Search and the Dynamics of House Prices and Construction

Allen Head, Huw Lloyd-Ellis, Amy Hongfei Sun Queen's University

Chicago Fed Summer Workshop

August 17, 2011

We develop a theory of serial autocorrelation in both house price growth and the rate of construction in response to city-specific relative income shocks, based on search in the housing market.

- "Momentum" in these variables is driven by anticipated changes in the time it takes to sell houses-that is, their *liquidity*.
- The theory accounts well qualitatively for the joint dynamics of city-level income, house prices, construction, and population growth.

Empirical observations on city-level house prices

- Price changes exhibit strong positive serial correlation, with long-run mean reversion
 - ► Glaeser, Gyourko, Morales & Nathanson (2010)
 - Abraham & Hendershott (1996), Meen (2002)
- Much of the variation in prices is local, rather than aggregate
 - ► Del Negro & Otrok (2006), Allen, Amano, Byrne & Gregory (2007)
- Local income plus supply constraints help account for relative prices across cities in long run.
 - Van Nieuwerburgh & Weill (2010)

Dynamics of income, house prices, construction, and population growth for a panel of U.S. cities.

- 98 US cities (MSA's), Annual 1980-2008
- y_{ct}: log per capita income less construction earnings (BEA REIS)
- *p_{ct}*: log house prices (combines FHFA repeat-sales index with Census values)
- g_{ct}^{H} : growth of housing stock (combines HUD permit data with Census stocks)
- g_{ct}^N : growth of population (BEA REIS)
- cross-sectional means removed at each date.

Structural Panel VAR

$$\mathsf{BX}_{ct} = \sum_{i=1}^{K} \mathsf{A}_i \mathsf{X}_{c,t-i} + \mathsf{F}_c + \varepsilon_{ct}$$

- $\mathbf{X}_{ct} = [y_{ct}, p_{ct}, g_{ct}^{H}, g_{ct}^{N}]'$
- B, A: coefficient matrices
- **F**_c: vector of city fixed effects
- $\varepsilon_{ct} = [\varepsilon_{ct}^{y}, \varepsilon_{ct}^{p}, \varepsilon_{ct}^{h}, \varepsilon_{ct}^{n}]'$: vector of structural shocks

Baseline Characterization

- Estimate VAR with 2 lags
- System GMM estimator of Arellano and Bover (1995) and Blundell and Bond (1998)
 - \blacktriangleright instrument using deviations from forward mean \Longrightarrow just identified
- Imposed structure:
 - all shocks that affect y_{ct} contemporaneously (and which persist) also affect p_{ct}, g^H_{ct} and g^N_{ct} contemporaneously
- Focus on the impact of income shocks

Figure: Response to Local Income Shock

Summary statistics- All shocks

	Relative Corr. with Autocorrelat			rrelation	ation		
	Std. Dev.	Inc. growth	year 1	year 2	year 3	year 4	
Income growth	1.00	1.00	0.24	0.02	-0.06	-0.08	
Price Appreciation	2.66	0.41	0.41	0.12	-0.03	-0.08	
Construction Rate	0.35	0.18	0.76	0.52	0.34	0.20	
Population Growth	0.53	0.25	0.43	0.33	0.19	0.12	

- Growth rates of prices, construction, and population exhibit more autocorrelation than that of local income
- Price appreciation is relatively volatile
- Population growth is more volatile than construction, but less persistent
- Prices and populations strongly correlated with local income; construction less so.

Summary – Income Shocks

	Relative	Corr. with	Autocorrelation			
	Std. Dev.	Inc. growth	year 1	year 2	year 3	year 4
Income growth	1.00	1.00	0.24	0.02	-0.05	-0.08
Price Appreciation	1.35	0.80	0.71	0.30	0.03	-0.11
Construction Rate	0.11	0.46	0.89	0.66	0.41	0.21
Population Growth	0.18	0.71	0.71	0.45	0.25	0.12

- Similar to pattern for all shocks
- Income shocks account for roughly half of price volatility
- Income shocks have very persistent effects on price growth, construction, and population growth

Consider several alternative specifications

- Restrict income process to be univariate AR(2)
- Alternative estimators: within-group, no fixed effects
- Use growth rates in incomes and prices
- Alternative income measures: earnings per capita, wage per job
- Alternative construction rate measures
- Variation in ordering of variables in VAR
- Regional sub-samples of cities

