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No-arbitrage restrictions and the U.S. Treasury market 

Andrea Ajello, Luca Benzoni, and Olena Chyruk 

Introduction and summary

The secondary U.S. Treasury market is among the largest, 
most liquid, and most important financial markets world-
wide. Daily trading volume in 2011 averaged $567.8 
billion, more than tenfold the volume at the New York 
Stock Exchange (NYSE).1 The market is open around 
the clock, with trading involving both U.S. and inter-
national participants. Competition among dealers and 
brokers typically results in low bid–ask spreads, low 
brokerage fees, and fast order execution (for example, 
Fleming, 1997). Such features make the market very 
liquid across a wide spectrum of maturities. 

Arbitrage is the practice of taking advantage of a 
price differential between securities that pay out similar 
cash flows (we provide a more rigorous definition at the 
beginning of the next section). This concept has im-
mediate application in the U.S. Treasury market. For 
instance, consider two alternative investment strategies. 
The first entails purchasing a ten-year Treasury note. 
The second involves an investment of the same amount 
in a three-month Treasury bill that we repeatedly roll 
over at maturity into a newly issued three-month bill. 
For markets to clear, and absent market frictions, the 
price of the ten-year note needs to reflect investors’ 
expectations about the future path of the three-month 
Treasury rate during the next ten years. These expecta-
tions involve an adjustment to compensate risk-averse 
investors for bearing the risk that the price of the ten-
year note will fluctuate during the holding period. If 
Treasury yields were to violate this condition, in a well-
functioning capital market arbitrage trading would move 
funds across assets until prices adjust to balance out 
profit opportunities. By the same argument, yields on 
Treasury securities with various maturities will satisfy 
similar cross-sectional restrictions. 

The Federal Reserve exploits the linkage across 
the term structure of bond yields to influence the 
availability and cost of money and credit in the economy. 

For instance, the Federal Open Market Committee 
(FOMC) uses open market operations to achieve a 
desired target rate in the federal funds market, where 
depository institutions lend balances at the Federal 
Reserve to other depository institutions overnight.2 
Changes in the federal funds rate trigger a chain  
of events that affect other short-term interest rates, 

Andrea Ajello is an economist in the Division of Monetary 
Affairs at the Board of Governors of the Federal Reserve 
System. Luca Benzoni is a senior financial economist and 
Olena Chyruk is a senior research analyst in the Economic 
Research Department at the Federal Reserve Bank of Chicago. 
The authors are grateful to Gene Amromin, Gadi Barlevy, 
Marco Bassetto, Jarda Borovička, Charlie Evans, Robert 
Goldstein, Alejandro Justiniano, Spencer Krane, David Marshall, 
Richard Porter, Robert Steigerwald, an anonymous referee, 
and seminar participants at the Federal Reserve Bank of 
Chicago for helpful comments and suggestions. 

© 2012 Federal Reserve Bank of Chicago 
Economic Perspectives is published by the Economic Research 
Department of the Federal Reserve Bank of Chicago. The views 
expressed are the authors’ and do not necessarily reflect the views 
of the Federal Reserve Bank of Chicago or the Federal Reserve 
System.
Charles L. Evans, President; Daniel G. Sullivan, Executive Vice 
President and Director of Research; Spencer Krane, Senior Vice 
President and Economic Advisor; David Marshall, Senior Vice  
President, financial markets group; Daniel Aaronson, Vice President, 
microeconomic policy research; Jonas D. M. Fisher, Vice President, 
macroeconomic policy research; Richard Heckinger, Vice President, 
markets team; Anna L. Paulson, Vice President, finance team; 
William A. Testa, Vice President, regional programs; Richard D. 
Porter, Vice President and Economics Editor; Helen Koshy and 
Han Y. Choi, Editors; Rita Molloy and Julia Baker, Production 
Editors; Sheila A. Mangler, Editorial Assistant.
Economic Perspectives articles may be reproduced in whole or in 
part, provided the articles are not reproduced or distributed for 
commercial gain and provided the source is appropriately credited. 
Prior written permission must be obtained for any other reproduc-
tion, distribution, republication, or creation of derivative works  
of Economic Perspectives articles. To request permission, please 
contact Helen Koshy, senior editor, at 312-322-5830 or email  
Helen.Koshy@chi.frb.org. 

ISSN 0164-0682



56 2Q/2012, Economic Perspectives

foreign exchange rates, and the amount of money and 
credit. Most people, however, care especially about the 
cost of long-term credit—many firms rely on long-term 
debt to fund capital investment, and households take on 
long-term loans to buy their homes and cars. These 
observations underscore the importance of term structure 
models that help us gauge the effect of monetary policy 
actions (which typically impact the short end of the term 
structure) on long-term yields and, ultimately, a range 
of economic variables, including employment, output, 
and the prices of goods and services. 

In this article, we discuss the pricing of U.S. 
Treasury securities via no-arbitrage arguments. We 
initially define what an arbitrage is and provide an  
intuitive one-period example that shows how to con-
struct an arbitrage investment strategy in a frictionless 
capital market. We argue that absent transaction costs, 
information asymmetries, and other market imperfec-
tions, investors will trade away arbitrage opportunities. 
This will discipline the movement in prices of assets 
that are exposed to the same source of risk. We then 
formalize this intuition in the classical no-arbitrage 
term structure model of Vasicek (1977). We show that 
no-arbitrage arguments restrict the amount of return 
that investors demand in compensation for bearing a 
unit of risk (the so-called market price of risk) to be 
identical across the cross section of bonds. Exploiting 
this condition, Vasicek obtains a bond pricing formula 
that expresses the price of bonds of various maturities 
as a function of the spot interest rate, the market price 
of risk, and other model parameters. 

This discussion also highlights the limitations of 
the Vasicek model. First, Vasicek assumes the market 
price of risk to be exogenous—his approach is silent 
about the economic forces that determine the amount 
of compensation investors require to bear risk. To clarify 
this link, we recast his model in a general equilibrium 
setting. This analysis shows that the market price of 
risk depends in fact on economic fundamentals such 
as the investors’ attitude toward risk and the volatility 
of the growth rate in aggregate consumption. 

Second, in the Vasicek model a single variable, 
the spot interest rate, explains the fluctuations in the 
entire cross section of Treasury yields. One implication 
of this assumption is that bond yields and their changes 
are perfectly correlated. Correlations in pairs of yields 
with different maturities are positive and high in the 
data; however, they decrease considerably as the time 
to maturity of bonds becomes further apart. This feature 
suggests that additional factors might drive the U.S. 
Treasury yield curve and motivates a vast literature that 
extends the class of no-arbitrage term structure models 
to include multiple factors. We present an overview 

of this class of models, with an emphasis on the spec-
ifications that, similar to Vasicek’s model, allow for 
tractable bond pricing formulas (the so-called affine 
dynamic term structure models). 

Third, the predictions of no-arbitrage models hinge 
on the critical assumption that markets are “perfect.” 
In order to take advantage of arbitrage opportunities, 
investors require access to capital. To trade away price 
misalignments, they need to be able to exchange secu-
rities at minimal cost based on information that is 
available to, and readily interpretable by, all investors. 
Clearly, no market satisfies all these conditions, and 
frictions typically become more severe during times 
of market stress. In extreme cases, markets could be-
come segmented and arbitrage opportunities remain 
unexploited because of balance-sheet capacity limita-
tions or because of higher-than-normal uncertainty and 
risk aversion. These conditions could reduce the effec-
tiveness of no-arbitrage pricing arguments, possibly to 
a point where prices deviate from fundamental values. 

