Conclusions

ション ふゆ マ キャット マックタン

Central Bank Liquidity Policies and Interbank Markets: A Quantitative Analysis

Jonathan Chiu¹ Miguel $Molico^2$

¹Bank of Canada

 2 Bank of Canada

August, 2011

Disclaimer: The views expressed are those of the authors and do not necessarily reflect the views of the Bank of Canada.

ション ふゆ マ キャット マックシン

Motivation

- During the recent financial crisis, a substantial amount of liquidity was injected into the banking system to ensure the smooth functioning of payment systems and interbank and other core funding markets.
- In many cases, policy makers were forced to carry out intervention and implement new policy frameworks without guidance provided by formal, quantitative economic models.

ション ふゆ マ キャット マックシン

Objectives

- This project aims to develop a quantitative model of payment systems and interbank markets to perform theory based policy analysis on these issues.
- Identify equilibrium effects of different policies, shocks, and frictions on allocation and welfare
 - Interest rate (e.g. bounds and target of channel system)
 - Supply of settlement balances
 - Fundamental payment liquidity shocks
 - Frictions in interbank market

うして ふゆう ふほう ふほう ふしつ

Model Framework

- Two Main Components:
 - Channel Systems for Monetary Policy Implementation: e.g. Whitesell (2006), Berentsen and Monnet (2009), Berentsen and Waller (2010), Martin and Monnet (2011)
 - 2. OTC Interbank Markets:

e.g. Ashcraft and Duffie (2007), Ashcraft, McAndrews, and Skeie (2009), Afonso and Lagos (2011)

- Banks manage liquidity by:
 - 1. managing payment inflows/outflows
 - 2. trading liquidity among themselves in the interbank market
 - 3. trading liquidity with the central bank standing facility

Model

Numerical Example

Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Model

ション ふゆ マ キャット マックシン

Environment

- Infinite horizon: $t = 1, 2, 3, \dots$
- Measure 1 of agents $i \in [0, 1]$
- $\bullet\,$ Two goods: consumption good q and a settlement good x
- *m*: holding of reserve balances (normalized by total supply)
- β : discount factor

Environment

- 3 sub-periods:
 - SM: Settlement mkt to trade x and $m \to {\rm repay}$ overnight loans
 - GM: Goods market to trade q and $m \to$ payment flows
 - MM: N rounds of money markets \rightarrow interbank overnight loans
- End of period: central bank facilities to deposit/borrow

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

うして ふゆう ふほう ふほう ふしつ

(1) (Centralized) Settlement Market

$$W(m_1, \ell, L) = \max_{m_2, x} x + Z(m_2)$$

s.t. $x + \phi \ell + \phi L = \phi m_1 - \phi m_2 + \phi T$,

where

 m_1 : money brought to SM, m_2 : money brought to GM ℓ : outstanding interbank loan (lending if $\ell < 0$) L: outstanding central bank loan (lending if L < 0)

- T: transfer from the central bank (growth rate μ)
- ϕ : real price of money
- $Z(m_2)$: value function in GM

ション ふゆ マ キャット マックタン

(1) (Centralized) Settlement Market

$$W(m_1, \ell, L) = \max_{m_2, x} x + Z(m_2)$$

s.t. $x + \phi \ell + \phi L = \phi m_1 - \phi m_2 + \phi T$,

where

$$\begin{split} m_1 &: \text{money brought to SM}, \ m_2 &: \text{money brought to GM} \\ \ell &: \text{outstanding interbank loan (lending if } \ell < 0) \\ L &: \text{outstanding central bank loan (lending if } L < 0) \\ T &: \text{transfer from the central bank (growth rate } \mu) \\ \phi &: \text{real price of money} \end{split}$$

 $Z(m_2)$: value function in GM

Linear Preference $\Rightarrow W_m = -W_\ell = -W_L = \phi$

ション ふゆ マ キャット マックシン

(2) (Centralized) Goods Market

$$Z(m_2) = \int \{\max_{q_b, q_s} \varepsilon u(q_b) - c(q_s) + V_1(m_3)\} d\Omega_b(\varepsilon)$$

s.t. $m_3 = m_2 - p(q_b - q_s)$

where

 $\varepsilon:$ preference shock

 $V_1(m_3)$: value function in the first round of MM

Note:

- $m_3 = m_2 p(q_b q_s) \in \mathbb{R}$ (there is no CIA constraint)
- money balance goes up/down according to net payment flow