Figure: Local Income Shock by Sub-sample

Price dynamics have been a challenge to theory

- "The behavior of house prices is a serious challenge to the efficient markets view." Case & Shiller (1989)
- "As yet there is no well-developed theory of the dynamics of house prices at the city level." Capozza, Hendershott & Mack (2004)
- "Our model fails utterly at explaining high frequency positive serial correlation of price changes." Glaeser et al. (2010)

Search has been useful for understanding several aspects of housing markets:

- Positive co-movement of prices with sales
 Wheaton (1990); Rios-Rull & Sanchez-Marcos (2007)
- Negative correlation of prices/sales with time-on-the market Krainer (2008); Albrecht et al. (2007); Han and Genesove (2010)
- Negative correlation of vacancies and price growth Caplin & Leahy (2008)
- Different pricing protocols and volatility

Diaz and Jerez (2010); Albrecht, Gauthier, and Vroman (2010)

We use search to consider the effect of income shocks...

Suppose that a city's *per capita income* rises temporarily relative to that in other cities:

- People move into that city at a faster rate than trend.
- They need housing. At first they rent while searching for an appropriate home to buy:
 - vacant houses are offered for rent.
 - the market for homes becomes *tighter* over time reducing the time it takes to sell one and raising prices.
- House prices and rents rise, inducing increased construction.
- Eventually, as income returns to trend and increased supply reduces the liquidity of housing, city-level population growth, construction, and house prices return to trend.

An Economy with Housing, Construction, and Search

- Time is discrete
- There is one *city* and the rest of the world.
- Population, Q_t , (growing at rate, μ) of identical households with discount factor, β .
- Households in the city require housing:
 - ▶ may rent at rate, *r*_t.
 - may purchase for price, P_t , and pay maintainence, m, per period
 - housing units are ex ante identical

Preferences

$$\sum_{i=0}^{\infty} \beta^{i} E_{t} \left[c_{t+i} - A \ell^{1+\frac{1}{\eta}} + z_{t+i} \right]$$

- ► *c*_t: consumption
- *ℓ_t*: construction labour
- z_t: net housing services:

$$z_t = \begin{cases} z^H & \text{if live in own house} \\ 0 & \text{if rent or don't like house} \end{cases}$$

• Household income:

People and houses

• Population grows at rate μ :

• Owners exit city at rate π_n or become "mis-matched" at rate θ

• Potential entrants draw alternative values from stationary distribution $\mathcal{G}(\varepsilon)$

Construction

- Each new house requires one unit of land at cost q_t and 1/φ units of labor effort at wage, w_t, and takes one period to build.
- The land price satisfies

$$q_t = \overline{q} \left(rac{H_t}{H_t^*}
ight)^{rac{1}{\zeta}} \hspace{0.5cm} ext{where} \hspace{0.5cm} H_t^* = \mu^t H_0$$

• Construction labour supply:

$$egin{aligned} H_{t+t} &= H_t + \phi L_t & ext{ where } & L_t &= \left(egin{aligned} N_t + B_t + F_t
ight) \zeta w_t^\eta \end{aligned}$$

• Free entry:

$$\beta E_t \tilde{V}_{t+1} = \frac{w_t}{\phi} + q_t$$

Rentals

- Houses that are not owner-occupied can be either rented or held vacant-for-sale
- Value of a house which is not owner-occupied

$$\widetilde{V}_t = \max\left[\underbrace{r_t - m + \beta E_t \widetilde{V}_{t+1}}_{\text{if rented}}, \underbrace{V_t}_{\text{if vacant}}\right]$$

• Renters may or may not be searching for a house:

$$R_t \geq B_t + F_t$$

• Focus on interior case:

$$\widetilde{V}_t = r_t - m + \beta E_t \widetilde{V}_{t+1} = V_t$$

House sales:

- Competitive search (Moen, 1997)
- Sub-markets characterized by pairs (ω, P) where P is the price and ω the buyer-seller ratio:

$$\omega_t = \frac{B_t}{S_t}$$

 By entering sub-market (ω, P) the seller sells at price P with probability γ(ω):

$$\gamma(\omega) = \frac{M(B_t, S_t)}{S_t}$$

where M is a CRS matching function.