Most of the time, frictions in the U.S. Treasury 
market are small. For instance, bid–ask spreads and 
other transaction costs are usually very low, and investors 
can trade securities with ease (for example, Fleming, 
1997). Financial and economic crises typically do not 
impair these conditions. In fact, a flight to quality and/
or liquidity can increase the demand for U.S. govern-
ment debt, especially the most recently issued short-
maturity nominal Treasury securities. This happened, 
in particular, during the recent financial crisis, when 
investors displayed a desire to hold only the safest and 
most liquid assets (for example, Gorton and Metrick, 
2011; and Krishnamurthy, 2010). Nonetheless, govern-
ment debt markets can exhibit some degree of segmen-
tation because of the preferences by some investor 
clienteles (for example, pension funds, insurance com-
panies, and other institutional investors) to hold secu-
rities that have specific maturities. So-called preferred 
habitat theories argue that these preferences could limit 
the substitutability of short- and long-term Treasury 
securities, distorting their relative pricing; capital con-
straints and risk aversion might prevent arbitrageurs 
from eliminating such profit opportunities. In the last 
part of the article, we expand on this discussion, focus-
ing on the literature that studies limits to arbitrage in 
the government debt market. 

Fourth, the dynamic term structure models that 
we review here typically rely on latent factors (or lin-
ear combinations of yields) to explain the variation in 
Treasury yields. Thus, this framework does not explain 
how bond yields respond to macroeconomic shocks, 
as these factors are void of immediate economic in-
terpretation. Similarly, these models are silent about 
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the effect of monetary policy on economic variables, 
such as unemployment, gross domestic product (GDP) 
growth, and consumer prices. In response to these 
shortcomings, several recent studies explore the linkage 
between U.S. Treasury securities and the macroeconomy 
in no-arbitrage term structure models. We touch upon 
these issues at the very end, and postpone further dis-
cussion to the future. 

No-arbitrage pricing in a one-period example

An arbitrage is an investment strategy that entails 
a nonpositive initial cost to generate a nonnegative cash 
flow that is positive with positive probability at some 
future date. Arbitrage opportunities should not exist 
in a frictionless market. Without transaction costs, in-
formation asymmetries, and other market imperfections, 
investors would immediately take advantage of any 
arbitrage opportunity. By doing so, they will close any 
misalignment in prices: Excess demand will push up 
the cost of securities that are relatively undervalued, and 
excess supply will lower the price of overvalued assets. 
Thus, no-arbitrage trading guarantees that securities 
are priced to reflect their future cash flow stream. 

As a simple illustration of this concept, consider 
the case of an investor who trades in two assets at prices 
P1(t) and P2(t) on date t. The two securities do not pay 
dividends and are exposed to the same source of risk, 
so that their returns from t to t + 1 are described by 
the model 
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Here, µi denotes the constant expected rate of return 
on security i during the unit interval, while the sto-
chastic term (Σiε) is a mean zero innovation in the rate 
of return, with constant variance Σ

i
2.  Being subject to 

the same shock ɛ, the returns on the two assets by con-
struction are perfectly correlated. Thus, the investor 
can exploit the co-movement in the two securities to 
eliminate risk from her portfolio. Suppose that she sells 
short W1 worth of the first security’s shares and places 
a wealth amount W2 in the second security. At time t, 
the portfolio is worth W ≡ W2 – W1 in wealth. During 
the interval from t to t + 1, the change in wealth is  
determined by the rate of return on the two securities 
over that interval,
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Δ  and rearranging the terms, we simplify 
equation 2 to
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An appropriate choice of W2 and W1 eliminates uncer-
tainty in the strategy’s return. In particular, if the in-
vestor sets W1 = W Σ2 /(Σ1– Σ2) and W2 = W Σ1/(Σ1– Σ2), 
the second term in equation 3 vanishes and the rate  
of return on invested wealth over the interval from  
t to t + 1 simplifies to
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At this point, we want to rule out arbitrage opportunities. 
To this end, we need to have the return on wealth in 
equation 4 equal the risk-free rate, r, which we assume 
to be constant in this example. Thus, we have the fol-
lowing condition:
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Rearranging terms in equation 5, we obtain the market 
clearing condition that links the expected return on the 
two securities, in excess of the risk-free rate, per unit 
of return standard deviation:
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We denote the common value for this ratio with λ:
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The ratio λ measures the market price of risk; that is, 
it quantifies the amount of return that investors demand 
in compensation for a unit of risk that they bear. To 
rule out arbitrage opportunities, we must have the  
coefficients µi and Σi that determine the returns on  
securities i = 1 and 2 in equation 1 satisfy the condi-
tion in equation 7. Intuitively, this restriction ties the 
price of the first security to that of the second security. 



58 2Q/2012, Economic Perspectives

In the next section, we explain how these prices are 
tied together. 

The Vasicek model

Here, we follow the Vasicek (1977) framework 
closely. We let the length of the time interval shrink to 
zero and recast the example from the previous section in 
continuous time. This simplifies the exposition con-
siderably and clearly conveys the intuition for the results. 

Assume that the spot risk-free rate, r, in a friction-
less market follows a mean-reverting diffusion process

 

8) ( ) ,dr r dt dZ= − +κ θ Σ

where Z is a standard Brownian motion. Equation 8  
is a continuous-time analogue to the return process in 
equation 1. The left-hand side has the instantaneous 
change in the spot interest rate, dr = r(t + dt) – r(t). 
Similar to equation 1, the right-hand side of equation 8 
is the sum of the expected change in r, conditional on 
the realization of the time t spot rate, as well as a ran-
dom shock. In particular, the term κ(θ – r) describes 
the conditionally deterministic component of the  
spot rate evolution, with the coefficient κ > 0 control-
ling the speed of mean reversion of the process r  
toward its long-run mean θ. The Brownian shock  
dZ = Z(t + dt) – Z(t) has Gaussian distribution with 
mean zero and variance dt, N(0, dt). It takes place of 
the mean zero shock ɛ over the discrete time interval 
from t to t + 1 in equation 1, where Var(ɛ) = Δt = 1. 
The coefficient Σ2 represents the constant instanta-
neous variance of the stochastic fluctuations of the 
spot rate. Equation 8 satisfies the affine restrictions of 
Duffie and Kan (1996); that is, the drift term κ(θ – r) 
is a linear-plus-constant function of the spot rate r, and 
the quadratic variation of the process is the constant 
Σ2. These restrictions help us to obtain a closed-form 
bond pricing formula, which we derive next. 

In the Vasicek model, the spot rate r summarizes 
the uncertainty in the economy. In particular, the time 
t price of a zero-coupon bond with maturity date T is 
determined by the assessment, at time t, of the evolu-
tion of the spot rate rs  , with t ≤ s ≤ T. Itô’s formula 
gives then the dynamics for the bond price Pt = P(rt  , τ), 
where τ = T – t: 
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Following steps similar to those of the previous 
example, we consider an investor who sells short W1 
worth of the bond with maturity T1 and who places 
wealth W2  in the bond with maturity T2 . This strategy 
is worth W ≡ W2 – W1 in wealth at time t, which 
evolves according to 
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where µW = W2  µ(r, τ2) – W1  µ(r, τ1) and σW = W2  σ (r, τ2) 
– W1  σ (r, τ1). The investor can choose W1 and W2 to 
dynamically hedge her portfolio. In particular, setting
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eliminates risk from her investment; that is, σW = 0 
and the second term in the right-hand side of equation 11 
vanishes. Thus, the position is insulated from the stochas-
tic shock dZ, and the instantaneous rate of return on 
invested wealth simplifies to 
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To avoid arbitrage opportunities, we need to have  
the growth rate in wealth to equal the risk-free rate,
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Rearranging terms, we obtain a condition similar to 
equation 6:
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That is, the market price of risk λ is a function of the 
sole state variable of the economy, r, and is indepen-
dent of the bond time to maturity τ, 
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To obtain a closed-form bond pricing formula, 
Vasicek assumes the market price of risk is constant; 
that is, 

17 0) .( )λ λr =

Substituting the expression for µ(r, τ) and σ(r, τ) 
from equation 10 in equation 16 yields a partial dif-
ferential equation for the bond price P:
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with terminal condition P(r, τ = 0) =1. The solution to 
this equation is exponentially affine in the spot rate r; 
that is, there are functions A( )τ  and B( )τ  of time to 
maturity τ such that

19) ( ) exp ( ) ( )P r A B r, = + .τ τ τ{ }

Thus, we obtain a closed-form expression for the 
term structure of interest rates. In particular, the yield 
y on the bond with maturity date T is affine in the 
spot rate r:
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where A A( ) ( )τ τ τ= − /  and B B( ) ( ) .τ τ τ= − /

The determinants of the market price of risk

The Vasicek (1977) bond pricing formula hinges 
on the principle that absent arbitrage opportunities, 
the return on a locally risk-free portfolio of bonds must 
equal the risk-free rate. This approach is silent about 
the sources of the market price of risk λ, and it takes 
the spot risk-free rate dynamics in equation 8 as given. 
Here, we show that the Vasicek bond pricing formula 
is consistent with the solution of the intertemporal con-
sumption decision problem of a representative investor. 
While we arrive at the same pricing formula, this gen-
eral equilibrium approach restricts the properties of the 
market price of risk and the instantaneous risk-free 
rate r, which become functions of the investor’s attitude 
toward risk and the parameters that govern the aggre-
gate dividend process. These results are well known in 
the literature (for example, Cox, Ingersoll, and Ross, 
1985). The discussion in this section follows Goldstein 
and Zapatero (1996) and Cochrane (2005) closely. 

