Experimental Evidence of Bank Runs as Pure Coordination Failures

Jasmina Arifovic (Simon Fraser)

Janet Hua Jiang (Bank of Canada and U of Manitoba)

Yiping Xu (U of International Business and Economics)

August 11, 2011

Arifovic, Jiang and Xu

Bank Runs as Pure Coordination Failures

August 11, 2011 1 / 43

Introduction

• Classic model of bank runs: Diamond and Dybvig (1983)

- Banks provide liquidity insurance through investment in illiquid long-term project and issuance of short-term debt (demand deposit)
- The demand deposit contract exhibits payoff externality
- Two symmetric pure strategy Nash eqa: run & non-run
- Bank runs may occur as pure coordination failures
- The theory does not provide good explanation about which eqm is selected
- Competing view: bank runs are caused by deterioration of the quality of the bank's assets (Allen and Gale, 1998)

Introduction

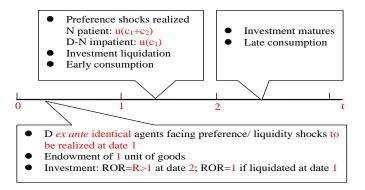
- Empirical testing of the bank-run models is difficult
 - Real world bank runs tend to involve various factors: hard to determine whether bank runs are due to miscoordination, or weakening assets
 - Empirical investigation gives mixed results
 - Gorton (1988), Allen and Gale (1998) and Schumacher (2000): bank runs have historically been strongly correlated with deteriorating economic fundamentals
 - Boyd et al. (2001): bank runs are often the outcome of coordination failures
- Advantage of an experimental study: control the different factors that may induce bank runs

We study whether bank runs can occur as pure coordination failures (and if yes, under what conditions)

- Fix ROR of the bank's long-term asset: rule out deterioration of bank's asset as source of bank runs
- Fix the short-term rate for some time before changing it: subjects interact in an environment with minimal change so that they can focus on coordination decision
- The short-term rate affects the "coordination requirement parameter":
 - With payoff externality, payoff to withdrawing late increasers with the number of late withdrawers
 - Coordination requirement parameter: minimum fraction of depositors choosing to withdraw late so that the strategy gives higher payoff than withdrawing early

イロト イポト イヨト イヨト

Main results


- Bank runs can occur as pure coordination failures, but only when coordination requirement is high
- A version of evolutionary learning algorithm captures experimental data

Literature-Experimental Studies of Bank Runs

- Madiès (2006): suspension of payments combined with "narrow banking" solution, or full deposit coverage can eliminate bank runs
- Garrat and Keister (2009): bank runs occur more frequently when there is aggregate liquidity risk, or when depositors have multiple withdrawing opportunities
- Schotter and Yorulmazer (2009)
 - Depositors are willing to wait to find out what other depositors have done
 - The presence of insiders slows down runs
 - Deposit insurance, even of a limited type, mitigates severity of bank runs.
- Klos and Sträter (2010): global game theory of bank runs

イロト イポト イヨト イヨト

Theory: DD Model of Bank Runs

Optimal risk sharing: Impatient consume c_i^* at date 1, patient consume c_p^* at date 2, with $1 < c_i^* < c_p^* < R$.

4 ∃ ≥ 4

Theory: DD Model of Bank Runs

Demand Deposit Contract

$$c_{e} = \begin{cases} r, \text{ if } z \geq \hat{z}, \\ r \text{ w.p. } \frac{D-\hat{z}}{D-z} \text{ and } 0 \text{ w.p.} \frac{\hat{z}-z}{D-z}, \text{ if } z \leq \hat{z}; \\ c_{\ell} = \begin{cases} \frac{D-r(D-z)}{z}R, \text{ if } z \geq \hat{z}, \\ 0, \text{ if } z \leq \hat{z} \end{cases}$$

$$\begin{split} r &= c_\ell^* \\ z : \text{number of late withdrawers} \\ c_e(c_\ell) : \text{payoff to early (late) withdrawers} \\ \hat{z} &= D/r : \text{min } \# \text{ of late withdrawals to prevent bankruptcy at date } 1. \end{split}$$

 \rightarrow Two symmetric pure strategy Nash eqa: z = 0 and z = N.

