Trade Dynamics in the Market for Federal Funds

Gara Afonso Ricardo Lagos

The market for federal funds

A market for loans of reserve balances at the Fed.

The market for federal funds

What's traded?
 Unsecured loans (mostly overnight)

• How are they traded?

Over the counter

• Who trades?

Commercial banks, securities dealers, agencies and branches of foreign banks in the U.S., thrift institutions, federal agencies

- It is an interesting example of an OTC market (Unusually good data is available)
- Reallocates reserves among banks
 (Banks use it to offset liquidity shocks and manage reserves)
- Determines the interest rate on the shortest maturity instrument in the term structure
- Is the "epicenter" of monetary policy implementation

- It is an interesting example of an OTC market (Unusually good data is available)
- Reallocates reserves among banks
 (Banks use it to offset liquidity shocks and manage reserves)
- Determines the interest rate on the shortest maturity instrument in the term structure
- Is the "epicenter" of monetary policy implementation

- It is an interesting example of an OTC market (Unusually good data is available)
- Reallocates reserves among banks
 (Banks use it to offset liquidity shocks and manage reserves)
- Determines the interest rate on the shortest maturity instrument in the term structure
- Is the "epicenter" of monetary policy implementation

- It is an interesting example of an OTC market (Unusually good data is available)
- Reallocates reserves among banks
 (Banks use it to offset liquidity shocks and manage reserves)
- Determines the interest rate on the shortest maturity instrument in the term structure
- Is the "epicenter" of monetary policy implementation

- It is an interesting example of an OTC market (Unusually good data is available)
- Reallocates reserves among banks
 (Banks use it to offset liquidity shocks and manage reserves)
- Determines the interest rate on the shortest maturity instrument in the term structure
- Is the "epicenter" of monetary policy implementation

Warren

- (1) Develop a model of trade in the fed funds market that explicitly accounts for the two key OTC frictions:
 - Search for counterparties
 - Bilateral negotiations

- (2) Use the theory to address some elementary questions:
 - Positive:
 - What are the determinants of the fed funds rate?
 - How does the market reallocate funds?
 - Normative:

Is the OTC market structure able to achieve an efficient reallocation of funds?

- (3) Calibrate the model and use it to:
 - Assess the ability of the theory to account for empirical regularities of the fed funds market:
 - Intraday evolution of reserve balances
 - Dispersion in fed funds rates and loan sizes
 - Skewed distribution of number of transactions
 - Skewed distribution of proportion of intermediated funds

- (3) Calibrate the model and use it to:
 - Assess the ability of the theory to account for empirical regularities of the fed funds market:
 - Intraday evolution of reserve balances
 - Dispersion in fed funds rates and loan sizes
 - Skewed distribution of number of transactions
 - Skewed distribution of proportion of intermediated funds
 - Conduct policy experiments:
 - What is the effect on the fed funds rate of a 25 bps increase in the interest rate that the Fed pays on reserves?

The model

- A trading session in continuous time, $t \in [0, T]$, $\tau \equiv T t$
- Unit measure of *banks* hold reserve balances $k(\tau) \in \mathbb{K} = \{0, 1, ..., K\}$
- $\{n_k(\tau)\}_{k\in\mathbb{K}}$: distribution of balances at time $T-\tau$
- Linear payoffs from balances, discount at rate r
- Fed policy:
 - ullet U_k : payoff from holding k balances at the end of the session
 - ullet u_k : flow payoff from holding k balances during the session
- ullet Trade opportunities are bilateral and random (Poisson rate lpha)
- Loan and repayment amounts determined by Nash bargaining
- ullet Assume all loans repaid at time $T+\Delta$, where $\Delta\in\mathbb{R}_+$

Model

Fed funds market

Search and bargaining

Model

Search and bargaining

Fed funds market

Over-the-counter market

Model

- Search and bargaining
- [0, *T*]

Fed funds market

Over-the-counter market

Model

- Search and bargaining
- [0, *T*]

- Over-the-counter market
- 4:00pm-6:30pm

Model

- Search and bargaining
- [0, T]
- $\bullet \ \{n_k\left(T\right)\}_{k\in\mathbb{K}}$

- Over-the-counter market
- 4:00pm-6:30pm

Model

- Search and bargaining
- [0, T]
- $\bullet \left\{ n_{k}\left(T\right) \right\} _{k\in\mathbb{K}}$

- Over-the-counter market
- 4:00pm-6:30pm
- Distribution of reserve balances at 4:00pm

Model

- Search and bargaining
- [0, T]
- $\bullet \left\{ n_{k}\left(T\right) \right\} _{k\in \mathbb{K}}$
- $\mathbb{K} = \{0, 1, ..., K\}$

- Over-the-counter market
- 4:00pm-6:30pm
- Distribution of reserve balances at 4:00pm

Model

- Search and bargaining
- [0, T]
- $\bullet \left\{ n_{k}\left(T\right) \right\} _{k\in \mathbb{K}}$
- $\mathbb{K} = \{0, 1, ..., K\}$

- Over-the-counter market
- 4:00pm-6:30pm
- Distribution of reserve balances at 4:00pm
- Transactions sizes

Model

- Search and bargaining
- [0, T]
- $\bullet \left\{ n_{k}\left(T\right) \right\} _{k\in \mathbb{K}}$
- $\mathbb{K} = \{0, 1, ..., K\}$
- $\{u_k, U_k\}_{k \in \mathbb{K}}$

- Over-the-counter market
- 4:00pm-6:30pm
- Distribution of reserve balances at 4:00pm
- Transactions sizes

Model

- Search and bargaining
- [0, T]
- $\bullet \ \{n_k\left(T\right)\}_{k\in\mathbb{K}}$
- $\mathbb{K} = \{0, 1, ..., K\}$
- $\{u_k, U_k\}_{k \in \mathbb{K}}$

- Over-the-counter market
- 4:00pm-6:30pm
- Distribution of reserve balances at 4:00pm
- Transactions sizes
- Reserve requirements, interest on reserves...

Bank with balance k contacts bank with balance k' at time T- au

Bank with balance k contacts bank with balance k' at time T- au

• The set of feasible post-trade balances is:

$$\Pi\left(k,k'\right)=\left\{\left(k+k'-y,y\right)\in\mathbb{K}\times\mathbb{K}:y\in\left\{0,1,\ldots,k+k'\right\}\right\}$$

Bank with balance k contacts bank with balance k' at time $T-\tau$

• The set of feasible post-trade balances is:

$$\Pi\left(k,k'\right)=\left\{\left(k+k'-y,y\right)\in\mathbb{K}\times\mathbb{K}:y\in\left\{0,1,\ldots,k+k'\right\}\right\}$$

• The set of feasible loan sizes is:

$$\Gamma\left(k,k'\right)=\left\{b\in\left\{ -K,...,0,...,K\right\} :\left(k-b,k'+b\right)\in\Pi\left(k,k'\right)\right\}$$

Bank with balance k contacts bank with balance k' at time $T-\tau$

• The set of feasible post-trade balances is:

$$\Pi\left(k,k'\right)=\left\{\left(k+k'-y,y\right)\in\mathbb{K}\times\mathbb{K}:y\in\left\{0,1,\ldots,k+k'\right\}\right\}$$

• The set of feasible loan sizes is:

$$\Gamma\left(k,k'\right)=\left\{b\in\left\{ -K,...,0,...,K\right\} :\left(k-b,k'+b\right)\in\Pi\left(k,k'\right)\right\}$$

• $V_{k}\left(au\right)$: value of a bank with balance k at time T- au

Bargaining

Bank with balance k contacts bank with balance k' at time $T - \tau$.

The loan size b, and the repayment R maximize:

$$\left[V_{k-b}\left(\tau\right)+e^{-r\left(\tau+\Delta\right)}R-V_{k}\left(\tau\right)\right]^{\frac{1}{2}}\left[V_{k'+b}\left(\tau\right)-e^{-r\left(\tau+\Delta\right)}R-V_{k'}\left(\tau\right)\right]^{\frac{1}{2}}$$

s.t.
$$b \in \Gamma(k, k')$$
, $R \in \mathbb{R}$

Bargaining

Bank with balance k contacts bank with balance k' at time $T - \tau$.