Consider a security with ex-dividend price p  
that represents a claim to the aggregate output of the 
economy, which is paid out to the holder of the secu-
rity in the form of a dividend D. We assume that the 
security generates an ex-dividend return 
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t
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where μt is the ex-dividend expected rate of return  
on security p, σt

2  is the instantaneous variance of the 
stochastic fluctuation in security p’s return, and Z is  
a standard Brownian motion. The quantities μt and σt 
are endogenous to the model and will be determined 
in equilibrium. In contrast, the aggregate dividend is 
exogenously given by 
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Consider now an infinitely lived representative 
investor who trades in the security p and maximizes 
her lifetime utility of consumption, 
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Cochrane (2005) shows that the first-order condition 
for this problem generates the basic pricing equation, 
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which equates the marginal cost of acquiring the security 
today at price pt to the marginal benefit generated by 
its future dividend stream. Defining the discount factor 
as Λ t

t
te u c≡ ′−δ ( ) , we can rewrite equation 24 as: 
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Consider now a strategy that buys security p at 
time t and sells it at time t + Δ . Equation 25 then 
yields 
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For small Δ → 0, this can be approximated by: 
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so that equation 27 becomes: 
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Using equation 25 to price the (instantaneous) 
risk-free zero-coupon bond, we obtain an expression 
for the spot risk-free rate, 
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Then, rearranging equation 28, we obtain an equilibri-
um condition for the expected rate of return on secu-
rity p, μt: 
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Assume now that the investor has the power  
utility function u ct
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γ  with the coefficient of  
risk aversion γ. By the definition of Λt  , the stochastic  
discount factor dynamics are 
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so that equation 30 becomes: 
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Equation 32 says that the expected excess cum-dividend 
return on security p is proportional to the risk aversion 
coefficient γ. Thus, more-risk-averse investors demand 
a higher risk premium to hold p. Moreover, the risk 
premium on p depends on the correlation between  
aggregate consumption growth and the return on p,
Et

dc
c
dp
p

t

t

t

t
 .  Thus, an investor will require a positive 

risk premium to hold a security that generates a high 
return when consumption growth is high, that is, when
Et
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c
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p

t

t

t

t
  > 0.  This is intuitive, as such security  

generates, in expectation, a low payoff when consump-
tion is low. This property makes the security less valu-
able to the investor, who is risk averse and wishes to 
smooth her consumption profile. 

Note that in equilibrium, aggregate consumption 
equals the aggregate dividend, and thus it has dynam-
ics identical to those given in equation 22. Substitut-
ing the endowment growth rate in equation 29 yields 
an expression for the equilibrium risk-free rate: 
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Itô’s lemma gives us the spot rate dynamics 

34) ( )dr r dt dZt t t= − + ,κ θ Σ

where we have defined the coefficients θ γα δ≡ +
− +1

2
21γ γ ξ( )  and Σ ≡ γν. Equation 34 is identical to the 

spot rate dynamics in equation 8, as in the Vasicek 
(1977) model. However, via equilibrium arguments 
we have established a linkage between the coeffi-
cients κ, θ, and Σ and economic fundamentals (that  
is, the coefficients κ, ᾱ, δ, ξ, and ν that govern the  
endowment dynamics in equation 22 and the risk 
aversion parameter γ). 

To obtain a formula for the price P of a zero-coupon 
bond with maturity date T, it is useful to compute the 
spot rate dynamics under the risk-adjusted probability 
measure Q (Harrison and Kreps, 1979). With the help 
of equation 32, we obtain: 
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Q

t t
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where we have defined θ θ γξ
κ

Q ≡ − Σ  and dZ dZt
Q

t≡  
+ γ ξdt.  Then, we have 
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U.S. Treasury yields

Notes: The plot depicts the time series of monthly U.S. Treasury yields with one-, four-, 12-, 20-, 40-, and 80-quarter (Q) maturities. The one-
quarter yield is from the Fama CRSP Treasury bill files. The yields with a maturity greater than one quarter are zero-coupon yields interpolated 
from daily constant-maturity par yields computed by the U.S. Department of the Treasury and distributed by the Board of Governors of the 
Federal Reserve System in the H.15 statistical release. The sample period is January 1962–December 2010.
Sources: Authors’ calculations based on data from the University of Chicago Booth School of Business, Center for Research in Security Prices 
(CRSP), Fama CRSP Treasury bill files; and Board of Governors of the Federal Reserve System, H.15 statistical release.
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where the conditional expectation Et
Q[ ]⋅  is computed 

under the risk-adjusted measure Q.
The spot rate in equation 35 is a continuous Markov 

process. Thus, the evolution of ru over the interval  
(t, T ), given the history up to time t, depends only on 
rt. Equation 36 then implies that the bond price is a 
function of rt , P(t, rt , T ), and by Itô’s lemma we obtain: 

37 1
2

2

2
2) ( )dP P

t
P
r

r P
r

dt P
r
dZ=

∂
∂

+
∂
∂

− +
∂
∂

+
∂
∂

.
















κ θ Σ Σ

Moreover, we can apply equation 32 to determine the 
expected rate of return on the zero-coupon bond, in 
excess of the spot rate: 
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Combining equations 37 and 38, we derive the funda-
mental differential equation for bonds: 
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where ξ is the diffusion coefficient of the aggregate 
endowment process given in equation 22. Equation 39 
is identical to the partial differential equation of the 
Vasicek model (equation 18) with the restriction  
λ0 = γξ. Consequently, assumptions about investors’ 
preferences and their endowment pin down the speci-
fication of the market price of risk. Specifically, λ0 is 
higher when the investor is more risk averse, γ↑, and 
when consumption growth is more volatile, ξ↑. 

Multifactor dynamic term structure models
In the Vasicek (1977) model, a single factor, the 

spot rate r, explains the fluctuations in the entire term 
structure of interest rates. One implication of this assump-
tion is that bond yields and their changes are perfectly 
correlated. A cursory glance at figure 1 shows that there 
are co-movements in yields with different maturities, 



62 2Q/2012, Economic Perspectives

   TaBlE 1

Pairwise correlations in U.S. Treasury yield series
 
    

 1Q 4Q 12Q  20Q 40Q 80Q  1Q 4Q 12Q 20Q 40Q 80Q

A. Monthly series 

 1Q 1.00        1.00
 4Q 0.99 1.00      0.71 1.00
 12Q 0.95 0.98 1.00     0.63 0.92 1.00
 20Q 0.93 0.96 0.99 1.00    0.56 0.86 0.97 1.00
 40Q 0.88 0.92 0.97 0.99 1.00   0.47 0.73 0.87 0.93 1.00
 80Q 0.82 0.86 0.93 0.96 0.98 1.00  0.36 0.58 0.71 0.79 0.88 1.00

B. Quarterly series

 1Q 1.00       1.00
 4Q 0.99 1.00      0.90 1.00
 12Q 0.96 0.98 1.00     0.78 0.94 1.00
 20Q 0.93 0.96 0.99 1.00    0.69 0.88 0.98 1.00
 40Q 0.88 0.92 0.97 0.99 1.00   0.58 0.77 0.91 0.96 1.00
 80Q 0.82 0.86 0.93 0.96 0.98 1.00  0.43 0.60 0.75 0.82 0.90 1.00

Notes: Both panels show the pairwise correlations between U.S. Treasury yields with various maturities. Panel A reports the correlations computed 
on monthly yields (left) and changes in monthly yields (right). Panel B shows the results for quarterly yields (left) and changes in quarterly yields 
(right). The data series consist of yields with one-, four-, 12-, 20-, 40-, and 80-quarter (Q) maturities. The one-quarter yield is from the Fama CRSP 
Treasury bill files. The yields with a maturity greater than one quarter are zero-coupon yields interpolated from daily constant-maturity par yields 
computed by the U.S. Department of the Treasury and distributed by the Board of Governors of the Federal Reserve System in the H.15 statistical 
release. The sample period is January 1962–December 2010.
Sources: Authors’ calculations based on data from the University of Chicago Booth School of Business, Center for Research in Security Prices 
(CRSP), Fama CRSP Treasury bill files; and Board of Governors of the Federal Reserve System, H.15 statistical release.

