Soil Health Case Studies: Quantifying Economic, Water Quality, \& Climate Outcomes

Emily Bruner, PhD - Midwest Science Director, AFT
FEDERAL RESERVEBANK OF CHICAGO NOVEMBER 20TH, 2019

Outline

- Why quantify soil health outcomes?
- Project Overview
- Team
- Goals
- Methods
- Project Results

Why quantify soil health outcomes?

- Several examples of anecdotal \& scientific evidence supporting the environmental \& soil health benefits of conservation practices
- Less information available quantifying the on-farm economic benefits associated with improving soil health
- The agricultural community (including retailers, bankers, landlords, farmers, and others) continuously request information
 that considers the "bottom line"

Why quantify soil health outcomes?

- From NRCS:
"With soil health management, producers can increase profits and reduce costs and risk all while conserving our nation's resources for the benefit of all.the extent of these economic benefits has not been consistently quantified - a major constraint to soil health management adoption identified as a priority by NRCS, partners, and customers"

Other economic case studies

- NACD \& Datu (2017)

4 farmers; 16-page each; partial budget analysis

- EDF (2018)

2 farmers; total enterprise budgets

- NRCS NY (2017)

2 farmers: Kemmeren \& Magos; 2-pages each; PBA

```
##
```

ECONOMIC CASE STUDY
Farmer Profile: Dave Magos

Introduction
Osie Mspas toms 2.200 soves ef cooviand in Jemerson Counto. Nen York Ne grous ca nat ot ons with the romainse beivg weed to arow corm grain and sajseass as cash circs.
 asout temp jest ags aten ns sans intires Sosp piot inclusivg some nand seeses inise
 9t ground wss locser as ense lo wotk, brometing Deve to oteg piaving caver coed inthe ter oflect

Nound the same sme. Ovet siorms taming

 bromptre Deve to purchme t usst no-ili planter is time for piantivg cone in met sering of ho-bl with cover coses in Hige jows ime.
 operabion is 3 yess con sigat sud 1 yees arath incuating 500 abits ef cover coess ecen yen

Whtough re nas vied whisa topes of cave over the yebrs, Dove lies the serets ne

Jeferson Counts,
New Yors

Meet the Team

Michelle Perez
Project Leader
AFT Water Initiative Director

Florence Swartz
Project Economist Retired NRCS NY Economist

Meet the AFT Authors

Justin Bodell
CA Stewardship Manager

Brian Brandt
Ag Innovations Director, OH

Emily Bruner
Midwest Science Director

Aaron Ristow
NY Stewardship Mgr American Farmland Trust

External Reviewers

- NRCS Economists
- Bryon Kirwan, State Economist of Illinois
- Lynn Knight, Economist, East Region
- Lakeitha Ruffin, State Economist of Oregon
- NRCS Soil Health Specialists
- Kabir Zahangir, West Regional Soil Health Specialist
- James Hoorman, NE Region Soil Health Specialist
- NTT Reviewer
- Mindy Selman, USDA OEM
- COMET-Farm Reviewer
- Matthew Stermer, Colorado State University

Project Goal

Drive adoption of soil health practices by:
\checkmark Quantifying the economic and environmental outcomes associated with these management changes
\checkmark Developing a persuasive education tool to convince farmers to adopt these practices on owned and rented land
\checkmark Increasing awareness
Improving landowner and operator communication and interaction
\qquad

-
 American Farmland Trust

DESIGNING THE PROJECT

Locations selected to leverage already existing AFT work

- California: Lower Stanislaus River Watershed
- Illinois: Vermilion Headwaters Watershed
- Ohio: Portage and Toussaint Watershed
- New York: Genesee River Basin Watershed

Materials developed for the Authors

- Criteria to Identify Soil Health Successful Farmers
- 4-page Handout: About the Project; Why Participate; Consent Form; Questionnaire Explanation
- List of Information to Collect Ahead of Time
- 20-page Questionnaire in Word
- 11-tab Excel Economic Calculator
- 6-tab NTT \& COMET Questionnaire in Excel
- Case Study Template

