Trends In Labor Force Participation

June 2013

Daniel Sullivan
Federal Reserve Bank of Chicago

Labor Force Participation Rate, Trend vs. Actual

Ages 16+

Main Points

- Participation is trending down for two reasons
- Demographics - we're getting older
- Long-running behavioral trends - participation for most narrow demographic groups has been dropping steadily over time

■ Nevertheless, 2012 participation is below its long-term trend by 1.2 percentage points

- Even accounting for the high unemployment rate it is 0.67 percentage points below trend
- Groups especially far below trend
- The young
- Those with low education
- Older workers are bucking the trend

Participation By Age and Sex

Labor Force Participation, By Age/Gender

Labor Force Participation, By Age/Gender

Labor Force Participation, By Age/Gender

Men, 25-54
(percent)
100

Labor Force Participation, By Age/Gender

Labor Force Participation, By Age/Gender

Labor Force Participation, By Age/Gender

2012 Male Participation Rates By Education

2012 Female Participation Rates By Education

Women

Forecasting Demographic Group Behavior

- Question: In 2007, how to forecast participation rates of 50-54 year old women in 2015?
- BLS Method: Extrapolate the historical time series for participation of 50-54 year old women using last 13 years (mixing cohorts)

■ Cohort Method:

- Note that women who will be 50-54 in 2015 were born 1961-65
- Compare the LFP of the 1961-65 birth cohorts to those of earlier cohorts at the same age
- Assume cohort differences will persist at higher ages

Select Model Fit LFP Profile Projections

White Female HS Graduate, 25-54

Select Model Fit LFP Profiles Through 2007

White Female HS Graduate, 25-54

Cohort-Based Projections

- Above projections based on extensions of Aaronson and Sullivan, Chicago Fed Economic Perspectives, 2001
- Somewhat similar results to Aaronson, Fallick, Figura, Pingle, and Wascher, Brookings, 2006
- Methodological differences
- Estimates at individual level (Models estimated using CPS data 1987-2007)
- Everything conditional on educational levels
- Many details

A Basic Logistic Cohort Model

$p_{\text {sbai }} \quad$ Prob individual iof sex \mathbf{s} born in year \mathbf{b} is in LF at age a
$\log \left(\frac{p_{s b a i}}{1-p_{s b a i}}\right)=\beta_{s b}+\alpha_{s a}+x_{s b a i} \gamma_{s}+z_{s b a} \delta_{s}$
$\beta_{s b} \quad$ Birth year cohort dummies
$\alpha_{s a} \quad$ Age dummies
$x_{\text {sbai }} \quad$ Race group dummies
$Z_{s b a} \quad$ Age-specific controls

Estimated by age groups: 16-19, 20-24, 25-54, 55-70, 71-79.

Age-Specific Controls

- Ages 16-24
- Real Minimum Wage
- Hourly Wage Ratio of 16-19 year olds to 25-54 year olds
- Ages 25-54
- Fraction of population married with a Child 5 Years or Younger
- Fraction of population married with no Child 5 Years or Younger

■ Ages 55 and higher

- Gender specific life expectancies

Extension: Condition on Education

$p_{\text {sebai }} \quad$ Prob individual \mathbf{i} of sex \mathbf{s} and education \mathbf{e} born in year \mathbf{b} is in LF at age a

5 education categories: <HS, =HS, Some College, College, > College

$$
\log \left(\frac{p_{\text {sebai }}}{1-p_{\text {sebai }}}\right)=\beta_{\text {seb }}+\alpha_{\text {sea }}+x_{\text {sebai }} \gamma_{\text {se }}+z_{\text {seba }} \delta_{\text {se }}
$$

Extension: Condition on Education

To forecast LFP, need educational attainment forecasts
$q_{s b a i}^{e}$
Prob individual i of sex s born in year b has attainment of at least e at age a given attainment of at least $e-1$

$$
\log \left(\frac{q_{s b a i}^{e}}{1-q_{s b a i}^{e}}\right)=\beta_{s b}^{e}+\alpha_{s a}^{e}+x_{s b a i} \gamma_{s}^{e}+z_{s b a} \gamma_{s}^{e}
$$