  TaBlE 2

Principal component analysis

 Percentage of   Total percentage of
 variance explained  variance explained

 monthly quarterly monthly quarterly

PC1 95.19 95.34 95.19 95.34
PC2 4.25 4.17 99.44 99.51
PC3 0.41 0.37 99.85 99.88
PC4 0.11 0.08 99.96 99.96
PC5 0.04 0.03 99.99 99.99
PC6 0.01 0.01 100.00 100.00

Notes: The table reports the percentage of the yields’ variation explained by the principal 
components, PCj ,  j = 1, …, 6, extracted from the panel of yields with one-, four-, 12-,  
20-, 40-, and 80-quarter maturities sampled at the monthly and quarterly frequencies.  
The one-quarter yield is from the Fama CRSP Treasury bill files. The yields with a maturity 
greater than one quarter are zero-coupon yields interpolated from daily constant-maturity  
par yields computed by the U.S. Department of the Treasury and distributed by the Board  
of Governors of the Federal Reserve System in the H.15 statistical release. The sample 
period is January 1962–December 2010.
Sources: Authors’ calculations based on data from the University of Chicago Booth School  
of Business, Center for Research in Security Prices (CRSP), Fama CRSP Treasury bill  
files; and Board of Governors of the Federal Reserve System, H.15 statistical release.

but such correlations are far from perfect. This is  
evident in table 1, which reports pairwise correlations 
in yields and their changes, corr y y

i j
( )τ τ,  and 

corr y y
i j

( ),∆ ,∆τ τ  for maturity pairs τi and τj ranging 

from one quarter to 20 years.  
While the correlations in both the 
monthly (panel A) and quarterly 
(panel B) series are positive, they 
decrease considerably as the time  
to maturity in the pairs of bonds  
becomes further apart. This feature 
suggests that additional factors 
might drive the term structure of 
U.S. Treasury yields. 

The evidence in table 2 lends 
additional support to this conclusion. 
It shows the percentage of the yields’ 
variation explained by the principal 
components (PCs) extracted from the 
panel of bond yields with one-, four-, 
12-, 20-, 40-, and 80-quarter maturi-
ties. The first principal component 
has the highest explanatory power, 
accounting for more than 95 percent 
of the variation in monthly and 

quarterly yields. The second and third components 
account for virtually all of the residual variation in 
yields. This is well known in the term structure litera-
ture; for instance, Litterman and Scheinkman (1991) 

corr y ,y
i

( τ τ j
) corr y ,

i j
( )∆ ∆τ τy
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U.S. Treasury yields’ principal components coefficients 

Notes: The plot depicts the coefficients Bτ that multiply the yields to form the U.S. 
Treasury yields’ first three principal components, PCj ,   j = 1, 2, and 3, as a function of 
the yields’ maturity τ. The authors compute the principal components using monthly 
yields series with one-, four-, 12-, 20-, 40-, and 80-quarter maturities. The one-quarter 
yield is from the Fama CRSP Treasury bill files. The yields with a maturity greater than 
one quarter are zero-coupon yields interpolated from daily constant-maturity par yields 
computed by the U.S. Department of the Treasury and distributed by the Board of 
Governors of the Federal Reserve System in the H.15 statistical release. The sample 
period is January 1962–December 2010.
Sources: Authors’ calculations based on data from the University of Chicago Booth 
School of Business, Center for Research in Security Prices (CRSP), Fama CRSP  
Treasury bill files; and Board of Governors of the Federal Reserve System, H.15  
statistical release.
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show that the variation in U.S. Treasury rates is best 
captured by three factors, interpreted as changes in 
“level,” “slope,” and “curvature” of the yield curve. 

Figure 2 clarifies this interpretation. The yields’ 
PCs are an orthogonal linear transformation of the 
yields’ series; they are constructed so that each com-
ponent explains the highest fraction of residual vari-
ance in the original series and is orthogonal to the 
preceding PCs. Figure 2 shows the coefficients in the 
vector Bτ that multiply the yields to form the first 
three principal components, PCj  ,  j = 1, 2, and 3, as a 
function of the yields’ maturity τ. The coefficients as-
sociated with the first PC are roughly the same across 
the yields’ maturities. This suggests that PC1 is a 
proxy for a level factor, that is, shocks to that factor 
result in a parallel shift in yields across maturities. 
Consistent with this view, the correlation between 
PC1 and yτ, τ ∈{1, 4, 12, 20, 40, and 80 quarters} rang-
es from 93.6 to 99.7 percent in monthly data; we find 
similar values in the quarterly series. This is also evi-
dent in figure 3, which shows that the pattern in PC1 

resembles the shape of the yields in 
figure 1. 

In contrast, the coefficients of 
the second PC are increasing in 
yields’ maturity τ, while those of the 
third one are U-shaped, as shown in 
figure 2. Thus, as in Litterman and 
Scheinkman (1991), PC2 is a proxy 
for a slope factor (positive shocks to 
this factor are associated with lower 
short-maturity yields and higher long- 
maturity yields), while PC3 is a proxy 
for curvature. Indeed, the correlation 
between PC2 and a measure of the 
term structure slope, (y80Q – y1Q ),  
exceeds 90 percent, and the correla-
tion of PC3 with a measure of cur-
vature, (y80Q – 2y12Q + y1Q ), is higher 
than 83 percent. 

Taken together, these empirical 
observations motivate a vast litera-
ture that extends the no-arbitrage 
term structure model class to include 
multiple factors. As in the Vasicek 
(1977) model, the no-arbitrage con-
ditions restrict the relative pricing 
of bonds with different maturities 
while remaining silent about all oth-
er conditions that characterize the 
equilibrium in the economy. Consis-
tent with the evidence that level, 
slope, and curvature factors capture 

virtually all variation in Treasury yields, much of this 
literature has focused on three-factor models. 

