Liquidity, Productivity and Efficiency

Ehsan Ebrahimy

University of Chicago

August 9, 2011

Ehsan Ebrahimy

Liquidity, Productivity and Efficiency

-p. 1

Introduction ____

- Efficiency of private liquidity provision:
 - $\circ \ \text{Liquidity} \equiv \text{Pledgeability}$
 - $\circ~$ Existing literature abstracts from:
 - Investment heterogeneity
 - Endogeneity of the assets' liquidity choice
 - $\circ~$ Investment heterogeneity \Rightarrow Endogenous liquidity choice
 - Farhi and Tirole (2011)

Introduction _____

- Key features:
 - $\circ~$ Limited pledgeability:
 - Limited commitment
 - Limited enforcement
 - Moral hazard
 - $\circ \ \ {\rm Higher \ returns} \Rightarrow {\rm Lower \ pledgeability}$

Outline _____

- $\bullet\,$ Model Setup
- Competitive Equilibrium
- Steady States
- Efficiency and Welfare

Model Setup: Preferences and Technology ____

- OLG economy of entrepreneurs
 - $\circ~$ Young, middle aged and old
 - $\circ~$ Unit measure of each for $t\geq 0$
 - Young receives e > 0 perishable consumption goods
 - Middle aged invest in:
 - Type *i*, return and pledgeability $(R_i, \theta_i R_i)$
 - Type ℓ , return and pledgeability $(R_{\ell}, \theta_{\ell} R_{\ell})$
 - $\circ~$ Consume only when old

Model Setup: Problem of the Middle Aged _____

• Middle aged at t > 0 solves:

$$\max_{\substack{i_{t}, x_{it}, x_{\ell t} \ge 0 \\ s.t.}} R_{i} x_{it} + R_{\ell} x_{\ell t} - (1+r_{t}) i_{t}$$

$$s.t. \quad x_{it} + x_{\ell t} \le (1+r_{t-1})e + i_{t}$$

$$(1+r_{t}) i_{t} \le \theta_{i} R_{i} x_{it} + \theta_{\ell} R_{\ell} x_{\ell t}$$

- x_{it} and $x_{\ell t}$ investment in type i and ℓ
- i_t , funds borrowed from young at t
- $(1 + r_{t-1})e$ is return to past investment

Assumption. $R_i > R_\ell > 1$ and $\theta_i R_i < \theta_\ell R_\ell < 1$.

Competitive Equilibrium ____

Lemma. If $1 + r_t < R_i$, borrowing constraint of the middle aged entrepreneurs binds at t.

• If borrowing constraint binds at t > 0, middle aged solves:

$$\max_{i_t} \quad \Lambda(\boldsymbol{\theta}, \boldsymbol{R}; r_t)i_t + \Phi(\boldsymbol{\theta}, \boldsymbol{R}; r_{t-1})e$$

s.t. $\left(\frac{\theta_i R_i(1+r_{t-1})}{1+r_t - \theta_i R_i}\right)e \leq i_t \leq \left(\frac{\theta_\ell R_\ell(1+r_{t-1})}{1+r_t - \theta_\ell R_\ell}\right)e.$

Original problem:

$$\max_{\substack{i_t, x_{it}, x_{\ell t} \ge 0}} R_i x_{it} + R_\ell x_{\ell t} - (1 + r_t) i_t$$
s.t.
$$x_{it} + x_{\ell t} \le (1 + r_{t-1})e + i_t$$

$$(1 + r_t) i_t \le \theta_i R_i x_{it} + \theta_\ell R_\ell x_{\ell t}$$

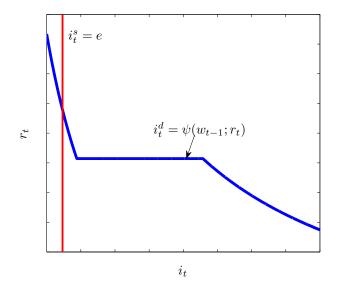
Competitive Equilibrium ____

• $\Lambda(\theta, \mathbf{R}; r_t)$ is net return of increase in i_t while FC binds:

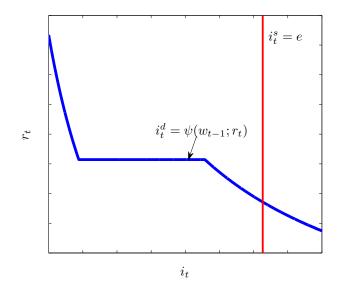
$$\Lambda(\boldsymbol{\theta}, \boldsymbol{R}; r_t) \equiv \left(\frac{(\theta_{\ell} - \theta_i)R_iR_{\ell}}{\theta_{\ell}R_{\ell} - \theta_iR_i}\right) - \left(\frac{(1 - \theta_i)R_i - (1 - \theta_{\ell})R_{\ell}}{\theta_{\ell}R_{\ell} - \theta_iR_i}\right)(1 + r_t)$$

