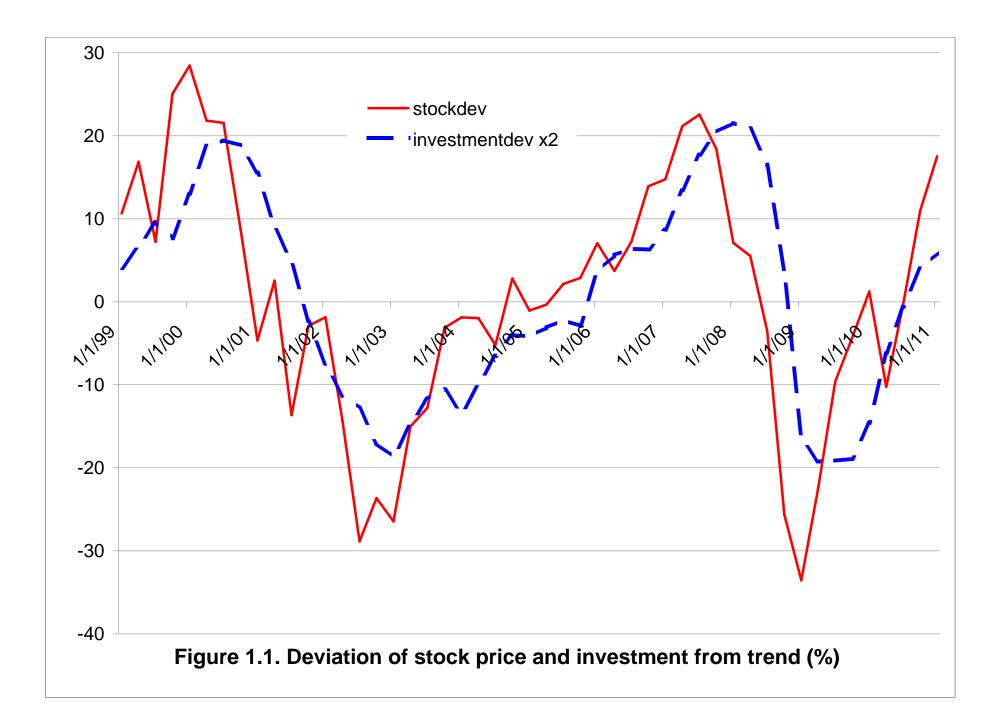
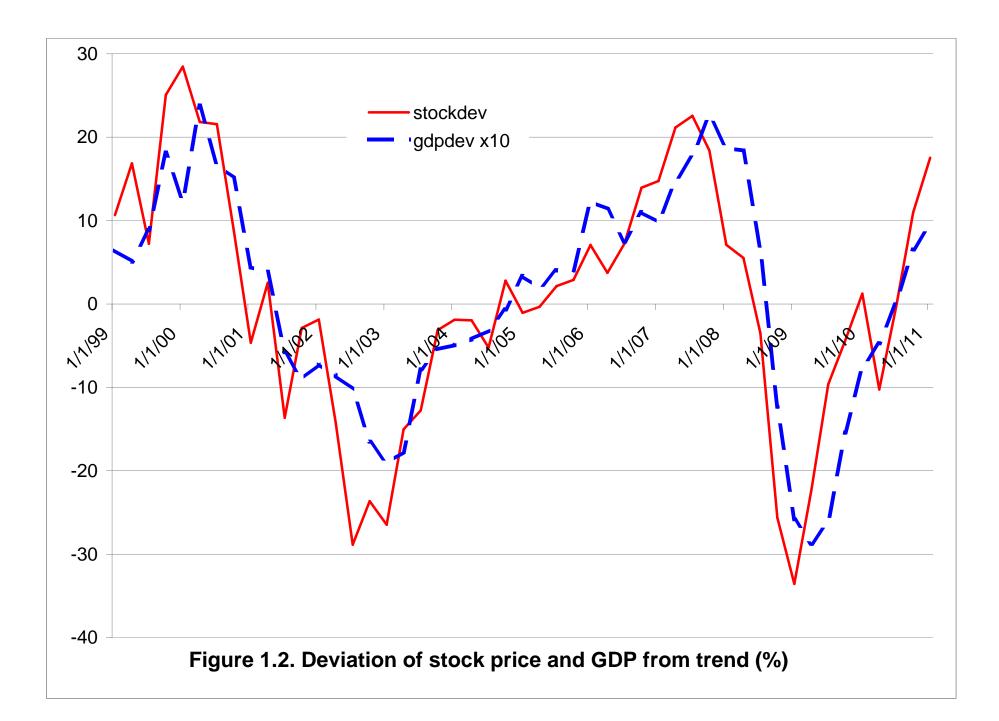