Extension: Allow for Business Cycle Effects

$p_{\text {sebai }} \quad$ Prob individual i of sex s and education \mathbf{e} born in year \mathbf{b} is in LF at age a
$\log \left(\frac{p_{\text {sebai }}}{1-p_{\text {sebai }}}\right)$
$=\beta_{\text {seb }}+\alpha_{\text {sea }}+w_{\text {sea }} \lambda_{\text {se }}+x_{\text {sebai }} \gamma_{\text {se }}+z_{\text {seba }} \delta_{\text {se }}$
$w_{\text {sea }} \quad$ Annual unemployment gap (actual - CBO NAIRU)

A Decomposition

Let $\quad p_{t}=$ Overall trend LFP at time t
$\mathbf{p}_{\mathrm{dt}}=$ Trend LFP for demographic group d at time \mathbf{t}
$f_{d t}=$ Share of population in group d at time t
Then
$p_{t}=\sum_{d} f_{d t} p_{d t}$
And

$$
\Delta p_{t}=\underbrace{\sum_{d}\left(p_{d t-1}-p_{t-1}\right) \Delta f_{d t}}_{\text {Demographics }}+\underbrace{\sum_{d} f_{d t} \Delta p_{d t}}_{\text {Behavior }}
$$

Decomposition of LFP Change

(Percentage points per year)

1987-1997 1997-2005 2005-2010 2010-2013

Total Change	0.14	-0.02	-0.16	-0.19

Demographic	0.05	-0.06	-0.08	-0.10
Behavioral	0.09	0.04	-0.07	-0.09

Decomposition of Demographic Contribution

(Percentage points per year)

	$1987-1997$	$1997-2005$	$2005-2010$	$2010-2013$
Total	0.05	-0.06	-0.08	-0.10
Age 16-19	0.01	0.00	0.01	0.03
Age 20-24	-0.02	0.01	0.00	0.00
Age 25-54	0.05	-0.04	-0.04	-0.05
Age 55-70	0.04	-0.06	-0.07	-0.05
Age 71-79	-0.03	0.03	0.02	-0.03

Labor Force Participation Rate, Trend vs. Actual

Labor Force Participation Rate, Trend vs. Actual

88\%
$\begin{array}{llllll}1987 & 1992 & 1997 & 2002 & 2007 & 2012\end{array}$
Female, 25-54

Labor Force Participation Rate, Trend vs. Actual

Male, 55-70
65%
50%
$\begin{array}{llllll}1987 & 1992 & 1997 & 2002 & 2007 & 2012\end{array}$

Female, 55-70

Labor Force Participation Rate, Trend vs. Actual

Male, >70
25%

CPS Data
LF Trend

5%

0%
 $\begin{array}{llllll}1987 & 1992 & 1997 & 2002 & 2007 & 2012\end{array}$

Female, >70
20%

0%
$\begin{array}{llllll}1987 & 1992 & 1997 & 2002 & 2007 & 2012\end{array}$

Demographically-Adjusted LFP

Decomposition of Behavioral Contribution

(Percentage points per year)

	$1987-1997$	$1997-2005$	$2005-2010$	$2010-2013$
Total	0.09	0.04	-0.07	-0.09
Men	-0.05	-0.04	-0.08	-0.07
Age 16-19	-0.01	-0.03	-0.04	-0.03
Age 20-24	-0.01	-0.02	-0.01	-0.01
Age 25-54	-0.04	-0.05	-0.05	-0.03
Age 55-70	0.01	0.05	0.01	-0.01
Age 71-79	0.00	0.01	0.01	0.01

Decomposition of Behavioral Contribution

(Percentage points per year)

	$1987-1997$	$1997-2005$	$2005-2010$	$2010-2013$
Total	0.09	0.04	-0.07	-0.09
Women	0.14	0.08	0.01	-0.02
Age 16-19	0.00	-0.03	-0.02	-0.03
Age 20-24	0.00	-0.01	-0.02	-0.01
Age 25-54	0.08	0.01	-0.02	-0.03
Age 55-70	0.05	0.09	0.04	0.03
Age 71-79	0.01	0.01	0.01	0.02

