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We present two approaches to examine the accuracy of default probability
forecasts for different rating grades. In particular, we analyze the respective
advantages and disadvantages of the two methods. Also, the effect of inde-
pendence assumptions is taken into account by modelling latent variables
like the asset correlation and dependency in time. Both tests, the Extended
Traffic Light Approach as well as an ad hoc normal test work on time-varying
default probability forecasts. They are considered with respect to their prac-
tical use and potential application in validating default forecasts in credit
institutions.

Key words: Basel II, Internal Ratings Based Approach, Validation, Esti-
mation of Default Probabilities, Time Dependency

∗Stefan Blochwitz, Dirk Tasche and Carsten S. Wehn work in the Banking and Financial Supervision
department at the Deutsche Bundesbank. Stefan Blochwitz is head of group for the on-site inspection
of IRB models in the Supervisory Review Process, Dirk Tasche is involved as senior analyst in the
current negotiations on Basel II and Carsten Wehn is senior examiner for Internal Market Risk
Models. Stefan Hohl is a Senior Economist (Supervision) at the Representative Office of the Bank for
International Settlements for Asia and the Pacific in Hong Kong. Nevertheless, all statements made
in the present article are the authors’ own opinions and should not be cited as being those of the
Deutsche Bundesbank or of the Bank for International Settlements.
Corresponding author: Dirk Tasche, E-mail: tasche@ma.tum.de
The authors are grateful to numerous colleagues from regulatory bodies and commercial banks for
helpful discussions.

1



1 Introduction

1 Introduction

Due to the ground breaking changes in risk management of credit portfolios, banks are
facing more and more complex challenges in determining appropriate default probabili-
ties for assets held in certain portfolios and associated with rating grades. Incentives are
currently set towards sophisticated risk measurement methods by the new Basel Capital
Accord, see BCBS (2003), that intends regulatory capital requirements to be calculated
in a more risk adjusted way.

Thus, risk managers and developers for banks’ credit risk estimation models as well as
supervisors are confronted with the issue of validating those risk estimates. This is a
rather problematic task as the data is by far not that frequently available as in other
risk areas. In credit risk, defaults are recorded most commonly only once per year, and
hence a comparison between the forecasts and the respective realizations can only be
made rarely. Most credit risk models also include several latent variables that determine
the overall behavior of the credit portfolio (e.g. asset correlation).

Despite these issues, approaches to the validation have to be made that should be un-
derstandable by a bank’s practitioners as well as by examiners who are responsible for
auditing the appropriateness and adequacy of the estimation and modelling procedures.
A recent example of such an approach is given by Balthazar (2004), relying heavily on
simulation methods. Tasche (2003) presents a method avoiding simulations but requiring
explicit specification of asset correlations.

In the present analysis, we investigate for two validation methods for PD estimates the
error that occurs when neglecting correlation with respect to time and asset correlation.
We therefore briefly sketch the Extended Traffic Light Approach (ETLA) that is based
on a multinomial model and an ad hoc normal test as a well understood alternative to
the ETLA. We run numerical simulations for several situations to incorporate the timely
dependency of a systematic variable and also the correlation of each obligor with respect
to this global variable.

For the notation, we use the following conventions: We denote in the following for the
years t = 1, . . . , T the forecasts for the default probabilities (PDs) by p̂t and the respec-
tive observed default rates as p̃t. The number of obligors in the respective rating grade
is denoted by Nt, Di,t is the indicator of the default event for the i-th obligor at time t
and di,t is the respective realization. Thus the observed default rate reads

p̃t =
∑Nt

i=1 di,t

Nt
.

Further on, Dt =
∑Nt

i=1 Di,t is the total number of defaults in the rating grade. Whenever
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2 Extended Traffic Light Approach (ETLA)

appropriate, pt is the “real” (but unobservable) PD. Further notation will be introduced
where it occurs first.

2 Extended Traffic Light Approach (ETLA)

In Blochwitz, Hohl & Wehn (2003), a traffic light approach is presented as a tool to select
examination samples and to identify suspicious rating grades. This approach is rather a
graphical visualization of the observed default rate in relation to the forecasted default
probability than a statistical test. The proposal is based on the asymptotic assumption
of no correlation in time and on the observation that if the default events in year t are
independent and if all the obligors in the portfolio have the same probability of default pt

the number Dt of defaults in year t is binomially distributed with probability parameter
pt and size parameter Nt:

Dt ∼ B(Nt, pt).