To maintain tractability, most studies rely on  
so-called affine models. In line with Duffie and Kan 
(1996), Dai and Singleton (2000, 2003), and Piazzesi 
(2010), the short-term interest rate, r(t), is an affine 
(that is, linear-plus-constant) function of a vector of 
state variables, X(t) = {xi(t), i =1, ..., N}: 

40 0
1

0

) ( ) ( )

( )

r t x t

X t
i

N

i i

X

= +

= + ′ ,
=
∑δ δ

δ δ

where the state vector X evolves according to 

41) ( ) ( ( ))

( ) ( )

dX t X t dt
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Principal components (PC) series: Level, slope, and curvature

Notes: The plot depicts time series of the first three principal components (level, slope, and curvature) computed using monthly U.S. Treasury 
yields series. The data consist of yields with one-, four-, 12-, 20-, 40-, and 80-quarter maturities. The one-quarter yield is from the Fama 
CRSP Treasury bill files. The yields with a maturity greater than one quarter are zero-coupon yields interpolated from daily constant-maturity 
par yields computed by the U.S. Department of the Treasury and distributed by the Board of Governors of the Federal Reserve System  
in the H.15 statistical release. The sample period is January 1962–December 2010.
Sources: Authors’ calculations based on data from the University of Chicago Booth School of Business, Center for Research in Security 
Prices (CRSP), Fama CRSP Treasury bill files; and Board of Governors of the Federal Reserve System, H.15 statistical release.
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Equation 41 extends the state dynamics in the Vasicek 
(1977) model (equation 8) to include N latent factors. 
The N × N matrix κ in the first term on the right-hand 
side of equation 41 captures the dependence of infini-
tesimal changes in each xi(t) variable on the state vector 
X(t). Similar to equation 8, the state vector X(t) reverts 
to its mean Θ, which is now an N-dimensional vector of 
constants. The process Z is an N-dimensional Brownian 
motion. However, unlike the Vasicek (1977) model, 
the instantaneous variance of the fluctuations in X is 
no longer constant. It depends on the level of X via 
the N × N diagonal matrix S(t), which has ith diagonal 
element s ( ) =  +  ( ).ii t X tα βi i′  

To price bonds, we specify the market price of 
risk, Λ(t). This is often assumed to depend on the state 
vector X(t), rather than being constant, as in equation 
17. For instance, Dai and Singleton (2000) set

 
42) ( ) ( )Λ t S t= ,λ

where λ is an N × 1 vector of constants. This functional 
form guarantees that risk compensation goes to zero as 
the variance of the state vector vanishes—a condition 
that rules out arbitrage opportunities. However, Duffee 
(2002) notes that since the variance term is nonnegative, 

this structure limits the variability of the compensation 
that investors expect to receive for facing a given risk. 
In particular, he shows that this condition is restric-
tive as it prevents risk compensation to switch sign 
over time—a feature that is important to explain the 
variation in Treasury returns. He goes on to extend the 
market price of risk in a way that relaxes this restriction; 
subsequently, Duarte (2004) and Cheridito, Filipović, 
and Kimmel (2007) offer further generalizations. 

Within this setting, the time t price of a zero- 
coupon bond with time to maturity τ is given by 

43) ( ) exp ( ) ( ) ( )P X A B X t, = + ′ ,τ τ τ{ }

where the functions A( )τ  and B( )τ  solve a system  
of ordinary differential equations (ODEs); see, for  
example, Duffie and Kan (1996). Thus, the yield y  
on the bond with time to maturity τ is affine in the 
state vector X: 

44) y(X,τ) =A(τ) + B(τ)X,
 
where A A( ) ( )τ τ τ= − /  and B B( ) ( )τ τ τ= − / . This is 
similar to equations 19 and 20 for the Vasicek (1977) 
model, except that the N-dimensional state vector X 
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U.S. Treasury market liquidity
     
  Standard  
Maturity Mean deviation 10th 50th 90th

A. Summary statistics for period June 17, 1991–June 15, 2001

Treasury bills’ bank discount rate bid–ask spreads 
 ( - - - - - - - - - - - - - - - - basis points - - - - - - - - - - - - - - - )
Three months 0.75 0.90 0 1/2 3/2

Six months 0.80 0.83 0 1/2 3/2
One year 0.71 0.72 0 1/2 3/2

Treasury notes’ prices bid–ask spreads 
 ( - - - - - - - - - - 32nds of a percentage point - - - - - - - - - )

Two years 0.26 0.18 0 1/4 1/2
Five years 0.38 0.26 0 1/2 1/2
Ten years 0.40 0.29 0 1/2 1/2

B. Summary statistics for period January 1, 2001–January 31, 2012

Treasury notes’ prices bid–ask spreads 
 ( - - - - - - - - - - 32nds of a percentage point - - - - - - - - - )

Two years 0.36 0.21

Five years 0.48 0.37
Ten years 0.84 0.47

Notes: The table reports liquidity measures for the secondary U.S. Treasury market. Panel A 
shows summary statistics for the intradaily bid–ask spreads for Treasury securities with a  
maturity of three and six months, as well as one, two, five, and ten years, for the sample  
period June 17, 1991–June 15, 2001. Panel B reports the mean and standard deviation  
of the bid–ask spreads for daily prices of Treasury securities with a maturity of two, five,  
and ten years for the sample period January 1, 2001–January 31, 2012.
Sources: Authors’ calculations based on intraday quotes data from GovPX; and Board of 
Governors of the Federal Reserve System staff’s calculations based on daily data from BrokerTec.

Percentile

takes the place of the spot rate r. 
Semiclosed-form solutions are 
also available for bond deriva-
tives, for example, bond options 
as well as caps and floors (see, 
for instance, Duffie, Pan, and 
Singleton, 2000). 

limits to arbitrage in the 
market of government debt

The models we present in 
this article hinge on the assump-
tion that whenever an arbitrage 
opportunity arises, investors  
implement trading strategies to 
profit from it until asset prices 
change to drive risk-adjusted net 
expected returns to zero. In prac-
tice, however, prices might not 
converge if markets are not per-
fect. For instance, frictions such 
as transaction costs, leverage 
constraints, and limited avail-
ability of capital could hinder  
investors’ ability to trade away 
arbitrage opportunities. In this 
section, we first provide evi-
dence that transaction costs in 
the U.S. Treasury market are 
small. We then explore the role 
of leverage and capital constraints in arbitrage trad-
ing. In particular, we argue that financial institutions 
relax these constraints by participating in a vast repo 
market in which U.S. Treasury securities are a valu-
able form of collateral. Next, we report some well-
documented patterns in Treasury securities’ yields that 
can arise because of institutional constraints, arbitrage 
capital requirements, and market segmentation. We 
conclude by briefly considering the relevance of 
Treasury market frictions for monetary policy inter-
ventions during the recent financial crisis and for the 
specification and estimation of no-arbitrage term 
structure models. 

Transaction costs and liquidity in the U.S.  
Treasury market

As we mentioned earlier, the secondary U.S.  
Treasury market is one of the largest and most impor-
tant financial markets worldwide. The around-the-clock 
trading activity in this market, by both U.S. and inter-
national participants, far exceeds that observed on many 
popular exchanges. 

While high trading volume is often used as an in-
dicator of asset marketability, there is evidence that it 

could be a noisy, and possibly even poor, liquidity 
measure. Fleming (2003) shows that trading volume 
in the secondary U.S. Treasury market, as well as 
yields’ volatility, often peak during periods of market 
stress, when trading is more difficult than usual. In 
contrast, the difference between bid and ask Treasury 
prices (the so-called bid–ask spread) is a simple and 
more robust indicator of the ease with which inves-
tors can exchange securities. For instance, Fleming 
(2003) shows that bid–ask spreads on Treasury secu-
rities correlate more highly with popular liquidity indi-
cators, such as price impact, defined as the sensitivity 
of price changes to net trading activity (the difference 
between buyer- and seller-initiated trades). Moreover, 
the bid–ask spread has an intuitive interpretation in 
terms of transaction costs that an investor would incur 
if she were to buy/sell securities. For these reasons, 
we focus on this measure of liquidity here. 

Table 3 shows summary statistics for the bid–ask 
spread on Treasury prices quoted in the secondary 
U.S. Treasury market. Panel A relies on a sample  
of intraday quotes on the most recent (on-the-run)  
issues of bills and notes from June 17, 1991, through 
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June 15, 2001.3 It is evident that bid–ask spreads are 
small across bond tenors. For instance, the median 
spread on bills is one-half of a basis point. Spreads 
remain low even in the right tail of the distribution 
(for example, the 90th percentile is one and a half basis 
points). Among Treasury notes, the two-year security 
appears to be the most liquid, with a median spread 
of one-quarter of a 32nd of a percentage point of par.4 
Transaction costs remain low on longer-maturity 
Treasury securities, with a typical bid–ask spread of 
one-half of a 32nd of a percentage point. Table 3, 
panel B shows similar diagnostics using a more re-
cent sample of Treasury prices from January 1, 2001, 
through January 31, 2012. At various maturities, spreads 
fall in a range from 0.36 to 0.84 32nds of a percentage 
point, and standard deviations are small, too. Taken 
together, this evidence confirms that investors can 
typically trade Treasury securities with ease across the 
term structure. Those who seek to take advantage of mis-
alignments in prices can do so at low transaction costs. 