METHODS FOR ECONOMIC ANALYSIS

Partial Budget Analysis

	Data Sources:	
Ove	Item	Source
	Labor Rate: 45-1011 First-Line Supervisors of Farming, Fishing, and Forestry Workers	Bureau of Labor Statistics - 2018 Labor Rates
This	Machinery Cost Estimates	Field Operations, Farm Business Mngmnt., University of Illinois, June 2017
	Machinery Costs for Fertilizer Application	2018 Iowa Farm Custom Rate Survey, Iowa State University Extension and Outreach
	Fertilizer Prices	Estimated Costs of Crop Production in Iowa - 2018
	Index for Agricultural Costs	Producer Prices Paid Index, National Agricultural Statistics Service
	Crop Prices - Non-organic, Commodity	USDA, Economics, Statistica \& Market Information System, Agricultural Prices (NASS)
	Crop Prices - Non-organic, Hay/Forage	Agricultural Prices, NASS, February 29, 2019
	Crop Prices - Organic, Corn, Soybeans, Hay	National Organic Grain and Feedstuffs Report, National Ag. Statistics Service, December 19, 2018
Witl	Crop Prices - Organic Wheat	Baking Business November 2018 Prices
	Nutrient Values	Estimated Costs of Production in Iowa, Iowa State University Extension and Outreach
	Value of Nutrients in Soil (for erosion reduction benefit)	Interim Final Benefit-Cost Analysis for the Environmental Quality Incentives Program, 2009
	Net Returns, Corn, Soybeans,	Commodity Costs and Returns, Economic Research Service
	Production Costs, Hay	Estimated Costs of Crop Production in Iowa-2019, Iowa State University, Extension and Outreach
	National Average Hay Yield	Statistics by Subject, NASS, 2018

Nutrient Tracking Tool

http://ntt.tiaer.tarleton.edu/welcomes/new?locale=en

COMET FARM

COMET
 Farm
 USDA United States Department of Agriculture Natural Resources Conservation Service

Whole Farm and Ranch Carbon and Greenhouse Gas Accounting System.

Why should I use COMET-Farm?

USDA GHG methods
 do I need?

How are my results calculated?

Is my information safe?

How do I use COMET-Farm?

Overview video
http://cometfarm.nrel.colostate.edu/

THE RESULTS

4 AFT-NRCS Soil Health Case Studies

4 AFT-NRCS Soil Health Case Studies

Ralf Sauter, Okuye Farms, CA

Economic benefits of soil health practices outweigh the costs of implementation

Economic Effects of Soil Health Practices on Thorndyke Farms (2018)

Increases in Net Income			
Increase in Income			
ITEM	PER ACRE	ACRES	TOTAL
Yield Impacts due to Cover Crops	\$12.95	700	\$9,067
Total Increased Income			\$9,067
Decrease in Cost			
ITEM	PER ACRE	ACRES	TOTAL
Nutrient Savings Due to Nutrient Management	\$66.00	700	\$46,200
Reduced Machinery Cost due to Reduced Tillage	\$17.68	1,400	\$24,746
Reduced Machinery Cost due to Nutrient Mgt.	\$2.73	1,400	\$3,815
Total Decreased Cost			\$74.761
Annual Total Increased Net Income			\$83,828
Total Acres in this Study Area			1,400
Annual Per Acre Increased Net Income			\$60

Decreases in Net Income			
Decrease in Income			
ITEM	PER ACRE	ACRES	TOTAL
None Identified			\$0
Total Decreased Income			\$0
Increase in Cost			
ITEM	PER ACRE	ACRES	TOTAL
Nutrient Management Learning Activities	\$0.87	1,400	\$1,221
Cover Crops Learning Activities	\$1.74	700	\$1,221
Cover Crop Costs	\$39.00	700	\$27,300
Increased Pesticide Cost due to Reduced Tillage	\$5.00	1,400	\$7,000
Total Increased Cost			\$36.742
Annual Total Decreased Net Income			\$36,742
Total Acres in this Study Area			1,400
Annual Per Acre Decreased Net Income			\$26

Larry Thorndyke, IL, corn-soybeans

- Ford County, Vermilion Headwater Watershed
- Soil health practices: No-till \& strip-till, cover crops, \& nutrient management
- Study area: 1,400 / 2,600 acres

Annual SH Benefits: $\$ 83,828$
Annual SH Costs: \$36,742
Annual SH PROFITS: \$47,086 or \$34/ac