- To increase i_t by $\epsilon > 0$
- Borrowing constraint binds: $(1 + r_t)i_t = \theta_i R_i x_{it} + \theta_\ell R_\ell x_{\ell t}$
 - $x_{it} \downarrow$ by $\delta > 0$
 - $x_{\ell t} \uparrow$ by $\epsilon + \delta$
- Investment size \uparrow , return $\downarrow \Rightarrow$ net gain $\Lambda(\theta, \mathbf{R}; r_t)\epsilon$
- $\Lambda(\boldsymbol{\theta}, \boldsymbol{R}; r_t)$ can be positive or negative

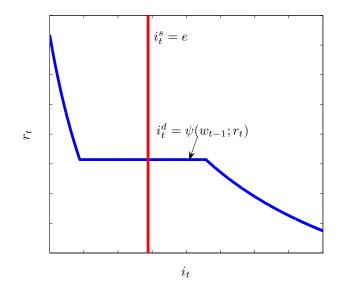
Demand and Supply of Fund ____



Demand and Supply of Fund _



Demand and Supply of Fund ____



Competitive Equilibrium _____

Definition. Let $1 + r_{\Lambda}(\boldsymbol{\theta}, \boldsymbol{R})$ be the gross interest rate that makes $\Lambda(\boldsymbol{\theta}, \boldsymbol{R}; r_t)$ zero:

$$1 + r_{\Lambda}(\boldsymbol{\theta}, \boldsymbol{R}) \equiv \frac{(\theta_{\ell} - \theta_i)R_i R_{\ell}}{(1 - \theta_i)R_i - (1 - \theta_{\ell})R_{\ell}}$$

- Market clearing $i_t = e$
- Market clearing + optimal policy of middle aged:

$$\begin{cases} 1+r_t = \theta_\ell R_\ell(2+r_{t-1}) & \text{If } \theta_\ell R_\ell(2+r_{t-1}) < 1+r_\Lambda(\theta, \mathbf{R}) \\ \\ 1+r_t = \theta_i R_i(2+r_{t-1}) & \text{If } \theta_i R_i(2+r_{t-1}) > 1+r_\Lambda(\theta, \mathbf{R}) \\ \\ 1+r_t = 1+r_\Lambda(\theta, \mathbf{R}) & \text{Otherwise} \end{cases}$$

Competitive Equilibrium ____

Definition. A competitive equilibrium is a sequence of $\{i_t, x_{it}, x_{\ell t}, r_t\}_{t=0}^{\infty}$ and initial wealth $w_{-1} = (1 + r_{-1})e$ that maximize consumption for the old entrepreneur, satisfy the interest rate conditions above and $1 + r_t < R_i$ for all t > 0.

Steady State _____

- F set of (θ, \mathbf{R}) that:
 - $\circ \ R_i > R_\ell > 1 \text{ and } \theta_i R_i < \theta_\ell R_\ell < 1$
 - $\circ~$ Financing constraint binds at SS
- $F = F_{\ell} \cup F_m \cup F_i$ such that at SS:
 - \circ Only liquid in $\ F_\ell$
 - Mix of both in F_m
 - $\circ~$ Only illiquid in F_i

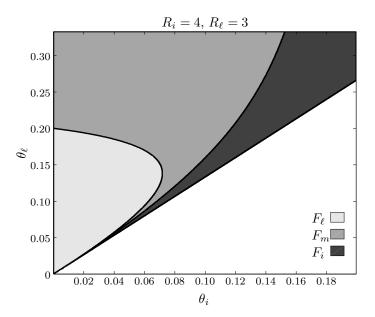
Steady State ____

Lemma. For any $(\theta, \mathbf{R}) \in F$, there is a unique and stable steady state equilibrium where:

$$1 + r_{\ell}^{ss} = \frac{\theta_{\ell} R_{\ell}}{1 - \theta_{\ell} R_{\ell}} \text{ if } (\boldsymbol{\theta}, \boldsymbol{R}) \in F_{\ell}$$
$$1 + r_{m}^{ss} = 1 + r_{\Lambda}(\boldsymbol{\theta}, \boldsymbol{R}) \text{ if } (\boldsymbol{\theta}, \boldsymbol{R}) \in F_{m}$$
$$1 + r_{i}^{ss} = \frac{\theta_{i} R_{i}}{1 - \theta_{i} R_{i}} \text{ if } (\boldsymbol{\theta}, \boldsymbol{R}) \in F_{i}$$

Proposition. Given any $(\boldsymbol{\theta}, \boldsymbol{R}) \in F$, and an initial condition $1 + r_{-1} < R_i$, there exists a unique competitive equilibrium that converges to the steady state corresponding to $(\boldsymbol{\theta}, \boldsymbol{R})$ which is given in the above lemma.