 Free entry by sellers requires open sub-markets to offer equal expected return:

$$\gamma\left(\omega_t(P_t)\right) = \frac{V_t - \beta E_t \tilde{V}_{t+1}}{P_t - \beta E_t \tilde{V}_{t+1}}.$$

House sales:

 Buyers choose a unique sub-market to enter knowing the price and matching rate λ(ω):

$$\lambda(\omega) = \frac{M(B_t, S_t)}{B_t}$$

• In equilibrium a unique "sub-market" opens with (ω, P) such that buyers' share of surplus = $\begin{array}{c} \text{elasticity of matching function}\\ \text{w.r.t. number of buyers} \end{array} = s(\omega_t)$

Buyers (searchers)

• Value of being a buyer:

$$W_t = u_t^R + \lambda(\omega_t) \left(\beta E_t J_{t+1} - P_t\right) + (1 - \lambda(\omega_t))\beta E_t W_{t+1}$$

where

$$u_t^R = y_t + x(w_t) - r_t$$

• Measure of buyers evolves according to

$$B_{t+1} = \underbrace{(1 - \lambda(\omega_t))B_t}_{\text{fail to buy}} + \underbrace{\theta(1 - \pi_n)N_t}_{\text{mis-matched}} + \underbrace{\psi G(\varepsilon_{t+1}^c)\mu Q_t}_{\text{new entrant buyers}}$$

Non-searching renters

• Value of being a renter:

$$W_t^f = u_t^R + \pi_f \beta Z + (1 - \pi_f) \beta E_t W_{t+1}^f.$$

Non-searchers

$$F_{t+1} = \underbrace{(1 - \pi_f)F_t}_{\text{stayed}} + \underbrace{(1 - \psi)G(\varepsilon_{t+1}^c)\mu Q_t}_{\text{new entrants}}$$

Entry into the City

• Value of new entrants:

$$ar{W}_t = \psi W_t + (1-\psi) W^f_t$$

• Marginal entrant is such that

$$\varepsilon_t^c = \bar{W}_t$$

• The alternative value is lost upon entry to the city.

Home-owners

• Value of being a home-owner:

$$J_t = u_t^H + \beta [\pi_n (Z + E_t V_{t+1}) + (1 - \pi_n) \theta (E_t W_{t+1} + E_t V_{t+1}) + (1 - \pi_n) (1 - \theta) E_t J_{t+1}]$$

where

$$u_t^H = y_t + x(w_t) + z^H - m$$

• Measure of home-owners evolves according to:

$$N_{t+1} = \underbrace{(1 - \pi_n)(1 - \theta)N_t}_{\text{continuing}} + \underbrace{\lambda(\omega_t)B_t}_{\text{new home buyers}}$$

House values

• Value of a vacant house for sale (mover or developer):

$$V_t = \gamma(\omega_t) P_t + (1 - \gamma(\omega_t)) \beta E_t V_{t+1}$$

• House Price:

$$P_t = (1 - s(\omega_t))\beta E_t \left[J_{t+1} - W_{t+1}\right] + s(\omega_t)\beta E_t V_{t+1}$$

Stationary Competitive Search Equilibrium

We consider Markov equilibria with state (y, h, n, b, f)

- Define a deterministic steady-state with y_t = ȳ for all t. Show that this is unique.
- ② Choose parameters consistent with a calibration to U.S. data.
- Specify a process for y_t.
 - An arbitrary AR(1) process
 - A process consistent with observed income dynamics from U.S. cities.
- Solve a log-linearized approximation in a neighborhood of the deterministic steady-state.

Calibration

Cobb-Douglas matching:

$$M = \kappa B^{\delta} S^{1-\delta}$$

- \Rightarrow buyer's share is constant: $s = \delta$
- \hookrightarrow can interpret as efficient random search with Nash bargaining
 - Elasticity of alternative value distribution:

$$\alpha = \frac{\varepsilon^c G'(\varepsilon^c)}{G(\varepsilon^c)}$$

- \hookrightarrow chosen to match relative volatility of population growth
 - Per capita income follows a persistent AR(1) process in logs.

Steady-state Calibration

Parameter	Value	Target
β	0.99	Annual real interest rate = 4%
μ	0.003	Annual population growth rate $= 1.2\%$
φ	0.00025	Quarterly permits/construction employment (hours)
π_f	0.03	Annual cross-county mobility of renters $= 12\%$
π_n	0.008	Annual cross-county mobility of owners $= 3.2\%$
heta	0.012	Fraction of moving owners that stay in $\mathrm{county}=60\%$
η	5	Median price elasticity of new construction $= 5$
ξ	1.75	Median price elasticity of land supply $= 1.75$
\overline{q}	3.84	Average land price-income ratio
ψ	0.42	Fraction of households that rent = 32%
т	0.0125	Average rent to average income ratio, $r^* = 0.137$
z^h	0.025	Zero net-of-maintenance depreciation
κ	0.76	Vacancy rate = 2%
δ	0.08	Months to sell $=$ months to buy
$\zeta^{rac{1}{\eta}}$	750	Price to quarterly income ratio, $P^{st}=12.8$