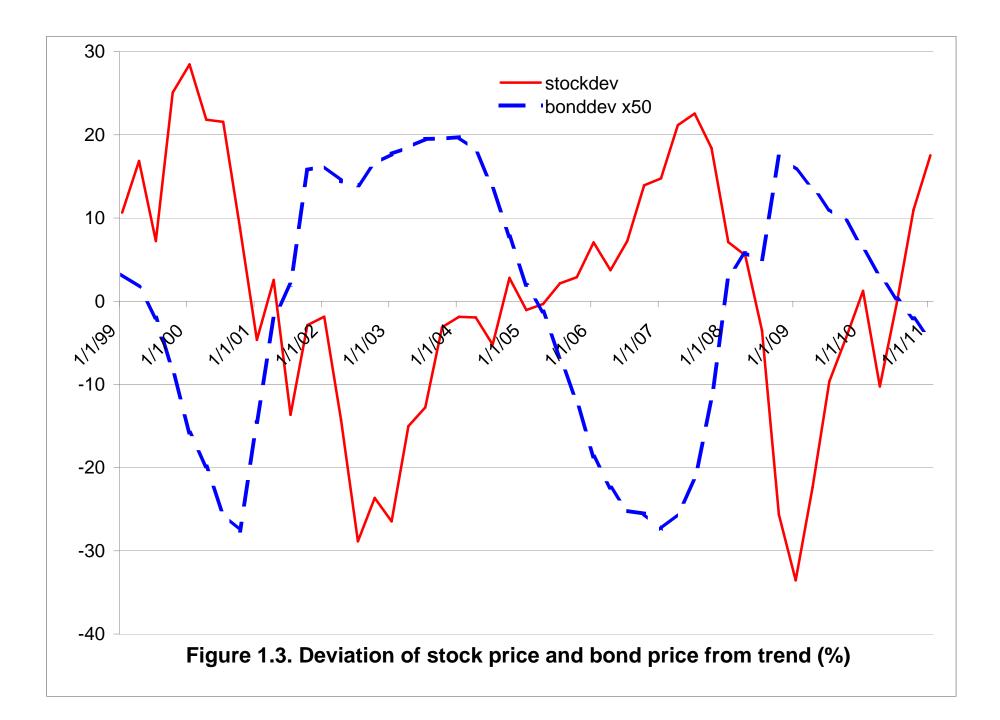
Liquidity, Assets and Business Cycles


