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Money appeared in a multitude of cultures independently.

Money facilitated trade across the Eurasia and beyond.

We want to study:

Can learning from experience justify the appearance of
interest in money?

Can learning be used to select an equilibrium of the
Kiyotaki-Wright model?
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Kiyotaki & Wright (1989): when goods become commodity
money, and when fiat money are good for economy.

Lagos & Wright (2005): endogenized the commodity money
supply.

Duffy & Ochs (1999): experiment on people — whether they
start playing KW equilibrium.

Ritter (1995): Government “advertizes” money => no money
is not an equilibrium.

Most important:

Burdett, Trejos and Wright (1999): how people learn to use
commodity money.

Evans and Honkapohja (2001): Learning Dynamics,
Stochastic Approximation

Williams (2002): Large Deviations

Our paper: how people learn to use fiat money.
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Time is discrete and infinite.

One coin in the economy.

Finite number of agents; they specialize in what they produce.

Goods and coin are indivisible, no storage costs.

Some agents like some other agents’ products.

Agents meet randomly and anonymously each period.
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U is utility from consumption of good.

c is disutility from production.

δ is a time discount factor.

p is the probability of mutual coincidence of wants; q is the
probability that only one agent wants the other agent’s good.

p + 2q ≤ 1.
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Agents meet in pairs.

If agents have mutual coincidence of wants, both of them will
trade with each other (get U).

If only one agent wants to trade, they might use money.
If desiring agent has money, she’d offer it (offering a coin is
free).
If the counteragent accepts money, trade occurs (seller gets a
coin; buyer loses a coin and gets U).

If both agents do not want their partner’s good, they will
depart.

At the end of the day, everyone who has no good produces
and pays cost c.
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Universal Rejection Equilibrium No one takes money — always
exists.
Universal Acceptance Equilibrium V0 is value of not having
money, V1 is value of having a coin.
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This is an equilibrium when V ∗
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Adaptive Learning

Agents have a belief about value of money Ṽ .

...start with belief of 0.

...updating: if agent
took money at period T1;
successfully traded it at moment T2;
at beginning of period T2 + 1 agent’s Ṽ becomes
γ(δT2−T1U) + (1 − γ)Ṽ .

Agents make a decision implementation error with probability
ε.

γ: Gain

ε: Error probability
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Beliefs follow the following dynamics:

Vt+1 = Vt + γ(δτ U − Vt)

Where τ is the random wait time until successful trade. It is
essentially an exponential wait time, depending on everyone’s
acceptance rules and the error probabilities.
Note that the time scale t refers to learning time.
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We can write this as

Vt+1 = Vt + γ(δτ U − Vt)

Vt+1 − Vt

γ
= δτ U − Vt

V̇ = δτ U − V

This is the continuous approximation. The equilibria of the learning
dynamic satisfy EV̇ = 0, or

V̄ = Eδτ U
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There are two such equilibria:

Under universal acceptance, the wait time τ can be
approximated by an exponential distribution with wait time qε,
leading to equilibria value of money

δqε

1 − δ(1 − qε)

Under universal rejection, the wait time is is given by q(1 − ε),
with value

δq(1 − ε)

1 − δ(1 − q(1 − ε))

These correspond exactly to the rational equilibria.
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Another way to view the dynamics:

V̇ = δτ U − V

V̇ = δτ U − V + V̄ − V̄

V̇ = (V̄ − V ) + (δτ U − V̄ )

V̇ = (V̄ − V ) + ξ

This consists of a drift towards the equilibrium and a bounded,
mean zero error.
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The dynamics of learning around the equilibria are described by
the mean dynamics of the learning algorithm:

˙̃V = E((V̄ − V ) − ξ)

˙̃V = (V̄ − V )

˙̃V = 0 at V = V̄

That is, both equilibria are stochastically stable.
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So, learning by itself does not select among rational equilibria;
both equilibria can be learned.

So long as errors are possible (ε > 0) and agents learn from
the past (γ > 0), the learning dynamic will spend some time
in both equilibria as t → ∞.

But, it may be possible to characterize how much time in each and
how difficult it is to leave each equilibrium.
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We did 1000 simulations for 100 thousand periods, to get a sense
of the behavior of the learning dynamic.
We use these values for the simulations:

δ = 0.95.

U = 1.

c = 0.1.

γ = 0.2.

ε = 1/200.
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Particular Structure of Economy

Agent 1

Agent 3 Agent 2

Figure: Agent 1 wants goods of 2 and 3.

Total of 8 agents.
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Agent 1

Agent 4 Agent 3 Agent 2

Figure: Agent 2 wants goods of 3 and 4.