Leverage constraints and the availability  
of arbitrage capital

A liquid secondary market is not necessarily 
enough to guarantee that Treasury prices will converge 
to their no-arbitrage equilibrium values. For instance, 
Gromb and Vayanos (2010) suggest that transaction 
costs are only one of the financial market inefficiencies 
that can pose limits to arbitrage. In a simple theoretical 
framework, they show that no-arbitrage pricing does 
not hold in asset markets when arbitrageurs face lever-
age constraints (for example, Gromb and Vayanos, 2002; 
Geanakoplos, 2003; and Gârleanu and Pedersen, 2011) 
as well as equity capital requirements (for example, 
Shleifer and Vishny, 1997). In this respect, the presence 
of a vast market for repurchase agreements (repos) facil-
itates arbitrage trading greatly. A repo is a transaction 
that combines a spot market sale with a simultaneous 
forward agreement to repurchase the underlying instru-
ment at a later date, often the next day (for example, 
Duffie, 1996). Effectively, a repo is a collateralized loan. 
The loan amount equals the sale value of the security 
(typically given by the market price of the security 
minus a margin, the so-called haircut), while the repo 
rate is the interest on the loan. The counterparty in a 
repo contract, who provides the funds for the loan 
and earns interest at the repo rate, is said to engage  
in a reverse repo. 

Access to the repo market provides financial insti-
tutions with arbitrage capital to finance their trading 
activity. For instance, if the price of an asset falls below 
its fundamentals, a dealer can purchase it in the secondary 
market. Concurrently, if the security constitutes an 

acceptable form of collateral, the dealer can pledge it 
in the repo market and thus obtain funds in the amount 
of the price of the security, net of the repo haircut. The 
funds borrowed against the security offsets, up to the 
haircut, the cost to acquire it. Excess demand for the 
security will push its price up. If the price increase 
exceeds the cost of financing in the repo market, the 
dealer will reap a profit. Conversely, if a dealer perceives 
a security to be overpriced, the dealer can engage in a 
reverse repo. The dealer can then sell the (overpriced) 
collateral in anticipation that its price will fall. If that 
happens, the dealer will be able to buy the security back 
at a lower price on a later date, and use it to unwind 
the reverse repo. 

Over the past decades, the repo market has grown 
dramatically in size and popularity (for example, Gorton 
and Metrick, 2011). On one side, mutual funds (espe-
cially money market funds), corporations, and state 
and local governments have been expanding their use 
of reverse repos to put their cash reserves to work while 
concurrently acquiring high-quality collateral for pro-
tection of their investment.5 On the other side, finan-
cial institutions have been increasingly relying on repos 
to finance their operations. For instance, figure 4 shows 
the outstanding value of repurchase and reverse repur-
chase agreements by primary dealers from 1996 through 
2011. The outstanding value of repos on dealers’ books 
is very high, and it exceeds that of reverse repos. The 
increasing pattern in quantities is also evident, in spite 
of a large decline at the peak of the U.S. financial crisis 
in 2008–09. Yet, figure 4 greatly underrepresents the 
magnitude of the U.S. repo market, which is, in fact, 
imprecisely documented.6 Gorton and Metrick (2011) 
provide an overview of different sources that estimate 
it to be around $10 trillion in the late 2000s. These  
estimates include transactions taking place in the triparty 
repo market, in which clearing banks (JPMorgan Chase 
and the Bank of New York Mellon) provide clearing 
and settlement services to the lender (the cash investor) 
and the borrower (the collateral provider); see, for ex-
ample, Copeland, Martin, and Walker (2011). Estimates 
by the Tri-Party Repo Infrastructure Reform Task Force 
at the Federal Reserve Bank of New York place the size 
of that market at nearly $1.7 trillion as of January 2012 
(see table 4). 

Treasury securities are a valuable form of collateral 
in repurchase agreements. Table 4 shows that they ac-
count for approximately a third of the notional value 
of the underlying securities in triparty repos (other 
categories include securities issued by corporations, 
federal agencies, and municipalities). Similar evi-
dence holds in the bilateral repo market (for example, 
Copeland, Martin, and Walker, 2011). Moreover, when 
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Activity in the repurchase agreement (repo) market by the primary dealers

Notes: The plot depicts the outstanding value of repurchase and reverse repurchase agreements by primary dealers. Quantities include repos 
backed by government, federal agency, and corporate and federal agency mortgage-backed securities. 
Source: Federal Reserve Bank of New York.
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Triparty repurchase agreement (repo) market

 Collateral Percentage
Asset group value of total

 (billions of U.S. dollars)
 
U.S. Treasury securities 567.31 34
Other 1,098.93 66
Total 1,666.24 100

Notes: The table summarizes the activity in the triparty repo market 
for different types of collateral as of January 11, 2012. The “other” 
category includes repos collateralized with corporate bonds, federal 
agencies’ securities, and municipality debt.
Source: Authors’ calculations based on data from Federal Reserve 
Bank of New York, Tri-Party Repo Infrastructure Reform Task Force, 
available at www.newyorkfed.org/tripartyrepo/.

pledged as collateral, U.S. government debt is subject 
to a haircut that is usually very small. The margin on 
short-term Treasury securities is typically around 2 per-
cent. It is higher for longer-maturity bonds, which 
have a higher price sensitivity to interest rate fluctua-
tions; nonetheless, at approximately 5–6 percent, it is 
below the margin on other securities that are forms of 
collateral in repurchase agreements. Such margins have 
been remarkably stable even during times of market 
stress. This is in stark contrast with haircuts on corpo-
rate bonds, asset-backed securities, and collateralized 
mortgage obligations that lacked the support of gov-
ernment guarantees.7 

In sum, this discussion highlights that financial 
institutions can rely on a vast repo market to fund their 
arbitrage positions, especially in the Treasury market. 
This is evident from the sheer value of Treasury secu-
rities pledged as collateral in repo transactions. More-
over, small and stable haircuts on Treasury securities 
allow investors to finance a larger portion of their  
positions via repos, contributing further to relaxing 
capital and leverage constraints. 

Yet, market frictions matter
Arbitrage opportunities across Treasury securities 

tend to disappear quickly as investors trade them away 
in a liquid secondary market, often using repos to fi-
nance their positions. Nonetheless, market frictions 
can still play an important role in this market. 

The fact that newer vintages of Treasury bonds 
typically trade at a premium compared with older  
vintages is a classic example. This phenomenon is  
often documented by the spread between the yield for  
on-the-run bonds (the most recent issue of bonds with 
a certain maturity) and that for off-the-run bonds (older 
issues of bonds with the same tenor). This evidence is 
puzzling, as the cash flows associated with two long-run 
(for example, 30-year) bonds are similar, even though 
the bonds are issued six months apart. It motivates a 
convergence trade that involves the purchase of the 
(cheaper) off-the-run bond and a short position in the 
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(more expensive) on-the-run security.8 The spread be-
tween old vintages of bonds tends to narrow as time 
goes by; thus, absent market frictions, a convergence 
trade would generate an arbitrage profit. In practice, 
arbitrageurs attempting to trade this strategy engage 
in a reverse repo to establish a short position in the 
on-the-run bonds (see the previous subsection). Since 
these bonds are in limited supply, excess demand for 
this collateral pushes repo rates below the market inter-
est rate. This creates a significant cost of carry associ-
ated with the convergence trade, which erodes profits 
(for example, Duffie, 1996; and Krishnamurthy, 2002). 
Thus, a positive spread between off-the-run and on-the-
run bond yields is not an arbitrage as long as the spread 
in repo rates compensates for the yield differential. Yet, 
the puzzle remains: Why are new bonds more expen-
sive than old ones? Duffie (1996) and Krishnamurthy 
(2002) note that this situation can arise when some in-
vestors have a preference for liquidity and are restricted 
from participating in the repo market. For example, 
fixed-income mutual funds tend to hold liquid on-the-run 
bonds (similar to those included in the bond indexes 
to which they benchmark their performance). 