The loan size b, and the repayment R maximize:

$$\left[V_{k-b}\left(\tau\right)+e^{-r\left(\tau+\Delta\right)}R-V_{k}\left(\tau\right)\right]^{\frac{1}{2}}\left[V_{k'+b}\left(\tau\right)-e^{-r\left(\tau+\Delta\right)}R-V_{k'}\left(\tau\right)\right]^{\frac{1}{2}}$$

s.t.
$$b \in \Gamma(k, k')$$
, $R \in \mathbb{R}$

$$b^{*} \in \arg\max_{b \in \Gamma\left(k,k'\right)} \left[V_{k'+b}\left(\tau\right) + V_{k-b}\left(\tau\right) - V_{k'}\left(\tau\right) - V_{k}\left(\tau\right)\right]$$

$$e^{-r(\tau+\Delta)}R^* = \frac{1}{2}\left[V_{k'+b^*}(\tau) - V_{k'}(\tau)\right] + \frac{1}{2}\left[V_k(\tau) - V_{k-b^*}(\tau)\right]$$

Value function

$$rV_{i}\left(\tau\right) + \dot{V}_{i}\left(\tau\right) =$$

$$= u_{i} + \frac{\alpha}{2} \sum_{j,k,s \in \mathbb{K}} n_{j}\left(\tau\right) \phi_{ij}^{ks}\left(\tau\right) \left[V_{k}\left(\tau\right) + V_{s}\left(\tau\right) - V_{i}\left(\tau\right) - V_{j}\left(\tau\right)\right]$$

Value function

$$rV_{i}\left(\tau\right)+\dot{V}_{i}\left(\tau\right)=$$

$$=u_{i}+\frac{\alpha}{2}\sum_{j,k,s\in\mathbb{K}}n_{j}\left(\tau\right)\phi_{ij}^{ks}\left(\tau\right)\left[V_{k}\left(\tau\right)+V_{s}\left(\tau\right)-V_{i}\left(\tau\right)-V_{j}\left(\tau\right)\right]$$
with $V_{i}\left(0\right)=U_{i}$ and

with
$$V_{i}\left(0\right)=U_{i}$$
, and

$$\phi_{ij}^{ks}\left(\tau\right) = \begin{cases} \tilde{\phi}_{ij}^{ks}\left(\tau\right) & \text{if } (k,s) \in \Omega_{ij}\left[\mathbf{V}\left(\tau\right)\right] \\ 0 & \text{if } (k,s) \notin \Omega_{ij}\left[\mathbf{V}\left(\tau\right)\right] \end{cases}$$

Value function

$$rV_{i}\left(\tau\right) + \dot{V}_{i}\left(\tau\right) =$$

$$= u_{i} + \frac{\alpha}{2} \sum_{j,k,s \in \mathbb{K}} n_{j}\left(\tau\right) \phi_{ij}^{ks}\left(\tau\right) \left[V_{k}\left(\tau\right) + V_{s}\left(\tau\right) - V_{i}\left(\tau\right) - V_{j}\left(\tau\right)\right]$$

with $V_{i}\left(0\right)=U_{i}$, and

$$\phi_{ij}^{ks}\left(\tau\right) = \begin{cases} \tilde{\phi}_{ij}^{ks}\left(\tau\right) & \text{if } (k,s) \in \Omega_{ij}\left[\mathbf{V}\left(\tau\right)\right] \\ 0 & \text{if } (k,s) \notin \Omega_{ij}\left[\mathbf{V}\left(\tau\right)\right] \end{cases}$$

with

$$\Omega_{ij}\left[\mathbf{V}\left(\tau\right)\right]\equiv\arg\max_{\left(k',s'\right)\in\Pi\left(i,j\right)}\left[V_{k'}\left(\tau\right)+V_{s'}\left(\tau\right)-V_{i}\left(\tau\right)-V_{j}\left(\tau\right)\right]$$

where
$$ilde{\phi}_{ij}^{ks}\left(au
ight)\geq0$$
 and $\sum\limits_{k\in\mathbb{K}}\sum\limits_{s\in\mathbb{K}} ilde{\phi}_{ij}^{ks}\left(au
ight)=1$

Time-path for the distribution of balances

For all $k \in \mathbb{K}$,

$$\begin{array}{ll} \dot{n}_{k}\left(\tau\right) & = & \alpha n_{k}\left(\tau\right) \sum_{i \in \mathbb{K}} \sum_{j \in \mathbb{K}} \sum_{s \in \mathbb{K}} n_{i}\left(\tau\right) \phi_{ki}^{sj}\left(\tau\right) \\ \\ & -\alpha \sum_{i \in \mathbb{K}} \sum_{i \in \mathbb{K}} \sum_{s \in \mathbb{K}} n_{i}\left(\tau\right) n_{j}\left(\tau\right) \phi_{ij}^{ks}\left(\tau\right) \end{array}$$

Definition

An equilibrium is a value function, \mathbf{V} , a path for the distribution of reserve balances, $\mathbf{n}(\tau)$, and a path for the distribution of trading probabilities, $\boldsymbol{\phi}(\tau)$, such that:

- (a) given the value function and the distribution of trading probabilities, the distribution of balances evolves according to the law of motion; and
- (b) given the path for the distribution of balances, the value function and the distribution of trading probabilities satisfy individual optimization given the bargaining protocol.

Assumption A. For any $i, j \in \mathbb{K}$, and all $(k, s) \in \Pi(i, j)$, the payoff functions satisfy:

$$u_{\lceil \frac{i+j}{2} \rceil} + u_{\lfloor \frac{i+j}{2} \rfloor} \ge u_k + u_s$$

$$U_{\left\lceil \frac{i+j}{2} \right\rceil} + U_{\left\lfloor \frac{i+j}{2} \right\rfloor} \ge U_k + U_s$$
, ">" unless $k \in \left\{ \left\lfloor \frac{i+j}{2} \right\rfloor$, $\left\lceil \frac{i+j}{2} \right\rceil \right\}$

where for any $x \in \mathbb{R}$,

$$\lfloor x \rfloor \equiv \max \{ k \in \mathbb{Z} : k \le x \}$$

$$\lceil x \rceil \equiv \min \{ k \in \mathbb{Z} : x \le k \}$$

Proposition

Let the payoff functions satisfy Assumption A. Then:

- (i) An equilibrium exists. The paths $\mathbf{V}(\tau)$ and $\mathbf{n}(\tau)$ are unique.
- (ii) The equilibrium path for $\phi\left(au
 ight)=\{\phi_{ij}^{ks}\left(au
 ight)\}_{i,j,k,s\in\mathbb{K}}$ is

$$\phi_{ij}^{ks}\left(au
ight) = \left\{ egin{array}{ll} ilde{\phi}_{ij}^{ks}\left(au
ight) & ext{if } (k,s) \in \Omega_{ij}^{*} \ 0 & ext{if } (k,s)
otin \Omega_{ij}^{*} \end{array}
ight.$$

where $ilde{\phi}_{ij}^{ks}\left(au
ight)\geq0$ and $\sum\limits_{(k,s)\in\Omega_{ij}^{*}} ilde{\phi}_{ij}^{ks}\left(au
ight)=$ 1, with

$$\Omega_{ij}^* = \left\{ \begin{array}{l} \left\{ \left(\frac{i+j}{2}, \frac{i+j}{2}\right) \right\} & \text{if } i+j \text{ even} \\ \left\{ \left(\left|\frac{i+j}{2}\right|, \left\lceil\frac{i+j}{2}\right|\right), \left(\left\lceil\frac{i+j}{2}\right\rceil, \left|\frac{i+j}{2}\right|\right) \right\} & \text{if } i+j \text{ odd.} \end{array} \right.$$

Proposition

Let the payoff functions satisfy Assumption A. Then, the equilibrium supports an efficient allocation of reserve balances.