うして ふゆう ふほう ふほう ふしつ

(3) (Decentralized) Money Market

- \bullet Pairwise random matching with probability α
- Consider a match in the *n*-th money market: *i* borrows *d* dollars from *j* and repays ℓ in the next SM.
- Terms of trade (d, ℓ) determined by proportional bargaining:

$$\max_{d,\ell} S_i + S_j,$$

s.t.

$$S_i = S_j$$

borrower *i*'s surplus: $S_i = V_{n+1}(m_i + d, \ell_i + \ell) - V_{n+1}(m_i, \ell_i)$ lender *j*'s surplus: $S_j = V_{n+1}(m_j - d, \ell_j - \ell) - V_{n+1}(m_j, \ell_j)$

• Assumption: equal bargaining weight.

٠

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

(4) Central Bank Lending Facility

Settlement at the end of a day:

$$V_{N+1}(m,\ell) = \beta W(0, \frac{\ell}{\mu}, -\frac{m}{\mu} \cdot (1+r(m)))$$

where the overnight rate is

$$r(m) = \begin{cases} r^D & \text{if } m \ge 0\\ r^L & \text{if } m < 0 \end{cases}$$

Interest Policy: r^D , r^L

Model

Numerical Example

Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Solving the model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Value of Money at Settlement

$$V_{N+1}(m,\ell) = \bar{V}_{N+1}(m) - \beta \phi \ell / \mu = \begin{cases} \beta \phi / \mu [m(1+r^D) - \ell] & \text{if } m \ge 0\\ \beta \phi / \mu [m(1+r^L) - \ell] & \text{if } m < 0 \end{cases}$$

$$V(m)$$

$$M(m)$$

Value of Money in Money Markets

• For all n = 1, ..., N + 1, the value function is

$$V_n(m,\ell) = \bar{V}_n(m) - \beta \phi \ell / \mu$$

• $\bar{V}_n(m)$ is strictly increasing and weakly concave.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Trading in Money Markets

Bargaining solution in money markets

$$d_n(m_i, m_j) = \frac{m_j - m_i}{2}$$

$$\ell_n(m_i, m_j) = \frac{\bar{V}_{n+1}(m_j) - \bar{V}_{n+1}(m_i)}{2\beta\phi/\mu}$$

Interest rate in a match

$$r_n(m_i, m_j) = \frac{\bar{V}_{n+1}(m_j) - \bar{V}_{n+1}(m_i)}{[m_j - m_i]\beta\phi/\mu}$$

is decreasing in the money holdings (m_i, m_j) .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Dynamics of Value Functions and Money Distribution

Evolution of money distribution:

$$f_{n+1}(m) = (1 - \alpha_n) f_n(m) + 2\alpha_n \int_{-\infty}^{\infty} f_n(\hat{m}) f_n(2m - \hat{m}) d\hat{m}.$$

Evolution of value function:

$$\bar{V}_n(m) = \left(1 - \frac{\alpha_n}{2}\right) \bar{V}_{n+1}(m) + \\ \frac{\alpha_n}{2} \int_{-\infty}^{\infty} [2\bar{V}_{n+1}(\frac{m+\hat{m}}{2}) - \bar{V}_{n+1}(\hat{m})] f_n(\hat{m}) d\hat{m}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Goods Market Trading

FOC in Centralized Good Market:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Goods Market Trading (Cont'd)

FOC in Centralized Good Market:

$$\varepsilon u'(q_b) = c'(q_s) = pV'(m_2 - pq_b + pq_s)$$

うして ふゆう ふほう ふほう ふしつ

Goods Market Trading (Cont'd)

Changes in interest policies (r^D, r^L) or money market frictions (N, α) affect goods allocation.

ション ふゆ マ キャット マックシン

Goods Market Trading (Cont'd)

Changes in interest policies (r^D, r^L) or money market frictions (N, α) affect goods allocation.

Model

Numerical Example

Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A Numerical Example

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Parameter Values for Numerical Example

Preferences and Technology:

$$\begin{aligned} \diamond \ \ \beta &= 0.9999 \\ \diamond \ \ u(q) &= \frac{\varepsilon (365q_b)^{1-\sigma}}{1-\sigma} \\ \diamond \ \ c(q) &= \frac{(365q_s)^{1+\chi}}{1+\chi} \\ \diamond \ \ \sigma &= 0.2, \ \chi = 2 \\ \diamond \ \ \varepsilon \sim beta(2,2) \ \ on \ [0.1,2] \end{aligned}$$

