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Risk managers have used complex models or ad-hoc curve fitting to incorporate LGD risk into 

their models. Here, Jon Frye provides a function that is simpler to use and which works better.  

 

Credit loss models contain default rates and loss given default (LGD) rates. If the two rates 

respond to the same conditions, credit risk is greater than otherwise. The risk affects loan 

pricing, portfolio optimization and capital planning.  

A study by Frye and Jacobs predicts LGD as a function of the default rate. Their function does 

not require a user to calibrate new parameters. Models that require such calibration do not 

significantly improve the description of instrument-level data.  

This study compares the LGD function to earlier LGD models and tests it with thousands of sets 

of simulated data. The comparison shows that the earlier models resemble a version of the LGD 

function that was not found to be statistically significant. The simulations show that the 

predictions of the LGD function are more accurate than those of regression and may remain 

more accurate for decades. Risk managers appear better served by the LGD function than by 

statistical models calibrated to available data. 

 

The LGD function 

The LGD function connects the conditionally expected LGD rate (cLGD) to the conditionally 

expected default rate (cDR). These are the rates that would be observed in an asymptotic 

portfolio. The asymptotic portfolio is an abstraction, like the perfect vacuum or absolute zero. It 

contains an infinite number of loans of which each has the same probability of default (PD) and 

each has the same expected loss (EL).  

To derive the LGD function, suppose that cDR has a Vasicek Distribution. The associated 

cumulative distribution function (CDF) provides the quantile, q:  

                                                        [
√                    

√ 
] 

where [] is the CDF of the Normal Distribution and -1[] is the inverse CDF. Suppose that the 

conditionally expected loss rate (cLoss) obeys a comonotonic Vasicek Distribution with the same 

value of . Then cLoss can be stated as a function of cDR: 

                      
         [

        √        

√   
]    [         

                

√   
] 

Dividing Equation (2) by cDR produces the LGD function: 

                         [         ]                                √    
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Thus, a loan’s PD, , and EL imply the value of its LGD Risk Index, k, which fully determines its 

LGD function. 

 

Figure 1 illustrates the LGD function for seven values of the LGD Risk Index. In each instance, 

cLGD has approximately the same moderate, positive sensitivity to cDR.  

The LGD function says that if conditions produce an elevated value of cDR, they also produce an 

elevated value of cLGD. This fills a gap because LGD modeling is subject to significant 

difficulties that trace back to data scarcity. We restrict attention to the connection between cDR 

and cLGD without denying that other variables might be discovered to make a contribution.  

Many banks have estimates of EL, , and PD. EL should be part of the spread charged on any 

loan. Correlation, , is probably the most common measure of dispersion. EL and   may be 

enough to describe the distribution of loss in the asymptotic portfolio, according to Frye (2010). 

To decompose the distribution of loss into variables default and LGD, EL must be decomposed 

into expectations PD and ELGD. The values of PD, , and EL are so important that a minor 

industry now supplies estimates. 

 

Earlier LGD models 

Several earlier models involve the rates of LGD and default. This section compares the LGD 

functions of five of them to the present one. Doing so reveals a strong similarity. (The LGD 

functions are derived in a mathematical appendix that is available here: 

http://www.chicagofed.org/webpages/people/frye_jon.cfm#.)  
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Figure 1: LGD Function for seven values of 
the LGD Risk Index
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Table 1. Frye-Jacobs and five earlier LGD models.  