Shouyong Shi University of Toronto


Presentation in 2011


1. What Do I Try to Do?

• Reformulate a hypothesis on the role of asset market liquidity in the business cycle

• Calibrate the model to evaluate the hypothesis

An intuitive explanation/hypothesis:

Liquidity shocks in asset market are an independent cause of the business cycle.

- sudden drop in liquidity depresses equity price
- tightens financing constraints on investment
- investment and output fall
- demand for liquid assets rises; bond price increases

Policy implication of this hypothesis:

Central banks should and can supply liquidity to the asset market to reduce or eliminate recessions.

Examples: bailouts, QE1, QE2, Hypothesis formulated by N. Kiyotaki and J. Moore (08):

- two frictions in the equity market:
 - difficulty in issuing new equity
 - difficulty in re-selling equity
- liquidity shocks occur in the resale market for equity

Calibrated versions:

Ajello (10): liquidity shocks are important for business cycles Del Negro et al. (10): Fed policy prevented a greater recession The tasks:

- simplify the model to capture Kiyotaki-Moore hypothesis:
 - to facilitate aggregation
 - to construct a recursive competitive equilibrium
- calibrate the model to evaluate the hypothesis

What do I find?

- shocks to equity market liquidity can generate large fluctuations in investment, output and employment
- but not all the effects are what one may expect

2. The Model

2.1. The model environment

A large representative household:

- many members share assets at the beginning of a period
- in the period, members are separated from each other, and realize the role as entrepreneurs or workers
- household maximizes:

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \{ \pi \underbrace{u(c_t^e)}_{t=0} + (1-\pi) \underbrace{[U(c_t^w) - h(\ell_t)]}_{t=0} \}$$

entrepreneur's

worker's u

A worker has:

one unit of labor; no investment project

An entrepreneur has:

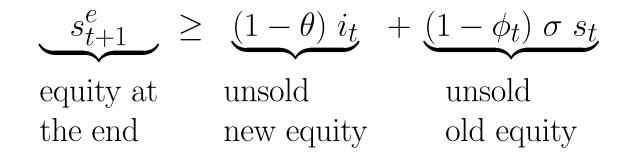
- no labor endowment
- an investment project: one unit of good as input \implies one unit of capital
- financing/liquidity constraints (specified later)

Snapshots at different points of time in a period:

- Beginning of the period:
 - aggregate state of the economy is realized
 - a household has: physical capital: k_t ; equity claims: s_t ; liquid assets: b_t
 - a household:
 - divides assets among the members; gives instructions
 - then members are separated until beginning of next period

- Investment/production stage:
 - each member realizes whether he is an entrepreneur (prob π) or a worker (prob $1 - \pi$)
 - a worker supplies labor ℓ_t to produce goods:

$$y_t = A_t \ F(k_t^d, \ell_t^d)$$


– an entrepreneur raises funds for investment i_t

- Consumption stage:
 - worker: consumes c_t^w and holds portfolio (s_{t+1}^w, b_{t+1}^w) - entrepreneur: consumes c_t^e and holds portfolio (s_{t+1}^e, b_{t+1}^e)

Equity market frictions (Kiyotaki-Moore, 08):

- only $\theta \in (0, 1)$ of investment can be financed by new equity
- only a fraction $\phi_t \in (0, 1)$ of existing equity can be re-sold

Equity liquidity constraint:

- 2.2. A household's dynamic programing problem
- Combined liquidity constraint (shadow price λ^e):

$$\underbrace{(r + \phi \ \sigma q) \ s}_{\text{rental and}} + \underbrace{(b - p_b \ b_{+1}^e)}_{\text{adjust}} - \tau \ge \underbrace{(1 - \theta q) \ i}_{\text{downpayment}} + c^e$$
downpayment
resale
liquid assets
on investment

Optimal investment:

$$\underbrace{q-1}_{\text{here}} = \underbrace{(1-\theta q) \lambda^e}_{\text{cost of}}$$

benefit of cost of
new equity downpayment

2.3. Recursive competitive equilibrium

- components:
 - asset price functions: $(q, p_b)(K, Z)$
 - factor price functions: (r, w)(K, Z)
 - policy functions: $x(s, b; K, Z), x \in (i, c^e, s^e_{+1}, b^e_{+1}, \ell, c, s_{+1}, b_{+1})$ – value function: v(s, b; K, Z)
- requirements:
 - optimization by individual households and firms
 - $-\operatorname{clearing}$ of markets for goods, labor, capital, and assets
 - -dynamics of aggregate capital: $K_{+1} = \sigma K + \pi i(K, B; K, Z)$

- 3. Equilibrium responses to shocks
- 3.1. Calibration

$$U(c^w) = \frac{(c^w)^{1-\rho} - 1}{1-\rho}, \qquad u(c^e) = u_0 U(c^e)$$

$$h(\ell) = h_0 \ell^{\eta}, \quad F(K, (1-\pi)\ell) = K^{\alpha} [(1-\pi)\ell]^{1-\alpha}$$

$$\log A_{t+1} = (1 - \delta_A) \log A^* + \delta_A \log A_t + \varepsilon_{A,t+1}$$

$$-\log(\frac{1}{\phi_{t+1}} - 1) = -(1 - \delta_{\phi})\log\left(\frac{1}{\phi^*} - 1\right)$$
$$-\delta_{\phi}\log\left(\frac{1}{\phi_t} - 1\right) + \varepsilon_{\phi,t+1}$$

parameter	value	calibration target
π : prob of	0.06	annual fraction of investing firms $= 0.24$
investment	0.00	annual fraction of mycsting mins -0.24
B: stock of	2 020	fraction of liquid assets in portfolio $= 0.12$
liquid assets	2.020	$\begin{bmatrix} \text{If action of inquire assets in portiono} &= 0.12 \\ \end{bmatrix}$
ϕ^* : steady st.	0.276	annual return to liquid assets $= 0.02$
resaleability		
θ : finance by	0.276	set to equal to ϕ^*
new equity		
$\delta_{\phi}: \phi$	0.9	averen auglu ebegen
persistence	0.9	exogenously chosen
other		standard targets