Arifovic, Jiang and Xu

Experimental Design

- D = N = 10: focus on strategic players
- *R* = 2
- Abstract from sequential service constraint, the payoff function is

$$c_{e} = \min\left\{r, \frac{N}{N-z}\right\}; \qquad (1)$$

$$c_{\ell} = \max\left\{0, \frac{N-r(N-z)}{z}R\right\}. \qquad (2)$$

Payoff externality exists if r > 1.

Two symmetric pure strategy Nash eqa: z = 0, c = 1(run eqm);
 z = N, c = R (non-run eqm)

- r changes every 10 periods: agents interact in a stable environment with minimal change
- r determines the coordination requirement η $r = \frac{N - (N-z)r}{z} R \rightarrow z^*, \quad \eta = z^* / N = \frac{R(r-1)}{r(R-1)}$
- Each session has 7 phases, each phase has 10 periods

Phase	0	1	2	3	4	5	6	7
r	1.43	1.05	1.11	1.18	1.33	1.54	1.67	1.82
η	0.60	0.10	0.20	0.30	0.50	0.70	0.80	0.90
Period ($\uparrow \eta$)	-9-0	1-10	11-20	21-30	31-40	41-50	51-60	61-70
Period $(\downarrow \eta)$	-9-0	61-70	51-60	41-50	31-40	21-30	11-20	1-10

向下 イヨト イヨト ニヨ

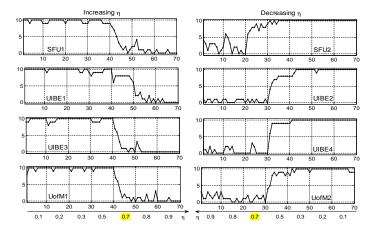
Experimental Design

- 8 sessions (4 with $\uparrow \eta$, 4 with $\downarrow \eta$)
- Location: SFU (Burnaby), UofM (Winnipeg), UIBE (Beijing).
- 10 subjects from upper level and grad econ and business classes
- Each subject begins each period with 1 experimental dollar in the bank and makes withdrawing decision
- Each subject is assigned a computer terminal; communication is prohibited
- Payoff tables provided so that players focus on playing the coordination game

- 4 同下 4 ヨト 4 ヨト

Table 0 (for practice): payoff if n of other 9 subjects withdraw r = 1.43

n	payoff if withdraw	payoff if leave money in the bank
0	1.43	2.00
1	1.43	1.90
2	1.43	1.79
3	1.43	1.63
4	1.43	1.43
5	1.43	1.14
6	1.43	0.71
7	1.25	0.00
8	1.11	0.00
9	1.00	0.00


3

Sac

イロト イポト イヨト イヨト

- After all subjects make decisions, z and payoff are calculated
- History of own actions, payoffs, and cumulative payoffs shown at the end of each period
- Experimental dollars converted to cash; average pay $\approx 1.5 \text{ x}$ what can be earned as tutors

Experimental Results

August 11, 2011 14 / 43

• Finding 1.

More coordination at late withdrawal when coordination requirement is lower.

- Finding 2.
 - When coordination is low ($\eta = 0.1, 0.2, 0.3, 0.5$), all experimental economies stay close to or converge to the non-run equilibrium
 - When coordination is high ($\eta = 0.8, 0.9$), all experimental economies stay close to or converge to the run equilibrium
 - When $\eta=$ 0.7, experimental economies perform very differently.
- Finding 3.

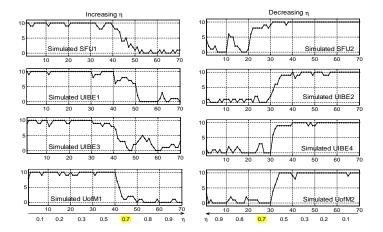
There is a stronger learning effect for intermediate values of η .

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Young (1993), Kandori et. al (1993)

- Two components:
 - Myopic best response with inertia
 - Experimentation: random strategy change with prob δ .
- Standard Algorithm
 - Prob of playing best response and experimentation is exogenous.
 - Temzelides (1997): as $\delta \to$ 0, stay in non-run (run) eqm with prob 1 if $\eta <$ 0.5 (if $\eta >$ 0.5).

Algorithm depends on agents' information sets: η and possibly z_{t-1} .