Positive implications

The theory delivers:

- (1) Time-varying distribution of trade sizes, trade volume
- (2) Time-varying distribution of fed fund rates
- (3) Endogenous intermediation

Trade volume

• Flow volume of trade at time $T - \tau$:

$$\bar{v}\left(\tau\right) = \sum_{i \in \mathbb{K}} \sum_{j \in \mathbb{K}} \sum_{k \in \mathbb{K}} \sum_{s \in \mathbb{K}} v_{ij}^{ks}\left(\tau\right)$$

where

$$v_{ij}^{ks}\left(\tau\right)\equiv\alpha n_{i}\left(\tau\right)n_{j}\left(\tau\right)\phi_{ii}^{ks}\left(\tau\right)\left|k-i\right|$$

Trade volume

• Flow volume of trade at time $T - \tau$:

$$\bar{v}\left(\tau\right) = \sum_{i \in \mathbb{K}} \sum_{j \in \mathbb{K}} \sum_{k \in \mathbb{K}} \sum_{s \in \mathbb{K}} v_{ij}^{ks}\left(\tau\right)$$

where

$$v_{ij}^{ks}\left(\tau\right)\equiv\alpha n_{i}\left(\tau\right)n_{j}\left(\tau\right)\phi_{ij}^{ks}\left(\tau\right)\left|k-i\right|$$

Total volume traded during the trading session:

$$\bar{v} = \int_0^T \bar{v}\left(au
ight) d au$$

Fed funds rate

• If a bank with i borrows k - i = j - s from bank with j at time $T - \tau$, the interest rate on the loan is:

$$\rho_{ij}^{ks}\left(\tau\right) = \frac{\ln\left[\frac{R_{ij}^{ks}\left(\tau\right)}{k-i}\right]}{\tau + \Delta} = r + \frac{\ln\left[\frac{V_{j}\left(\tau\right) - V_{s}\left(\tau\right)}{j-s} + \frac{\frac{1}{2}S_{ij}^{ks}\left(\tau\right)}{j-s}\right]}{\tau + \Delta}$$

Fed funds rate

• If a bank with i borrows k - i = j - s from bank with j at time $T - \tau$, the interest rate on the loan is:

$$\rho_{ij}^{ks}\left(\tau\right) = \frac{\ln\left[\frac{R_{ij}^{ks}\left(\tau\right)}{k-i}\right]}{\tau + \Delta} = r + \frac{\ln\left[\frac{V_{j}\left(\tau\right) - V_{s}\left(\tau\right)}{j-s} + \frac{\frac{1}{2}S_{ij}^{ks}\left(\tau\right)}{j-s}\right]}{\tau + \Delta}$$

The daily average (value-weighted) fed funds rate is:

$$\bar{\rho} = \frac{1}{T} \int_0^T \bar{\rho} \left(\tau \right) d\tau$$

where

$$\begin{split} \bar{\rho}\left(\tau\right) & \equiv & \sum_{i \in \mathbb{K}} \sum_{j \in \mathbb{K}} \sum_{k \in \mathbb{K}} \sum_{s \in \mathbb{K}} \omega_{ij}^{ks}\left(\tau\right) \rho_{ij}^{ks}\left(\tau\right) \\ \omega_{ij}^{ks}\left(\tau\right) & \equiv & v_{ij}^{ks}\left(\tau\right) / \bar{v}\left(\tau\right) \end{split}$$

Endogenous intermediation

- Cumulative purchases: $O^p = \sum\limits_{n=1}^N \max \left\{ k_n k_{n-1}, 0 \right\}$
- Cumulative sales: $O^s = -\sum_{n=1}^{N} \min\{k_n k_{n-1}, 0\}$

Endogenous intermediation

- Cumulative purchases: $O^p = \sum_{n=1}^N \max\{k_n k_{n-1}, 0\}$
- Cumulative sales: $O^s = -\sum_{n=1}^N \min\{k_n k_{n-1}, 0\}$

Bank-level measures of intermediation

• Excess funds reallocation:

$$X = O^p + O^s - |O^p - O^s|$$

Endogenous intermediation

- Cumulative purchases: $O^p = \sum_{n=1}^N \max\{k_n k_{n-1}, 0\}$
- Cumulative sales: $O^s = -\sum_{n=1}^N \min\{k_n k_{n-1}, 0\}$

Bank-level measures of intermediation

• Excess funds reallocation:

$$X = O^p + O^s - |O^p - O^s|$$

Proportion of intermediated funds:

$$\iota = \frac{X}{O^p + O^s}$$

- lacktriangle Analytics for special case with $\mathbb{K}=\{ exttt{0,1,2}\}$
- ► Intuition for efficiency result
- → Frictionless limit
- → Figures

Payoff functions

$$e^{r\Delta_f}U_k = \begin{cases} k + i_f^r \bar{k} + i_f^e \left(k - \bar{k}\right) & \text{if } \bar{k} \leq k \\ \\ (1 + i_f^r)k - \min(i_f^w - i_f^r, i_f^c)\left(\bar{k} - k\right) & \text{if } k < \bar{k} \end{cases}$$

$$u_k = k^{1-\epsilon}i_+^d \quad \text{with} \quad \epsilon \approx 0$$

Payoff functions

$$e^{r\Delta_f}U_k = \begin{cases} k + i_f^r \bar{k} + i_f^e \left(k - \bar{k}\right) & \text{if } \bar{k} \leq k \\ \\ (1 + i_f^r)k - \min(i_f^w - i_f^r, i_f^c) \left(\bar{k} - k\right) & \text{if } k < \bar{k} \end{cases}$$

$$u_k = k^{1-\epsilon}i_+^d \quad \text{with} \quad \epsilon \approx 0$$

Baseline parameters

Т	Δ_f	Δ	i_+^d	i_f^r	i_f^e	i_f^w	i ^c	θ	α	r
2.5 24	2.5 24	<u>22</u> 24	10 ⁻⁷ 360	<u>.0025</u> 360	<u>.0025</u> 360	<u>.0075</u> 360	<u>.0175</u> 360	<u>1</u>	50	0.0001 365

Small-scale simulations: $\mathbb{K} = \{0, 1, 2\}$

$$\bar{k} = 1$$

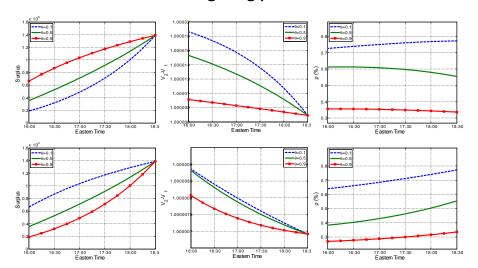
Two scenarios

$\left\{ \mathit{n}_{0}^{H}\left(T\right),\mathit{n}_{2}^{L}\left(T\right)\right\}$	$\left\{ n_{0}^{L}\left(T\right) ,n_{2}^{H}\left(T\right) \right\}$		
{0.6, 0.3}	{0.3, 0.6}		

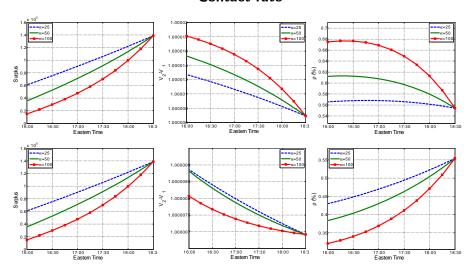
Experiments

Bargaining Power $(heta)$			Discount Rate (i_f^w)			Contact Rate (α)		
0.1	0.5	0.9	.0050 360	.0075 360	<u>.0100</u> 360	25	50	100