Money Market Frictions:

$$\diamond \ N = 4, \ \alpha = 1$$

Interest Rate Policy:

$$\circ r^D = 4\%, r^L = 5\%$$

Bargaining Solution in Mkt 1

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Bargaining Solution in Mkt N

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Evolution of Money Distribution

うしつ 川田 ふぼう ふぼう ふしゃ

Interest Rates in Money Markets

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Interest Rates in Money Markets

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回 めへで

Evolution of Money Demand

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Trading in Goods Market

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Equilibrium Outcome

Benchmark:
$$r^D = 4\%, r^L = 5\%, \alpha = 1, \varepsilon \sim [0.1, 2]$$

	Benchmark
Goods Market	
Output	3.0882e - 3
Welfare	1.3128
Money Market:	
Average Interest Rate	4.4530%
Std. Dev of m (before)	8.2808
Std. Dev of m (after)	2.0821
Liquidity Facility:	
Loan/Deposit Ratio	0.3040

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Ex.1: Effects of Interest Rate Policy

Benchmark: $r^D=4\%, r^L=5\%$

	$r^{L} = 5.5\%$	$r^{D} = 4.5\%$
Goods Market		
Output	\downarrow	\uparrow
Welfare	\downarrow	\uparrow
Money Market:		
Average Interest Rate	↑ ↑	\uparrow
Std. Dev of m (before)	\downarrow	\uparrow
Std. Dev of m (after)	\downarrow	\uparrow
Liquidity Facility:		
Loan/Deposit Ratio	\downarrow	\uparrow

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Ex.2: Effects of Money Market Frictions

Benchmark: $\alpha = 1$

	$\alpha = 0.1$
Goods Market	
Output	\downarrow
Welfare	\downarrow
Money Market:	
Average Interest Rate	1
Std. Dev of m (before)	\downarrow
Std. Dev of m (after)	\uparrow
Liquidity Facility:	
Loan/Deposit Ratio	\uparrow

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Ex.3: Effects of Liquidity Shocks

Benchmark: $\varepsilon \sim [0.1, 2]$

	$\varepsilon \sim [0.1, 2.5]$
<u>Goods Market</u> :	
Output	\uparrow
Welfare	1
Money Market:	
Average Interest Rate	↑
Std. Dev of m (before)	↑
Std. Dev of m (after)	↑
Liquidity Facility:	
Loan/Deposit Ratio	\uparrow

ション ふゆ マ キャット マックシン

Ex.4: Temporary Increase in Settlement Balance

- An unanticipated lump-sum money transfer at the beginning of the GM, with commitment to re-absorb it in the next SM.
- Temporary increase in settlement balance, with inflation expectation unchanged.

Goods Market	
Output	1
Welfare	1
Money Market:	
Average Interest Rate	\downarrow
Std. Dev of m (before)	\uparrow
Std. Dev of m (after)	\uparrow
Liquidity Facility:	
Loan/Deposit Ratio	↓

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Ex.4: Temporary Increase in Settlement Balance (Cont'd)

FOC in Centralized Good Market:

$$\varepsilon u'(q_b) = c'(q_s) = pV'(m_2 - pq_b + pq_s)$$

ション ふゆ マ キャット マックシン

Next Step

- Calibrate the model to Canadian Data
- Identify equilibrium effects of different forces on allocation and welfare during the crisis (Interest rate Policy, settlement balances, liquidity shocks, Frictions in interbank market)
- Perform experiments
 - Evaluate effects of counterfactual policies
 - Equilibrium responses to other shocks

(Canadian Interbank Mkt)

ション ふゆ マ キャット マックシン

Conclusions

- We develop a framework to quantitatively evaluate the effects of central bank liquidity policies during the recent crisis.
- Useful for decomposing the effects of policy and other fundamental changes.
- Useful for evaluating alternative policies.

Model

Numerical Example

Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Appendix

ション ふゆ マ キャット マックシン

B. Extension: Introducing Collateral

Introduce an asset with return rate $R < 1/\beta$:

$$W(m_1, A_1, \ell, L) = \max_{m_2, x} x + Z(m_2, A_2)$$

s.t. $x + \phi \ell + \phi L + A_2 = \phi m_1 - \phi m_2 + \phi T + A_1 R$,

Central bank loan subject to collateral constraint. Uncollaterallized overdraft subject to penalty rate ρ .

$$r(\ell, A) = r^L + \rho \max\{\ell - RA, 0\}$$

Collateral Constraint not Binding in LVTS

Overall, LVTS participating banks have large excess collateral holdings.