- Myopic best response with inertia: Played only when subjects can infer whether $z_{t-1} > z^*$.
- Experimentation:

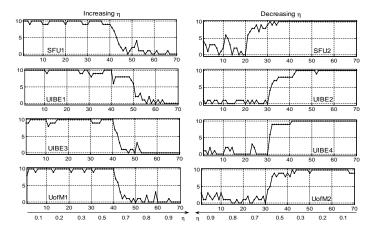
Prob depends on η ; and also on z_{t-1} if subjects can infer z_{t-1} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへ⊙

- Estimate probability of experimentation using experimental data
- Same parameters as in the experiments: 10 players, 7 phases, each phase has 10 rounds
- Use z_0 for each of the 8 sessions
- Apply the modified algorithm using estimated prob of experimentation

A Sample Simulated Path of z

Arifovic, Jiang and Xu


Bank Runs as Pure Coordination Failures

August 11, 2011 19

イロト 不得 トイヨト イヨト 二日

19 / 43

Experimental Results

Bank Runs as Pure Coordination Failures

August 11, 2011 20

イロト イポト イヨト イヨト

20 / 43

E OQC

- Bank runs can happen as the result of pure coordination failures when coordination is difficult.
- A critical value of the coordination parameter serves as the watershed for coordination.
 - When coordination is easy (hard), subjects tend to coordinate at the non-run (run) equilibrium.
 - The consensus breaks down when η is equal to 0.7.
- The endogenous evolutionary algorithm can capture the behavior of human subjects in the laboratory.

Future Work

- DD originally attribute banks runs to sunspot
- In this paper, we study whether bank runs in the absence of a sunspot variable.
- Sunspot behavior, especially in the context of a model with equilibria that can be Pareto ranked, is rarely observed in the lab.
- Duffy and Fisher (2005) and Fehr et al. (2011): direct evidence of sunspots in the laboratory with non-Pareto-rankable or Pareto-equivalent eqa.
- Arifovic et al. (2011): some initial experimental evidence of sunspot behavior with Pareto rankable eqa.
- The experimental results in this paper suggest that the level of coordination requirement may affect the occurrence of sunspot behavior.

- 4 同 1 - 4 回 1 - 4 回 1

	Table 3:	Performance	Classification
--	----------	-------------	----------------

Category	Label	Criterion
Very close to the non-run equilibrium	NN	$M \geq 9$
Fairly close to the non-run equilibrium	FN	$8 \le M < 9$
Converging to the non-run equilibrium	CN	$5 < M < 8$ and $T \geq 8$
Moderate high coordination	Н	5 < M < 8 and $T < 8$
Very close to the run equilibrium	RR	$M \leq 1$
Fairly close to the run equilibrium	FR	$1 < M \leq 2$
Converging to the run equilibrium	CR	$2 < M < 5$ and T ≤ 2
Moderate low coordination	L	2 < M < 5 and $T > 2$

イロト イポト イヨト イヨト

୬ < ୍ର 23 / 43

E

Table 4: Performance of Experimental Economies

0.1	0.2	0.3	0.5	0.7	0.8	0.9
NN	NN	NN	NN	CR	CR	RR
NN	NN	NN	NN	Н	CR	RR
NN	NN	NN	NN	CR	RR	RR
NN	NN	NN	NN	CR	RR	RR
NN	NN	NN	NN	CN	CR	CR
NN	NN	NN	CN	RR	RR	RR
NN	NN	NN	FN	RR	RR	RR
NN	NN	NN	CN	RR	RR	FR
	NN NN NN NN NN NN	NN NN NN NN NN NN NN NN NN NN NN NN	NN	NN	NNNNNNCRNNNNNNNNHNNNNNNNNCRNNNNNNNNCRNNNNNNNNCRNNNNNNNNCNNNNNNNCNRRNNNNNNFNRR	NNNNNNCRCRNNNNNNNNHCRNNNNNNNNCRRRNNNNNNNNCRRRNNNNNNNNCRCRNNNNNNNNCNCRNNNNNNCNRRNNNNNNCNRRNNNNNNFNRR

3

イロト イポト イヨト イ

Modified Evolutionary Algorithm – Information

Table 0 (for practice): payoff if n of other 9 subjects withdraw r = 1.43

n	payoff if withdraw	payoff if leave money in the bank
0	1.43	2.00
1	1.43	1.90
2	1.43	1.79
3	1.43	1.63
4	1.43	1.43
5	1.43	1.14
6	1.43	0.71
7	1.25	0.00
8	1.11	0.00
9	1.00	0.00