 
Model 

 

 
Implied LGD Function 

Parameter values  
illustrated  
in Figure 2 

 
 

Frye-Jacobs 

 
                  

 

k = LGD risk index                  √    

 

 
 

k = 0.470 

 
 

Frye (2000) 
 

 

1  (     √                      √   

 
 = recovery mean,  = recovery SD, q = recovery sensitivity 

 

 
 = 0.696  
q =0.0447 

 

 
 
 

Pykhtin 

 

 [
       

√    
]     [      

  

 
      ] [

       

√    
  √    ]   

 

           √              √  

 
 = log recovery mean,  = log recovery SD,  = recovery correlation 

 

 
 

 = -0.384  
 = 0.251  
 = 0.3 

 

 
 
 

Tasche 
 

 

∫     
 

         

          
 [√                     √     ]      

  
  

  
         

 
    

             

 
           

 
ELGD = expected LGD; v = fraction of maximum variance of Beta distribution 

 

 
 
 

ELGD = 0.333  
v  1 

 
 

Giese 
 

 
               

 
            values to be determined 

 

 
         

         
       

 
 
 

Hillebrand 

 

∫      
   

 
  

  

 
 

 

  

          √                

a, b = parameters of cLGD in second factor; d = correlation of latent factors;  

          √         √  √    

 

   
   

 
 = 0.253  

  

 
 = 0.422  

 √     = 0.5 
 

 

Table 1 details the LGD functions. They arise from diverse premises. Frye (2000) assumes that 

recovery is a linear function of the normal risk factor associated to the Vasicek Distribution. 

Pykhtin parameterizes the amount, volatility, and systematic risk of a loan’s collateral and infers 

the loan’s LGD. Tasche assumes a connection between LGD and the systematic risk factor at the 

loan level; the idiosyncratic influence is integrated out. Giese makes a direct specification of the 

functional form linking cLGD to cDR. Hillebrand introduces a second systematic factor that is 

integrated out to produce cLGD given cDR.  
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Figure 2 illustrates the six LGD functions. Each function reflects a loan with PD = 3% and  = 

10%. Setting EL = 1% fully determines the Frye-Jacobs LGD function. The other functions have 

the chosen parameter values shown in Table 1. Clearly, each of the earlier models can closely 

approximate Frye-Jacobs for a loan having PD = 3%,  = 10%, and EL = 1%. Experimentation 

suggests that any of the earlier models can closely agree with Frye-Jacobs for a wide range of 

PD, , and EL.  

Thus, compared to Frye-Jacobs, each of the earlier models asserts that something else matters. 

Instead of ELGD alone, earlier models say that two or three LGD parameters are needed. The 

extra parameter(s) make the earlier models more flexible than Frye-Jacobs, and this flexibility 

makes them more attractive to some workers.  

Careful workers, however, require a model that displays statistical significance. A model lacking 

significance is likely to make Type 1 Error; it has inputs that are not relevant. This causes 

managers to make the wrong decisions, because their decisions are based on the wrong factors. 

Irrelevant factors are worse than nothing. They actively throw off the results by calibrating to 

the noise of a data set, rather than to the signal.  

To investigate the significance of an earlier model, all the parameters can be freely fit to 

historical data. Separately, the parameters can be restricted to values that make the model close 

to Frye-Jacobs. A careful risk manager would use the simpler model of Frye-Jacobs unless the 

difference in in explanatory power were shown to be significant.  

Such tests have been performed using specially created alternatives. Frye and Jacobs’ 

Alternative A has the following form: 

                             [         
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When parameter a is set to zero, Alternative A equals the Frye-Jacobs function. Other values of 

a produce an LGD function that has the same EL but is steeper or flatter. Calibrating to fourteen 

years of senior secured loans in five rating grades, a equals 0.01. This is very close to the Frye-

Jacobs LGD function and very far from statistical significance. It seems doubtful that any of the 

earlier models would display statistical significance if calibrated to the same data, though the 

detailed tests are left for later research.  

 

Data Simulation  

Real world data are the standard against which any scientific hypothesis must be judged. 

However, real world credit loss data, such as used in the tests described above, have a number of 

shortcomings. Credit model researchers do not publish data as in other sciences. The effects of 

the assumptions made while handling the data are therefore hard to judge. Critics can claim that 

results are driven by data imperfections, but these claims can neither be established nor refuted. 

Many such shortcomings are overcome by using data simulated from fully specified structures.  

