Optimal Unconventional Monetary Policy

Chao Gu

Joseph Haslag

University of Missouri

University of Missouri

August 10, 2011

Optimal Unconventional Monetary Policy

Introduction

 Liquidity problems occur because there is a mismatch between assets and liabilities

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Rarely, such mismatches lead to financial crises

Introduction

Observation:

- Federal Reserve began purchasing private securities in 2008 (for example, Maiden Lane I, II, and III)
- QE I: \$1128 billion in purchase of mortage-backed securities (February 2009 to July 2010) and \$169 billion in purchase of agency securities (September 2008 to April 2010)

Optimal Unconventional Monetary Policy

Introduction

Question:

- Is this "new" practice optimal?
- Our aim is to build a framework that can answer this question.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Related literature

- Unconventional monetary policy: Williamson (2010), Gertler and Karadi (2011)
- Framework draws on settlement friction a la' Freeman (1996)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Diamond-Dybvig (1983) type of liquidity shock

Environment Time, locations and agents

- Infinite sequence of discrete time periods
- Three islands: creditor, debtor, settlement
- Both creditor and debtor live for 3 periods (OG)
- Continuum of measure one of each type born each period

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 Each young creditor endowed with κ units of generation-specific capital

Each young debtor endowed with 1 unit of labor

Labor is a general input

Environment

Technologies

- Young debtor can instantaneously and linearly transform labor into units of any consumption good
- Young debtor employs capital in either a short term or long term production process
 - ▶ short term technology f (k) with properties: one period maturity f' > 0, f'' < 0</p>
 - long term technology Af (k) with properties: two period maturity A > 1

Environment

Preferences

- Debtor: $-g(I_t) + u(x_{2,t+1} + x_{3,t+2})$
 - labor is costly and generation-specific consumption good enjoyed either when middle aged or old
- Creditor: $v(q_{2,t+1} + q_{3,t+2})$
 - enjoy generation-specific consumption good either when middle aged or old

perfect substitutes

Environment

Timing

- Young debtor travels to creditor island (acquires capital from young creditors)
- Young debtor returns and capital is employed in either short term or long term technology
- Young debtor's labor is used to produce consumption good

Young creditors stay home

Environment Timing

- Middle-aged creditors arrive at settlement island
- Short-term production is completed
- All middle-aged debtors arrive at settlement island

All middle-aged leave for debtor island

Environment

- Long-term production is completed
- All old debtors arrive at settlement island
- 1α measure of old creditors arrive at settlement island

All old leave for debtor island

Planner's stationary allocation

Consider stationary allocations

$$\max_{\substack{l_{1},l_{1}^{*},x_{2},x_{2}^{*},x_{3},x_{3}^{*}\\q_{2},q_{2}^{*},q_{3},q_{3}^{*},k,k^{*},\lambda}} \theta \left\{ \begin{array}{l} \lambda \left[-g\left(l_{1}\right) + u\left(x_{2} + x_{3}\right) \right] + \\ \left(1 - \lambda\right) \left[-g\left(l_{1}^{*}\right) + u\left(x_{2}^{*} + x_{3}^{*}\right) \right] \end{array} \right\} \\ + \left(1 - \theta\right) \left\{ \begin{array}{l} \left(1 - \alpha\right) v\left(q_{2} + q_{3}\right) + \\ \alpha v\left(q_{2}^{*} + q_{3}^{*}\right) \end{array} \right\}$$

s.t.

$$\begin{split} \lambda \left[l_{1} + f(k) \right] + (1 - \lambda) \left[l_{1}^{*} + Af(k^{*}) \right] &= \\ (1 - \alpha) \left(q_{2} + q_{3} \right) + \alpha \left(q_{2}^{*} + q_{3}^{*} \right) + \lambda \left(x_{2} + x_{3} \right) + (1 - \lambda) \left(x_{2}^{*} + x_{3}^{*} \right) \\ \kappa &= \lambda k + (1 - \lambda) k^{*} \\ 0 &\leq \lambda \leq 1 \end{split}$$

Planner's stationary allocation

The allocation is characterized by

$$egin{array}{rcl} \hat{\lambda} &=& 0 \ \hat{k}^{*} &=& \kappa \ \hat{q}_{2} + \hat{q}_{3} &=& \hat{q}_{2}^{*} + \hat{q}_{3}^{*} \ g'\left(\hat{l}_{1}^{*}
ight) &=& u'\left(\hat{x}_{2}^{*} + \hat{x}_{3}^{*}
ight) \ g'\left(\hat{l}_{1}^{*}
ight) &=& rac{1- heta}{ heta} \mathsf{v}'\left(\hat{q}_{2}^{*} + \hat{q}_{3}^{*}
ight) \end{array}$$

Planner's stationary allocation

- Planner allocates all capital to long-term technology
- Creditor's consumption is independent of travel schedule

Additional issues

- Middle-aged and old agents are endowed with fiat money M
- Money is universally verifiable
- IOUs are verifiable but only on settlement island
- ► IOUs are state contingent with short term interest rate normalized to one and long-term rate equal to γ ≥ 1
- IOUs redeemed by either money or goods
- \blacktriangleright There a secondary market for IOUs, the price of unredeemed IOUs sold here is denoted $\rho \leq 1$

Travel pattern

- Young debtor exchanges IOU for young creditor's capital
- Young debtors accept money for labor-produced goods sold to middle-aged and old agents
- Short-term producers settle all debts with middle-aged creditors
- Non-returning (middle-aged) creditors sell unredeemed IOUs
 - potential buyers are short-term producers and returning creditors
- Long-term producers settle all debts with IOU holders

