Repurchase Agreements

Cyril Monnet¹ Borghan Narajabad²

¹University of Bern and Gerzensee

²Rice University

Chicago Money Workshop, 2011

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Introduction

- Repo: a contract to sell and subsequently repurchase securities at a specified date and price, often the next day (BIS)
 - US tri-party repo market is \$1.5 trillion (daily)
 - Monetary policy conducted through repos
- What is the role of the (short-term) repo market ?
 - Counterparty risk (Mills and Reed) ?
 - Private information on the asset return (Chiu-Koeppl) ?

ション ふゆ く 山 マ チャット しょうくしゃ

Repo can meaningfully co-exist with sales... even with full information and no risk exposure

Introduction

Motive for trade is the random valuation for the asset

- Repos have no role in a Walrasian market
- With matching frictions
 - Traders exploit intertemporal gains from trade using asset sales

ション ふゆ く 山 マ チャット しょうくしゃ

- Traders exploit *intratemporal* gains from trade using repos
- Persistence of the valuation shock explains markets size:
 - Repos volume is strictly decreasing in persistence
 - Sales volume is hump-shape in persistence

The Model

- Version of KMT (2011) and LR (2010)
- ► $t = 0, 1, ..., \beta \in (0, 1)$
- Two subperiods: trade and settlement
- Asset in fixed supply A and numeraire good
- Continuum of traders: Measure 1/2 of traders h and ℓ
- Trader $i = h, \ell$ utility

$$u_i(a) + d$$

where $u'_h(a) \ge u'_\ell(a)$ for all a

• Traders switch types with probability $1 - \pi \in [0, \frac{1}{2}]$

Walrasian Benchmark

- Walrasian markets for purchases and repos at price p and p^r
 - ▶ Repo: Enjoy the service from holding the asset this period only
 - Asset sales: Enjoy the service from holding the asset any time

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

- Commitment to terms of trade
- Clearinghouse implements the transfer of the asset
- Numeraire is transferred in the settlement stage

Walrasian Benchmark

• Trader $i = h, \ell$ solves

$$W_i(a) = \max_{a_i, q_i^r} u_i(a_i + q_i^r) - d + \beta E_{k|i} W_k(a_i)$$

s.t. $d + pa = pa_i + p^r q_i^r$

with FOCs and envelope

$$u'_i(a_i + q^r_i) + \beta E_{k|i} W'_k(a_i) = p$$

 $u'_i(a_i + q^r_i) = p^r$
 $W'_i(a) = p$

Walrasian Benchmark

Equilibrium prices and quantities satisfy

$$(1-eta)p = p^r$$

 $u_h'(a_h+q_h^r) = p^r$
 $u_\ell'(a_\ell+q_\ell^r) = p^r$
 $(a_h+q_h^r)+(a_\ell+q_\ell^r) = 2A$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Anything goes for repos (in particular $q_h^r = q_\ell^r = 0$).

Walrasian Allocations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Bilateral Trade and Settlement

Agents meet pairwise in the trading stage

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- Each agent h meets an agent ℓ
- Core-allocation or bargaining

Allocations

- An allocation is a triple $\{q^s(a_h, a_\ell), q^r(a_h, a_\ell), d(a_h, a_\ell)\}$
- We only focus on stationary and symmetric allocations
- An allocation is feasible if

$$q^s(a_h, a_\ell) \in [-a_h, a_\ell]$$

 $q^r(a_h, a_\ell) + q^s(a_h, a_\ell) \in [-a_h, a_\ell]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Distributions

• (q^s, q^r, d) defines distribution of asset $\mu_i(a)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

Concentrate on invariant distributions

Value functions

$$V_{h}(a) = \pi \int [u_{h}(a+q^{s}(a,a_{\ell})+q^{r})-d+\beta V_{h}(a+q^{s})]d\mu_{\ell}(a_{\ell}) \\ + (1-\pi) \int [u_{\ell}(a-q^{s}(a_{h},a)-q^{r})+d+\beta V_{\ell}(a-q^{s})]d\mu_{h}(a_{h})$$

$$V_{\ell}(a) = \pi \int [u_{\ell}(a - q^{s}(a_{h}, a) - q^{r}) + d + \beta V_{\ell}(a - q^{s})] d\mu_{h}(a_{h}) \\ + (1 - \pi) \int [u_{h}(a + q^{s}(a, a_{\ell}) + q^{r}) - d + \beta V_{h}(a + q^{s})] d\mu_{\ell}(a_{\ell})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Core Allocations