Steady State



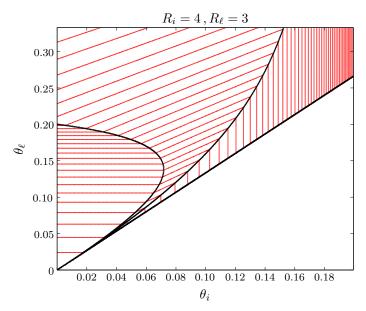
Steady State: Properties of Equilibria _

- $1 + r^{ss}$: non-monotone in θ_i monotone in θ_ℓ
 - $\circ~$ Investment demand $\uparrow~$
 - $\circ~$ Substitution effect

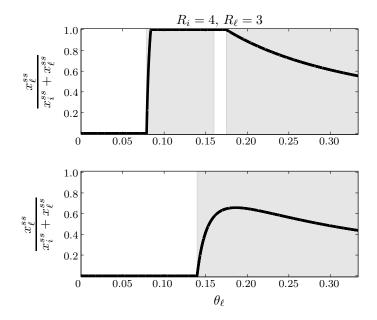
Decline in the real interest rates after 90s $\rightarrow \theta_i \uparrow$

- $\frac{x_{\ell}^{ss}}{x_{i}^{ss} + x_{\ell}^{ss}}$: monotone in θ_{i} / non-monotone in θ_{ℓ} • Partial Eqm: $\theta_{\ell} \uparrow \Rightarrow \frac{x_{\ell}^{ss}}{x_{\ell}^{ss} + x_{\ell}^{ss}} \uparrow \quad \theta_{i} \uparrow \Rightarrow \frac{x_{\ell}^{ss}}{x_{\ell}^{ss} + x_{\ell}^{ss}} \downarrow$
 - $\circ \ \text{General Eqm:} \ \theta_\ell \uparrow \Rightarrow r^{ss} \uparrow \qquad \quad \theta_i \uparrow \Rightarrow r^{ss} \downarrow \uparrow$

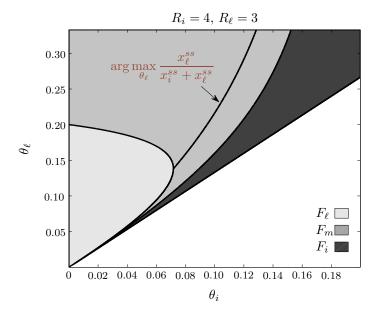
Steady State: Interest Rate Contour .



Steady State: High and Low θ_i .



Steady State: Properties of Equilibria



Ehsan Ebrahimy

Efficiency and Welfare ____

Definition. A competitive equilibrium is **constrained Pareto efficient** if a social planner cannot make at least someone strictly better off while keeping all others at least as well off by a reallocation that respects the pledgeability constraint.

• Constrained Pareto efficient $\Leftrightarrow \{c_t^*, x_{it}^*, x_{\ell t}^*\}_{t=0}^{\infty}$ solves:

$$\max_{\substack{\{c_t, x_{it}, x_{\ell t}\}_{t=0}^{\infty}}} \sum_{t=0}^{\infty} \lambda_t c_t$$
$$c_t + x_{it} + x_{\ell t} \leq \underline{R_i} x_{it-1} + \underline{R_\ell} x_{\ell t-1} + e$$

 $x_{it} + x_{\ell t} \le \theta_i R_i x_{it-1} + \theta_\ell R_\ell x_{\ell t-1} + e$

 $\lambda_t > 0$ are Pareto weights.