Creditor's problem

max
$$(1-\alpha) v (q_2+q_3) + \alpha v (q_2^*+q_3^*)$$

s.t.

$$\frac{\left[\rho\left(1+\gamma\right)\left(1-a\right)+a\right]p_{k}\kappa = p_{x}\left(q_{2}+q_{3}\right)}{\rho}$$
$$\frac{\rho\left(1+\gamma\right)\left(1-a\right)+a}{\rho}p_{k}\kappa = p_{x}q_{3}^{*}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Optimal Unconventional Monetary Policy

Lemma 1

In equilibrium, $ho\left(1+\gamma
ight)=1$

-the non-arbitrage condition

Short-term producer's problem

$$\max -g\left(l_{1}\right)+u\left(x_{2}+x_{3}\right)$$

s.t

$$f(k) + l_1 - \frac{p_k}{p_x}k = \rho(x_2 + x_3)$$

FOCs:

$$f'(k) - \frac{p_k}{p_x} = 0$$
$$g'(l_1) - \frac{1}{\rho}u'(x_2 + x_3) = 0$$

Long-term producer's problem

$$\max -g(l_1^*) + u(x_2^* + x_3^*)$$

s.t.

$$Af(k^*) + (1+\gamma)\left(l_1^* - \frac{p_k}{p_x}k^*\right) = x_3^*$$

FOCs:

$$Af'(k^*) - \frac{1}{\rho} \frac{p_k}{p_x} = 0$$

$$g'(l_1^*) - \frac{1}{\rho} u'(x_3^*) = 0$$

Optimal Unconventional Monetary Policy

Equilibrium

Definition:

(i) debtors and creditors maximize expected lifetime utility, taking prices as given;

(ii) all markets clear; and

(iii) the subjective distribution of production types is equal to the objective distribution of production types

Market clearing conditions

 Usual goods market, capital market, money market and loan market clearing conditions.

- ► IOU resale market clearing condition: $\lambda f(k) + l_1^* \ge (1 - \alpha) \rho A f'(k^*) \kappa$
- The inequality holds if and only if $\rho = 1$.

Proposition

Proposition 1: The equilibrium measure of long-term producers is strictly positive, or $\lambda_t < 1$. With $\lambda_t > 0$, both short-term producers and long-term producers choose $k = k^* = \kappa$.

Intuition: If all debts are paid off in short term, there will be no profit in the IOU resale market. A debtor can be better off by choosing the long term production.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Stationary equilibrium

In stationary equilibrium,

$$g'(l_1^*) = \frac{1}{\rho}u'(x_3^*), \ x_2^* = 0$$
$$l_1 = l_1^*, \ x_2 = x_2^*, \ x_3 = x_3^*$$
$$k = k^* = \kappa$$

Three mutually exclusive and complementary cases:

► Case 1: $\lambda = 0$, $\rho = 1$, and $l_1^* \ge (1 - \alpha) Af'(\kappa) \kappa$. (ample liquidity)

Stationary equilibrium – an example

Utility fcns:
$$-g(l_1) + u(x_2 + x_3) = \phi \sqrt{1 - l^2} + \frac{(x_2 + x_3)^{1-\sigma}}{1-\sigma}$$

 $v(q_2 + q_3) = \frac{(q_2 + q_3)^{1-\sigma}}{1-\sigma}, \sigma = 1.5, \phi = 4.$
Production fcn: $f(k) = k^{1/3}, A = 1.5, \kappa = 1.$

Optimal Unconventional Monetary Policy — Decentralized Economy

Proposition

Proposition 2: The stationary equilibrium in the decentralized economy achieves the planner's allocation for some welfare weight θ if and only if the equilibrium is in case 1.

A three-step central bank operation

- 1. The central bank issues money to buy IOUs at ho=1.
- 2. IOUs are redeemed by long-term producers using consumption goods next period.

- The central bank sells consumption goods on the debtor island to redeem money. Also
- 4. A lump-sum tax-transfer scheme to achieve the welfare weights.

A three-step central bank operation

With the central bank policy

- ▶ No profit in the IOU resale market. No short term production.
- ▶ No distortion in debtor's intertemporal marginal substitution.
- The total money stock is constant.
- As long as l̂ ≤ (1 − α) Af' (κ) κ, there is no active central bank trading in the IOUs resale market.

Fisherian creditors

- ► The preference of the non-returning creditors is modified to u(q_{2t+1}). All others remain the same.
- Old-age consumption cannot substitute for middle age consumption.
- The stationary equilibrium in the decentralized economy without policy intervention does not change.

Planner's allocation

► Additional constraint: $\lambda \left[l_1 + f \left(k \right) \right] + (1 - \lambda) l_1^* \ge (1 - \alpha) q_2$

Three mutually exclusive and complementary cases:

- 1. perfect risk sharing
- 2. rationing with all long-term production
- 3. mixed short-term and long-term production

Optimal policy

To implement the planner's allocation, the central bank use the same 3-step operations,

• except that
$$ho = rac{u'(\hat{x}_3^*)}{g'(\hat{l}_1^*)}$$

- the lump-sum tax-transfer scheme is bounded from implementing transfers to the early-settling creditors
- ► there is no active central bank trading if $\hat{q}_2 \leq Af'(\kappa) \kappa$ in PA I and $\hat{q}_2 = \frac{u'(\hat{x}_3^*)}{g'(\hat{l}_1^*)} Af'(\kappa) \kappa$ in PA II and III.

Conclusion

- We construct a model to think about unconventional monetary policy.
- Unconventional monetary policy alleviates liquidity problem in the private debt market.
- Monetary policy is not only about the total quantity of money (aggregate money growth rate), it is also about the amount of liquidity in a specific market.