Central Bank Liquidity Policies and Interbank Markets: A Quantitative Analysis

Jonathan Chiu ${ }^{1}$ Miguel Molico ${ }^{2}$
${ }^{1}$ Bank of Canada
${ }^{2}$ Bank of Canada

August, 2011

Disclaimer: The views expressed are those of the authors and do not necessarily reflect the views of the Bank of Canada.

Motivation

- During the recent financial crisis, a substantial amount of liquidity was injected into the banking system to ensure the smooth functioning of payment systems and interbank and other core funding markets.
- In many cases, policy makers were forced to carry out intervention and implement new policy frameworks without guidance provided by formal, quantitative economic models.

Objectives

- This project aims to develop a quantitative model of payment systems and interbank markets to perform theory based policy analysis on these issues.
- Identify equilibrium effects of different policies, shocks, and frictions on allocation and welfare
- Interest rate (e.g. bounds and target of channel system)
- Supply of settlement balances
- Fundamental payment liquidity shocks
- Frictions in interbank market

Model Framework

- Two Main Components:

1. Channel Systems for Monetary Policy Implementation: e.g. Whitesell (2006), Berentsen and Monnet (2009), Berentsen and Waller (2010), Martin and Monnet (2011)
2. OTC Interbank Markets:
e.g. Ashcraft and Duffie (2007), Ashcraft, McAndrews, and Skeie (2009), Afonso and Lagos (2011)

- Banks manage liquidity by:

1. managing payment inflows/outflows
2. trading liquidity among themselves in the interbank market
3. trading liquidity with the central bank standing facility

Model

Environment

- Infinite horizon: $t=1,2,3, \ldots$
- Measure 1 of agents $i \in[0,1]$
- Two goods: consumption good q and a settlement good x
- m: holding of reserve balances (normalized by total supply)
- β : discount factor

Environment

- 3 sub-periods:
- SM: Settlement mkt to trade x and $m \rightarrow$ repay overnight loans
- GM: Goods market to trade q and $m \rightarrow$ payment flows
- MM: N rounds of money markets \rightarrow interbank overnight loans
- End of period: central bank facilities to deposit/borrow

(1) (Centralized) Settlement Market

$$
\begin{aligned}
W\left(m_{1}, \ell, L\right) & =\max _{m_{2}, x} x+Z\left(m_{2}\right) \\
\text { s.t. } x+\phi \ell+\phi L & =\phi m_{1}-\phi m_{2}+\phi T
\end{aligned}
$$

where
m_{1} : money brought to SM, m_{2} : money brought to GM
ℓ : outstanding interbank loan (lending if $\ell<0$)
L : outstanding central bank loan (lending if $L<0$)
T : transfer from the central bank (growth rate μ)
ϕ : real price of money
$Z\left(m_{2}\right)$: value function in GM

(1) (Centralized) Settlement Market

$$
\begin{aligned}
W\left(m_{1}, \ell, L\right) & =\max _{m_{2}, x} x+Z\left(m_{2}\right) \\
\text { s.t. } x+\phi \ell+\phi L & =\phi m_{1}-\phi m_{2}+\phi T
\end{aligned}
$$

where
m_{1} : money brought to SM, m_{2} : money brought to GM
ℓ : outstanding interbank loan (lending if $\ell<0$)
L : outstanding central bank loan (lending if $L<0$)
T : transfer from the central bank (growth rate μ)
ϕ : real price of money
$Z\left(m_{2}\right)$: value function in GM
Linear Preference $\Rightarrow W_{m}=-W_{\ell}=-W_{L}=\phi$

(2) (Centralized) Goods Market

$$
\begin{array}{r}
Z\left(m_{2}\right)=\int\left\{\max _{q_{b}, q_{s}} \varepsilon u\left(q_{b}\right)-c\left(q_{s}\right)+V_{1}\left(m_{3}\right)\right\} d \Omega_{b}(\varepsilon) \\
\text { s.t. } m_{3}=m_{2}-p\left(q_{b}-q_{s}\right)
\end{array}
$$

where

ε : preference shock

$V_{1}\left(m_{3}\right)$: value function in the first round of MM

Note:

- $m_{3}=m_{2}-p\left(q_{b}-q_{s}\right) \in \mathbb{R}$ (there is no CIA constraint)
- money balance goes up/down according to net payment flow

(3) (Decentralized) Money Market

- Pairwise random matching with probability α
- Consider a match in the n-th money market:
i borrows d dollars from j and repays ℓ in the next SM.
- Terms of trade (d, ℓ) determined by proportional bargaining:

$$
\max _{d, \ell} S_{i}+S_{j}
$$

s.t.

$$
S_{i}=S_{j}
$$

borrower i 's surplus: $S_{i}=V_{n+1}\left(m_{i}+d, \ell_{i}+\ell\right)-V_{n+1}\left(m_{i}, \ell_{i}\right)$
lender j 's surplus: $S_{j}=V_{n+1}\left(m_{j}-d, \ell_{j}-\ell\right)-V_{n+1}\left(m_{j}, \ell_{j}\right)$

- Assumption: equal bargaining weight.