Efficiency and Welfare: A Reallocation _____

- Let $(\boldsymbol{\theta}, \boldsymbol{R}) \in F_{\ell} \cup F_m \Rightarrow x_{\ell}^{ss} > 0$
- Planner reduces $(1 + r^{ss})e$, by $\delta > 0$:
 - FC slack $\Rightarrow x_i \uparrow$, by $\epsilon > 0/x_\ell \downarrow$, by $\epsilon + \delta$
 - $\circ~$ Maximum ϵ when FC binds:

$$\begin{split} \delta = & (\theta_{\ell} R_{\ell} - \theta_{i} R_{i}) \epsilon + \theta_{\ell} R_{\ell} \delta \\ \epsilon = & \frac{1 - \theta_{\ell} R_{\ell}}{\theta_{\ell} R_{\ell} - \theta_{i} R_{i}} \delta \end{split}$$

Efficiency and Welfare: A Reallocation _

• Change in utility:

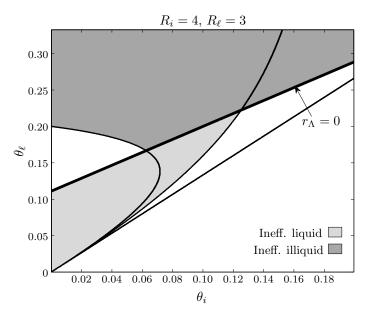
$$\Delta V^{ss} = \left(\frac{1 - \theta_{\ell} R_{\ell}}{\theta_{\ell} R_{\ell} - \theta_{i} R_{i}} R_{i} - \left(1 + \frac{1 - \theta_{\ell} R_{\ell}}{\theta_{\ell} R_{\ell} - \theta_{i} R_{i}}\right) R_{\ell} + 1\right) \delta$$

Proposition. For any $(\boldsymbol{\theta}, \boldsymbol{R}) \in F_{\ell} \cup F_m$, one has $\Delta V^{ss} \geq 0$, and consequently the steady state is constrained Pareto inefficient, if and only if $r_{\Lambda}(\boldsymbol{\theta}, \boldsymbol{R}) \leq 0$.

• Outside steady state:

Lemma. Given $(\boldsymbol{\theta}, \boldsymbol{R}) \in F_{\ell} \cup F_m$, if $r_{\Lambda}(\boldsymbol{\theta}, \boldsymbol{R}) \leq 0$ any competitive equilibrium is constrained Pareto inefficient.

Inefficient Equilibria



Efficiency and Welfare: A Reallocation _

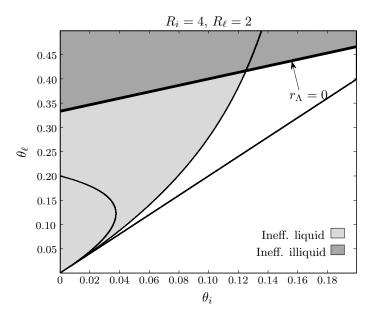
Proposition. All competitive equilibria in F_{ℓ} are constrained Pareto inefficient if and only if:

$$\frac{R_i - R_\ell}{R_\ell - 1} > 1$$

• Pareto frontier of *F*?

Proposition. Given $(\theta, \mathbf{R}) \in F$, if $r_{\Lambda}(\theta, \mathbf{R}) > 0$ any allocation satisfying resource and pledgeability constraints with equality for $t \ge 0$, including all competitive equilibria, is constrained Pareto efficient. Moreover, any allocation satisfying resource and pledgeability constraints with equality for $t \ge 0$ such that $x_{\ell t} = 0, t \ge T$ for some $T \ge 0$, including all equilibria in F_i , is constrained Pareto efficient.

Inefficient Equilibria



Efficiency and Welfare: A Reallocation ____

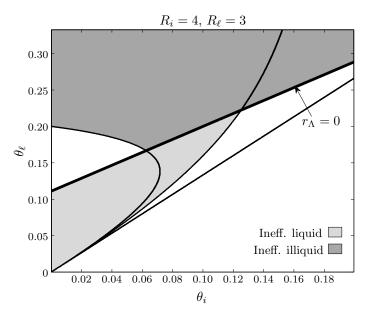
• Reinterpret OLG \rightarrow 3 infinitely lived agents:

$$\begin{cases} 0 & 1 & 2 & 3 & 4 & \dots \\ (y, & m, & o), & (y, & m, & \dots & (i) \\ m, & o), & (y, & m, & o), & \dots & (ii) \\ o), & (y, & m, & o), & (y, & \dots & (iii) \end{cases}$$

• Discount factor $\beta \in (0, 1)$

Proposition. A competitive equilibrium for $(\boldsymbol{\theta}, \boldsymbol{R}) \in F_m \cup F_i$ such that $r_{\Lambda}(\boldsymbol{\theta}, \boldsymbol{R}) > 0$ reinterpreted as above is constrained Pareto inefficient, if $\bar{\beta}(\boldsymbol{\theta}, \boldsymbol{R}) \leq \beta < 1$ for some threshold $\bar{\beta}(\boldsymbol{\theta}, \boldsymbol{R}) \in (0, 1)$.