129\% ROI
(2018 dollars)
NTT results: On a 110-acre field, N, P, \& sediment reduced by $45,89, \& 76 \%$

COMET results: Same field, total GHGs emissions reduced by 192\%

Economic benefits of soil health practices outweigh the costs of implementation

Economic Effects of Soil Health Practices on MadMax Farms (2018)

Increases in Net Income			
Increase in Income			
ITEM	PER ACRE	ACRES	total
Yield Impact Due to Soil Health Practices	\$69.00	1,250	\$86,250
Total Increased Income			\$86,250
Decrease in Cost			
ITEM	PER ACRE	ACRES	total
Nutrient Savings due to Soil Health Practices	\$17.51	1,250	\$21,881
Reduced Seeding Rate for Soybeans	\$5.00	625	\$3,125
Pesticide Savings due to Soil Health Practices	\$18.75	1,250	\$23,438
50\% Reduction in Treated Soybean Seed	\$6.00	625	\$3,750
Reduced Machinery Costs Due to Reduced Tillage	\$35.45	1,250	\$44,317
Field Repair Savings due to Soil Health Practices	\$1.00	1,250	\$1,250
Total Decreased Cost			\$07,761
Annual Total Increased Net Income			\$184,011
Total Acres in this Study Area			1,250
Annual Per Acre Increased Net Income			\$147

Decreases in Net Income			
Decrease in Income			
ITEM	PER ACRE	ACRES	TOTAL
None Identified			\$0
Total Decreased Income			\$0
Increase in Cost			
ITEM	PER ACRE	ACRES	total
Variable Rate Application Cost	\$3.00	1,250	\$3,750
Increased Soil Testing Every Two Years	\$10.00	1,250	\$12,500
Residue and Tillage Mgt. Learning Activities	\$1.17	1,250	\$1,465
Cover Crops Learning Activities	\$5.86	1,250	\$7,326
Nutrient Management Learning Activities	\$3.32	1,250	\$4,151
Using Biologicals in Furrow	\$30.00	1,250	\$37,500
Increased Machinery Costs due to Change in Nutrient Management	\$6.30	1,250	\$7,875
Cover Crop Costs	\$49.50	1,250	\$61,875
Total Increased Cost			\$136,442
Annual Total Decreased Net Income			\$136,442
Total Acres in this Study Area			1,250
Annual Per Acre Decreased Net Income			\$109

Eric Niemeyer, OH, corn-soybeans

- Marion \& Delaware Counties, Upper Scioto River Watershed
- Soil health practices: No-till, cover crops, \& nutrient management
- Study area: All 1,250 acres operation

Annual SH Benefits: $\$ 184,011$
Annual SH Costs: $\$ 136,442$
Annual SH PROFITS: \$47,569 or \$38/ac

35\% ROI (2018 dollars)
NTT results: a 70 -acre field $\mathrm{N}, \mathrm{P}, \&$ sediment reduced by $58,74,88 \%$

COMET results: Same field, total GHG emissions reduced by 494%

Economic benefits of soil health practices outweigh the costs of implementation

Economic Effects of Soil Health Practices on Gary Swede Farm, LLC (2018)

Increases in Net Income				Decreases in Net Income			
Increase in Income				Decrease in Income			
ITEM	PER ACRE	ACRES	TOTAL	ITEM	PER ACRE	ACRES	TOTAL
Yield Impact Due to Soil Health Practices	\$71.95	600	\$43,168	None Identified			\$0
Total Increased Income			\$43,168	Total Decreased Income			\$0
Decrease in Cost				Increase in Cost			
ITEM	PER ACRE	ACRES	TOTAL	ITEM	PER ACRE	ACRES	TOTAL
Reduced Machinery Cost due to Reduced Tillage	\$23.43	1,500	\$35,152	Cost of Setting up Planter to Handle Residue	\$0.72	600	\$432
Nutrient Savings due to Nutrient Mngmnt.	\$40.65	600	\$24,390	Cover Crop Costs	\$51.00	450	\$22,950
Value of Decreased Erosion due to Soil Health Practices	\$2.25	1,500	\$3,369	Residue and Tillage Mgmt. Learning Activities	\$0.07	1,500	\$98
				Cover Crops Learning Activities	\$0.22	450	\$98
				Nutrient Management Learning Activities	\$0.16	1,500	\$244
Total Decreased Cost			\$02,011	Total Increased Cost			\$22,822
Total Increased Net Income			\$106,079	Annual Total Decreased Net Income			\$23,822
Total Acres in the Study Area			1,500	Total Acres in this Study Area			1,500
Per Acre Increased Net Income			\$71	Annual Per Acre Decreased Net Income			\$16
				Netincome			
Annual Change in Total Net Income $=\mathbf{8} 82,257$							
Annual Change in Per Acre Net Income = \$55							