The market for Treasury Inflation-Protected  
Securities (TIPS) provides another striking example. 
The U.S. Department of the Treasury started to issue 
TIPS in 1997. In the early stages of TIPS life, secondary 
market liquidity was very limited and TIPS traded at 
a discount (for example, Ajello, Benzoni, and Chyruk, 
2011; D’Amico, Kim, and Wei, 2010; Haubrich,  
Pennacchi, and Ritchken, 2010; and Pflueger and  
Viceira, 2011). By 2004, the liquidity premium in 
TIPS yields had declined considerably as trading be-
came more active in the TIPS market. More recently, 
the TIPS market experienced new significant disrup-
tions during the financial crisis, with the five-year TIPS 
rate climbing above 4 percent in fall 2008. Fleckenstein, 
Longstaff, and Lustig (2010) go one step further and 
argue that TIPS prices allow for arbitrage opportunities. 
In particular, they suggest a strategy that involves 
buying TIPS and selling inflation protection in the  
inflation swap market. They fine-tune the position to 
replicate the cash flows of a nominal bond and conclude 
that TIPS are undervalued relative to nominal Treasury 
securities. The strategy, however, involves committing 
arbitrage capital for the duration of the investment 
(possibly a long period of time), with the risk that if 
liquidity conditions deteriorate and investors are forced 
to unwind the position, they might incur a loss. These 
concerns, combined with disruptions in the TIPS and 
inflation swap markets, might have contributed to 
pushing the price differential up, especially in the fall 
of 2008, during the financial crisis. 

These examples suggest that investors’ demand 
for bonds could depend on factors that go beyond the 
maturity structure of the cash flow and the issuer’s 
default risk. In the next subsection, we expand on 
these ideas. 

Preferred habitat theories
One relevant implication of the absence of arbi-

trage in the market for Treasury securities is a perfect 
degree of substitutability across bond maturities—in-
vestors are willing to absorb any amount of bonds at 
their equilibrium prices. Shocks to the net supply of, 
or demand for, bonds of one maturity do not affect 
other yields, nor the shape of the term structure of  
interest rates. Early empirical studies that tested this 
condition in the U.S. Treasury market could not identify 
violations of the no-arbitrage principle. In particular, 
several papers (for example, Modigliani and Sutch, 
1966; and Ross, 1966) evaluate the effectiveness of 
the so-called Operation Twist. Between 1962 and 1964, 
the Federal Reserve and the U.S. Department of the 
Treasury started selling short-term government bonds 
while purchasing long-term ones. The policy objective 
was to flatten the slope of the term structure by raising 
short-term interest rates to improve the balance of pay-
ments while lowering long-term rates to stimulate 
private investment. None of the papers found a signif-
icant effect of Operation Twist on the level of yields 
across the term structure.9 

These results discouraged further attempts to ex-
plore early theories that introduced limits to arbitrage 
across Treasury securities of different maturities in 
the form of investors’ preferred habitat, demand/supply 
pressure, and bond market segmentation (for example, 
Culbertson, 1957; and Modigliani and Sutch, 1966). 
According to these theories, various classes of investors 
have well-defined preferences for specific maturities. 
Pension funds and life insurance companies, for example, 
purchase bonds of longer maturities, while banks buy 
short-term securities. Because of such differences in 
preferences or regulatory requirements, bonds of dif-
ferent maturities end up being imperfect substitutes. 
Consequently, equilibrium yields are determined by 
the interaction between the demand by various clienteles 
and the aggregate bond supply for each specific maturity. 

More recently, new evidence has been supporting 
the view that there are limits to arbitrage in govern-
ment bond markets, consistent with preferred habitat 
theories. For example, Greenwood and Vayanos (2010b) 
study the consequences of the Pensions Act 2004, which 
reformed the UK pension system. The act introduced 
capital requirements to ensure the solvency of pension 
funds and anchored the evaluation of their liabilities 
to long-term interest rates. These institutional changes 
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prompted pension funds to hedge their liabilities 
against interest rate risk and shifted their demand to-
ward long-term government bonds. While these events 
were unfolding, there was a simultaneous drop in long-
term yields. This evidence is not inconsistent with de-
mand pressure and habitat preference theories, and it 
is difficult to explain based solely on the notion of 
sudden changes in either interest rate expectations or 
fundamental risk within the framework of a no-arbitrage 
model. Similarly, Greenwood and Vayanos (2010a, b) 
also document evidence of demand pressure in the 
U.S. Treasury market. Between March 2000 and  
December 2001, the U.S. Department of the Treasury 
repurchased 10 percent of the long-term government 
bonds outstanding as of December 1999. This interven-
tion reduced the spread between the 20- and five-year 
yields by 65 basis points in a few weeks and contrib-
uted to the inverting of the term structure slope. 

Implications for monetary policy
Recent interventions of the Federal Reserve in 

the government bond markets, known as large-scale 
asset purchases (LSAPs), have revived interest in the 
market segmentation hypothesis and its applications 
to the nominal yield curve. After a first round of LSAPs 
directed to the stabilization of the government agency 
bond market in late 2008 (known as “quantitative 
easing 1,” or “QE1”), the Federal Reserve started pur-
chasing long-term Treasury bonds in 2009 and stepped 
up its demand with a second purchase program of 
$600 billion from November 2010 through June 2011 
(often referred to as “quantitative easing 2,” or “QE2”). 

Several recent empirical studies assess the effect 
of the Federal Reserve’s purchases of long-term  
Treasury securities and other bonds on interest rates 
(for example, D’Amico and King, 2010, D’Amico et al., 
2012; Gagnon et al., 2010; Hancock and Passmore, 2011; 
and Krishnamurthy and Vissing-Jørgensen, 2010, 2011). 
This literature attempts not only to quantify the effect 
of LSAPs on different yields, but also to identify the 
channels through which these unconventional mone-
tary policy interventions work.

A direct comparison of their findings is difficult 
because of differences in data, sample frequency, and 
approaches used to disentangle various channels. There 
is some agreement that LSAPs have been effective in 
lowering medium- and long-term rates.10 However, 
the channels through which this policy works are 
more controversial. For instance, Krishnamurthy and 
Vissing-Jørgensen (2011) find evidence for a signal-
ing channel, a unique demand for long-term safe as-
sets, and an inflation channel for both QE1 and QE2; 
and they find evidence for a mortgage-backed securities 
prepayment channel and a corporate bond default risk 

channel for QE1. They argue that Treasury-securities-
only purchases in QE2 had a disproportionate effect on 
Treasury and agency securities relative to mortgage-
backed and corporate securities, with yields on the 
latter falling primarily through the market’s anticipation 
of lower future federal funds rates. This is consistent 
with the view that QE2 constitutes a commitment by the 
Federal Reserve to keep interest rates low in the future: 
Lower expected future spot rates push long-term yields 
down regardless of market segmentation (Clouse et al., 
2003; and Eggertsson and Woodford, 2003). 

In contrast, D’Amico et al. (2012) and Gagnon  
et al. (2010) conclude that reductions in interest rates 
primarily reflect lower risk premiums rather than lower 
expectations of future short-term interest rates. This is 
consistent with the view that LSAPs reduce duration 
risk and create a scarcity effect on long-term bonds that 
are in high demand among some investor clienteles. 

While empirically challenging, disentangling  
the relative importance of various channels is critical 
to guide monetary policy. On one side of the debate, 
the findings for QE2 by Krishnamurthy and Vissing-
Jørgensen (2011) raise the question of whether the 
main impact of a Treasury-securities-only QE may 
have been achievable with a Federal Reserve statement 
committing to lower federal funds rates (a policy that 
does not require the Federal Reserve to commit its 
balance sheet). On the opposite side of the debate, the 
conclusions of D’Amico et al. (2012) and Gagnon et al. 
(2010) support the use of LSAPs in the Treasury  
market as a powerful tool of monetary policy easing 
when the federal funds rate is at the zero lower bound. 
Moreover, this debate has interesting implications for 
no-arbitrage term structure models, which we discuss 
in the next subsection. 

