Introduction Model Results Historical applications Conclusions/Further research

A Model of Commodity Money with Minting and Melting

Angela Redish Warren Weber

August 18, 2011

Any study of the money supply [of medieval Europe] needs to take account not only of the total face value of the currency, but also of the metals and **denominations** of which it is composed.

(Mayhew 2004)

What were these denominations?

 \bullet 800-1200 A.D. most European states issued only one coin type - a penny containing \sim 1.7 gms fine silver

Two major changes to European monetary systems:

- Debasement of the penny to a varying extent across mints
 - ullet In England in 1160, still \sim 1.4 gms
 - ullet In Venice in 1160, \sim 0.10 gms
- Introduction of a larger coin at different times across mints
 - In Venice grosso 1194: 2.18 gms (26d)
 - in England groat 1351: 4.66 gms (4d)

What drove the changes?

- Conventional view debasement:
 - debasements were revenue generators
 - debasements created more units of money so facilitated more exchange
- Conventional view larger coins:
 - large coins were needed to pay urban workers
- Our view
 - changes in coin types were consistent with welfare increasing responses to change in the economic environment

What drove the changes?

- we build a random matching model to assess these views
- the paper extends existing search models:
 - to allow for multiple coins
 - to allow for an endogenous quantity of money

Preview of results

We find that:

- the size of a coin affects social welfare
- the size of a coin has distributional consequences
- the frequency of trade affects the optimal coin size
- the stock of monetary metal affects optimal coin size
- permitting minting of two types of coin may raise social welfare

Preview of results

We use these results to reconsider the motives for coinage changes:

- debasement may have been a response to urbanization rather than (only) generating revenue or making 'more' units of the medium of exchange
- large coins may have been a response to silver discoveries rather than a response to urbanization

Outline of talk

- Model
- Results
- Apply model to historical choices of denomination
- Conclude/further research

Environment

- Time discrete and infinite
- One nonstorable, perfectly divisible consumption good
- One storable metal (silver) in **fixed supply** (m)

Environment

- Silver can be held as coins or jewelry (bullion)
- Silver coins are indivisible, but can be minted or melted
- Silver coin contains b_1 ounces of silver
 - ullet possible second silver coin contains $b_2=\eta b_1$ ounces of silver

Environment

Agents hold

```
s<sub>1</sub> small silver coinss<sub>2</sub> large silver coinsj units silver jewelry
```

- ⇒ Only coins can be used in trade
- ⇒ Only jewelry yields utility (similar to Velde-Weber)

Agents

- [0,1] continuum, infinitely-lived
- Preferences:

$$u(c) - q + \mu(b_1 j) - \gamma(s_1 + s_2)$$

$$u(0) = 0, u' > 0, u'(0) = \infty, u'' < 0$$

$$\gamma \text{ utility cost of holding a coin}$$

- Maximize expected discounted (β) lifetime utility
- \bullet θ prob of a being a buyer or seller in a single coincidence match

Trade

- Each period has two subperiods
 - First subperiod: decentralized trade in bilateral matches
 - Preference assumption rules out double coincidence matches
 - past trading histories private (no monitoring or commitment technology) - rules out gift-giving equilibrium
 - agents are anonymous rules out credit
 - Second subperiod: agents can alter coin/jewelry portfolio by minting or melting
 - Can change how metal stocks held no change in quantity of silver

Choices

1st sub period

- Single coincidence matches: potential consumer makes TIOLI offer (q, p_1, p_2)
- Buyer 'sees' seller's portfolio

2nd sub period

- Agents make portfolio adjustment after trade (z_1, z_2)
- z_i is the amount of coins minted (melted if negative)

Model: Value functions

• Expected value of holding $y_t = (s_{1t}, s_{2t}, j_t)$ beginning second subperiod

$$v_t(y_t) = \max_{z_{1t}, z_{2t}} \{ \beta w_{t+1}(s_{1t} + z_{1t}, s_{2t} + z_{2t}, j_t^s - z_{1t} - \eta z_{2t}) - S(z_{1t}, z_{2t}; j_t) \}$$

$$S(z_{1t}, z_{2t}; j_t)$$
 is seigniorage

Model: Value functions

 \bullet Expected value of holding y_t beginning of first subperiod

$$w_{t}(y_{t}) = \theta \sum_{\tilde{y}_{t}} \pi_{t}(\tilde{y}_{t}) \max_{\Lambda} [u(q_{t}) + v_{t}(s_{1t} - p_{1t}, s_{2t} - p_{2t}, j_{t})]$$
$$+ (1 - \theta)v_{t}(y_{t}) + \mu(b_{1}j_{t}) - \gamma(s_{1t} + s_{2t})$$

where:

- $\Lambda = \text{set of all feasible TIOLI offers}$
- $\pi_t(y_t)$ = fraction of agents with y_t beginning first subperiod
- \bullet \tilde{y} denotes seller portfolios

Model: Equilibrium

• Steady state symmetric equilibrium:

Value functions w, v; asset holdings π ; and quantities p_1, p_2, z_1, z_2, q that satisfy

- Bellman equations
- asset transitions
- market clearing

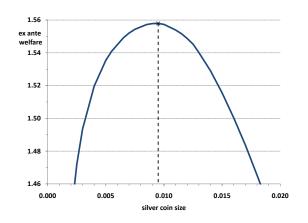
Results

- Numerical analytic results not possible
- Assume:

$$eta = 0.9$$
 $\sigma = 0.04$
 $\gamma = 0.001$
 $u(q) = q^{1/4}$
 $\mu(b_1 j) = 0.05 (b_1 j)^{1/2}$