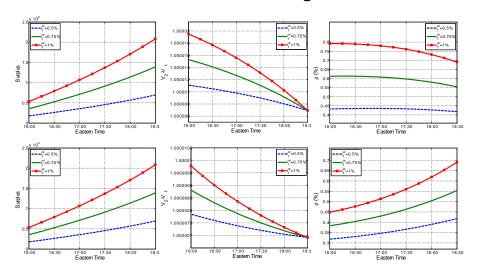
Bargaining power



Contact rate



Discount-Window lending rate



Large-scale simulations: $\mathbb{K} = \{0, 1, ..., 49\}$

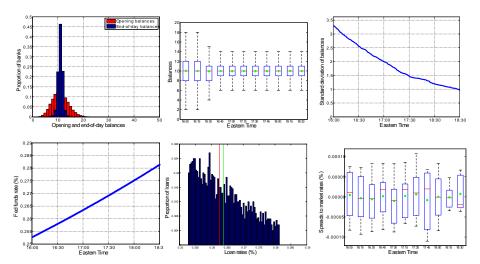
$$\bar{k} = 1$$

Initial distribution of balances:

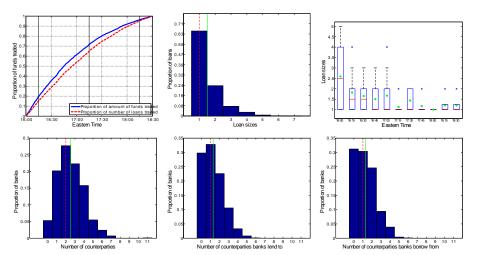
$$n_k(T) = \frac{\lambda^k e^{-\lambda}}{k! \sum_{j=0}^{49} n_j(T)}$$
 with $\lambda = 10$
 \Rightarrow

$$Q = \sum_{j=0}^{49} k n_k(T) \approx 10$$

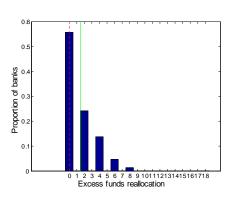
Reserve balances and fed funds rates

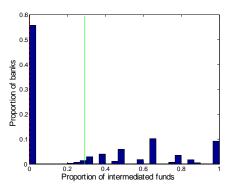


Size distribution of loans and distributions of trading activity

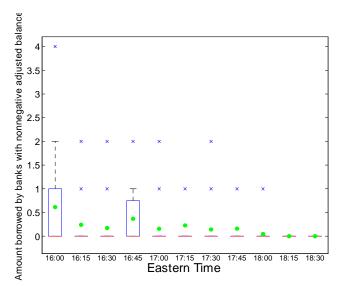


Intermediation





Intermediation



i _f	$Q/\bar{k}=0.50$	$Q/\bar{k}=1.00$	$Q/\bar{k}=1.67$
0	76	38	1
25	76	51	26
50	76	63	51
75	76	76	76

i_f^w	$Q/\bar{k}=0.50$	$Q/\bar{k}=1.00$	$Q/\bar{k}=1.67$
25	26	26	26
50	51	38	26
75	76	51	26
100	101	63	26

Corridor system

(i_f, i_f^w)	$Q/\bar{k}=0.50$	$Q/ar{k}=1$	$Q/\bar{k}=1.67$
0 – 50	51	26	1
25 — 75	76	51	26
50 — 100	101	76	51
75 — 125	126	101	76
100 — 150	151	126	101

IOR Policy intuition from the analytical example

Proposition

If $r \approx 0$,

$$ho_{f}\left(au
ight)pproxeta\left(au
ight)i_{f}^{\mathrm{e}}+\left[1-eta\left(au
ight)
ight]i_{f}^{\mathrm{w}}\qquad ext{where}$$

- **1** If $n_2(T) = n_0(T)$, $\beta(\tau) = \theta$
- $\textbf{ 0} \ \, \textit{If} \, \, \textit{n}_{2} \left(\, T \right) < \textit{n}_{0} \left(\, T \right), \, \beta \left(\tau \right) \in \left[0, \theta \right], \, \beta \left(0 \right) = \theta \, \, \textit{and} \, \, \beta' \left(\tau \right) < 0$
- $\textbf{ If } n_0\left(T\right) < n_2\left(T\right), \, \beta\left(\tau\right) \in [\theta,1], \, \beta\left(0\right) = \theta \, \, \text{and} \, \beta'\left(\tau\right) > 0.$

→ Figures

Ex-ante heterogeneity

We also extend the model to allow for:

- Heterogeneity in contact rates
- 4 Heterogeneity in bargaining powers
- Heterogeneity in target balances (or non-bank participants, e.g., GSEs)

More to be done...

- Fed funds brokers
- Banks' portfolio decisions
- Random "payment shocks"
- Sequence of trading sessions
- Quantiative work with ex-ante heterogeneity

The views expressed here are not necessarily reflective of views at the Federal Reserve Bank of New York or the Federal Reserve System.

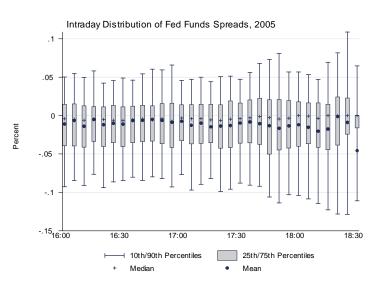
Theoretical and empirical rates

Data	Model
$1+i_f^r$	$\mathrm{e}^{i^r \Delta_f}$
$1+i_{\it f}^{\it e}$	$e^{i^e\Delta_f}$
$1+ ho_{f}\left(au ight)$	$e^{ ho(au)(au+\Delta)}$

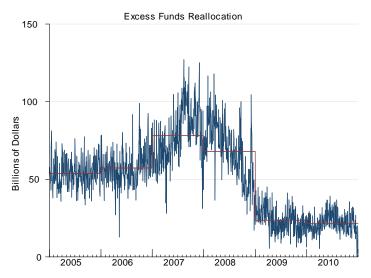
Evidence of OTC frictions in the fed funds market

- Price dispersion
- Intermediation
- Intraday evolution of the distribution of reserve balances
- There are banks that are "very long" and buy
 There are banks that are "very short" and sell

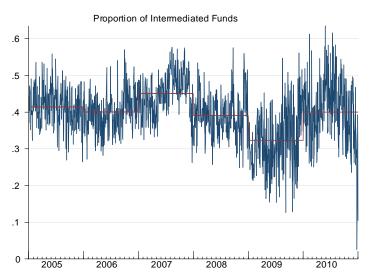
Price dispersion



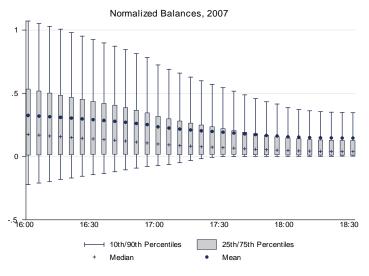
Intermediation: excess funds reallocation



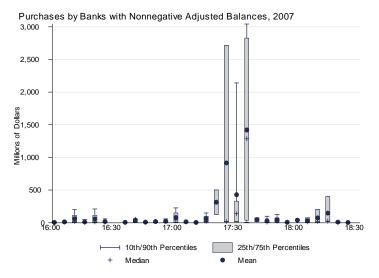
Intermediation: proportion of intermediated funds



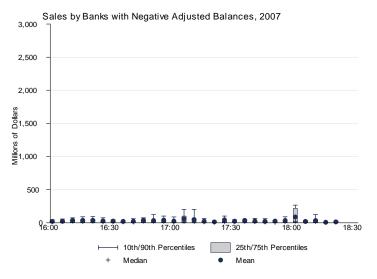
Intraday evolution of the distribution of reserve balances



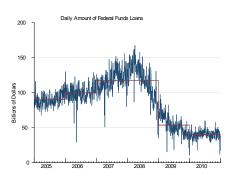
Banks that are "long" ... and buy...

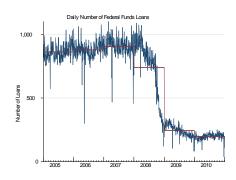


Banks that are "short" ... and sell...