Total of 8 agents.
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Agent 5 Agent 1

Agent 4 Agent 3 Agent 2

Figure: Agent 3 wants goods of 4 and 5.

Total of 8 agents.
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There is 185 observations of Ṽ > c going to Ṽ < c.

There is 7787 observations of Ṽ < c going to Ṽ > c.

These are not necessarily good estimates of equilibrium
probabilities; these are extremely unlikely tail events
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Assume agent 8 never ever ever accepts money.

It will slow down learning of agent 7: he has only one channel
for outflow of money.

It will slow down learning of agent 5: he has to deal with agent
7.

Will it prevent learning?

Will it be strategically optimal?

Naturally, if both agents 7 and 8 never accepted money, money
would never circulate.
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Assume agent 8 always accepts money.

It will speed up learning of agent 7: he has one channel that
will always take money.

It will speed up learning of agent 5: he can deal with agent 7.

Will it expedite total learning?

Will it be strategically optimal?



Introduction Baseline Model Simulations Robustness Checks Large Deviations Conclusion

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time, periods

B
el

ie
f i

n 
va

lu
e 

of
 m

on
ey

 

 

Baseline median
Baseline mean
Median for Agent 1
Median for Agent 4
Median for Agent 7
Mean for Agent 1
Mean for Agent 4
Mean for Agent 7

Figure: Mean Behavior of Learning.



Introduction Baseline Model Simulations Robustness Checks Large Deviations Conclusion

0 0.02 0.04 0.06 0.08 0.1 0.12
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Current belief in money value

P
ro

ba
bi

lit
y 

of
 u

si
ng

 m
on

ey
 n

ex
t p

er
io

d

Both counteragents do not use money

Figure: Your Counteragents Do Not Take Money.



Introduction Baseline Model Simulations Robustness Checks Large Deviations Conclusion

0 0.02 0.04 0.06 0.08 0.1 0.12
0.9

0.92

0.94

0.96

0.98

1

Current belief in money value

P
ro

ba
bi

lit
y 

of
 u

si
ng

 m
on

ey
 n

ex
t p

er
io

d

One of two counteragents is using money
Both counteragents use money

Figure: Your Counteragents Take Money.



Introduction Baseline Model Simulations Robustness Checks Large Deviations Conclusion

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0  

 
Stationary distribution when no one accepts money
Stationary distribution when one of two counteragents accepts money
Stationary distribution when everyone accepts money

The probability mass
above 0.1 is 0.0752
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It is easy to learn to accept money even when no one else
does (probability of 7.52% in our parametrization).

It is not easy to become disappointed in money:

Hitting value 0.8 0.7 0.6 0.5
Time to achieve 535 40K 51M >2B
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˙̃V = (V̄ − V )

In order for V to leave this equilibrium, forcing errors s(t) must
overcome the drift towards V̄ .
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How to escape equilibrium

Consider the mean dynamics, holding every other agent’s beliefs
fixed:

˙̃V = (V̄ − V )

In order for V to leave this equilibrium, forcing errors s(t) must
overcome the drift towards V̄ .

With enough lucky (or unlucky) trading experiences, his
estimate of the value of money may leave the equilibrium and
change his acceptance rule.

We solve for the most likely way for this to happen.
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it is unlikely, but must eventually happen due to the noise ξ;

if every agent’s beliefs move across the production cost c,
they will have moved form the universal rejection equilibrium
to the universal acceptance equilibrium.
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The large deviations of these dynamics describe how beliefs
escape these equilibria:

it is unlikely, but must eventually happen due to the noise ξ;

if every agent’s beliefs move across the production cost c,
they will have moved form the universal rejection equilibrium
to the universal acceptance equilibrium.

So we solve for the rate function that governs the likelihood of that
happening.
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The large deviation properties are entirely driven by the behavior of
this random variable:

Z = δτ U, τ ∽ Exponential(λ)

where λ is the probability of trading at equilibrium.
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The distribution g(z) of this random variable is given by

g(z) = −
λ

(
z
U

)
−1− λ

log δ

U log δ
.

for z ∈ [0, U]; essentially a truncated power-law.
The distribution of the mean zero error ξ is simply a shift of this
distribution.
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From this we calculate the culmulant generating function:

H(t) = log Ezetz ,

and the rate function I(x) is the Legendre transform of H:

I(x) = sup
t

xt − H(t).

This function I governs the large deviation properties of Z .