3.2. Response to a negative liquidity shock Experiment:

- at t = 0: economy is in non-stochastic steady state
- at the beginning of t = 1: ϕ falls from $\phi^* = 0.276$ to $\phi_1 = 0.05$
- for all $t \ge 2$: ϕ_t follows the process with $\varepsilon_{\phi,t} = 0$
- A is fixed at A^* , and θ is fixed, throughout

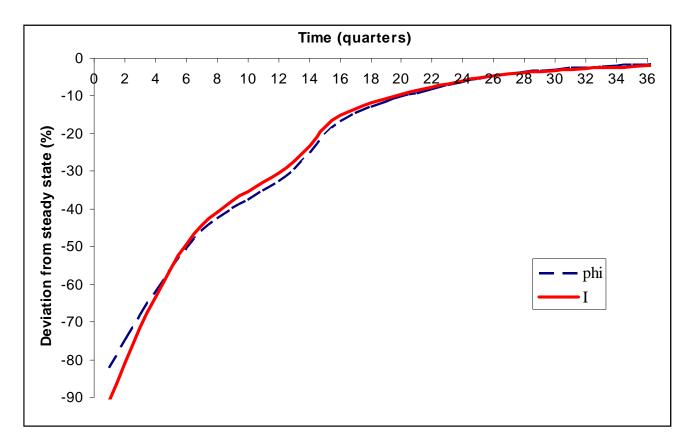


Figure 2.1. Equity resaleability and investment

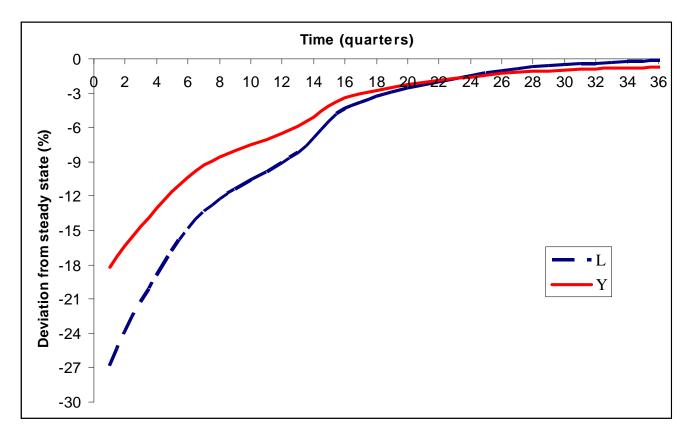


Figure 2.2. Employment and output

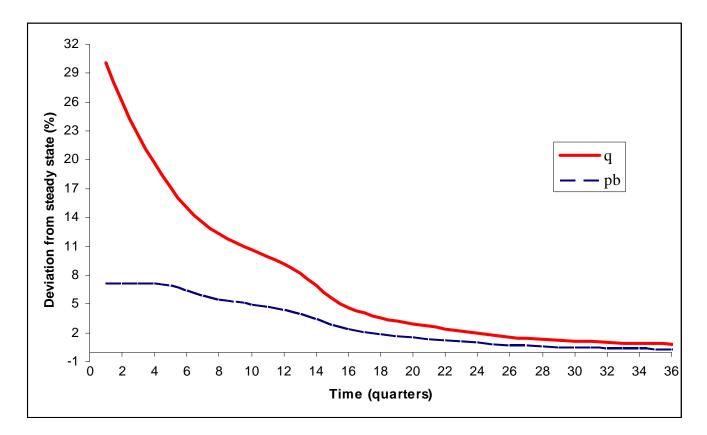
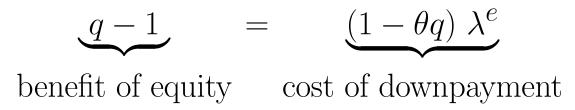


Figure 2.3. Equity price and bond price

A large and persistent negative shock to equity liquidity generates:


- large and persistent reductions in investment
- large and persistent reductions in output and employment
- problem: large and persistent **equity price BOOM**

3.3. What is the source of this problem? Some suspects:

- glitch in Matlab programs
- shock is too large: non-linearity messed up things
- θ (friction in new equity) is fixed: θ should fall
- model is unrealistic because it omits: wage/price rigidity; adjustment costs; habit persistence

The simple reason:

• Optimal investment requires:

- negative liquidity shock tightens the liquidity constraint, and increases the shadow price of the constraint, λ^e
- \bullet equity price q must rise to restore the balance

$$q - 1 = (1 - \theta q) \ \lambda^e$$

The equity price boom is even **LARGER** if

- θ falls: difficulty in issuing new equity increases
- wages are sticky: rental income falls, tightening liquidity constraint further
- consumption has habit persistence: an entrepreneur also needs to maintain high consumption