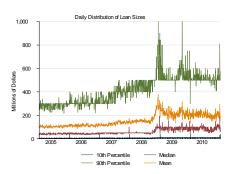


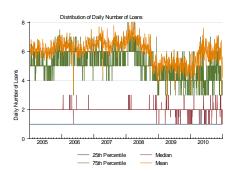
Daily volume



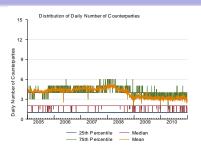


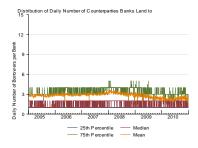
Daily volume (size distribution)

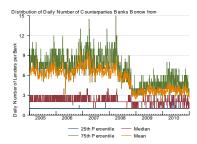




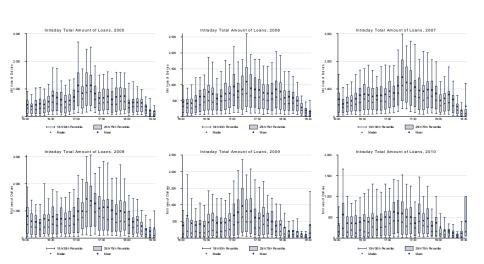
Daily distribution of the number of counterparties



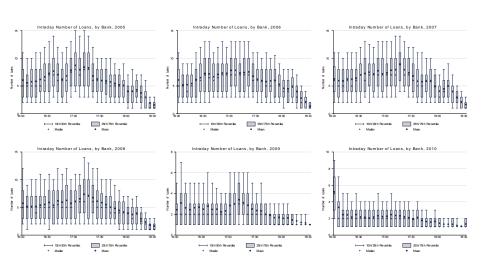




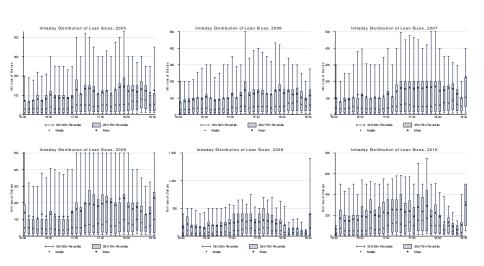
Intraday volume (dollar amount)



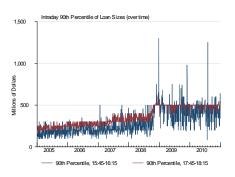
Intraday volume (number of loans)

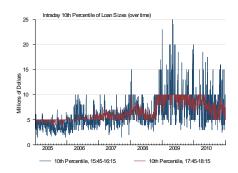


Intraday size distribution of loans

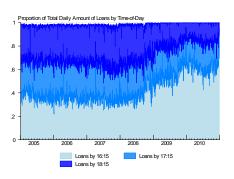


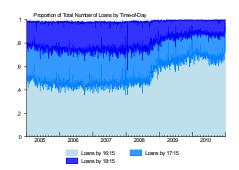
Intraday size distribution of loans



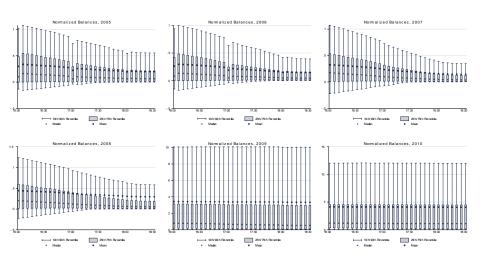


Trading activity by time-of-day

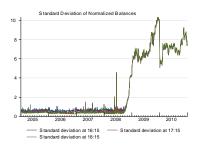


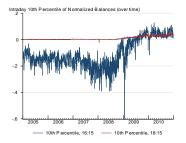


Intraday evolution of the distribution of reserve balances

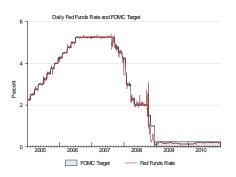


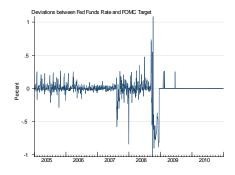
Intraday evolution of the distribution of reserve balances



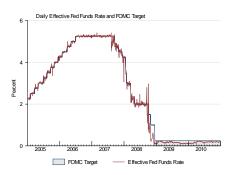


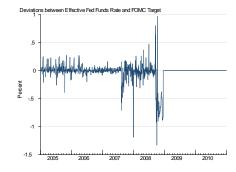
Daily fed funds rate vs. FOMC target



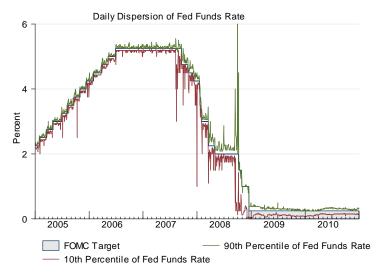


Daily effective fed funds rate vs. FOMC target

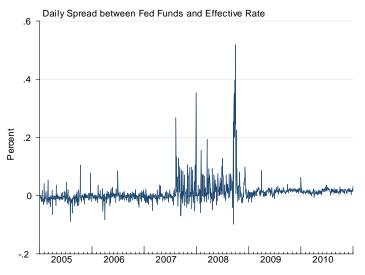




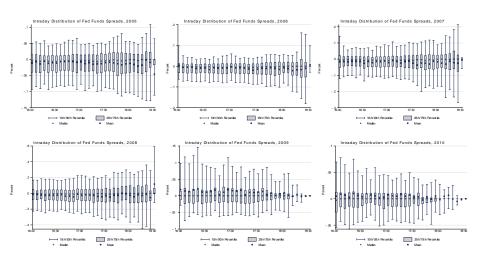
Daily fed funds rate dispersion



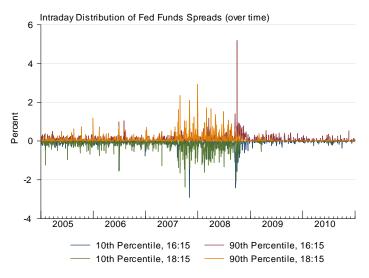
Fed funds rate vs. effective fed funds rate



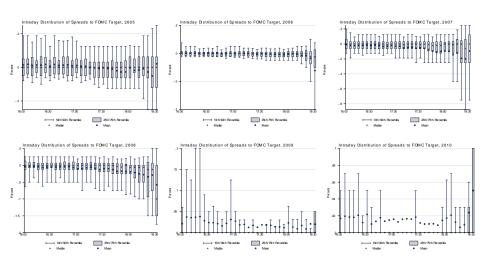
Intraday distribution of fed funds spreads



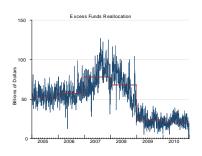
Intraday distribution of fed funds spreads (over time)

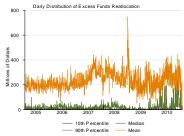


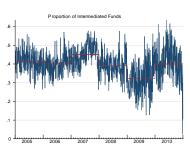
Intraday distribution of fed funds/FOMC target spreads

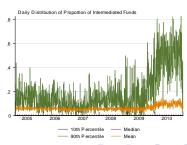


Daily intermediation

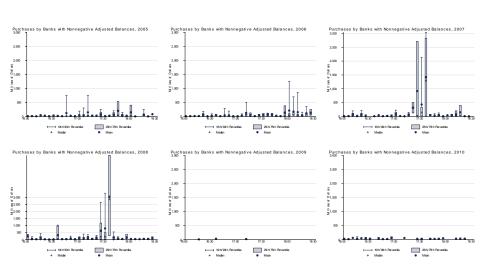




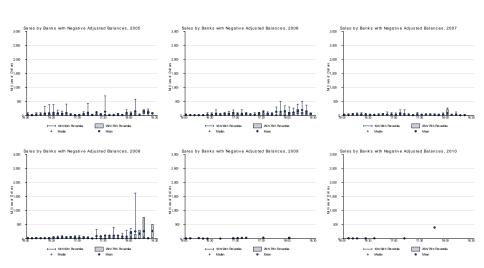




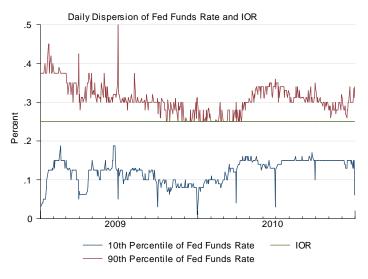
Banks that are "long" ... and buy...



