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Introduction and summary

The Chicago Fed National Activity Index (CFNAI) is 
a monthly index of U.S. economic activity constructed 
from 85 data series (or indicators) classified into four 
groups: production and income; employment, unemploy-
ment, and hours; personal consumption and housing; 
and sales, orders, and inventories.1 The index is estimated 
as the first principal component of the 85 data series,2 
and is essentially a weighted average of the indicators, 
with their individual weights representing the relative 
degree to which each indicator explains the overall 
variation among them. The CFNAI is also normalized 
to reflect deviations around a long-term historical rate 
of economic growth. As such, a zero value of the index 
indicates that growth in economic activity is proceed-
ing along its long-term historical path; a negative value 
indicates below-average growth, while a positive value 
indicates above-average growth.

The CFNAI, which premiered in March 2001, was 
originally designed as a leading indicator for inflation 
(Stock and Watson, 1999; and Fisher, 2000). However, 
much of its current value derives from its ability to cap-
ture U.S. business cycles (that is, the periodic fluctuations 
in economic activity around its long-term historical 
trend) and nowcast3 U.S. real gross domestic product 
(GDP) growth (Evans, Liu, and Pham-Kanter, 2002; 
and Brave and Butters, 2010). The index has been shown 
to align with the historical timing of U.S. recessions 
according to the National Bureau of Economic Research 
(NBER), with close to 95 percent accuracy (Berge and 
Jordà, 2011). Moreover, the CFNAI has the ability to 
signal in real time the onset and end of a recession—for 
instance, the index did this for the 2001 and 2007–09 
recessions within one to three months of the NBER dates, 
with an average lead time of one year prior to the official 
NBER announcements (Brave and Butters, 2010). The 
CFNAI’s success has been more mixed in terms of 
predicting real GDP growth, although for the 2004–09 

period its performance was on par with the median 
current quarter forecast from the Federal Reserve Bank 
of Philadelphia’s Survey of Professional Forecasters 
(Brave and Butters, 2010). 

In this article, we consider an alternative version 
of the CFNAI that is chiefly constructed using the 
methodology developed in Bräuning and Koopman 
(2014). Their method of collapsed dynamic factor (CDF) 
analysis4 offers several advantages over the CFNAI’s 
traditional methodology—principal components analysis 
(PCA)—when it comes to estimating the index: first, 
through its incorporation of the dynamic properties  
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of the time series for the index (which PCA cannot 
exploit) and, second, by further disentangling common 
drivers of the variation in the underlying data series 
from idiosyncratic ones. Common drivers of the CFNAI 
indicators are the types of macroeconomic shocks gen-
erally associated with the business cycle, while idio-
syncratic drivers include shocks typically isolated to 
various specific sectors of the U.S. economy, as captured 
in the four broad categories of the CFNAI indicators. 
Moreover, the methodology of Bräuning and Koopman 
(2014) makes it possible to directly link the CFNAI 
to broad economic indicators constructed at a lower 
frequency, such as quarterly real GDP growth. 

Figure 1 plots the history of the traditional monthly 
CFNAI and the alternative CFNAI, which is largely 
based on applying the methodology of Bräuning and 
Koopman (2014), from March 1967 through February 
2014. The shaded periods in the figure represent U.S. 
recessions as identified by the NBER. The alternative 
CFNAI shown here produces a superior in-sample fit 
and out-of-sample projections of current quarter real 
GDP growth while correlating more closely with NBER 
recessions than the traditional CFNAI. These improve-
ments depend on both the way in which the correlation 
structure of the 85 underlying data series (at a certain 

point in time and across time) is taken into account  
in the estimation procedure and the particular way in 
which real GDP growth and its dynamic properties are 
incorporated. We establish this fact by drawing com-
parisons between the static factor model for the CFNAI 
and several dynamic factor models that include quarterly 
real GDP growth but differ from the Bräuning and 
Koopman (2014) methodology in how they include it. 