Implications for no-arbitrage term structure models
Recent developments in the limits-to-arbitrage 

literature are useful to sharpen the specification of  
no-arbitrage term structure models. For instance, 
Krishnamurthy and Vissing-Jørgensen (2011) suggest 
that QE2 has affected long-term Treasury yields 
mainly by lowering the market’s expectations of future 
federal funds rates. To accommodate this evidence, 
one could extend the term structure models discussed 
in this article to allow for changes in the way agents 
form expectations about future spot rates. Models that 
allow for regime switches in monetary policy (for ex-
ample, Ang et al., 2011; Bikbov and Chernov, 2008; 
and Fuhrer, 1996) and evolving beliefs about inflation 
dynamics (for example, Sargent, 2001) are a useful 
step in this direction. One challenge is to extend the 
analysis to an environment in which the federal funds 
rate is at the zero lower bound. 
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Moreover, preferred habitat theories motivate 
structural, theoretically founded restrictions on the 
dynamics of yields that could be useful to refine ex-
isting dynamic term structure models. This is an inter-
esting area of research that has seen considerable 
progress in the past few years. Hamilton and Wu (2012), 
for example, follow Greenwood and Vayanos (2010a, b) 
and Doh (2010) in using the promising theoretical 
framework developed by Vayanos and Vila (2009) to 
rationalize and evaluate the Federal Reserve’s large-
scale purchases of U.S. Treasury securities across dif-
ferent maturities. In their models, risk-averse arbitrageurs 
interact with preferred habitat investors, whose demand 
for a bond with a specific maturity is an increasing 
function of its yield. Hamilton and Wu (2012) introduce 
this market segmentation in an affine term structure 
model and conclude that the maturity structure of 
debt held by the public affects the level, slope, and 
curvature of the yield curve. In this setting, they find 
that bond demand shocks have a significant effect on 
bond prices, even in the presence of a binding zero 
lower bound constraint for the federal funds rate (see 
also related evidence in Krishnamurthy and Vissing-
Jørgensen, 2010). 

Finally, the liquidity differential often observed 
across bond vintages, which we discussed earlier, 
raises the question about which Treasury yield series 
are more suitable for the estimation of dynamic term 
structure models. Most empirical studies have been 
focusing on liquid on-the-run securities. However, 
some researchers have advocated using off-the-run 
bonds, which include a smaller liquidity premium 
compared with new issues (for example, Gürkaynak, 
Sack, and Wright, 2007). More broadly, this discussion 
highlights the challenge to choose an appropriate mea-
sure for the risk-free rate. To what extent is the ability 
to trade the security with ease a defining feature of 
the risk-free asset? In principle, one could explicitly 
model the liquidity wedge across yields to identify 
the “true” term structure of interest rates. This approach 
could be particularly useful when modeling segments 
of the Treasury market that are more sensitive to liquidity 
disruptions (for example, the TIPS market).11 

Conclusion

In this article, we discuss the role of arbitrage 
trading in the U.S. Treasury market. We start out by 
defining the concept of arbitrage and illustrate it in a 
simple one-period example. We then show how the 
absence of arbitrage aligns risk-adjusted returns across 
bonds with different maturities in the framework of 
the Vasicek (1977) one-factor term structure model. 
Along the way, we explain the link between bond risk 
premiums and the underlying economy in a stylized 
general equilibrium setting. Empirical evidence on 
bond yields suggests that at least three factors drive 
fluctuations in the term structure of interests rates. 
This observation motivates a vast literature on multi-
factor models, which we briefly review with an empha-
sis on tractable affine specifications. The article ends 
with an evaluation of market frictions in the government 
debt market and their implications for no-arbitrage 
term structure models. 

In the models we discuss here, the factors are 
typically latent variables (or linear combinations of 
yields) void of immediate economic interpretation. 
Thus, these models are silent about the response of 
bond yields to macroeconomic shocks, as well as the 
chain of events through which monetary policy inter-
vention ultimately impacts the real economy. Early 
studies investigate these questions by directly relating 
current bond yields to past yields and macroeconomic 
variables in a vector autoregression framework (for 
example, Estrella and Mishkin, 1997; and Evans and 
Marshall, 1998, 2007). More recently, much work has 
gone into incorporating macroeconomic information 
in no-arbitrage dynamic term structure models. We post-
pone further discussion of this literature to the future. 
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NOTES
1Authors’ calculations based on data from the Securities Industry 
and Financial Markets Association (SIFMA) and the New York 
Stock Exchange (NYSE) Facts and Figures (formerly the online 
NYSE Fact Book). The data are available at www.sifma.org/research/ 
statistics.aspx and www.nyxdata.com/factbook. The label “second-
ary” market refers to the market in which Treasury bills, notes, and 
bonds are traded once they are issued. This label sets the market 
apart from the “primary” market in which these securities are first 
auctioned and sold by the U.S. Department of the Treasury.

2See the “About the FOMC” section at www.federalreserve.gov/
monetarypolicy/fomc.htm.

3Treasury bill prices are quoted on a bank discount rate basis with 
tick size of 1 basis point. Treasury notes and bonds are quoted at 
percentage of par in 32nds of a point. See, for example, Sundaresan 
(2001) for more information on trading practices in the secondary  
U.S. Treasury market.

4The two-year note is the shortest-maturity coupon-bearing security 
issued by the U.S. Treasury. This makes it appealing to people who 
seek a medium-term investment that comes with the convenience 
of regular coupon payments.

5In the United States, retail depositors at a bank insured by the 
Federal Deposit Insurance Corporation (FDIC) are entitled to interest 
payments and are reimbursed up to a certain amount if the bank 
fails. Limits to the amount of deposit insurance reduce the appeal 
of demand deposit accounts to corporations. Under the Federal 
Reserve’s Regulation Q, as in effect until July 21, 2011, corpora-
tions were not entitled to earn interest on demand deposit accounts. 
In contrast, engaging in a reverse repo allows institutional investors 
to earn interest at lower risk because of the presence of collateral.

6Most estimates of the repo market size rely on surveys of its par-
ticipants. Adrian et al. (2012) provide an overview of data require-
ments necessary to monitor repos and securities lending markets 
for the purposes of informing policymakers and researchers about 
firm-level and systemic risk. They conclude that data collection is 
currently incomplete, and argue that a comprehensive collection 
should include six characteristics of repo and securities lending 
trades at the firm level: principal amount, interest rate, collateral 
type, haircut, tenor, and counterparty.

7See, for example, Gorton and Metrick (2011) and Krishnamurthy 
(2010) for evidence based on the bilateral repo market. Margins 
and funding were mostly stable during and after the crisis period in 
the triparty repo market, except in rare cases when funding dropped 
precipitously (Copeland, Martin, and Walker, 2011).

8Convergence trades were important positions in the portfolio of 
the Long-Term Capital Management (LTCM) fund. These trades 
received considerable attention in the news in 1998, when an increase 
in the spread between off-the-run and on-the-run bond yields pro-
duced significant losses for LTCM. The fund was eventually liquidated. 
See, for example, Lewis (1999).

9Recently, Swanson (2011) revisits this episode using an event-study 
approach that matches high-frequency changes in financial markets 
within narrow windows of time around major, discrete announce-
ments to measure the effects of those announcements. He finds 
some support for the notion that Operation Twist performed as its 
designers thought it would.

10This is not, however, a unanimous view. For a dissenting voice, 
see, for instance, Cochrane (2011), who states: “QE2 doesn’t seem 
to have lowered any interest rates. Yes, five-year rates trended 
down between announcements, though no faster than before. The 
November [2010] QE2 announcement and subsequent purchases 
coincided with a sharp Treasury rate rise. The five-year yields 
where the Fed bought most heavily didn’t decline relative to the 
other rates, as the Fed’s ‘segmented markets’ theory predicts. The 
corporate and mortgage rates that matter for the rest of the economy 
rose throughout the episode.”

11Recent work by D’Amico, Kim, and Wei (2010) is an interesting 
example.
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