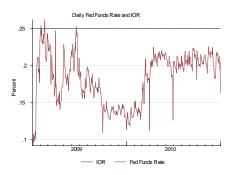
Banks that are "short" ... and sell...

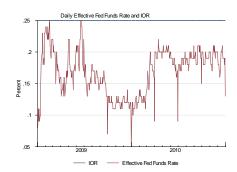


Daily fed funds rate vs. IOR



Daily FFR and daily effective FFR vs. IOR: a puzzle





$$\begin{split} J_k\left(x,\tau\right) &= \mathbb{E}\left\{\int_0^{\min\left(\tau_\alpha,\tau\right)} e^{-rz} u_k dz + \mathbb{I}_{\left\{\tau_\alpha > \tau\right\}} e^{-r\tau} \left(U_k + e^{-r\Delta}x\right) + \\ \mathbb{I}_{\left\{\tau_\alpha \leq \tau\right\}} e^{-r\tau_\alpha} \int J_{k-b_{\mathbf{s}\mathbf{s}'}\left(\tau-\tau_\alpha\right)} \left(x + R_{\mathbf{s}'\mathbf{s}}\left(\tau-\tau_\alpha\right), \tau-\tau_\alpha\right) \mu\left(d\mathbf{s}', \tau-\tau_\alpha\right) \right\} \end{split}$$

$$\begin{split} J_k\left(x,\tau\right) &= \mathbb{E}\left\{\int_0^{\min\left(\tau_\alpha,\tau\right)} e^{-rz} u_k dz + \mathbb{I}_{\left\{\tau_\alpha > \tau\right\}} e^{-r\tau} \left(U_k + e^{-r\Delta}x\right) + \\ \mathbb{I}_{\left\{\tau_\alpha \leq \tau\right\}} e^{-r\tau_\alpha} \int J_{k-b_{\mathbf{s}\mathbf{s}'}\left(\tau-\tau_\alpha\right)} \left(x + R_{\mathbf{s}'\mathbf{s}}\left(\tau-\tau_\alpha\right), \tau-\tau_\alpha\right) \mu\left(d\mathbf{s}', \tau-\tau_\alpha\right) \right\} \end{split}$$

- τ_{α} : time until next trading opportunity
- $b_{ss'}(\tau)$: balance that bank $\mathbf{s} = (k, x)$ lends to bank $\mathbf{s}' = (k', x')$ at time $T \tau$
- $R_{\mathbf{s's}}\left(au
 ight)$: repayment negotiated at time T- au (due at $T+\Delta$)
- $\mu(\cdot, \tau)$: prob. measure over individual states, $\mathbf{s}' = (k', x')$

Bargaining

Bank with $\mathbf{s} = (k, x)$ meets bank $\mathbf{s}' = (k', x')$ at $T - \tau$.

The loan size b and the repayment R maximize:

$$[J_{k-b}(x+R,\tau)-J_{k}(x,\tau)]^{\frac{1}{2}}[J_{k'+b}(x'-R,\tau)-J_{k'}(x',\tau)]^{\frac{1}{2}}$$

s.t.
$$b \in \Gamma(k, k')$$

$$R \in \mathbb{R}$$

$$J_{k}\left(x, au
ight)=V_{k}\left(au
ight)+\mathrm{e}^{-r\left(au+\Delta
ight)}x\qquad ext{where}$$

$$V_{k}(\tau) = \mathbb{E}\left\{\int_{0}^{\min(\tau_{\alpha},\tau)} e^{-rz} u_{k} dz + \mathbb{I}_{\{\tau_{\alpha}>\tau\}} e^{-r\tau} U_{k} + \mathbb{I}_{\{\tau_{\alpha}\leq\tau\}} e^{-r\tau_{\alpha}}\right\}$$

$$\sum_{k'\in\mathbb{K}}n_{k'}\left(\tau-\tau_{\alpha}\right)\left[V_{k-b_{kk'}\left(\tau-\tau_{\alpha}\right)}\left(\tau-\tau_{\alpha}\right)+e^{-r\left(\tau+\Delta-\tau_{\alpha}\right)}R_{k'k}\left(\tau-\tau_{\alpha}\right)\right]\right\}$$

$$J_k\left(x, au
ight)=V_k\left(au
ight)+e^{-r(au+\Delta)}x \qquad ext{where}$$
 $V_k\left(au
ight)=\mathbb{E}\left\{\int_0^{\min(au_lpha, au)}e^{-rz}u_kdz+\mathbb{I}_{\left\{ au_lpha> au
ight\}}e^{-r au}U_k+\mathbb{I}_{\left\{ au_lpha\leq au
ight\}}e^{-r au_lpha}
ight.$

$$\sum_{k' \in \mathbb{K}} n_{k'} \left(\tau - \tau_{\alpha} \right) \left[V_{k - b_{kk'} \left(\tau - \tau_{\alpha} \right)} \left(\tau - \tau_{\alpha} \right) + e^{-r \left(\tau + \Delta - \tau_{\alpha} \right)} R_{k'k} \left(\tau - \tau_{\alpha} \right) \right] \right\}$$

$$b_{kk'}\left(\tau\right) \in \arg\max_{b \in \Gamma\left(k,k'\right)} \left[V_{k'+b}\left(\tau\right) + V_{k-b}\left(\tau\right) - V_{k'}\left(\tau\right) - V_{k}\left(\tau\right)\right]$$

where

$$J_k(x,\tau) = V_k(\tau) + e^{-r(\tau+\Delta)}x$$
 where

$$V_{k}\left(\tau\right) = \mathbb{E}\left\{\int_{0}^{\min\left(\tau_{\alpha},\tau\right)} e^{-rz} u_{k} dz + \mathbb{I}_{\left\{\tau_{\alpha} > \tau\right\}} e^{-r\tau} U_{k} + \mathbb{I}_{\left\{\tau_{\alpha} \leq \tau\right\}} e^{-r\tau_{\alpha}}\right\}$$

$$\sum_{k'\in\mathbb{K}}n_{k'}\left(\tau-\tau_{\alpha}\right)\left[V_{k-b_{kk'}\left(\tau-\tau_{\alpha}\right)}\left(\tau-\tau_{\alpha}\right)+e^{-r\left(\tau+\Delta-\tau_{\alpha}\right)}R_{k'k}\left(\tau-\tau_{\alpha}\right)\right]\right\}$$

$$b_{kk'}\left(\tau\right) \in \arg\max_{b \in \Gamma\left(k,k'\right)} \left[V_{k'+b}\left(\tau\right) + V_{k-b}\left(\tau\right) - V_{k'}\left(\tau\right) - V_{k}\left(\tau\right)\right]$$

$$\begin{array}{lcl} \mathrm{e}^{-r\left(\tau+\Delta\right)}R_{k'k}\left(\tau\right) & = & \frac{1}{2}\left[V_{k'+b_{kk'}\left(\tau\right)}\left(\tau\right)-V_{k'}\left(\tau\right)\right] + \\ & & \frac{1}{2}\left[V_{k}\left(\tau\right)-V_{k-b_{kk'}\left(\tau\right)}\left(\tau\right)\right] \end{array}$$

- Bank with i = 2 is a lender, bank with j = 0, a borrower
- $oldsymbol{ heta} heta \in [0,1]$: bargaining power of the borrower
- ullet Only potentially profitable trade is between i=0 and j=2
- $S(\tau) \equiv 2V_1(\tau) V_2(\tau) V_0(\tau)$
- Conjecture $S(\tau) > 0$ for all $\tau \in [0, T]$ (to be verified later)