(4) Central Bank Lending Facility

Settlement at the end of a day:

$$
V_{N+1}(m, \ell)=\beta W\left(0, \frac{\ell}{\mu},-\frac{m}{\mu} \cdot(1+r(m))\right)
$$

where the overnight rate is

$$
r(m)=\left\{\begin{array}{ll}
r^{D} & \text { if } m \geq 0 \\
r^{L} & \text { if } m<0
\end{array} .\right.
$$

Interest Policy: r^{D}, r^{L}

Solving the model

Value of Money at Settlement

$$
V_{N+1}(m, \ell)=\bar{V}_{N+1}(m)-\beta \phi \ell / \mu= \begin{cases}\beta \phi / \mu\left[m\left(1+r^{D}\right)-\ell\right] & \text { if } m \geq 0 \\ \beta \phi / \mu\left[m\left(1+r^{L}\right)-\ell\right] & \text { if } m<0\end{cases}
$$

Value of Money in Money Markets

- For all $n=1, \ldots, N+1$, the value function is

$$
V_{n}(m, \ell)=\bar{V}_{n}(m)-\beta \phi \ell / \mu
$$

- $\bar{V}_{n}(m)$ is strictly increasing and weakly concave.

Trading in Money Markets

Bargaining solution in money markets

$$
\begin{aligned}
d_{n}\left(m_{i}, m_{j}\right) & =\frac{m_{j}-m_{i}}{2} \\
\ell_{n}\left(m_{i}, m_{j}\right) & =\frac{\bar{V}_{n+1}\left(m_{j}\right)-\bar{V}_{n+1}\left(m_{i}\right)}{2 \beta \phi / \mu}
\end{aligned}
$$

Interest rate in a match

$$
r_{n}\left(m_{i}, m_{j}\right)=\frac{\bar{V}_{n+1}\left(m_{j}\right)-\bar{V}_{n+1}\left(m_{i}\right)}{\left[m_{j}-m_{i}\right] \beta \phi / \mu}
$$

is decreasing in the money holdings $\left(m_{i}, m_{j}\right)$.

Dynamics of Value Functions and Money Distribution

Evolution of money distribution:

$$
f_{n+1}(m)=\left(1-\alpha_{n}\right) f_{n}(m)+2 \alpha_{n} \int_{-\infty}^{\infty} f_{n}(\hat{m}) f_{n}(2 m-\hat{m}) d \hat{m} .
$$

Evolution of value function:

$$
\begin{aligned}
\bar{V}_{n}(m)= & \left(1-\frac{\alpha_{n}}{2}\right) \bar{V}_{n+1}(m)+ \\
& \frac{\alpha_{n}}{2} \int_{-\infty}^{\infty}\left[2 \bar{V}_{n+1}\left(\frac{m+\hat{m}}{2}\right)-\bar{V}_{n+1}(\hat{m})\right] f_{n}(\hat{m}) d \hat{m} .
\end{aligned}
$$

Goods Market Trading

FOC in Centralized Good Market:

$$
\varepsilon u^{\prime}\left(q_{b}\right)=c^{\prime}\left(q_{s}\right)=p V^{\prime}\left(m_{2}-p q_{b}+p q_{s}\right)
$$

Goods Market Trading (Cont'd)

FOC in Centralized Good Market:

$$
\varepsilon u^{\prime}\left(q_{b}\right)=c^{\prime}\left(q_{s}\right)=p V^{\prime}\left(m_{2}-p q_{b}+p q_{s}\right)
$$

Goods Market Trading (Cont'd)

Changes in interest policies $\left(r^{D}, r^{L}\right)$ or money market frictions (N, α) affect goods allocation.

Goods Market Trading (Cont'd)

Changes in interest policies $\left(r^{D}, r^{L}\right)$ or money market frictions (N, α) affect goods allocation.