Here the simulated data are used to make competing predictions of tail LGD. The predictors are 

the LGD function and linear regression. Simply to give linear regression an advantage in this 

contest, we generate the data with a linear model. Thus, the nonlinear LGD function competes 

against a linear model when a linear model has generated the data. Despite this uneven start, 

the LGD function performs better over a wide range of conditions. These conditions include 

samples of data longer than those that will be available this decade.  

A year’s cDR is drawn from the Vasicek Distribution. The number of defaults, D, has the 

Binomial Distribution with probability equal to cDR. The year’s cLGD is inferred from a linear 

function of cDR. Portfolio average LGD, denoted simply as LGD, is drawn from a distribution 

with mean equal to cLGD and variance that depends inversely on the number of defaults.  

Portfolio average LGD has a normal distribution when there are many defaults, according to the 

Central Limit Theorem. Researchers sometime restrict individual LGDs to the interval [0, 1]. 

However, some historical LGDs lie outside the interval, and Frye and Jacobs report that some 

annual average LGDs also lie outside it. Therefore, we do not restrict LGD to [0, 1], and we use 

the normal distribution to simulate it.  

Stating this in symbols, the simulation of a single year of data proceeds as follows: 

                                                                

                                                          √     √   ⁄       

                                                                

                                                     

                                                         



7 
 

A complete data set consists of T years of (D, LGD). From these data the LGD function and 

linear regression make their respective predictions of tail cLGD. Since we know the true value of 

tail cLGD, it is easy to determine the winner.  

Altogether there are eight control variables. Each of the control variables is allowed a range of 

values in a later section, but the initial simulations use the common values PD = 3%,  = 10%, 

and n = 1,000. The values a = 0.5 and b = 2.3 are those fit by Altman and Kuehne to their 

heterogeneous set of high-yield bonds. The value  = 20% is provided by Frye and Jacobs. 

Analysis is initially conducted at the 98th. At that percentile, cDR is 9.72%: 

                                                     √              √    ⁄             

The target of the comparison is then 98th percentile cLGD, which equals 72.3%: 

                                                                                

The eighth control variable, T, is set to ten years. This is because many banks established 

rigorous definitions of default, and began to measure the LGDs of loans, less than ten years ago.  

 

Initial simulations 

Using the forgoing set of values of the control variables, this section details one simulation run 

and summarizes the analysis of 10,000 runs.   

 

Figure 3 illustrates the data generator, Equation (8), as a dashed line. The 98th percentile is 

indicated by an open diamond. Ten simulated data points are indicated by solid diamonds.  

Analyzing the simulated data, we estimate PD is the average annual default rate, 2.24%. 

Maximizing the following likelihood function produces the estimate  ̂ = 17.6%: 
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Figure 3. A selected simulation run

Data Generator cLGD = .5 + 2.3 cDR

98th Percentile cLGD = 72.3%

10 Years Simulated Data

LGD Formula with k = .2276

Tail LGD by LGD Function = 65.9%

Regression Line LGD = 0.449 + 3.98 DR

Tail LGD by Regression Line = 86.1%

Default-rate-weighted LGD = 60.0%
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                                                               ∑                 ̂   

     

  

where fVas [  ] is the probability density of the Vasicek Distribution. The estimated 98th 

percentile of cDR is then 

                             ̂                    √                   √                   

The LGD function is easy to apply. Estimated EL is the average annual loss rate, 1.34%. This 

implies k = 0.2276. The LGD function prediction is then     ̂ = 65.9%. It understates true 

cLGD by 72.3% - 65.9% = 6.4%.  

Ordinary least squares (OLS) estimates are  ̂ = 0.449 and  ̂ = 3.98. The regression line 

prediction,     ̂ = 86.1%, is marked with an open square. It overstates cLGD by 13.8%. 

However, the slope of the regression is not statistically significant with a test size of 5%. The 

regression prediction therefore reverts to an average. For this we use default-rate-weighted-

average LGD, 60.0%. This is an improvement relative to the untested regression, but in the end 

OLS understates the target by 12.3%. This error is about twice as great as the error made by the 

LGD function. 