- Bank with i = 2 is a lender, bank with j = 0, a borrower
- $oldsymbol{ heta} heta \in [0,1]$: bargaining power of the borrower
- ullet Only potentially profitable trade is between i=0 and j=2
- $S(\tau) \equiv 2V_1(\tau) V_2(\tau) V_0(\tau)$
- Conjecture $S(\tau) > 0$ for all $\tau \in [0, T]$ (to be verified later)
- Assumption: $2u_1 u_2 u_0 \ge 0$ and $2U_1 U_2 U_0 > 0$

- Bank with i = 2 is a lender, bank with j = 0, a borrower
- $oldsymbol{ heta} heta \in [0,1]$: bargaining power of the borrower
- ullet Only potentially profitable trade is between i=0 and j=2
- $S(\tau) \equiv 2V_1(\tau) V_2(\tau) V_0(\tau)$
- Conjecture $S(\tau) > 0$ for all $\tau \in [0, T]$ (to be verified later)
- Assumption: $2u_1 u_2 u_0 \ge 0$ and $2U_1 U_2 U_0 > 0$

- Bank with i = 2 is a lender, bank with j = 0, a borrower
- $oldsymbol{ heta} heta \in [0,1]$: bargaining power of the borrower
- ullet Only potentially profitable trade is between i=0 and j=2
- Conjecture $S\left(au
 ight) > 0$ for all $au \in \left[0,\, T
 ight]$ (to be verified later)
- Assumption: $2u_1 u_2 u_0 \ge 0$ and $2U_1 U_2 U_0 > 0$

Given $\{n_k(T)\}$, the distribution of balances follows:

$$\dot{n}_0(\tau) = \alpha n_2(\tau) n_0(\tau)$$

$$\dot{n}_2(\tau) = \alpha n_2(\tau) n_0(\tau)$$

Time-path for the distribution of balances

$$n_{2}\left(\tau\right)=n_{2}\left(T\right)-\left[n_{0}\left(T\right)-n_{0}\left(\tau\right)\right]$$

$$n_1\left(\tau\right) = 1 - n_0\left(\tau\right) - n_2\left(\tau\right)$$

$$n_0\left(\tau\right) = \frac{\left[n_2\left(T\right) - n_0\left(T\right)\right] n_0\left(T\right)}{n_2\left(T\right) e^{\alpha\left[n_2\left(T\right) - n_0\left(T\right)\right]\left(T - \tau\right)} - n_0\left(T\right)}$$

Bargaining

The repayment R solves:

$$\max_{R} \left[V_{1}\left(\tau\right) - V_{0}\left(\tau\right) - e^{-r\left(\tau + \Delta\right)}R \right]^{\theta} \left[V_{1}\left(\tau\right) - V_{2}\left(\tau\right) + e^{-r\left(\tau + \Delta\right)}R \right]^{1-\theta}$$

$$\Rightarrow$$

$$e^{-r(\tau+\Delta)}R\left(\tau\right) = \theta\left[V_{2}\left(\tau\right) - V_{1}\left(\tau\right)\right] + \left(1 - \theta\right)\left[V_{1}\left(\tau\right) - V_{0}\left(\tau\right)\right]$$

Value function

$$rV_{0}\left(au
ight)+\dot{V}_{0}\left(au
ight)=u_{0}+lpha\,n_{2}\left(au
ight)\, heta S\left(au
ight)$$
 $rV_{1}\left(au
ight)+\dot{V}_{1}\left(au
ight)=u_{1}$ $rV_{2}\left(au
ight)+\dot{V}_{2}\left(au
ight)=u_{2}+lpha\,n_{0}\left(au
ight)\left(1- heta
ight)S\left(au
ight)$ $V_{i}\left(0
ight)=U_{i} ext{ for }i=0,1,2$

Value function

$$rV_{0}(\tau) + \dot{V}_{0}(\tau) = u_{0} + \alpha n_{2}(\tau) \theta S(\tau)$$

$$rV_{1}(\tau) + \dot{V}_{1}(\tau) = u_{1}$$

$$rV_{2}(\tau) + \dot{V}_{2}(\tau) = u_{2} + \alpha n_{0}(\tau) (1 - \theta) S(\tau)$$

$$V_{i}(0) = U_{i} \text{ for } i = 0, 1, 2$$

$$\Rightarrow$$

$$\dot{S}(\tau) + \delta(\tau) S(\tau) = 2u_{1} - u_{2} - u_{0}$$

$$\delta(\tau) \equiv \{r + \alpha [\theta n_{2}(\tau) + (1 - \theta) n_{0}(\tau)]\}$$

Surplus

$$S(\tau) = \left(\int_0^{\tau} e^{-\left[\bar{\delta}(\tau) - \bar{\delta}(z)\right]} dz\right) \bar{u} + e^{-\bar{\delta}(\tau)} S(0)$$

$$\bar{u} \equiv 2u_1 - u_2 - u_0$$

$$S(0) = 2U_1 - U_2 - U_0$$

$$\bar{\delta}(\tau) \equiv \int_0^{\tau} \delta(x) dx$$

$$\delta(\tau) \equiv \{r + \alpha \left[\theta n_2(\tau) + (1 - \theta) n_0(\tau)\right]\}$$

Fed funds rate

$$R\left(au
ight) = \mathrm{e}^{
ho\left(au + \Delta
ight)} imes 1$$

Fed funds rate

$$R\left(au
ight) = e^{
ho\left(au+\Delta
ight)} imes 1$$
 \Rightarrow

$$\rho(\tau) = \frac{\ln R(\tau)}{\tau + \Delta}$$

$$= r + \frac{\ln \left[V_2(\tau) - V_1(\tau) + (1 - \theta) S(\tau)\right]}{\tau + \Delta}$$

$$rV_{0}\left(\tau\right)+\dot{V}_{0}\left(\tau\right)=u_{0}+\alpha n_{2}\left(\tau\right)\theta S\left(\tau\right)$$

$$rV_{1}\left(\tau\right)+\dot{V}_{1}\left(\tau\right)=u_{1}$$

$$rV_{2}\left(\tau\right)+\dot{V}_{2}\left(\tau\right)=u_{2}+\alpha n_{0}\left(\tau\right)\left(1-\theta\right)S\left(\tau\right)$$

$$rV_{0}(\tau) + \dot{V}_{0}(\tau) = u_{0} + \alpha n_{2}(\tau) \theta S(\tau)
 r\lambda_{0}(\tau) + \dot{\lambda}_{0}(\tau) = u_{0} + \alpha n_{2}(\tau) S^{*}(\tau)
 rV_{1}(\tau) + \dot{V}_{1}(\tau) = u_{1}
 r\lambda_{1}(\tau) + \dot{\lambda}_{1}(\tau) = u_{1}
 rV_{2}(\tau) + \dot{V}_{2}(\tau) = u_{2} + \alpha n_{0}(\tau) (1 - \theta) S(\tau)
 r\lambda_{2}(\tau) + \dot{\lambda}_{2}(\tau) = u_{2} + \alpha n_{0}(\tau) S^{*}(\tau)$$

$$\begin{split} rV_{0}\left(\tau\right) + \dot{V}_{0}\left(\tau\right) &= u_{0} + \alpha n_{2}\left(\tau\right)\theta S\left(\tau\right) \\ r\lambda_{0}\left(\tau\right) + \dot{\lambda}_{0}\left(\tau\right) &= u_{0} + \alpha n_{2}\left(\tau\right)S^{*}\left(\tau\right) \\ rV_{1}\left(\tau\right) + \dot{V}_{1}\left(\tau\right) &= u_{1} \\ r\lambda_{1}\left(\tau\right) + \dot{\lambda}_{1}\left(\tau\right) &= u_{1} \\ rV_{2}\left(\tau\right) + \dot{V}_{2}\left(\tau\right) &= u_{2} + \alpha n_{0}\left(\tau\right)\left(1 - \theta\right)S\left(\tau\right) \\ r\lambda_{2}\left(\tau\right) + \dot{\lambda}_{2}\left(\tau\right) &= u_{2} + \alpha n_{0}\left(\tau\right)S^{*}\left(\tau\right) \end{split}$$

