

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Biofuels R&D

The Role of R&D in Agriculture and Related Industries: Today and Tomorrow

Federal Reserve Bank of Chicago

Seth Snyder, Ph.D. Chemical and Biological Technology Argonne National Laboratory

2007 September 24

Detailed Biofuels Market Report: 9/17/07

		Current
Ethanol Plants and Production Capacity ⁽¹⁾	Units	9/17/07
Current number of Ethanol Production Facilities	Facilities	129
New Ethanol Production Facilities	Facilities	76
Ethanol Production Facility Expansions	Facilities	9
Current ethanol production capacity	MGY	6,843
Planned ethanol production capacity	MGY	6,586
Current & Planned ethanol production capacity	MGY	13,429

Biofuels Growth

- Current ethanol production = 6.8 BGY
- With expansions = 13.4 BGY
- EPACT 2005 calls for 7.5 BGY by 2012 (Energy Policy Act)
- Presidential and Congressional plans call for upwards of 35 BGY by 2017 "20-in-10"
- The 2006 State of the Union called for "30-in-30", which is 60 BGY in 2030

DOE/USDA predict maximum production from corn is 12-16 BGY
 Corn growers predict ~20 BGY with slow growth from there
 Monsanto has reported that corn hybrids we will achieve 33 BGY

Strong need for R&D to achieve national goals!

The real cost of oil!

At \$60 / barrel crude oil:
Hydrocarbons are \$0.20 /lb or \$10 / MM BTU

Natural gas is has ranged from ~\$5 - \$15 MM BTU

At \$0.07 captured dextrose costs:
Hydrocarbons are \$0.07 / lb or ~\$9 / MM BTU

If consumers paid the environmental costs of crude oil directly, prices would be \$7 - \$27/barrel higher. Source: Governor's Ethanol Coalition

Approximate Current Economics

Process	CAPEX (\$/annual gal)	
CTL (w/CO ₂ sequestration) ⁽¹⁾	\$4.25-\$6.50	
Starch ethanol ⁽²⁾	\$1.00-\$1.75	
Biochemical ethanol ⁽²⁾	\$1.85-\$3.00	
Thermochemical ethanol ⁽²⁾	\$2.00-\$3.00	

(1) L. Scully "The Business Case for Coal Gasification with Co-Production, July 2006

(2) 30x30 Vision document and references therein

* Prepared by Dave Dayton (NREL)

Products: Petroleum vs. Biobased?

Biobased feedstocks are cheaper than petroleum.

- In petroleum, feedstocks ~75 % of manufacturing costs
- In biobased, feedstocks ~25 % of manufacturing costs

■ <u>Whv?</u>

Biofuels and biobased products must compete on a cost basis!

What do we need to do?

- Better conversions (enzymes, organisms, catalysts)
- Better separations/product recovery
- Better process integration (engineering)
- Large volumes of affordable feedstocks (energy crops)

The Role of R&D: Macroeconomic Implications

*estimated from CCR study **extrapolated from LANL study by Thayer, et al., April 2005 using REMI economic model

The Council for Chemical Research (www.ccrhq.org)

"Measuring Up: R&D Counts for the Chemical Industry

- \$2 Operating income per \$1 R&D invested
 > 17% after tax return
- Publicly funded science links highly to chemical patents, 6 citations per patent
- Basic research to patented invention typically takes 13-16 years
- Lag to commercialization from patent is 5+ years
 Overall cycle time of 18-21+ years.

The Council for Chemical Research

Biofuels, Biobased Products, Chemicals

Commodities that ultimately compete on a cost basis
 Lower margins Product differentiation is difficult
 Incentives are required for R&D investment and growth of the industry

Many of the tools of biotech/biomedical research are transferable to biofuels.

The value equation is very different

The Federal Cost Share Model

Basic Research ▶ 100 % Public > NSF, DOE Office of Science, USDA Applied Research \geq 80/20 % Public/Private DOE EERE, USDA Development > 50/ 50 % Public/Private **DOE EERE** Deployment – First of a kind \geq 20/80 % Public/Private Loan guarantees **DOE EERE** • "N" th plants \geq 100 % Private • EERE is the home of the Office of Biomass

- EERE = Energy Efficiency and Renewable Energy
- Federal Reserve Bank of Chicago 2007

Major funding announcements

2002 DOE EERE – Biobased Products

- \$20-50 M
- DuPont (PDO Serona), Cargill, NatureWorks (PLA), etc.