A Numerical Example

Parameter Values for Numerical Example

Preferences and Technology:
$\diamond \beta=0.9999$
$\diamond u(q)=\frac{\varepsilon\left(365 q_{b}\right)^{1-\sigma}}{1-\sigma}$
$\diamond c(q)=\frac{\left(365 q_{s}\right)^{1+\chi}}{1+\chi}$
$\diamond \sigma=0.2, \chi=2$
$\diamond \varepsilon \sim \operatorname{beta}(2,2)$ on $[0.1,2]$
Money Market Frictions:

$$
\diamond N=4, \alpha=1
$$

Interest Rate Policy:

$$
\diamond r^{D}=4 \%, r^{L}=5 \%
$$

Bargaining Solution in Mkt 1

$\underline{\text { Bargaining Solution in Mkt } N}$

Evolution of Money Distribution

Interest Rates in Money Markets

Interest Rates in Money Markets

Evolution of Money Demand

Trading in Goods Market

Equilibrium Outcome

Benchmark: $r^{D}=4 \%, r^{L}=5 \%, \alpha=1, \varepsilon \sim[0.1,2]$

	Benchmark
Goods Market	$3.0882 e-3$
Output	1.3128
Welfare	
Money Market:	4.4530%
Average Interest Rate	8.2808
Std. Dev of m (before)	2.0821
Std. Dev of m (after)	
Liquidity Facility:	0.3040
Loan/Deposit Ratio	

Ex.1: Effects of Interest Rate Policy

Benchmark: $r^{D}=4 \%, r^{L}=5 \%$

	$r^{L}=5.5 \%$	$r^{D}=4.5 \%$
Goods Market		\uparrow
Output	\downarrow	\uparrow
Welfare	\downarrow	\uparrow
Money Market:		
Average Interest Rate	\uparrow	\uparrow
Std. Dev of m (before)	\downarrow	\uparrow
Std. Dev of m (after)	\downarrow	\uparrow
Liquidity Facility:		
Loan/Deposit Ratio	\downarrow	\uparrow

Ex.2: Effects of Money Market Frictions

Benchmark: $\alpha=1$

	$\alpha=0.1$
Goods Market	
Output	\downarrow
Welfare	\downarrow
Money Market:	
Average Interest Rate	\uparrow
Std. Dev of m (before)	\downarrow
Std. Dev of m (after)	\uparrow
Liquidity Facility:	
Loan/Deposit Ratio	\uparrow

Ex.3: Effects of Liquidity Shocks

Benchmark: $\varepsilon \sim[0.1,2]$

	$\varepsilon \sim[0.1,2.5]$
Goods Market:	\uparrow
Output	\uparrow
Welfare	\uparrow
Money Market:	\uparrow
Average Interest Rate	\uparrow
Std. Dev of m (before)	\uparrow
Std. Dev of m (after)	\uparrow
Liquidity Facility:	
Loan/Deposit Ratio	\uparrow

Ex.4: Temporary Increase in Settlement Balance

- An unanticipated lump-sum money transfer at the beginning of the GM, with commitment to re-absorb it in the next SM.
- Temporary increase in settlement balance, with inflation expectation unchanged.

Goods Market	
Output	\uparrow
Welfare	\uparrow
Money Market:	
Average Interest Rate	\downarrow
Std. Dev of m (before)	\uparrow
Std. Dev of m (after)	\uparrow
Liquidity Facility:	
Loan/Deposit Ratio	\downarrow

Ex.4: Temporary Increase in Settlement Balance (Cont'd)

FOC in Centralized Good Market:

$$
\varepsilon u^{\prime}\left(q_{b}\right)=c^{\prime}\left(q_{s}\right)=p V^{\prime}\left(m_{2}-p q_{b}+p q_{s}\right)
$$

Next Step

- Calibrate the model to Canadian Data
- Identify equilibrium effects of different forces on allocation and welfare during the crisis (Interest rate Policy, settlement balances, liquidity shocks, Frictions in interbank market)
- Perform experiments
- Evaluate effects of counterfactual policies
- Equilibrium responses to other shocks
(Canadian Interbank Mkt)

Conclusions

- We develop a framework to quantitatively evaluate the effects of central bank liquidity policies during the recent crisis.
- Useful for decomposing the effects of policy and other fundamental changes.
- Useful for evaluating alternative policies.

Appendix

B. Extension: Introducing Collateral

Introduce an asset with return rate $R<1 / \beta$:

$$
\begin{aligned}
W\left(m_{1}, A_{1}, \ell, L\right) & =\max _{m_{2}, x} x+Z\left(m_{2}, A_{2}\right) \\
\text { s.t. } x+\phi \ell+\phi L+A_{2} & =\phi m_{1}-\phi m_{2}+\phi T+A_{1} R,
\end{aligned}
$$

Central bank loan subject to collateral constraint. Uncollaterallized overdraft subject to penalty rate ρ.

$$
r(\ell, A)=r^{L}+\rho \max \{\ell-R A, 0\}
$$

Collateral Constraint not Binding in LVTS

Overall, LVTS participating banks have large excess collateral holdings.

