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The DF-CFNAI is estimated according to the following dynamic factor model,
eqs. (1-3), where Xt is a vector of the 85 demeaned and standardized CFNAI
monthly data series, Ft represents the monthly DF-CFNAI, and F 3

t is its three-
month moving average. We append to this model a nowcasting equation, eqs. (4-6),
for annualized quarterly real GDP growth, Yt.

Xt = ΓFt + εt (1)

Ft = β1Ft−1 + β2Ft−2 + β3Ft−3 + β4Ft−4 + νt (2)

F 3
t =

Ft + Ft−1 + Ft−2

3
(3)

Yt = T 3
t + γ0F

3
t + γ1F

3
t−1 + γ2F

3
t−2 + γ3F

3
t−3 + γ4F

3
t−4 + γ5F

3
t−5 + υt (4)

Tt = α + Tt−1 + ηt (5)

T 3
t =

Tt + Tt−1 + Tt−2

3
(6)

We assume that εt ∼ N(0, H), where H is a diagonal matrix. The OLS variant
of the DF-CFNAI parameterizes the variance-covariance matrix H as σ2 ∗ I where
I is the 85x85 identity matrix. The HR variant instead assumes a heteroskedastic
representation where the diagonal elements of H are equal to σ2

i . In addition to
allowing for heteroskedasticity, the AR variant allows εi to be serially correlated up
to first order.1 By assumption, εt and νt are uncorrelated.

Our nowcast is based on a trend-cycle decomposition for quarterly annualized
real GDP growth, Yt, where the cyclical dynamics of real GDP growth are assumed
to be captured by current and past values of the three-month moving average of the
DF-CFNAI. We only observe Yt in the third month of each quarter, so that eq. (4)
strictly relates each quarterly realization of real GDP growth to its corresponding
end-of-quarter trend value, T 3

t . We assume that υt ∼ N(0, V ) and ηt ∼ N(0,W )
and are uncorrelated with each other, εt, and νt.

2

1We choose the degree of serial correlation for each of the 85 data series prior to estimation of
the DF-CFNAI according to the Hannan-Quinn Information Criterion.

2We experimented with allowing νt and υt to be correlated as in Morley et al. (2003), but doing
so did not appreciably alter our results.
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The state-space representation for the DF-CFNAI and nowcast is given by the
following measurement and state equations

[
Xt

Yt
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The number of lags of Ft in eq. (2) and F 3
t in eq. (4) were chosen to minimize the

root-mean squared error of the nowcast of real GDP growth from the first quarter
of 1967 through the fourth quarter of 2012.

Notice that the trend component of quarterly real GDP growth, T 3
t , evolves as a

“time-varying mean” and that the assumption of a unit root in eq. (5) introduces a
nonstationary element into the state equation. Written in this way, we assume that
changes in the monthly mean of real GDP growth, Tt, have a permanent component
(α) and a transitory component (ηt). Our quarterly time-varying mean, T 3

t , is then
a weighted average of these two components. Identification of the transitory compo-
nent of T 3

t is made possible by the fact that it is a weighted average of the ηt’s that
span months within the quarter, whereas υt is assumed to be serially uncorrelated.

The model is estimated using the expectations-maximization (EM) algorithm.
The M-step in the algorithm consists of ordinary least squares estimation of the
model’s parameters, i.e. Θ = {Γ, β, γ, α,H,Q, V,W}. To initialize the algorithm,
we use the time series for the CFNAI as the first estimate of Ft to run the linear
regressions implied by eqs. (1-2) to obtain Γ and β. The variance-covariance matrix
H then follows from the first linear regression, while we follow Doz et al. (2012) in
fixing the scale of the latent factor by setting Q = I.

For the initial nowcast, we assume that Et(T
3
t ) is the constant in the linear

regression of quarterly annualized real GDP growth on current and previous values
of the CFNAI-MA3 implied by eq. (4). From this regression, we obtain our initial
estimates of γ and W . We then initialize α at zero and calibrate V according to
the median unbiased estimation procedure described in Stock and Watson (1998)
applied to a “local-level” unobserved components model for real GDP growth. At
subsequent iterations, α and V are then estimated by the linear regression implied
by eq. (5) using estimates of Tt.

The E-step in the EM algorithm consists of using the Kalman filter and smoother
to obtain new estimates of Ft and Tt given our initial estimates of the model’s
parameters and the data series Xt and Yt. The Kalman filter requires that we
specify the initial values for the mean and variance of Ft and Tt. To do so, we
follow the procedure described in Harvey (1989), setting F0 = 0 and T 3

0 = Y0 in
the first quarter of 1965 and giving them both a large variance. The impact of
this initialization dies out slowly over time; and for this reason, we do not consider
estimates in the two year period prior to 1967.

This process is then repeated until the likelihood function computed in the E-step
becomes stable, using the estimates of Ft and Tt from the E-step in the next M-step
and taking into account the additional uncertainty associated with using generated
regressors in the linear regressions.3 The algorithm requires only a few iterations, as
it begins its search for a local maximum in a neighborhood of the parameter space
associated with the initial consistent estimates of the parameters identified with the
CFNAI and the median unbiased estimate of the variance of the time-varying mean.

3The likelihood function is similar to that derived in the appendix to Brave and Butters (2012).
However, allowing for serially correlated εi requires a slight alteration as discussed in Jungbacker
et al. (2011). Our stability criterion for the likelihood function where k references the iteration is
| logL(k)− logL(k − 1)/((logL(k) + logL(k − 1))/2)| < 10−4.
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