Compare to two simple alternative economies

• A No-search economy based on Glaeser et al (2010)

New entrants can purchase houses immediately (supply expands)

• A "Lucas-tree" economy:

Suppose that households can simply by a tree which represents a claim to the *per capita* income stream of the city without having to move there. Then the "house" price is given by:

$$P_t^L = E_t \sum_{i=0}^\infty \beta^i y_{t+i}$$

Qualitative Dynamics

In response to a shock to autonomous local income per capita:

• Population growth increases, persistently

- Buyers enter, and vacant houses are allocated to rentals
- Market tightness grows slowly, and equilibrium rents grow with a lag.

• House prices and construction increase over time

- Persistent reductions in the matching rate result in serially correlated increases in the value of vacant houses.
- Both the price of houses and the construction rate experience serially correlated growth as a result.
- Eventually, mean reversion of income reduces entry and anticipated declines in the matching rate drive both the construction rate and house price back to trend.

Quantitative Dynamics

- **Problem:** no quarterly city-level income data annual calibration imposes excessive time-on-the-market
- Our strategy:
 - calibrate quarterly income shock process to replicate key features of annual process
 - feed into model to generate simulated paths of "quarterly data".
 - compute annual statistics based on simulated paths

Relative Volatilities and Co-movements

Moment	US	Lucas	No	Baseline
	Cities	tree	search	search
σ_p/σ_y	1.35	0.40	0.90	0.67
σ_h/σ_y	0.11	-	0.18	0.17
σ_n/σ_y	0.18	-	0.18	0.18
σ_{py}	0.80	0.96	0.91	0.97
σ_{hy}	0.46	-	0.38	0.35
σ_{ny}	0.71	-	0.38	0.37

Autocorrelations

	US	Lucas	No	Baseline
Moment	Cities	tree	search	search
ρ_1^p	0.71	-0.01	-0.02	0.23
ρ_2^p	0.30	-0.04	-0.04	0.08
ρ_3^p	0.03	-0.04	-0.04	0.0
ρ_4^p	-0.11	-0.04	-0.04	-0.05
ρ_1^h	0.89	_	0.89	0.94
ρ_2^h	0.66	_	0.79	0.85
ρ_3^h	0.41	_	0.70	0.76
$\rho_4^{\bar{h}}$	0.21	_	0.61	0.67
ρ_1^n	0.71	_	0.89	0.88
ρ_2^n	0.45	-	0.79	0.78
$\rho_3^{\overline{n}}$	0.25	-	0.70	0.70
ρ_4^n	0.21	-	0.61	0.62

Sensitivity Analysis

Steady-state targets matched

	Base	Labor supply		Land		Vacancy		Entry	
	-line	elasticity, η		elasticity, $oldsymbol{\xi}$		Rate		elasticity, α	
		2	20	0.5	5	1%	3%	5	20
σ_p/σ_y	0.67	1.71	0.16	0.74	0.65	0.83	0.53	0.51	1.52
ρ_1^p	0.23	0.07	0.48	0.19	0.24	0.11	0.33	0.33	0.05

	Base	Exit		Matching		Housing	
	-line	prob., π_n		elasticity, δ		Utility, <i>z^H</i>	
		.004	.012	.01	.50	.01	.04
σ_p/σ_y	0.67	0.81	0.58	0.74	0.41	0.46	0.72
ρ_1^{ρ}	0.23	0.08	0.35	0.15	0.40	0.58	0.15

Conclusion

- In response to a shock to local income, a search-based theory of housing generates:
 - persistent increases in population growth
 - serially correlated growth of both house prices and construction rates
 - volatility
- These effects are driven by anticipated changes in the liquidity of houses driven by movements in market tightness.
- An economy without search cannot generate them.

Conclusion

• Qualitatively: these results are broadly consistent with the evidence:

- Relative city level price growth in response to income shocks is characterized by both short term serial correlation and long-term mean reversion.
- Construction rates have similar properties.
- Population growth is more volatile and less persistent than construction.
- *Quantitatively:* it remains difficult to match *both* the observed degrees of momentum and volatility in prices.