As a consequence, by the central limit theorem, the distribution of the standardized
default rate

p̄t =
Dt −Ntpt√
Ntpt(1− pt)

=
p̃t − pt√
pt(1−pt)

Nt

can be approximately described by the standard normal distribution as long as Ntpt is not
too small. Blochwitz et al. (2003) analyze in their paper the effect of the incorporation of
asset correlation and conclude that in most relevant cases this effect is rather small. They
do so by comparing first and second error levels of an independent and high granular
portfolio and also by numerical simulations. The present analysis aims to shed further
light on the behavior of the proposed ETLA.

An interpretation as a statistical test might be that if default events are assumed to be
independent and, additionally, independence in time is taken as given, under the Null
hypothesis of correct forecasts a multinomial distribution with well-defined probabilities
of the outcomes (identified with the traffic light colours) turns out to be the distribution
of the test statistic. For this statistic, probabilities (corresponding to the colors green,
yellow, orange, and red) with πg +πy +πo +πr = 1 and a color mapping C(x) are defined
by

C(x) =


g, x ≤ Φ−1(πg),
y, Φ−1(πg) < x ≤ Φ−1(πy),
o, Φ−1(πy) < x ≤ Φ−1(πo),
r, Φ−1(πo) < x,
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3 Normal Test

where Φ−1 denotes the inverse function of the standard normal distribution function. In
the present paper, the probabilities were chosen as πg = 0.5, πy = 0.3, πo = 0.15 and
πr = 0.05. With this definition, under the assumption of independence of the annual
numbers of default, the vector (Lg, Ly, Lo, Lr) with Lc counting the appearances of colour
c ∈ {g, y, o, r} in the sequence C(p̄1), . . . , C(p̄T ) will be approximately multinomially
distributed with

P [A = (Lg, Ly, Lo, Lr)] =
T !

Lg!Ly!Lo!Lr!
π

Lg
g π

Ly
y πLo

o πLr
r ,

for every quadruple (Lg, Ly, Lo, Lr) of non-negative integers such that Lg + Ly + Lo +
Lr = T. In order to construct critical regions for tests of the underlying probabilities of
defaults, for the case of T ≤ 9 the order function

Λ = Λ(Lg, Ly, Lo, Lr) = 1000Lg + 100Ly + 10Lo + Lr

turned out to be appropriate. With this notation, the traffic lights test of the hypoth-
esis “All true probabilities of default in the years t = 1, . . . , T are smaller than their
corresponding forecasts p̂t” can be specified as follows:

Reject the hypothesis at confidence level β if

Λ ≤ νβ,

where νβ is calculated as the greatest number ν with the property that P [Λ ≤ ν] < 1− β.
If the critical value νβ is exceeded by the test statistic, do not reject the hypothesis at
level β.

3 Normal Test

The construction of a normal test of PDs is based on the following observation: If
X1, X2, X3 . . . are independent random variables with (not necessarily equal) means
µ1, µ2, µ3, . . . and common variance σ2 > 0 then by the central limit theorem the distri-
bution of the standardized sum ∑T

t=1(Xt − µt)√
Tσ

will converge to the standard normal distribution for T tending towards ∞. In most
cases of practical interest, the rate of convergence is quite high. Therefore, even for
small values of T (e.g. T = 5) approximating the standardized sum with the standard
normal distribution seems reasonable.
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4 Model for the simulation study

In order to apply the normal approximation to the case of PD forecasts p̂1, p̂2, . . . , p̂T and
observed percentage default rates p̃1, p̃2, . . . , p̃T an estimator τ2 of the assumed common
variance σ2 must be specified. The obvious choice of τ2 is

τ2
0 =

1
T − 1

T∑
t=1

(p̃t − p̂t)2.

This estimator will be unbiased if the forecast PDs exactly match the true PDs. However,
τ2
0 will be upwardly biased as soon as some of the forecasts differ from the corresponding

true PDs. The bias can be considerably reduced by choosing

τ2 =
1

T − 1

 T∑
t=1

(p̃t − p̂t)2 −
1
T

(
T∑

t=1

(p̃t − p̂t)

)2
 .