Adjustment cost in investment won't help much either:

- adjustment in investing $i: i^* \Psi(i/i^*)$
- optimal investment:

$$q - (1 + \Psi') = (1 + \Psi' - \theta q)\lambda^e$$

- Ψ' needs to be large to make a difference, but then
 - $-\operatorname{investment}$ does not fall by much
 - liquidity constraint is tighter,
 - $-\lambda^e$ increases by a lot, and so q increases

Assumptions that reduced the equity price boom:

- structure of large households:
 - pooling assets at the beginning of a period eliminates persistence in heterogeneity in asset holdings
 - $-\,{\rm this}$ should reduce tightness of liquidity constraint
- rental income is immediately available to entrepreneurs:
 - this relaxed the liquidity constraint

4. Some Solutions to the Problem

For equity price to fall after a negative liquidity shock, the equity liquidity constraint must become **LESS** tight.

• Need other shocks to sufficiently reduce the need for investment

• Some candidates:

- negative shock to productivity A
- negative shock to quality of capital
- negative shock to investment opportunities: a fall in π

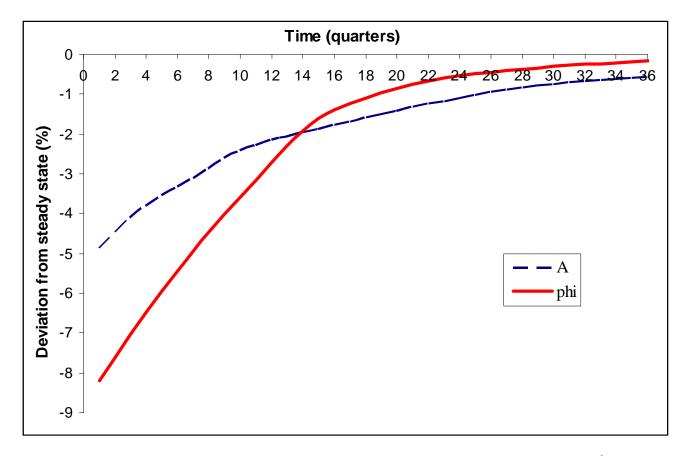


Figure 3.1. Negative shocks to ϕ and A

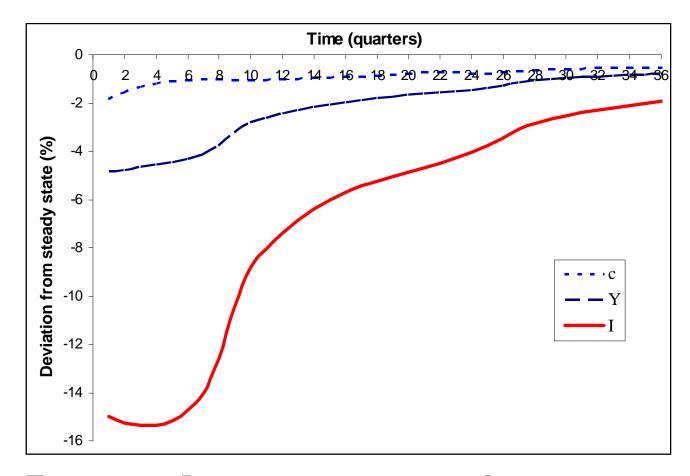


Figure 3.2. Investment, output and consumption

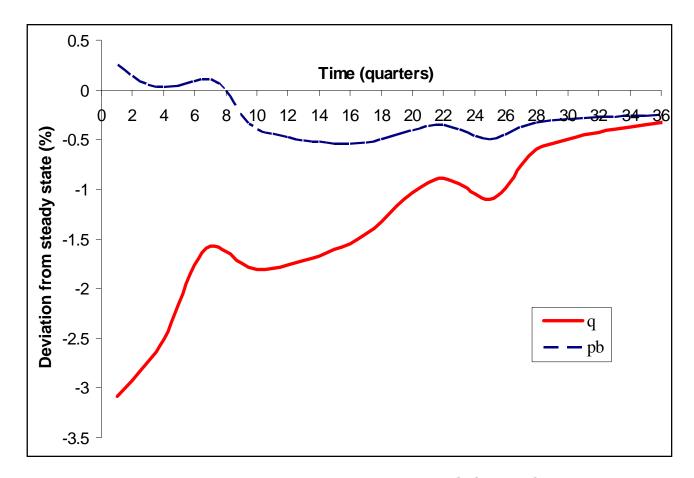


Figure 3.3. Equity price and bond price

5. Conclusion

- Liquidity shocks to the asset market
 - can amplify and propagate business cycles:
 they generate large and persistent changes in macro variables
 - cannot be the primary driving force of business cycles: negative liquidity shocks generate equity price boom!
- Other shocks are needed to reduce equity price in recessions
- Problem exists in ALL models where equity financing is important