Allocation of Collateral Pledged to the LVTS

Collateral Constraint not Binding in LVTS (Cont'd)

Individual banks excess collateral, as a fraction of total collateral pledged to the LVTS.

Excess Collateral

- On average: banks have a 53% collateral buffer.
- 90% of time: banks have at least a 10% collateral buffer.

C. Extension: Introducing Default Risk

- Suppose an agent will die with probability $1-\delta$ (replaced by new agents), implying a default on loans.
- So effective discount factor is $\hat{\beta}=\beta \delta$
- SM problem:

$$
\begin{aligned}
W\left(m_{1}, \ell, L\right) & =\max _{m_{2}, x} x+Z\left(m_{2}\right) \\
\text { s.t. } x+\phi \delta \ell+\phi L+A_{2} & =\phi m_{1}-\phi m_{2}+\phi T+A_{1} R,
\end{aligned}
$$

Application to Recent Crisis (Preliminary)

Policy Change: Interest Rate Channel

(back)

Bank Operation Band

- Before Crisis: $r^{L}=r^{D}+0.50 \%$, target $=0.5\left(r^{L}+r^{D}\right)$.
- During Crisis: $r^{L}=r^{D}+0.25 \%$, target $=r^{D}$.

Policy Change: Settlement Balance

(back)

Settlement Balance Offered

- Before Crisis: net balance $=25$ millions.
- During Crisis: net balance $=3$ billions.

A. Interbank Loan Data

- Use Furfine algorithm (1999) to identify interbank overnight loans using LVTS payment transaction data between 15 banks from 2004 to 2010.
- Potential loans: a pair of payments between bank i and j
- payment from i to j on day t greater than $\$ 10$ million and rounded to the nearest dollar
- payment from j to i on day $t+1$, with a reasonable implicit overnight interest rate $\left(r^{D}-0.1 \%<r<r^{L}+0.1 \%\right)$
- Tie-breaking rule:
- select the repayment with an implied overnight rate closer to the target.
- "first-loan-to-first-repayment" algorithm

A. Interbank Loan Data (Contd.)

- Identified 52720 loans initiated between $4: 00 \mathrm{pm}$ and $6: 30 \mathrm{pm}$ over the sample period.
- Average 31 loans per day:
- average size $=\$ 130 \mathrm{mil}$
- min size=\$ 10 mil
- max size= $\$ 1.8$ bil
- average deviation from target $=-0.89 \mathrm{bps}$

Interbank Activities

Liquidity Balance at 4pm

	10%	50%	90%	Std.Dev
Before Crisis	-1.218	-0.0057	0.9544	1.1898
During Crisis	-1.3387	0.0523	1.4153	1.4015

- Overall, dispersion of liquidity holdings increased.
- For 77% of banks, standard deviation of individual liquidity holdings increased. Average increase is 52%.

Evolution of Liquidity Distribution (Before Crisis)

Evolution of Liquidity Distribution (During Crisis)

Interbank Lending (4pm-6:30pm)

Time	Lending (in number)	Activity (in value)	Avg. Spread (bps)
Before Crisis	36.67	5.02	0.01
During Crisis	24.97	3.53	-2.29

- Interbank lending activities dropped
- by 32% in number
- by 30% in value
- Average interest spread dropped by 2.3 bps .

Interbank Lending: Loan Size Distribution (4pm-6:30pm)

Lending of small loans dropped.

Interbank Lending: Interest Distribution

Before Crisis: cluster in the middle of the band

Interbank Lending: Interest Distribution

During Crisis: cluster at the bottom of the band

Central Bank Facilities (6:30pm)

Period	Deposit Freq.	Average Size	Borrow Freq.	Average Size
Pre-Crisis	90%	7 mil.	10%	37 mil.
Crisis	98%	213 mil.	2%	164 mil.

- Before Crisis:
- Use deposit facility more often than lending facility.

Central Bank Facilities (6:30pm)

Period	Deposit Freq.	Average Size	Borrow Freq.	Average Size
Pre-Crisis	90%	7 mil.	10%	37 mil.
Crisis	98%	213 mil.	2%	164 mil.

- Before Crisis:
- Use deposit facility more often than lending facility.
- During Crisis:
- Usage of deposit facility increased. Average size of deposit increased a lot.
- Usage of lending facility dropped.

But average size of loans increased a lot.