$$\begin{array}{ll} (q^{s},q^{r},d) = & argmax[u_{h}(a_{h}+q^{s}+q^{r})-d+\beta \, V_{h}(a_{h}+q^{s})] \\ s.t. & q^{s} \in [-a_{h},a_{\ell}], \ q^{s}+q^{r} \in [-a_{h},a_{\ell}] \\ & u_{\ell}(a_{\ell}-q^{s}-q^{r})+d+\beta \, V_{\ell}(a_{\ell}-q^{s}) \geq \lambda \, U_{\ell}(a_{\ell}) \\ & u_{h}(a_{h}+q^{s}+q^{r})-d+\beta \, V_{h}(a_{h}+q^{s}) \geq U_{h}(a_{h}) \end{array}$$

where $U_i(a_i) = u_i(a_i) + \beta V_i(a_i)$ and with $\lambda \ge 1$. FOC:

and

$$u'_{h}(a_{h} + q^{s} + q^{r}) = u'_{\ell}(a_{\ell} - q^{s} - q^{r}) \quad \text{if} \quad \xi_{i} = 0, i = h, \ell$$
$$q^{s} + q^{r} = a_{\ell} \quad \text{if} \quad \xi_{\ell} > 0$$
$$q^{s} + q^{r} = -a_{h} \quad \text{if} \quad \xi_{h} > 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Core Allocations

$$\begin{array}{ll} (q^{s},q^{r},d) = & argmax[u_{h}(a_{h}+q^{s}+q^{r})-d+\beta \, V_{h}(a_{h}+q^{s})] \\ s.t. & q^{s} \in [-a_{h},a_{\ell}], \ q^{s}+q^{r} \in [-a_{h},a_{\ell}] \\ & u_{\ell}(a_{\ell}-q^{s}-q^{r})+d+\beta \, V_{\ell}(a_{\ell}-q^{s}) \geq \lambda \, U_{\ell}(a_{\ell}) \\ & u_{h}(a_{h}+q^{s}+q^{r})-d+\beta \, V_{h}(a_{h}+q^{s}) \geq U_{h}(a_{h}) \end{array}$$

where $U_i(a_i) = u_i(a_i) + \beta V_i(a_i)$ and with $\lambda \ge 1$. FOC:

$$V_h'(a_h + q^s) \geq V_\ell'(a_\ell - q^s) \; (= ext{if} \; q^s < a_\ell)$$

and

$$egin{aligned} u_h'(a_h+q^s+q^r) &= u_\ell'(a_\ell-q^s-q^r) & ext{if} \quad \xi_i=0, i=h,\ell \ q^s+q^r=a_\ell & ext{if} \quad \xi_\ell>0 \ q^s+q^r=-a_h & ext{if} \quad \xi_h>0 \end{aligned}$$

Proposition

With random matching and $\pi = 1/2$, the pairwise core allocations defines a unique invariant equilibrium characterized by a distribution of asset holdings for each type that are degenerate at $a^* = A$ with $q^s(a^*, a^*) = 0$, and $q^r(a^*, a^*) > 0$.

 $\pi = 1/2$ implies $V_h(a) = V_\ell(a) = V(a)$ for all a.

$$V'(a_h+q^s) = V'(a_\ell-q^s)$$

 $q^s = rac{a_\ell-a_h}{2}$

and

$$u'_{h}(a_{h}+q^{s}+q^{r}) = u'_{\ell}(a_{\ell}-q^{s}-q^{r})$$
$$u'_{h}(\frac{a_{\ell}+a_{h}}{2}+q^{r}) = u'_{\ell}(\frac{a_{\ell}+a_{h}}{2}-q^{r})$$

Proposition

With random matching and $\pi = 1/2$, the pairwise core allocations defines a unique invariant equilibrium characterized by a distribution of asset holdings for each type that are degenerate at $a^* = A$ with $q^s(a^*, a^*) = 0$, and $q^r(a^*, a^*) > 0$.