TH 1. August 11, 2011 25 / 43

3

・ ロ ト ・ 雪 ト ・ ヨ ト ・

Best response with inertia

- If withdraw early and receive 1.43, not know whether $z_{t-1} > z^*$, \rightarrow inertia (withdraw early)
- If withdraw early and receive < 1.43, know $z_{t-1} < z^*$, \rightarrow best response (withdraw early)
- If withdraw late, know whether $z_{t-1} > z^*$, \rightarrow best response (withdraw late iff $z_{t-1} > z^*$)

э.

Prob of experimentation

- If withdraw early & receive < 1.43, or withdraw late & receive > 0, → know z_{t-1}, prob depends on (η, z_{t-1})
- Otherwise, prob depends on η
- Estimate three probabilities
 - Prob of changing from early to late withdrawal $\left\{ \begin{array}{l} \delta^{i}_{el}(z_{t-1},\eta) \text{ if informed of } z_{t-1}; \\ \delta^{u}_{el}(\eta) \text{ otherwise.} \end{array} \right.$
 - Prob of changing from late to early withdrawal: $\delta_{le}(z_{t-1}, \eta)$.

Estimate the prob of experimentation using experimental data

	Table 5. Observations for Logic Regression						
		# of Obs.	# of Exp.	Exp. Rate (%)			
$s_b = e$	Informed	1824	149	8.17			
	Uninformed	336	108	32.1			
$s_b = \ell$	Informed	2880	31	1.08			
s, strate	ory choice res	ulting from	hest respon	se			

Table 5. Observations for Logit Regression

 s_b istrategy choice resulting from best response

Total number of observations = 5040: 8 sessions \times 10 subjects \times 7 situations \times 9 observations for each subject

- 4 周下 4 日下 4 日下

Modified Evolutionary Algorithm

Table 6: Early to Late (informed): logit $(\delta_{el}^i) = \alpha_0 + \alpha_1(z_{t-1} - z^*)$							
	Coefficient	Standard Error.	<i>t</i> -statistic	<i>p</i> -value			
$z_{t-1}-z^*$	0.51	0.04	13.93	0.00			
Constant	0.74	0.22	3.30	0.00			

Table 7: Early to Late (uninformed): logit $(\delta^u_{el}) = \beta_0 + \beta_1 \eta$

	Coefficient	Standard Error.	<i>t</i> -statistic	<i>p</i> -value
η	-2.74	0.62	-4.43	0.00
Constant	1.03	0.41	2.49	0.01

Table 8: Late to Early:	logit	$(\delta_{le}) = \gamma_0$	$\gamma_0 + \gamma_1(z_{t-1})$	$-z^{*})$
-------------------------	-------	----------------------------	--------------------------------	-----------

	Coefficient	Standard Error.	<i>t</i> -statistic	<i>p</i> -value	2
$z_{t-1}-z^*$	-0.24	0.07	-3.40	0.00	
Constant	-3.04	0.04	-7.10	0.00	
				→ E → E	9
Arifovic, Jiang	and Xu E	3ank Runs as Pure Coordination Fai	ilures Aug	gust 11, 2011	29

/ 43

- Same parameters as in the experiments: 10 players, 7 phases, each phase has 10 rounds
- Adopt endogenous evolutionary algorithm, use estimated prob of experimentation
- Use z_0 for each of the 8 sessions
- Simulate for 100 times

	0.1	0.2	0.3	0.5	0.7	0.8	0.9
NN	100	100	100	98	41		
FN				2	26		
CN							
Н					10		
RR						75	99
FR					1	21	1
CR					19	4	
L					3		
	FN CN H RR FR	NN 100 FN CN H RR FR	NN 100 100 FN CN H RR FR	NN 100 100 100 FN CN H RR FR	NN 100 100 100 98 FN 2 CN H RR FR	NN 100 100 100 98 41 FN 2 26 CN 1 10 H 1 10 RR 1 10 FR 1 11 CR 1 19	NN 100 100 100 98 41 FN 2 26 CN 10 10 H 10 75 FR 1 21 CR 19 4