Inefficient Equilibria



Efficiency and Welfare: Regulated Economy _

- Pareto reallocation \leftrightarrow regulating $\alpha_t = \frac{x_{\ell t}}{x_{it} + x_{\ell t}}$:
 - Inefficiently liquid $\rightarrow \alpha_t \downarrow$
 - Inefficiently illiquid $\rightarrow \alpha_t \uparrow$

Proposition. A Pareto improving reallocation for a small enough $\delta > 0$ can be implemented by a regulation that sets $\alpha_t = \alpha_t^*$ for $t \ge T$ where $T \ge 0$ for the OLG as well as the reinterpreted economy. For inefficiently liquid equilibria, this regulation can result in an allocation on the Pareto frontier.

Efficiency and Welfare: Regulated Economy _____

• $(\boldsymbol{\theta}, \boldsymbol{R}) \in F_{\ell}$ and $w_{t-1} = (1 + r_{t-1})e$ low:

$$\max_{\substack{i_t, x_{it}, x_{\ell t} \ge 0 \\ s.t.}} R_i x_{it} + R_\ell x_{\ell t} - (1+r_t) i_t$$

$$s.t. \quad x_{it} + x_{\ell t} \le w_{t-1} + i_t$$

$$(1+r_t) i_t \le \theta_i R_i x_{it} + \theta_\ell R_\ell x_{\ell t}$$

Unregulated Eqm:

Regulated Eqm ($\alpha_t = 0$):

$$\begin{cases} i_t = e \\ 1 + r_t = \theta_\ell R_\ell (2 + r_{t-1}) \\ V = (1 - \theta_\ell) R_\ell (w_{t-1} + e) \end{cases} \qquad \begin{cases} \widetilde{i}_t = e \\ 1 + \widetilde{r}_t = \theta_i R_i (2 + r_{t-1}) \\ \widetilde{V} = (1 - \theta_i) R_i (w_{t-1} + e) \end{cases}$$

•
$$\widetilde{V} > V \Leftrightarrow (1 - \theta_i)R_i > (1 - \theta_\ell)R_\ell \checkmark$$

Efficiency and Welfare: Regulated Economy _____

•
$$r_{\Lambda}(\boldsymbol{\theta}, \boldsymbol{R}) \leq 0 \Leftrightarrow \frac{(1-\theta_i)R_i}{1-\theta_i R_i} \geq \frac{(1-\theta_\ell)R_\ell}{1-\theta_\ell R_\ell}$$

• Note that $V^{ss}(\boldsymbol{\theta}, \boldsymbol{R}) =$

$$\circ \frac{(1-\theta_i)R_i}{1-\theta_iR_i}, \text{ investing only in type } i$$

$$\circ \ \frac{(1-\theta_{\ell})R_{\ell}}{1-\theta_{\ell}R_{\ell}}, \text{ investing only in type } \ell$$

• Low
$$w_{t-1} = (1 + r_{t-1})e \to \log \theta$$

Efficiency and Welfare: Regulated Economy _____

• In efficiently illiquid $\rightarrow \alpha \uparrow$

 $\circ \ r_t^{CE} > 0, \, \text{Pareto reallocation} \rightarrow r_t^{PO} > r_t^{CE} > 0$

- $\circ~$ More traditional
- Inefficiently liquid $\rightarrow \alpha \downarrow$

o $~r_t^{CE} \leq 0,$ Pareto reallocation $\rightarrow r_t^{PO} < r_t^{CE} < 0$

- $\circ \ \mbox{Overinvestment} \rightarrow r_t^{CE} < 0 \,, \ \ r_t^{CE} < r_t^{PO} < 0 \label{eq:constraint}$
- $\circ~$ Sign of r_t^{CE} can be a misleading indicator

Conclusion .

- Endogenous liquidity choice \rightarrow Investment heterogeneity
- Positive implications:
 - Share of liquid type \rightarrow non-monotone in θ_{ℓ}
 - Interest rate \rightarrow non-monotone in θ_i
- Normative implications:
 - $\circ~$ Endogenous liquidity \rightarrow pecuniary externality \rightarrow inefficiency
 - Inefficiently liquid / Inefficiently illiquid (more traditional)
 - $\circ~$ Pareto reallocation \equiv regulating share of liquid investment
 - $\circ~$ Sign of interest rate \rightarrow misleading indicator of inefficiency
- Effect of bubbles or public liquidity?