 $\pi = 1/2$ implies $V_h(a) = V_\ell(a) = V(a)$ for all a.

$$egin{array}{rcl} V'(a_h+q^s)&=&V'(a_\ell-q^s)\ q^s&=&rac{a_\ell-a_h}{2} \end{array}$$

and

$$u'_{h}(a_{h}+q^{s}+q^{r}) = u'_{\ell}(a_{\ell}-q^{s}-q^{r})$$

$$u'_{h}(\frac{a_{\ell}+a_{h}}{2}+q^{r}) = u'_{\ell}(\frac{a_{\ell}+a_{h}}{2}-q^{r})$$

Proposition

With random matching and $\pi = 1$, the pairwise core allocations define an equilibrium characterized by a distribution of asset holdings for each type that are degenerate at some level a_h^* and a_ℓ^* with $a_h^* > a_\ell^*$ where $q^s(a_h^*, a_\ell^*) = 0$ and $q^r(a_h^*, a_\ell^*) = 0$.

(guess and verify) $\pi = 1$ and $q^s = 0$ imply for $i = h, \ell$,

$$V_i(a_i) = rac{u_i(a_i+q_i^r)}{1-eta}$$

and

$$u'_h(a_h + q^s + q^r) = u'_\ell(a_\ell - q^s - q^r)$$

 $V'_h(a_h + q^s) = V'_\ell(a_\ell - q^s)$

imply $q^r(a_h, a_\ell) = 0$ is an equilibrium and that a_h^* and a_ℓ^* are uniquely given by $a_h^* + a_\ell^* = 2A$ and

$$u_h'(a_h^*) = u_\ell'(a_\ell^*)$$

Proposition

With random matching and $\pi = 1$, the pairwise core allocations define an equilibrium characterized by a distribution of asset holdings for each type that are degenerate at some level a_h^* and a_ℓ^* with $a_h^* > a_\ell^*$ where $q^s(a_h^*, a_\ell^*) = 0$ and $q^r(a_h^*, a_\ell^*) = 0$.

(guess and verify) $\pi=1$ and $q^s=0$ imply for $i=h,\ell$,

$$\mathcal{W}_i(\mathsf{a}_i) = rac{u_i(\mathsf{a}_i+q_i^r)}{1-eta}$$

and

$$egin{aligned} u_h'(a_h+q^s+q^r) &=& u_\ell'(a_\ell-q^s-q^r) \ V_h'(a_h+q^s) &=& V_\ell'(a_\ell-q^s) \end{aligned}$$

imply $q^r(a_h,a_\ell)=0$ is an equilibrium and that a_h^* and a_ℓ^* are uniquely given by $a_h^*+a_\ell^*=2A$ and

$$u_h'(a_h^*) = u_\ell'(a_\ell^*)$$

Directed Search

- Corbae, Temzelides and Wright (2003): the matching rule is an equilibrium matching if no coalition consisting of 1 or 2 agents can do better by deviating
- Matching rule: min a_h matched with max a_ℓ , etc.
- An equilibrium with an invariant distribution is characterized by degenerate supports a^{*}_h and a^{*}_ℓ where q^s(a^{*}_ℓ, a^{*}_h) = a^{*}_h − a^{*}_ℓ and q^s(a^{*}_h, a^{*}_ℓ) = 0, and

$$\begin{array}{lll} a_{h}^{*}+a_{\ell}^{*} &=& 2A\\ u_{h}^{\prime}(a_{h}^{*}+q^{r}) &=& u_{\ell}^{\prime}(a_{\ell}^{*}-q^{r})\\ u_{h}^{\prime}(a_{h}^{*}+q^{r}) &=& \alpha\lambda \, U^{\prime}(a_{\ell}^{*})+(1-\alpha-\beta)\lambda \, U^{\prime}(a_{h}^{*}) \end{array}$$

where $\alpha = rac{(1-eta\pi)\pi}{(2\pi-1)}$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □> ○へ⊙

Directed Search and Bargaining

$$egin{aligned} &\max_{q^s,q^r,d} [u_h(a_h+q^s+q^r)-d+eta\,V_h(a_h+q^s)-U_h(a_h)]^{ heta}\ & imes [u_\ell(a_\ell-q^s-q^r)+d+eta\,V_\ell(a_\ell-q^s)-U_\ell(a_\ell)]^{1- heta} \end{aligned}$$

with first order conditions

$$V'_{h}(a_{h}+q^{s}) = V'_{\ell}(a_{\ell}-q^{s})$$
$$u'_{h}(a_{h}+q^{s}+q^{r}) = u'_{\ell}(a_{\ell}-q^{s}-q^{r})$$