臣

イロト イポト イヨト イヨト

0.1 0.2 0.3 0.5 0.7 0.8 0.9 NN 100 100 100 70 1 100
FN 29 3 CN 1 2
CN 1 2
UIBE1 H 3
RR 1 75 99
FR 25 21 1
CR 53 4
L 12

		0.1	0.2	0.3	0.5	0.7	0.8	0.9
	NN	100	99	100	90	3		
	FN		1		10	6		
	CN							
UIBE3	Н					6		
	RR						63	100
	FR					11	30	
	CR					60	6	
	L					14	1	

		0.1	0.2	0.3	0.5	0.7	0.8	0.9
	NN	100	100	98	90	3		
	FN			2	10	6		
	CN							
UofM1	Н					6		
	RR						85	100
	FR					11	13	
	CR					60	2	
	L					14		

1

イロト イヨト イヨト イ

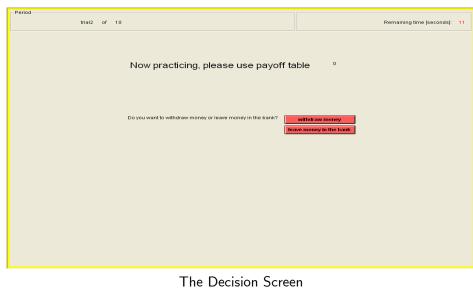
		0.1	0.2	0.3	0.5	0.7	0.8	0.9
	NN	100	100	100	98	1		
	FN				2	3		
	CN					2		
SFU2	Н					3		
	RR					1	85	100
	FR					25	13	
	CR					53	2	
	L					12		

臣

イロト イヨト イヨト イヨト

		0.1	0.2	0.3	0.5	0.7	0.8	0.9
	NN	100	100	97	3			
	FN			3	36			
	CN				59	1		
UIBE2	Н				1			
	RR					42	85	99
	FR					42	13	1
	CR					6	2	
	L					9		

E


イロト イヨト イヨト イ

		0.1	0.2	0.3	0.5	0.7	0.8	0.9
	NN	100	100	100	29			
	FN				65			
	CN				5			
UIBE4	Н				1			
	RR					61	75	99
	FR					29	21	1
	CR					6	4	
	L					4		

<u>0.1</u> 0.2 0.3 0.5 0.7 0.8 0. NN 100 100 97 3
NN 100 100 97 3
FN 3 36
CN 59 1
UofM2 H 1
RR 42 85 90
FR 42 13 10
CR 6 2
L 9

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < < = < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

38 / 43

Period			
trial1 of 10			Remaining time [seconds]: 10
	In this period, you decided to	withdraw	
	And your payment is:	1.11	
	rate jear payment to		
			Continue
			Continue
Devied	Decision	Davat	Tatalmanett
-9	withdraw early	Payoff	Total payoff 0.00
-9	withdraw early	1.11	0.00
	The Pave	<i>«</i> . С	

The Payoff Screen

Arifovic, Jiang and Xu

Bank Runs as Pure Coordination Failures

August 11, 2011 40 / 43

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Table 0 (for practice): payoff if n of other 9 subjects withdraw r = 1.43

n	payoff if withdraw	payoff if leave money in the bank
0	1.43	2.00
1	1.43	1.90
2	1.43	1.79
3	1.43	1.63
4	1.43	1.43
5	1.43	1.14
6	1.43	0.71
7	1.25	0.00
8	1.11	0.00
9	1.00	0.00

3

Sac

イロト イポト イヨト イヨト

Literature: Experimental Studies of Coordination Games

- Van Huyck et al (1990, 1991): number of subjects.
- Battalio et al (2001): Cabrales et al (2007): payoff differential between eqa.
- Heinemann et al (2004), Duffy and Ochs (2010): how individual strategies respond to a continually changing payoff relevant variable that causes both the difficulty of coordination and the payoff differential to change.
- Heinemann et al (2009): how individual strategies change wrt payoff difference between eqa, and how the relationship is affected by coordination requirement.

Compare with Literature on Experimental Studies of Coordination Games

Our paper:

- Whether bank runs can occur as result of pure coordination failures: the experimental setup in our paper is more proper for the purpose
- Systematic study of how aggregate economy responds to coordination requirement
- Capture a stronger learning effect for intermediate coordination requirement