2007 GTL Bioenergy Centers

- \$125 M 100 % Federal optional cost shares included
- UC Berkeley, Oak Ridge National Lab, U Wisconsin

2007 Cellulosic ethanol – "commercial scale"

- Up to \$385 M federal/ \$1.2 B total
- Abengoa, Alico, Blue Fire, Iogen, Poet (Broin), Range Fuels
- 11-40 MGY

2007 Loan guarantees

- To be announced shortly

2008 10 % scale biorefineries

– Under review

Several privately funded centers

- BP \$500 M Energy Bioenergy Institute
- UC Berkeley/U Illinois

Biofuels funding issues and opportunities VC Investment

- Khosla Ventures - invested in several companies

Incentives

- \$0.51 cents/gallon
- Extra credit for cellulosic
- E85 Vehicles CAFE requirements

Potential premiums

- CO₂
- Domestic supply

Potential risks

- OPEC price of crude oil
- Infrastructure does not keep up with production
 - Fuel distribution rail, barge, pipeline
 - Exceed need for 10 % blends
 - E85 availability

What will the feedstocks be?

Now

- **Corn starch** \rightarrow *ethanol* (U.S.)
- **Sugar cane** \rightarrow *ethanol* (*Brazil*)
- **Rapeseed** (canola) \rightarrow *biodiesel* (*Europe*)
- **Forest residues** \rightarrow *heat* & *power* (*No. America and Europe*)
- Mid term
 - **Corn starch** *continued growth for 1-2 decades*
 - Agricultural residues: Corn fiber, corn stover, etc.
 - Cellulase R&D
 - Forest Products: Paper and pulp mills, black liquor, forest residues → syngas
 - Oil crops: soybean, canola (upper Midwest), tropical oils

Longer term

- Energy crops poplar trees, switch grass, etc.
- Growth on marginal lands \rightarrow R&D opportunity
 - See "Billion-ton study":

http://feedstockreview.ornl.gov/pdf/billion_ton_vision.pdf

How does nature degrade biomass?

Starch/sugars

— Its food ← *Glucose fermentations* ■ Biomass – lignin/cellulose/hemicellulose
 — Fungal degradation – slow ← Biochemical conversion

DOE EERE biomass model

Biochemical & Thermochemical - Need both

Actual Volumes (Billion gal/yr)

DOE Office of Biomass - Products Analysis

Neutral sugar alcohols (e.g., sorbitol)

Argoni

Opportunities for Succinic Acid Derivatives

Biobased Chemicals

Integrates bioprocessing and separations

Argonne

Syngas fermentations?

- $H_2/CO/CO_2$
- Yes you can ferment syngas!
- Anaerobic bacteria
- Some of the oldest biological mechanisms in existence

Technical barriers

Organism development Gas/liquid mass transfer Product titer

 Partnerships with BP and VC funded companies

CoA

Creating our Biobased Future

It will take the biochemical <u>*and*</u> thermochemical routes

- Feedstock and regional emphasis
- Produce every available fuel, chemical, material
- There will be multiple commercial opportunities

Maximize product output will minimizing impact/use

- Land
- Water
- Emissions
- Infrastructure
- Capital

Don't overlook

- $-CO_2$
- Sustainability

To create the biobased future will take biologists, chemists, and engineers!

Argonne National Laboratory

America's first national laboratory
Chartered in 1946 from Enrico Fermi's work on the Manhattan Project.
Operating budget of ~\$500 million
As of 2006, Argonne is operated by the UChicago-Argonne LLC
25 miles southwest of the Loop

Seth Snyder, Ph.D. Section Leader Chemical and Biological Technology seth@anl.gov, 630-252-7939

> The white deer are native to Northern Africa and Europe and were a gift to Gustav Freund, the estate owner in the 1930's.

The Advanced Photon Source is the North America's most brilliant X-ray.