 $d(a_h, a_\ell) = (1-\theta)[u_h(a_h + q^s + q^r) + \beta V_h(a_h + q^s) - U_h(a_h)]$ $+ \theta[U_\ell(a_\ell) - u_\ell(a_\ell - q^s - q^r) - \beta V_\ell(a_\ell - q^s)]$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Directed Search and Bargaining

$$egin{aligned} &\max_{q^s,q^r,d} [u_h(a_h+q^s+q^r)-d+eta\,V_h(a_h+q^s)-U_h(a_h)]^{ heta}\ & imes [u_\ell(a_\ell-q^s-q^r)+d+eta\,V_\ell(a_\ell-q^s)-U_\ell(a_\ell)]^{1- heta} \end{aligned}$$

with first order conditions

$$V_h'(a_h + q^s) = V_\ell'(a_\ell - q^s) \ u_h'(a_h + q^s + q^r) = u_\ell'(a_\ell - q^s - q^r)$$

$$\begin{aligned} d(a_h, a_\ell) &= (1 - \theta) [u_h(a_h + q^s + q^r) + \beta \, V_h(a_h + q^s) - U_h(a_h)] \\ &+ \theta [U_\ell(a_\ell) - u_\ell(a_\ell - q^s - q^r) - \beta \, V_\ell(a_\ell - q^s)] \end{aligned}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Directed Search and Bargaining

Proposition

With directed search and bargaining, an equilibrium with an invariant distribution is characterized by a degenerate distribution of asset holdings for each type, at some level a_i^* with $i = h, \ell$ with

$$q^{s}(a_{h}^{*},a_{\ell}^{*})=0, q^{s}(a_{\ell}^{*},a_{h}^{*})=a_{h}^{*}-a_{\ell}^{*}$$

and

$$q^r(a_h^*,a_\ell^*)=q^r(a_\ell^*,a_h^*)=q^r$$

where q^r solves $u_h'(a_h^* + q^r) \ge u_\ell'(a_\ell^* - q^r)$ (with equality if $q^r < a_\ell^*$), and

$$d(a_{\ell}^{*},a_{h}^{*}) = d(a_{h}^{*},a_{\ell}^{*}) + \frac{u}{1-\beta}$$

where

$$\bar{u} = (1 - \theta)[u_h(a_h^*) - u_h(a_\ell^*)] + \theta[u_\ell(a_h^*) - u_\ell(a_\ell^*)]$$

◆□▶ ◆圖▶ ★ 副▶ ★ 副▶ 三国 - のへで

Intertemporal gains from trade

Intratemporal gains from trade

Quantities

$$u_h(a) = \frac{a^{1-\sigma}}{1-\sigma}, u_\ell(a) = \lambda u_h(a)$$
 where $\lambda \in (0,1), \theta = 0.5, \lambda = 0.1, \sigma = 2, \beta = 0.9, \text{ and } A = 50.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Quantities

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Prices

Let p^r be the price of a repo and p^s the price of a sale. Then $\frac{(1-\theta)[u_h(a_h^*+q^r)-u_h(a_h^*)]+\theta[u_\ell(a_\ell^*)-u_\ell(a_\ell^*-q^r)]}{(1-\theta)[u_h(a_h^*+q^r)-u_h(a_h^*)]+\theta[u_\ell(a_\ell^*-q^r)]}$ p^r ar $(1-\theta)[u_h(a_h^*) - u_h(a_{\ell}^*)] + \theta[u_{\ell}(a_h^*) - u_{\ell}(a_{\ell}^*)]$ p^s $(1-\beta)(a_{h}^{*}-a_{\ell}^{*})$ 0.00228 0.000172 0.000170 0.00226 0.000168 0.00224 0.000166 0.000164 0.00222 π 0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Share of Repos from Asset Realocation

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - の Q @

Conclusion

- Present an environment where repos help achieve efficiency
- Key element: Future and present valuations differ across and within types
- Ideas could be applied to non-financial assets as well (e.g. housing rental market, car rental market, labor market)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Why Repo?