Punchline: I is asymmetric; it is easier to to increase than
decrease, easier to learn money has value than to learn it does

not.
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The rate function I at the Universal Acceptance and Universal
Rejection equilibria:
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Figure: Solid - High Value Rate Function. Dashed - Low Value Rate
Function

They are zero at their equilibrium.
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Superimposed, the difference is clear:

0.2 0.4 0.6 0.8 1.0

5

10

15

20

Figure: Solid - High Value Rate Function. Dashed - Low Value Rate
Function

It is much lower cost to escape the low equilibrium.
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To characterize the long run distribution over equilibria, consider
first a single agent leaving the universal rejection equilibrium.
To do so, we must find a sequence of trading shocks s(t) (which
have distribution ξ) that will drive his estimate from V̄ to c at time
T :

V (0) = V̄

V (T ) = c

V̇ = (V̄ − V (t)) + s(t)

This condition has ODE form:

c = V̄ + eT
∫ T

0
e−t(V̄ + s(t))dt
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We now solve the following minimization problem:

min
T ,s(·)

∫ T

0
I(s(t))dt

subject to

c = V̄ + eT
∫ T

0
e−t(V̄ + s(t))dt

The rate function I can be interpreted as the “cost” of a shock of
size s(t), and we seek shocks of minimal cost that will force this
agent across the boundary c.
This is the mostly likely way to escape the equilibrium, the
dominant escape path.
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The optimal shocks are constant in size. There are two effects:

after you move closer to the boundary, you have less
remaining distance to travel;

but the drift back towards equilibrium is stronger.

The optimal shocks to travel to the boundary in time T is given by

s(t) =
eT (V̄ − c)

eT − 1

which is constant in t .
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For our parametrization, the minimized cost of escape as a
function of T

1.4 1.6 1.8 2.0 2.2

0.09

0.10

0.11

0.12

0.13

0.14

0.15

Figure: Low Value Equilibrium Action Functional
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Figure: High Value Equilibrium Action Functional

There are two ways to escape: larger shocks alow one to escape
in a shorter time, but are more costly. For the low equilibrium,
since shocks are not so costly, the optimal T is smaller.



Introduction Baseline Model Simulations Robustness Checks Large Deviations Conclusion

c = 0.1 Escape Time Cost Probability
Low Value Equilibrium 1.45098 0.143836 0.49438

High Equilibrium 2.14218 18.1264 4.35614E − 40



Introduction Baseline Model Simulations Robustness Checks Large Deviations Conclusion

c = 0.1 Escape Time Cost Probability
Low Value Equilibrium 1.45098 0.143836 0.49438

High Equilibrium 2.14218 18.1264 4.35614E − 40
Note: this is not an artifact of c being closer to the Low equilibrium
than to the High; with c equidistant we have

c=0.408 Escape Time Cost Probability
Low Value Equilibrium 0.857147 2.42028 5.55163E − 6

High Equilibrium 1.63005 4.14184 1.01415E − 9
It is driven by asymmetry in the escape probabilities.



Introduction Baseline Model Simulations Robustness Checks Large Deviations Conclusion

c = 0.1 Escape Time Cost Probability
Low Value Equilibrium 1.45098 0.143836 0.49438

High Equilibrium 2.14218 18.1264 4.35614E − 40
Note: this is not an artifact of c being closer to the Low equilibrium
than to the High; with c equidistant we have

c=0.408 Escape Time Cost Probability
Low Value Equilibrium 0.857147 2.42028 5.55163E − 6

High Equilibrium 1.63005 4.14184 1.01415E − 9
It is driven by asymmetry in the escape probabilities. Probabilities
are equal at c ≈ 0.461.
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To calculate the probability of the system as whole escaping
equilibrium, there are only two ways for an agent to leave one
equilibrium:

In the manner described above, on his own - this is costly

If enough of his trading partners escape as above, the ODE
governing his learning flips, so that the other equilibrium is
attractive, and everyone may follow his new mean dynamics -
this has cost zero.

We solve for the cost minimizing combination of agents going to
the boundary on their own and “waiting” while other follow zero
cost mean dynamics.
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For our parametrization, the “low cost” way to escape the low
equilibrium is for half to escape, half to wait. To escape the high
equilibrium all agents must escape on their own. This is very costly.

Transition Cost
Low Value Equilibrium 0.594863

High Equilibrium 145.011

Theorem (Williams 2002)
As the gain γ → 0, the invariant distribution of beliefs are
concentrated on the higher-cost equilibrium
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Conclusion

We propose a way to choose a rational equilibrium in the
Kiyotaki and Wright model.

We show that the “good” rational equilibrium is quite
prominent.

In fact, it is the long run dominant equilibrium as γ → 0.
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