Allocation of Collateral Pledged to the LVTS

▲ロト ▲園ト ▲ヨト ▲ヨト 三日 - のへで

・ロト ・雪ト ・ヨト ・ヨト

3

Collateral Constraint not Binding in LVTS (Cont'd)

Individual banks excess collateral, as a fraction of total collateral pledged to the LVTS.

- On average: banks have a 53% collateral buffer.
- $\bullet~90\%$ of time: banks have at least a 10% collateral buffer.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

C. Extension: Introducing Default Risk

- Suppose an agent will die with probability 1δ (replaced by new agents), implying a default on loans.
- So effective discount factor is $\hat{\beta} = \beta \delta$
- SM problem:

$$W(m_1, \ell, L) = \max_{m_2, x} x + Z(m_2)$$

s.t. $x + \phi \delta \ell + \phi L + A_2 = \phi m_1 - \phi m_2 + \phi T + A_1 R$,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Application to Recent Crisis (Preliminary)

- A - B - N

< A >

4 E b

ъ

Policy Change: Interest Rate Channel

(back)

- Before Crisis: $r^{L} = r^{D} + 0.50\%$, target= $0.5(r^{L} + r^{D})$.
- During Crisis: $r^L = r^D + 0.25\%$, target= $r^D_{, a}$

ション ふゆ マ キャット マックシン

Policy Change: Settlement Balance

- Before Crisis: net balance = 25 millions.
- During Crisis: net balance = 3 billions.

ション ふゆ マ キャット マックシン

A. Interbank Loan Data

- Use Furfine algorithm (1999) to identify interbank overnight loans using LVTS payment transaction data between 15 banks from 2004 to 2010.
- $\bullet\,$ Potential loans: a pair of payments between bank i and j
 - payment from i to j on day t greater than \$10 million and rounded to the nearest dollar
 - payment from j to i on day t+1, with a reasonable implicit overnight interest rate $(r^D 0.1\% < r < r^L + 0.1\%)$
- Tie-breaking rule:
 - select the repayment with an implied overnight rate closer to the target.
 - "first-loan-to-first-repayment" algorithm

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

A. Interbank Loan Data (Contd.)

- Identified 52720 loans initiated between 4:00pm and 6:30pm over the sample period.
- Average 31 loans per day:
 - average size=\$ 130 mil
 - min size=\$ 10 mil
 - max size=\$1.8 bil
 - average deviation from target = -0.89 bps

Model

Numerical Example

Conclusions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Interbank Activities

ション ふゆ マ キャット マックシン

Liquidity Balance at 4pm

	10%	50%	90%	Std.Dev
Before Crisis	-1.218	-0.0057	0.9544	1.1898
During Crisis	-1.3387	0.0523	1.4153	1.4015

- Overall, dispersion of liquidity holdings increased.
- For 77% of banks, standard deviation of individual liquidity holdings increased. Average increase is 52%.

Evolution of Liquidity Distribution (Before Crisis)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Evolution of Liquidity Distribution (During Crisis)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

ション ふゆ マ キャット マックシン

Interbank Lending (4pm-6:30pm)

Time	Lending (in number)	Activity (in value)	Avg. Spread (bps)
Before Crisis	36.67	5.02	0.01
During Crisis	24.97	3.53	-2.29

- Interbank lending activities dropped
 - by 32% in number
 - by 30% in value
- Average interest spread dropped by 2.3 bps.

(日) (四) (日) (日) (日)

Interbank Lending: Loan Size Distribution (4pm-6:30pm)

Lending of small loans dropped.

(=) (

Interbank Lending: Interest Distribution

Before Crisis: cluster in the middle of the band

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Interbank Lending: Interest Distribution

During Crisis: cluster at the bottom of the band

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Central Bank Facilities (6:30pm)

Period	Deposit		Borrow	
	Freq.	Average Size	Freq.	Average Size
Pre-Crisis	90%	7 mil.	10%	37 mil.
Crisis	98%	213 mil.	2%	164 mil.

- Before Crisis:
 - Use deposit facility more often than lending facility.

ション ふゆ マ キャット マックシン

Central Bank Facilities (6:30pm)

Period	Deposit		Borrow	
	Freq.	Average Size	Freq.	Average Size
Pre-Crisis	90%	7 mil.	10%	37 mil.
Crisis	98%	213 mil.	2%	164 mil.

- Before Crisis:
 - Use deposit facility more often than lending facility.
- During Crisis:
 - Usage of deposit facility increased. Average size of deposit increased a lot.
 - Usage of lending facility dropped. But average size of loans increased a lot.

(back to conclusion)