LFP By Education

LFP By Education

Post-College

$86 \% \longrightarrow$

$\begin{array}{lllllll}76 \% & & & \\ & 1987 & 1992 & 1997 & 2002 & 2007 & 2012\end{array}$

LFP Gap By Education

Contribution to LFP Gap By Education

(LFP Gap * Population Share)

Possible Interpretation of Low Education Results

- Housing boom may have temporarily stopped the slide of real wages for low education workers ...
- Possible interpretation of Charles, Hurst, and Notowidigdo (2012)
- Temporarily holding up LFP
- And our trend estimates
- After housing collapse, wages and LFP declined

■ Another story: Downward nominal wage rigidity bites harder for low education workers

- Productivity gains take longer to bring realignment
- Probably more a story for unemployment

LFP Gap By Age

(Actual LF - Predicted LF)

Contribution to LFP Gap By Age

Possible Interpretation of Age Results

- Young workers most affected by down turn
- Consistent with past research that entrants face disproportionate difficulties in poor labor markets
- Young workers may also be returning to school
- Understandable given low opportunity costs
- Older workers may be working more to compensate for negative shock to wealth

Contribution to 2012 LFP Gap, by sex/age/education

Group	2012 LFP Gap	Contribution to Total
Total Gap:	-1.14%	
Female, 25-54, HS Grads	-2.14%	-0.14%
Male, 25-54, HS dropouts	-3.03%	-0.10%
Female, 25-54, Some college	-1.03%	-0.08%
Female, 25-54, HS dropouts	-2.74%	-0.07%
Male, 20-24, HS graduates	-4.07%	-0.06%
Female, 71-79, HS Grads	-2.34%	-0.06%
Male, 25-54, HS Grads	-0.71%	-0.06%
Male, 25-54, Some College	-0.81%	-0.05%
Female, 20-24, Some College	-1.88%	-0.04%
Female, 16-19, Some college	-8.67%	-0.04%
Male, 16-19, HS dropouts	-1.59%	-0.04%
Residual:	-0.40%	
(Difference of above gaps to total)		

Caveats on LFP Modeling

- Modeling of business cycle could be improved
- E.g., some evidence that LFP responds to unemployment with very long lags
- Could incorporate more effects of policy changes
- E.g., on SS, taxes, tuition, etc.
- More generally, need better economics
- Labor supply responds to wages and other general equilibrium factors

Unemployment Rate

Payroll Employment

Payroll Employment

Payroll Employment Gap

(thousands of jobs)
150000

Payroll Employment

Trend Payroll Employment Growth
(jobs/month)
250

Extra Slides
-- May eventually be deleted

Participation By Age and Sex

2012 Labor Force Participation Rates, by Age (percent)

Change in Population Share, by Age (percentage points)

Participation By Age and Sex

Change in Population Share, By Age

Age-Specific Control Variables

Teen and 20-24 models
Real Minimum Wage (Demeaned)

Age-Specific Control Variables

Teen and 20-24 models
Hourly Wage Ratio of 16-19 year olds to 25-54 year olds (Demeaned)

Age-Specific Control Variables

Prime age models
Married with a Child 5 Years or Younger
(percent of 25-54 year olds)
12%

Age-Specific Control Variables

Prime age models
Married with no Child 5 Years or Younger
(percent of 25-54 year olds)
28% \qquad

Age-Specific Control Variables
 Older age models

Life Expectancies by Sex
(expected years lived past 50)
34
Men
Women

LF Participation Rate, with Business Cycles

Ages 16+

Demographically-Adj. LFP, w/Business Cycle Effect

LFP Gap By Education, with Business Cycle Effect

(Actual LF - Predicted LF)

Contribution to LFP Gap By Education

LFP Gap By Age, with Business Cycle Effect

Contribution to LFP Gap By Age

(LFP Gap * Population Share)

Labor Force Participation Rate, Trend vs. Actual

Estimated with data through 2012, Ages 16-79

| | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 66% | | | |
| | | | |