This example illustrates that even in the best of circumstances, LGD data are far from ideal. Ten 

data points are not much. Most of the ten will tend to be “good” years in which the default rate is 

low, there are few defaults, and portfolio LGD might be high or low depending on the luck of a 

few draws. More rarely, cDR is elevated. Then, the variance of D is elevated, and the observed 

default rate can be a poor reflection of conditions. 

 

Figure 4 summarizes 10,000 simulation runs using the initial values of the control variables. 

Predictions made by the LGD function are tightly distributed, while those made by OLS range 
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from 50% to well over 100%. Of the OLS predictions, the lesser mode reflects mostly regressions 

lacking significance; although regression itself is unbiased, after testing it is biased downward. 

Overall, the LGD function (root mean squared error (RMSE) = 7.9%) is more accurate than OLS 

(RMSE = 11.0%) for the initial set of values of the control variables. 

 

Robustness  

This section allows each control variable to take a range of values. Throughout the ranges shown 

in Table 2, the LGD function produces more accurate predictions than OLS.  

Of the eight variables, five have little effect on the conclusion. Two variables can reverse it: if 

there are many years of data or if LGD responds very strongly to default, OLS can sometimes 

outperform the LGD function. The final variable, PD, affects the tradeoff between these 

variables and the relative performance of the two predictive approaches. More detail is available 

in a working paper: http://www.chicagofed.org/webpages/people/frye_jon.cfm#. 

Table 2. Range of parameter values in robustness checks 
    

Variable Description Initial Value Range of Values 
q LGD target quantile 98% 90%  99.9% 

 Correlation 10% 0%  50% 
n Number of loans in portfolio 1,000 0  10,000 

 Standard deviation of individual  LGD 20% 0%  30% 
a Intercept of data generator 50% 0%  78% 
T Number of years of data 10 years 0  20 years 
b Slope of data generator 2.3 0.45  3.4 

PD Probability of default 3% 0%  3% 
 

The ranges shown in Table 2 include practical situations. Risk models are rarely developed for 

outcomes less extreme than the 90th percentile. In a literature review Chernih and co-authors 

find no estimates of correlation greater than 21%. The data of Frye and Jacobs contain no year 

with as many as 1,000 bonds or 1,000 loans, and Altman’s high-yield universe has had more 

than 1,000 bonds for less than ten years. If the intercept of the data generator is 78%, then 

target cLGD is 0.78 + 2.3 * 0.0972 = 101%, an exceptional, even unrealistic, situation. Few 

banks have had definitions of default for more than 20 years, let alone long histories of loss 

given default. Frye and Jacobs estimate greater, but not significantly greater, systematic LGD 

risk in rated bonds than in rated loans.  

Beyond the ranges shown in Table 2, T and b can reverse the usual conclusion. With a long 

enough data set, OLS eventually outperforms the LGD function. Table 2 shows that this occurs 

when the number of independently simulated data points exceeds 20, given the values of the 

other control variables. 

The slope of the data generator, b, also affects relative accuracy. The LGD function performs 

best when the slope of the data generator is approximately 1.0. If the slope of the data generator 
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is much steeper, as in the initial set of simulations, the LGD function tends to under predict. If 

the data generator is steep enough, OLS can outperform the LGD function. OLS can also 

outperform if the data generator is very shallow. That is because few of the regressions display 

statistical significance, and the regression reverts to the forecast that systematic LGD risk does 

not exist.  

 

Variables T and b interact as illustrated in Figure 5. The top line shows that with ten years of 

data the LGD function is more accurate than OLS for a range of slopes from 0.45 to 3.4. As the 

number of years increases, the length of this range declines. But even with 50 years of simulated 

data, the LGD function continues to produce more accurate predictions than OLS if the data 

generator has a moderate, positive slope similar to the LGD function.  

Figure 5 understates the real-world data requirement. A year of real-world data is less 

informative than an independent draw, because each year tends to resemble the previous one. 

The lines in Figure 5 would be higher, and the ranges of outperformance wider, if it were based 

on simulations containing serial dependence like real-world data.  