Under the hypothesis of exact forecasts, τ2 is unbiased. In case of mismatches, it is also
upwardly biased, but to a less extent than τ2

0 . The normal test of the hypothesis “All
true probabilities of default in the years t = 1, . . . , T are smaller than their corresponding
forecasts p̂t” goes as follows:

Reject the hypothesis at confidence level β if∑T
t=1(p̃t − p̂t)√

Tτ
> zβ,

where zβ is calculated as the standard normal β-quantile (e.g. z0.99 ≈ 2.33).
If the critical value zβ is not exceeded by the test statistic, accept the hypothesis at level
β.

4 Model for the simulation study

Goal of the study is to generate close-to-reality time series of annual default rates and
to apply both the normal and the traffic lights test methodologies to them. Closeness to
reality in this case means that the rates in different years can be stochastically dependent
and that the same holds for the default events within one year. Essentially, the model
can be considered as an extension of the Vasicek model which was used in deriving the
Basel II risk weight functions into the time dimension (cf. Gordy (2003)).

Assume that a fixed portfolio is being observed in years t = 1, . . . , T . At time t the
number of obligors in the portfolio is the a priori known deterministic number Nt. The

5



5 Subject and Results of the Simulation Study

change in the general economic conditions from year t − 1 to year t is expressed by
the random variable St. Small values of St reflect poor economic conditions, large val-
ues stand for good conditions. The joint distribution of S is normal with standardized
marginal distributions and correlation matrix

Σ =


1 r12 r13 · · · r1T

r21 1 r23 · · · r2T
...

. . .
...

rT1 · · · · · · rTT−1 1.

 .

Defining rst = ϑ|s−t| for some appropriately chosen ϑ ∈ [0, 1] is common practice in panel
analysis and is also the approach which is followed in this simulation study. This is in
line with assuming an autoregressive process of first order for the global variable. The
unconditional default probability in year t is pt. Similar to Gordy (2003), we assume that,
conditional on S, the numbers of default are independent and binomially distributed with
sizes Nt and conditional default probabilities

pt(S) = Φ
(

pt −
√

ρtSt√
1− ρt

)
.

The ρt are interpreted as the correlations of the changes in the obligors’ asset values
from year t − 1 to year t. The annual percentage default rates p̃t will be calculated as
p̃t = Dt

Nt
, where Dt denotes the number of defaults in year t.

5 Subject and Results of the Simulation Study

Both the normal test as well as the traffic light test were derived by asymptotic consid-
erations – with regard to the length of the time series of the observed default rates in
case of the normal test and with regard to the portfolio size in the case of the traffic
light test. As a consequence, even in the case of complete independence in time and
in the portfolio it is not clear that the type I errors1 observed with the tests will be
dominated by the nominal error levels. Of course, the compliance with the nominal error
level is much more an issue in the case of dependencies of the annual default rates or
of the default events in the portfolio. When compliance with the nominal error level for
the type I error is confirmed, the question has to be examined which test is the more
powerful, i.e. for which test the type II errors2 are lower.

In order to clarify these points, simulation scenarios for T = 5 years of default experience
as described in Tables 1 (for type I errors) and 2 (for type II errors) were generated.

1I.e. the probabilities of errorneously rejecting the hypothesis.
2I.e. the probabilities of not rejecting the hypothesis if specific alternatives are true.
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6 Conclusion

Tables 3 and 4 list the parameter settings that were used for the implementation3 of the
scenarios. For all simulation runs, a constant over time portfolio size of 1,000 obligors
was fixed. Finally, Tables 5 and 6 report the observed error rates in the cases of the type
I error and the type II error respectively.

With regard to the type I errors, according to Table 5 both test methodologies seem
to be essentially in compliance with the nominal error levels. At high error levels (10%
and 5%), the normal test fits the levels better than the traffic light test does. For low
error levels (2.5% and less), the order of compliance is just reversed with the traffic
light test performing better. Both test methodologies face in some scenarios relatively
bad performance at the very low levels. Serious outliers are observed at 5% level for the
traffic light test as, in the dependence scenarios with larger PDs (DC-LC and DV-LV),
type I errors of more than 10% occur.