- Why all of the reallocation is not done via sale market?
- Directed Search equil. characterized by two conditions:

$$u_{\ell}^{'}(c_{\ell}^{*}) = u_{h}^{'}(c_{h}^{*})$$

$$\begin{cases} \beta + (1-\beta)\frac{\pi}{1-\pi} \\ \rbrace \times \\ \{\theta \left[u'_{\ell}(c^*_{\ell}) - u'_{\ell}(c^*_{\ell} + q^{r*}) \right] + (1-\theta) \left[u'_{h}(c^*_{h} - q^{r*}) - u'_{h}(c^*_{h}) \right] \\ \{\theta \left[u'_{\ell}(c^*_{\ell}) - u'_{\ell}(c^*_{h} - q^{r*}) \right] + (1-\theta) \left[u'_{h}(c^*_{\ell} + q^{r*}) - u'_{h}(c^*_{h}) \right] \end{cases}$$

- The first expression guarantees the optimal allocation of consumption
- ► The second one determines what fraction of reallocation of assets, c^{*}_h c^{*}_ℓ, is done via repo, q^{r*}.

$$\begin{cases} \beta + (1 - \beta) \frac{\pi}{1 - \pi} \\ \rbrace \times \\ \{ \theta \left[u'_{\ell}(c^*_{\ell}) - u'_{\ell}(c^*_{\ell} + q^{r*}) \right] + (1 - \theta) \left[u'_{h}(c^*_{h} - q^{r*}) - u'_{h}(c^*_{h}) \right] \\ \} \\ \{ \theta \left[u'_{\ell}(c^*_{\ell}) - u'_{\ell}(c^*_{h} - q^{r*}) \right] + (1 - \theta) \left[u'_{h}(c^*_{\ell} + q^{r*}) - u'_{h}(c^*_{h}) \right] \end{cases}$$

- The LHS is increasing in q^r and RHS is decreasing in q^r, therefore
 - LHS is increasing in π, which makes q^{r*} decreasing in π: With more persistent types more reallocation is done via sale market.
 - LHS is decreasing in β, which makes q^{r*} increasing in β: With more patience more allocation is done via repo market.
- if $\{\beta + (1-\beta)\frac{\pi}{1-\pi}\} = 1$ then $c_{\ell}^* + q^{r*} = c_h^* q^{r*}$ and all of reallocation would be done via repo market.
- The effect of θ is not clear.

▶ Note:
$$c_{\ell}^* < c_{\ell}^* + q^{r*} < c_h^* - q^{r*} < c_h^*$$
, hence

$$\begin{array}{lll} u_{\ell}'(c_{\ell}^{*}) - u_{\ell}'(c_{\ell}^{*} + q^{r*}) &< & u_{\ell}'(c_{\ell}^{*}) - u_{\ell}'(c_{h}^{*} - q^{r*}) \\ u_{h}'(c_{h}^{*} - q^{r*}) - u_{h}'(c_{h}^{*}) &< & u_{h}'(c_{\ell-}^{*} + q^{r*}) - u_{h}'(c_{h}^{*}) \\ \end{array}$$

Why Repo?

Rewrite the value functions $(1-\beta)V_h(\bar{a}_h)$ as

$$\underbrace{u_h(\bar{a}_h) + \theta S}_{h-\text{utility of holding } a_h} - \underbrace{\frac{(1-\pi)}{1+\beta(2\pi-1)}}_{\text{Loss from switching}} \underbrace{[u_\ell(\bar{a}_h) + (1-\theta)\tilde{S} - u_h(\bar{a}_h) - \theta S]}_{\text{Loss from switching}}$$

$$S: \text{ gain from repo}$$

$$\tilde{S}: \text{ gain from conducting asset purchase AND repo.}$$
And $(1-\beta)V_\ell(\bar{a}_\ell)$ is

$$u_{\ell}(\bar{a}_{\ell}) + (1-\theta)S - \frac{(1-\pi)}{1-\beta(2\pi-1)}[u_{\ell}(\bar{a}_{\ell}) + (1-\theta)S - u_{h}(\bar{a}_{\ell}) - \theta\tilde{S}]$$

If only asset sales, then $\bar{a_h}$ would be farther apart from \bar{a}_ℓ , thus increasing the loss from switching.

Weight on loss is minimized at $\pi = 1$ and maximized at $\pi = 1/2$.