- Did the Fed policy help?
 - It might have;
 - but it may not be the cure

• Important to model why asset market liquidity fluctuates

2.2. A household's maximization problem

• aggregate state (K, Z), $Z = (A, \phi)$ A: total factor productivity; ϕ : equity resaleability

• household's value function: v(s, b; K, Z)

- household's choices of:
 - an entrepreneur's investment *i*, consumption c^e , portfolio: $(s^e_{\pm 1}, b^e_{\pm 1})$
 - -quantities per member: c, s_{+1}, b_{+1}
 - a worker's labor supply: ℓ

A household's maximization problem (cont'd):

$$v(s,b;K,Z) = \max \left\{ \begin{array}{l} \pi \ u(c^e) + (1-\pi) \left[U(c^w) - h(\ell) \right] \\ +\beta \ \mathbb{E}v(s_{+1},b_{+1};K_{+1},Z_{+1}) \end{array} \right\}$$

(i) household's resource constraint:

$$\begin{bmatrix} (q-1)\pi i + rs + (1-\pi)w\ell \\ +q(\sigma s - s_{+1}) + (b - p_b b_{+1}) - \tau \end{bmatrix} \ge c$$

(ii) equity liquidity constraint: $s_{+1}^e \ge (1-\theta)i + (1-\phi)\sigma s$ (iii) an entrepreneur's resource constraint:

$$rs + q(i + \sigma s - s_{+1}^e) + (b - p_b \ b_{+1}^e) - \tau \ge i + c^e$$

New liquidity constraint (eliminate s_{+1}^e from above):

$$\underbrace{(r + \phi \ \sigma q) \ s}_{\text{rental and}} + \underbrace{(b - p_b \ b_{+1}^e)}_{\text{adjust}} - \tau \ge \underbrace{(1 - \theta q) \ i}_{\text{downpayment}} + c^e$$

$$\underbrace{\text{downpayment}}_{\text{on investment}}$$

Price of liquid assets:

$$p_b = \beta \mathbb{E}\left[\frac{U'(c_{\pm 1}^w)}{U'(c^w)} \left(1 + \pi \lambda_{\pm 1}^e\right)\right]$$

Equity price:

$$q = \beta \mathbb{E} \left\{ \frac{U'(c_{+1}^w)}{U'(c^w)} \begin{bmatrix} r_{+1} + \sigma q_{+1} \\ +\pi \lambda_{+1}^e (r_{+1} + \phi_{+1} \sigma q_{+1}) \end{bmatrix} \right\}$$

Equity premium:
$$\frac{r_{+1} + \sigma q_{+1}}{q} - \frac{1}{p_b}$$

Compute a recursive equilibrium:

- Step 1: given asset price functions $(q, p_b)(K, Z)$, firm's optimal conditions \implies factor prices; household's optimization \implies policy functions
- Step 2:

asset pricing equations \implies new functions $T(q, p_b)(K, Z)$

 \bullet Iterate to find a fixed point of mapping T

parameter	value	calibration target
β : discount	0.992	exogenously chosen
factor	0.332	CAOgenously chosen
ρ : risk	2	exogenously chosen
aversion		exogenously chosen
u_0 : utility	44.801	capital stock/annual output = 3.32
parameter	44.001	Capital Stock/ allitual Output – 5.52
h_0 : scale	17 005	hours of work $= 0.25$
in disutility		10015 01 WOLK = 0.23
η : curvature	1.5	labor supply elasticity $1/(\eta - 1) = 2$
of disutility		Tabol supply elasticity $1/(\eta - 1) - 2$

parameter	value	calibration target
α : capital share	0.36	labor income share $(1 - \alpha) = 0.64$
σ : capital survival	0.981	annual investment/capital $= 0.076$
$\begin{array}{c} A^*: \text{ steady} \\ \text{ state TFP} \end{array}$	1	normalization
δ_A : TFP persistence	0.95	persistence in $TFP = 0.95$
g: gov't spending	0.193	government spending/ $GDP = 0.18$