In general, according to Table 6 the traffic light test appears to be more powerful than
the normal test. In case of low PD forecasts to be checked, compared to the case of
larger PDs, for both test methodologies power is very low. However, whereas in most
scenarios differences in power are not dramatic, the traffic light test sees a heavy collapse
of performance in the “independence with varying larger PDs” (I-LV) scenario where at
levels 2.5% and 1% the normal test is more than 10% better.

To sum up, both test methodologies seem to be reliable with respect to compliance with
the nominal error levels, even in case of dependencies that were not taken into account in
their designs. The traffic light test is more powerful than the normal, and should therefore
be preferred to the normal test. However, the normal test appears to be slightly more
robust than the traffic light test with respect to violations of the assumptions underlying
its design. This observation might favor simultaneous applications of the tests.

6 Conclusion

With the Extended Traffic Light Approach (ETLA) by Blochwitz et al. (2003), a flex-
ible tool for monitoring the probability of default (PD) forecasts of rating grades was
provided. As the design of the ETLA is based on an assumption of cross-sectional and
inter-temporal independence of default events, in the paper at hand we checked its ro-
bustness with respect to violations of this assumption. For this purpose, the ETLA was
used as a statistical test of the hypothesis of adequate PD forecasts, and its performance
was compared to the performance of an ad hoc normal test. A common feature of both
these tests is the suitability for being applied to hypotheses of non-constant PD fore-

3Every scenario was investigated with 25,000 simulation runs.
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6 Conclusion

Scenario Description
I-SC Independence of default events and annual default

rates, small and constant unconditional PDs.
I-LC Independence of default events and annual default

rates, larger and constant unconditional PDs.
DC-SC Time dependence, constant asset correlations, small

and constant unconditional PDs.
DC-LC Time dependence, constant asset correlations, larger

and constant unconditional PDs.
I-SV Independence of default events and annual default

rates, small and varying unconditional PDs.
I-LV Independence of default events and annual default

rates, larger and varying unconditional PDs.
DV-SV Time dependence, varying asset correlations, small

and varying unconditional PDs.
DV-LV Time dependence, varying asset correlations, larger

and varying unconditional PDs.

Table 1: Scenarios for type I error simulations.

Scenario Description
I-SV Independence of default events and annual default

rates, small and varying unconditional PDs.
I-LV Independence of default events and annual default

rates, larger and varying unconditional PDs.
DV-SV Time dependence, varying asset correlations, small

and varying unconditional PDs.
DV-LV Time dependence, varying asset correlations, larger

and varying unconditional PDs.

Table 2: Scenarios for type II error simulations.
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6 Conclusion

Scena-
rio

Correl-
ation
in
time
(ϑ)

Asset correlations PD forecasts (in %) True PDs (in %)

I-SC 0 0; 0; 0; 0; 0 0.3; 0.3; 0.3; 0.3; 0.3 0.3; 0.3; 0.3; 0.3; 0.3
I-LC 0 0; 0; 0; 0; 0 3.0; 3.0; 3.0; 3.0; 3.0 3.0; 3.0; 3.0; 3.0; 3.0
DC-SC 0.2 0.05; 0.05; 0.05; 0.05; 0.05 0.3; 0.3; 0.3; 0.3; 0.3 0.3; 0.3; 0.3; 0.3; 0.3
DC-LC 0.2 0.05; 0.05; 0.05; 0.05; 0.05 3.0; 3.0; 3.0; 3.0; 3.0 3.0; 3.0; 3.0; 3.0; 3.0
I-SV 0 0; 0; 0; 0; 0 0.1; 0.2; 0.3; 0.4; 0.6 0.1; 0.2; 0.3; 0.4; 0.6
I-LV 0 0; 0; 0; 0; 0 1.0; 2.0; 3.0; 4.0; 6.0 1.0; 2.0; 3.0; 4.0; 6.0
DV-SV 0.2 0.05; 0.06; 0.07; 0.08; 0.09 0.1; 0.2; 0.3; 0.4; 0.6 0.1; 0.2; 0.3; 0.4; 0.6
DV-LV 0.2 0.05; 0.06; 0.07; 0.08; 0.09 1.0; 2.0; 3.0; 4.0; 6.0 1.0;2.0;3.0;4.0;6.0

Table 3: Parameter settings for type I error simulations.