343\% ROI

Jay Swede, NY, diversified crop rotation

- Genesee County Genesee River Watershed;
- Sweet corn, alfalfa, corn silage, grain corn
- Soil health practices: No-till, strip-till, cover crops, \& nutrient management
- Study area: 1,500 / 4,500 acres

Annual SH Benefits: $\$ 106,079$
Annual SH Costs: $\$ 23,822$
Annual SH PROFITS: \$82,257 or \$55/ac (2018 dollars)

NTT results: On a 25 -acre field, N, P, \& sediment reduced by $40,92, \& 96 \%$

COMET results: Same field, total GHGs emissions reduced by 560%

OVERARCHING FINDINGS

Yield \& Income Benefits of Soil Health Practices Across Three Farms

- Improved Yield:

2 to 15% yield increases attributable to soil health practices

- Annual Change in Per Acre Net Income: Average increase for 3 row crop farmers was \$42/ac/yr
- Return on Investment:

Average ROI for 3 row crop farms was 169%, ranging from 35% to 343%

Input Benefits \& Costs of Soil Health Practices Across Three Farms

- Changes to Fertilizer Costs:

3 row crop farmers saving \$17 to \$66/ac/yr

- reduced P applications 35 to 50\%
- reduced K applications 50\% 1 farmer reduced N on corn by 5%
- Changes to Machinery, Fuel, and Labor Costs:
3 row crop farmers saving $\$ 18$ to \$35/ac/yr, averaging \$26/ac/yr

[^0]
Input Benefits \& Costs of Soil Health Practices Across Three Farms

Herbicide Usage:

Mixed results:
1 farmer saves \$19/ac/yr
1 farmer spends \$5/ac/yr more
1 farmer was unchanged

Learning Costs:

Total cost ranged from \$440 to \$12,940/yr
Per acre costs range from 44 cents to \$10.35
\qquad

Environmental Benefits of Soil Health Practices Across all Four Farms

- Water Quality Improvement:

3 row crop farmers observed reduced soil and water runoff On selected fields, NTT estimated N losses were reduced 40 to 58\%;
P losses reduced 74 to 92%; \& sediment losses reduced 76 to 96%

- Climate Improvement:

COMET-Farm estimated total GHG emissions were reduced on each field by 192 to 560%, equivalent to taking to 17 cars off the road.

Farmer Uses of the Case Studies

We hope farmers will share the case studies with:

- Existing landowners - To discuss sharing the risks and rewards of the soil health investments
- New landowners - To add new fields
- Bankers -To secure additional financing for the farm expansion

- -1.
 American Farmland Trust

THANK YOU!

AFT Site:

farmland.org/soilhealthcasestudies NRCS Site:
American Farmland Trust

Michelle Perez mperez@farmland.org

Emily Bruner
ebruner@farmland.org

19 + Tasks for Authors

1. Find Soil Health Successful Famers that match the Criteria
2. Meet \& discuss project with each farmer, complete the List of Things, complete signed consent form
3. Schedule interviews
4. Learn the 3 quantitative methods
5. Conduct economics interview, record it, \& clean-up notes
6. Conduct NTT \& COMET interview, record it, \& clean-up
7. Enter economics data into the Calculator \& compute results
8. Enter NTT data into NTT online \& compute results
9. Enter COMET data into COMET online \& compute results
10. Discus economics results with Flo \& Michelle
11. Discuss NTT results with Mindy Selman, NTT lead for USDA OEM
12. Discuss COMET results with Matt Stermer, COMET lead for CSU
13. Write the case study
14. Go through review \& editing by Flo \& Michelle
15. Go through NRCS review

[^0]: American Farmland Trust