$$S(\tau) = \bar{u} \int_0^{\tau} e^{-\left[\bar{\delta}(\tau) - \bar{\delta}(z)\right]} dz + e^{-\bar{\delta}(\tau)} S(0)$$

$$S^*(\tau) = \bar{u} \int_0^{\tau} e^{-\left[\bar{\delta}^*(\tau) - \bar{\delta}^*(z)\right]} dz + e^{-\bar{\delta}^*(\tau)} S(0)$$

$$rV_{0}(\tau) + \dot{V}_{0}(\tau) = u_{0} + \alpha n_{2}(\tau) \theta S(\tau)$$

$$r\lambda_{0}(\tau) + \dot{\lambda}_{0}(\tau) = u_{0} + \alpha n_{2}(\tau) S^{*}(\tau)$$

$$rV_{1}(\tau) + \dot{V}_{1}(\tau) = u_{1}$$

$$r\lambda_{1}(\tau) + \dot{\lambda}_{1}(\tau) = u_{1}$$

$$rV_{2}(\tau) + \dot{V}_{2}(\tau) = u_{2} + \alpha n_{0}(\tau) (1 - \theta) S(\tau)$$

$$r\lambda_{2}(\tau) + \dot{\lambda}_{2}(\tau) = u_{2} + \alpha n_{0}(\tau) S^{*}(\tau)$$

$$S(\tau) = \bar{u} \int_{0}^{\tau} e^{-\left[\bar{\delta}(\tau) - \bar{\delta}(z)\right]} dz + e^{-\bar{\delta}(\tau)} S(0)$$

$$S^{*}(\tau) = \bar{u} \int_{0}^{\tau} e^{-\left[\bar{\delta}^{*}(\tau) - \bar{\delta}^{*}(z)\right]} dz + e^{-\bar{\delta}^{*}(\tau)} S(0)$$

$$\bar{\delta}^{*}\left(au
ight)-\bar{\delta}\left(au
ight)=lpha\int_{0}^{ au}\left[\left(1- heta
ight)n_{2}\left(z
ight)+ heta n_{0}\left(z
ight)\right]dz\geq0$$

• Equilibrium:

Gain from trade as perceived by borrower: $\theta S\left(au
ight)$

Gain from trade as perceived by lender: $(1-\theta)\,S\,(au)$

Planner

- $\delta^*(\tau) \ge \delta(\tau)$ for all $\tau \in [0, T]$, with "=" only for $\tau = 0$
 - \Rightarrow The planner "discounts" more heavily than the equilibrium
 - $\Rightarrow S^*(\tau) < S(\tau)$ for all $\tau \in (0,1]$
 - ⇒ Social value of loan < joint private value of loan

• Equilibrium:

Gain from trade as perceived by borrower: $\theta S\left(au
ight)$

Gain from trade as perceived by lender: $(1 - \theta) S(\tau)$

• Planner:

- $\delta^*(\tau) \ge \delta(\tau)$ for all $\tau \in [0, T]$, with "=" only for $\tau = 0$
 - \Rightarrow The planner "discounts" more heavily than the equilibrium
 - $\Rightarrow S^*(\tau) < S(\tau)$ for all $\tau \in (0,1]$
 - ⇒ Social value of loan < joint private value of loan

Equilibrium:

Gain from trade as perceived by borrower: $\theta S\left(au
ight)$

Gain from trade as perceived by lender: $(1 - \theta) S(\tau)$

Planner:

- $\delta^*(\tau) \ge \delta(\tau)$ for all $\tau \in [0, T]$, with "=" only for $\tau = 0$
 - \Rightarrow The planner "discounts" more heavily than the equilibrium
 - $\Rightarrow S^*(\tau) < S(\tau)$ for all $\tau \in (0,1]$
 - ⇒ Social value of loan < joint private value of loan

Equilibrium:

Gain from trade as perceived by borrower: $\theta S\left(au
ight)$

Gain from trade as perceived by lender: $(1 - \theta) S(\tau)$

Planner:

- $\delta^{*}\left(\tau\right) \geq \delta\left(\tau\right)$ for all $\tau \in [0, T]$, with "=" only for $\tau = 0$
 - ⇒ The planner "discounts" more heavily than the equilibrium
 - $\Rightarrow S^*(\tau) < S(\tau)$ for all $\tau \in (0,1]$
 - ⇒ Social value of loan < joint private value of loan

• Equilibrium:

Gain from trade as perceived by borrower: $\theta S\left(au
ight)$

Gain from trade as perceived by lender: $(1 - \theta) S(\tau)$

Planner:

- $\delta^*(\tau) \ge \delta(\tau)$ for all $\tau \in [0, T]$, with "=" only for $\tau = 0$
 - \Rightarrow The planner "discounts" more heavily than the equilibrium
 - $\Rightarrow S^*(\tau) < S(\tau)$ for all $\tau \in (0,1]$
 - ⇒ Social value of loan < joint private value of loan

- Equilibrium:
 - Gain from trade as perceived by borrower: $\theta S\left(au
 ight)$
 - Gain from trade as perceived by lender: $(1-\theta) S(\tau)$
- Planner:

- $\delta^*(\tau) \ge \delta(\tau)$ for all $\tau \in [0, T]$, with "=" only for $\tau = 0$
 - ⇒ The planner "discounts" more heavily than the equilibrium
 - $\Rightarrow S^*(\tau) < S(\tau)$ for all $\tau \in (0,1]$
 - ⇒ Social value of loan < joint private value of loan

- Planner internalizes that searching borrowers and lenders make it easier for other lenders and borrowers to find partners
- These "liquidity provision services" to others receive no compensation in the equilibrium, so individual agents ignore them when calculating their equilibrium payoffs
- The equilibrium payoff to lenders may be too high or too low relative to their shadow price in the planner's problem:

E.g., too high if
$$(1 - \theta) S(\tau) > S^*(\tau)$$

- Planner internalizes that searching borrowers and lenders make it easier for other lenders and borrowers to find partners
- These "liquidity provision services" to others receive no compensation in the equilibrium, so individual agents ignore them when calculating their equilibrium payoffs
- The equilibrium payoff to lenders may be too high or too low relative to their shadow price in the planner's problem:

E.g., too high if
$$(1 - \theta) S(\tau) > S^*(\tau)$$

- Planner internalizes that searching borrowers and lenders make it easier for other lenders and borrowers to find partners
- These "liquidity provision services" to others receive no compensation in the equilibrium, so individual agents ignore them when calculating their equilibrium payoffs
- The equilibrium payoff to lenders may be too high or too low relative to their shadow price in the planner's problem:

E.g., too high if
$$(1 - \theta) S(\tau) > S^*(\tau)$$

Frictionless limit

Proposition

Let
$$Q \equiv \sum_{k=1}^{K} k n_k (T) = 1 + n_2 (T) - n_0 (T)$$
.

For
$$\tau \in [0, T]$$
,

$$\rho^{\infty}\left(\tau\right) = \left\{ \begin{array}{ll} r + \frac{\ln\left[\left(1 - e^{-r\tau}\right) \frac{u_{1} - u_{0}}{r} + e^{-r\tau}\left(U_{1} - U_{0}\right)\right]}{\tau + \Delta} & \text{if } Q < 1 \\ r + \frac{\ln\left[\left(1 - e^{-r\tau}\right) \frac{u_{1} - u_{0} - \theta\bar{u}}{r} + e^{-r\tau}\left(U_{1} - U_{0} - \theta S(0)\right)\right]}{\tau + \Delta} & \text{if } Q = 1 \\ r + \frac{\ln\left[\left(1 - e^{-r\tau}\right) \frac{u_{2} - u_{1}}{r} + e^{-r\tau}\left(U_{2} - U_{1}\right)\right]}{\tau + \Delta} & \text{if } 1 < Q. \end{array} \right.$$