The value of the last control variable, PD, affects the tradeoff between T and b. If PD takes lower 

values, there are fewer defaults and fewer LGDs, and regression can discover less about their 

connection. If PD is greater than 3%, regression can outperfrom the LGD function sooner or 

with a shallower data generator. 

In these simulations, data from one linear model are analyzed by another linear model. The 

resulting predictions are outperformed by the curved LGD function for broad ranges of control 

variables. To reverse this conclusion appears to require decades more data than currently 

available. But even decades of data might not be sufficient. If the data generator itself were 

curved, a linear statistical procedure might never outperform the LGD function.  
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Exact regression 

The forgoing experiments use OLS to estimate the relationship between default and LGD. 

Although OLS is the most common method of linear regression, the simulated data violate the 

assumptions under which OLS works best. This section derives the exact regression and 

compares its performance to the other approaches.  

The probability density of observed portfolio average LGD given the observed, positive number 

of defaults is symbolized            . It can be derived with two applications of Bayes Rule:  

                             ∫                           
 

 

 

                                                ∫                                 
 

 

 

                                                ∫                                                   
 

 

 

where                 is the Normal Distribution of Equation (9),           is the Binomial 

Distribution of Equation (7),           is the PDF of the Vasicek Distribution, and  

                   ∫      ( [
        √   

√   
])

 

(   [
        √   

√   
])

   

(
 

 
)    

 

 

 

Equation (14) contains five parameters. We illustrate with the data points of Figure 3 and take 

  ̂        and  ̂ = 17.6% as before.  We give the statistical approach the true value of , which 

is 20%. Maximizing the likelihood produces  ̂ = 0.543 and  ̂ = 1.539. These imply that 98th 

percentile cLGD equals 70.2%. This is an improvement to the OLS prediction of 86.1%. 

However, regression is not a significant improvement to the simpler LGD function. The exact-

regression prediction therefore reverts to the LGD function prediction, 65.9%.  

Table 3. Exact regression compared to LGD function and OLS 
 

 Root mean squared error 
1,000 regressions  

all cases 
582 regressions  
not significant 

418 regressions  
with significance 

LGD function 8.0% 9.3% 5.7% 
Exact regression 9.4% 9.3% 9.5% 

OLS 10.8% 11.4% 9.9% 
 

Table 3 reports the results of 1,000 independent runs. Over all, the LGD function produces more 

accurate predictions than exact regression.  

When the exact regression is not significant, the two approaches are identical by definition. 

When the exact regression is significant it performs worse than otherwise, but the LGD function 

performs particularly well. This is because this collection of cases has greater estimates of PD, 
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correlation, and ELGD. These elevate the predictions of the LGD function and partly offset its 

tendency to under predict for a steep data generator like this one.  

Overall, exact regression is outperformed by the LGD function. Although exact regression uses 

data more efficiently than OLS, improvements in statistical technique cannot substitute for data.  

Data shortcomings are therefore the impediment to modeling LGD risk. There are only a few 

years of real-world data at present. These data have serial dependence, so they are less 

informative than independent draws. In most years, little is learned about LGD because there 

are few defaults. When such a short, serially dependent, noisy data set is subject to statistical 

modeling, large errors and low significance are the result. The simpler LGD function, which uses 

the data less intensely, performs better. 

 

Conclusion 

Every model containing a default rate and an LGD rate must connect them in some way. The 

connection can be expressed by a recently introduced LGD function. The function introduces no 

new parameters; therefore, it can be applied readily. 

This study compares the accuracy of the LGD function to linear regression. To give regression an 

advantage, the data are simulated with a linear model. Despite this, the LGD function produces 

more accurate predictions when two conditions hold: the data sample is less than a few decades 

and the sensitivity of LGD to default is not extreme. Both conditions hold in practice. Now and 

perhaps for several more decades, risk managers can use the LGD function to avoid unnecessary 

parameters in their models and to avoid unnecessary noise in their forecasts.   
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