) = Gg1+i. Setting prob

(
ξt−1 = 3|It−1, $t−1) = Gi,

the (ex-ante) transition probability can be computed as:

P̂ (i, jq) = P̂ (i, jq) +

2∑
v=1

(
4∑

u=3

prob
{
ξt−1 = u|It−1, $t−1} puv) prob {$t = q|ξt = v} , q ∈ {1, 2} (44)

Step 8 If i = g, then go to step 9; otherwise, set i = i+ 1 and go to step 5.

Step 9 If no column of P̂ has all zero elements, then stop. Otherwise, go to step 10.

Step 10 Construct the matrix T as follows. Set j = 1 and l = 1. While j ≤ g, if
∑g
i=1 P̂ (i, j) 6= 0 then do three

things: (1) set T (j, l) = 1, (2) set T (j, v) = 0 for any 1 ≤ v ≤ g and v 6= l, (3) set l = l + 1 and (4) set
j = j + 1; otherwise (i.e., if

∑g
i=1 P̂ (i, j) = 0), set j = j + 1.

Step 11 Write the transition equation as P̂R = T · P̂ · T ′. If no column of P̂R has all zero elements, set P̂ = P̂R
and stop. Otherwise, go to step 10.
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D Log-Linearization of the RBC Model

Solving the problem of the representative household in Section 4 leads to:

c−1t = βẼtc
−1
t+1

[
αzt+1k

α−1
t + 1− δ

]
(45)

ct + kt = ztk
α
t−1 + (1− δ) kt−1 (46)

The stochastic process of TFP (17) and equations (45)-(46) imply that consumption and capital are non-stationary.

Denote the stationary variables c̃t ≡ ct/z
(1−α)−1
t , k̃t ≡ kt/z

(1−α)−1
t , µt ≡ ln (zt/zt−1), and Mt ≡ zt/zt−1 as the

gross growth rate of TFP. The stationary version of the model reads:

c̃−1t = βẼtc̃
−1
t+1M

1
α−1
t+1

[
αMt+1k̃

α−1
t + 1− δ

]
(47)

c̃t + k̃t = Mk̃αt−1 + (1− δ)M
1

α−1
t k̃t−1 (48)

Following Schorfheide (2005) and Liu, Waggoner, and Zha (2011), we define a steady-state equilibrium for the
stationary consumption c̃t and capital k̃t when εt = 0 all t and the growth rate of TFP is at its ergodic value µ.
The steady-state equilibrium level of consumption css and capital kss is:

kss =

[
1

αM

(
M

1
1−α

β
− 1 + δ

)] 1
α−1

(49)

css = M
α
α−1 kαss +

[
(1− δ)M

1
α−1 − 1

]
kss (50)

where M ≡ exp (µ), µ ≡ (p1 + p2)µH + (p3 + p4)µL is the ergodic mean of the log growth rate of the economy,
and pi stands for the ergodic probability of being in Regime i.

Taking the log-linear approximation of equations (47)-(48) around the steady-state equilibrium (49)-(50) leads
to

ĉt = Ẽtĉt+1 − (α− 1)
(

1 + (δ − 1)βM
1

α−1
)
k̂t −

(
1

α− 1
+ βM

1
α−1 (δ − 1) + 1

)
Ẽtµ̂t+1

where we use the fact that βM
1

α−1
(
αMkα−1ss + 1− δ

)
= 1 from equation (49) and µ̂t ≡ µt − µ is the log-deviation

of the growth rate of TFP from its ergodic mean µ. ĉt and k̂t denote log-deviations of the stationary consumption
and capital, respectively, from their steady-state value, and µ̂ (ξt) ≡ µt (ξt) − µ is the log-deviation of the TFP
drift from its ergodic mean µ. The resource constraint is

cssĉt + kssk̂t =

(
M

α
α−1 kαss

α

α− 1
+

1− δ
α− 1

M
1

α−1 kss

)
µ̂t +

(
M

α
α−1 kαssα+ (1− δ)M

1
α−1 kss

)
k̂t−1

and the log-deviations of the growth rate of TFP from its ergodic level follows

µ̂t = µ̂t (ξt) + σzεt. (51)
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