Scena-
rio

Correl-
ation
in
time
(ϑ)

Asset correlations PD forecasts (in %) True PDs (in %)

I-SV 0 0; 0; 0; 0; 0 0.1; 0.2; 0.3; 0.4; 0.6 0.15; 0.25; 0.35; 0.45; 0.65
I-LV 0 0; 0; 0; 0; 0 1.0; 2.0; 3.0; 4.0; 6.0 1.5; 2.5; 3.5; 4.5; 6.5
DV-SV 0.2 0.05; 0.06; 0.07; 0.08; 0.09 0.1; 0.2; 0.3; 0.4; 0.6 0.15; 0.25; 0.35; 0.45; 0.65
DV-LV 0.2 0.05; 0.06; 0.07; 0.08; 0.09 1.0; 2.0; 3.0; 4.0; 6.0 1.5; 2.5; 3.5; 4.5; 6.5

Table 4: Parameter settings for type II error simulations.
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6 Conclusion

Nominal level 0.1 0.05 0.025 0.01 0.005 0.001
I-SC, normal 0.109 0.059 0.045 0.027 0.020 0.014
I-SC, traffic 0.135 0.085 0.043 0.011 0.007 0.001
I-LC, normal 0.130 0.081 0.055 0.037 0.028 0.016
I-LC, traffic 0.104 0.062 0.030 0.013 0.005 0.001

DC-SC, normal 0.092 0.049 0.030 0.017 0.013 0.007
DC-SC, traffic 0.124 0.076 0.029 0.018 0.016 0.008
DC-LC, normal 0.116 0.070 0.044 0.026 0.019 0.010
DC-LC, traffic 0.136 0.113 0.026 0.024 0.023 0.018
I-SV, normal 0.111 0.059 0.043 0.024 0.017 0.012
I-SV, traffic 0.132 0.088 0.043 0.013 0.005 0.001
I-LV, normal 0.128 0.077 0.051 0.032 0.024 0.014
I-LV, traffic 0.096 0.060 0.029 0.012 0.004 0.001

DV-SV, normal 0.083 0.037 0.021 0.010 0.007 0.003
DV-SV, traffic 0.115 0.071 0.027 0.017 0.015 0.007
DV-LV, normal 0.113 0.062 0.036 0.019 0.013 0.005
DV-LV, traffic 0.126 0.108 0.023 0.022 0.022 0.017

Table 5: Type I errors (normal = with normal test, traffic = with traffic light test).

Nominal level 0.1 0.05 0.025 0.01 0.005 0.001
I-SV, normal 0.736 0.836 0.875 0.922 0.944 0.964
I-SV, traffic 0.685 0.782 0.874 0.946 0.972 0.990
I-LV, normal 0.252 0.366 0.467 0.575 0.643 0.754
I-LV, traffic 0.259 0.374 0.600 0.688 0.760 0.871

DV-SV, normal 0.862 0.927 0.956 0.977 0.984 0.992
DV-SV, traffic 0.811 0.868 0.950 0.965 0.969 0.983
DV-LV, normal 0.775 0.858 0.908 0.946 0.961 0.979
DV-LV, traffic 0.733 0.760 0.933 0.935 0.936 0.955

Table 6: Type II errors (normal = with normal test, traffic = with traffic light test).

10



References

casts. This situation is likely to occur in practice since many rating systems are hybrids
that combine point-in-time and through-the-cycle features.

The comparison of ETLA and normal test was carried out by means of a simulation
study. Reliability with respect to type I error levels as well as power measured by type II
error sizes were examined. Overall, the performance of ETLA and normal test is broadly
equal. However, in general the ETLA appears to be slightly more powerful while the
normal test is slightly more robust with respect to correlation of default events and in
time. In consideration of the strong conceptual differences, the observation of comparable
performance of the tests indicates that further developments in the field of PD validation
might not reach much improvement. Nevertheless, this is only a conjecture so that further
research for its verification is needed.

The extension of the ETLA to simultaneous monitoring of several rating grades repre-
sents another direction for further research since for rating systems with many grades a
purely random rejection of appropriate estimation for one or two grades becomes likely.
Therefore, the simultaneous ETLA could reflect the adequacy of a rating system as a
whole, in contrast to the simultaneous application of ETLA to several rating grades
which gives only local pictures of the system (e.g., in order to select samples for a deeper
examination).
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