Base case:

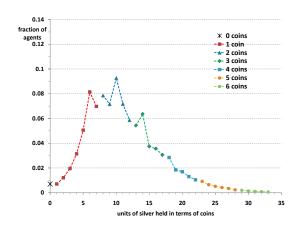
$$\theta = \frac{1}{3}$$
$$m = 0.1$$


Social Welfare depends on coin size
Welfare distribution depends on coin size
Optimal coin size depends on trading frequency
Optimal coin size depends on quantity of metal
Adding a second coin type may increase welfare

Results

- Social Welfare depends on coin size
- Welfare distribution depends on coin size
- Optimal coin size depends on trading frequency
- Optimal coin size depends on quantity of metal
- Adding a second coin type may increase welfare

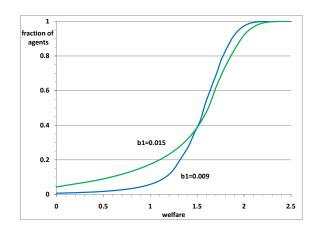
Social Welfare depends on coin size Welfare distribution depends on coin size Optimal coin size depends on trading frequency Optimal coin size depends on quantity of metal Adding a second coin type may increase welfare


Single coin: Welfare effect of changing coin size

Commodity money 21

Social Welfare depends on coin size Welfare distribution depends on coin size Optimal coin size depends on trading frequency Optimal coin size depends on quantity of metal Adding a second coin type may increase welfare

Single coin: Distribution of coin and jewelry holdings

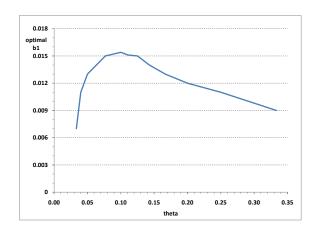


Commodity money 22

Results

- Social Welfare depends on coin size
- Welfare distribution depends on coin size
- Optimal coin size depends on trading frequency
- Optimal coin size depends on quantity of metal
- Adding a second coin type may increase welfare

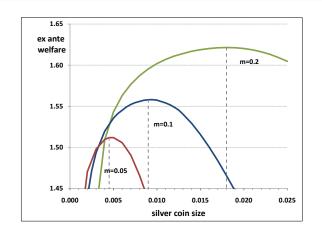
Distribution of welfare



Commodity money

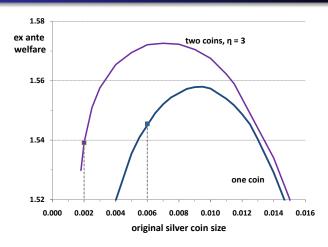
Results

- Social Welfare depends on coin size
- Welfare distribution depends on coin size
- Optimal coin size depends on trading frequency
- Optimal coin size depends on quantity of metal
- Adding a second coin type may increase welfare


Optimal coin size depends on trading frequency

Results

- Social Welfare depends on coin size
- Welfare distribution depends on coin size
- Optimal coin size depends on trading frequency
- Optimal coin size depends on quantity of metal
- Adding a second coin type may increase welfare


Optimal coin size depends on quantity of metal

Results

- Social Welfare depends on coin size
- Welfare distribution depends on coin size
- Optimal coin size depends on trading frequency
- Optimal coin size depends on quantity of metal
- Adding a second coin type may increase welfare

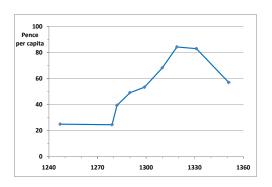
Adding a second coin type may increase welfare

Shift to smaller coins

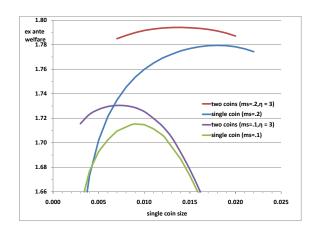
- ullet Pennies in 800 A.D. were ~ 1.7 gms of fine silver
- By 1160
 - ullet In England still \sim 1.4 gms
 - ullet In Venice \sim 0.10 gms

Motives for smaller coins

- The model suggests that optimal coin size depends on trading frequency
- Venice urbanized earlier and much more than England
 - Venice urbanized from 1000 AD
 - English market towns grew especially after 1250
- This difference in debasement policy is consistent with a social welfare maximizing response to urbanization


Introduction of grossi and groats

- In 1194 Venice introduced large silver coins
 - grossi weighing 2.18 gms of 96.5% fine silver
 - contained the same fine silver as about 26 denari
- Not until 1351 did the English produce large silver coins
 - groats weighing 4.66 gms of 92.5% fine silver
 - contained the same fine silver as 4 pence.


Silver flows

- The model suggests that larger stocks of silver imply larger optimal coin size
- The late 12th century saw large increases in silver
 - 1160-1320 known for the large amounts of silver mined
 - Flows (from Saxony) went first to Venice
 - in England inflows came later
- The introduction of grossi and groats may have been motivated by the larger silver stocks

Money stock in England

Two coins with varying metal stocks

Conclusion

- Coin size/type affects welfare in the economy
- Debasement of the penny is consistent with a monetary policy that valued social welfare
- Silver inflows in the 13th century give a rationale for increasing coin sizes

Next direction - outstanding issues

- Why debase rather than introduce a second (smaller) coin?
- Build a model where agents benefit from a large gold coin