In the process of updating the CFNAI with the 
Bräuning and Koopman (2014) methodology, we also 
learn something about the nature of the recovery from 
the most recent recession. Our application of CDF 
analysis provides us with some additional context for 
the uneven pattern of growth during the recovery: First, 
we show that there has been a moderate decline in the 
trend rate of real GDP growth since December 2007; 
and second, we note that the share of variation among 
the underlying data series for the CFNAI (particularly 
those in the personal consumption and housing category 
and employment, unemployment, and hours category) 
due to idiosyncratic drivers increased during the 2007–09 
recession and the subsequent recovery. The second 
finding leads our estimate of the alternative CFNAI 
during much of the recent recovery to be higher than that 
of the traditional CFNAI given the weakness of these 

FIGURE 1

CFNAI versus alternative CFNAI

Notes: The figure displays the monthly Chicago Fed National Activity Index (CFNAI) and the alternative CFNAI, which is constructed using  
the Bräuning and Koopman (2014) methodology (see the text for further details). Both indexes are shown in standard deviation units from 
their means over the period March 1967 through February 2014. Shading indicates U.S. recessions as identified by the National Bureau  
of Economic Research. 
Source: Authors’ calculations based on data from Haver Analytics.
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data series, although the first finding somewhat offsets 
the impact on U.S. real GDP growth of this upward 
revision in our assessment of economic activity. 

In the next section, we detail the traditional and 
several alternative methods of constructing the CFNAI. 
Then, we further explain the implications of our pro-
posed update to the CFNAI using the Bräuning and 
Koopman (2014) framework. Next, we describe what 
is driving the differences in timing of U.S. recessions 
across the Chicago Fed National Activity Index’s 
three-month moving average (CFNAI-MA3) and the 
alternative CFNAI’s three-month moving average  
(alternative CFNAI-MA3). Afterward, we show how 
the alternative CFNAI-MA3 can be used to nowcast 
annualized quarterly real GDP growth more accurately 
than the traditional CFNAI-MA3 and several other 
dynamic-factor-based indexes. Finally, we present 
our conclusions and comment on what they may imply 
for U.S. economic activity over the near term.

Traditional and alternative methods  
of constructing the CFNAI 

The traditional method of constructing the CFNAI—
principal components analysis—proceeds by means 
of an eigenvector–eigenvalue decomposition of the 

variance–covariance matrix of the 85 underlying data 
series. This static factor model description of the data, 
detailed in box 1, produces a principal component for 
each eigenvalue of the variance–covariance matrix. 
The eigenvector associated with the largest eigenvalue 
of the matrix constitutes the weights applied to the data 
series that are used to construct the first principal com-
ponent, or what we call the CFNAI. Stock and Watson 
(2002) show that this method of constructing the CFNAI 
is capable of producing a consistent estimate of the under-
lying static factor model of the data as the number of data 
series and the number of time periods become large. 

The CFNAI is estimated monthly and released near 
the middle of each month with a history from March 
1967 through the month preceding that of the release 
date. The lag of approximately one month between the 
last month of the index and the release date is necessary 
because of limitations on data availability. In addition 
to this one-month production lag, many of the data series 
themselves are only available at a further one- to two-
month lag. The limited availability of data at the time 
of estimation results in a variance–covariance matrix 
of less than full rank, thereby making principal com-
ponents analysis infeasible. To circumvent this issue, 
we forecast each incomplete data series separately up 

BOX 1

Principal components analysis and factor analysis

Here, we explain the mathematics behind using PCA 
to construct the traditional CFNAI. Let x denote the 
N × 1 column vector of N data series at time t. The 
first step is to form the N × T matrix of data vectors 
Xt , where each row of this matrix contains T obser-
vations normalized to have a mean of zero and a 
standard deviation of one.1 The eigenvector–eigenvalue 
decomposition of the variance–covariance matrix
 Xt X t
N

′ then produces a set of time-invariant weights
referenced by the 1 × 85 row vector w resulting from 
a transformation of the eigenvector associated with 
the largest eigenvalue of this matrix. These weights 
are then used to construct a weighted average of the 
x such that the resulting index is given by I = wx. 

The underlying assumption about Xt necessary to 
produce this variance decomposition is that it admits 
a factor model representation. This means that it can 
be additively decomposed into the product of two 
vectors—an N × 1 column vector of time-invariant 
factor loadings Γ and a 1 × T time-varying latent factor 
Ft       — and a normally distributed mean zero random 
variable εt with variance–covariance matrix σ2I:

Xt = ΓFt  + εt .

1Underlying the normalization of the data is the concept of  
stationarity, or in this case the first and second moment restrictions 
that the mean and variance of each indicator do not vary over 
time. Each data series first receives a transformation to make  
it stationary prior to its normalization. A list of transformations 
can be found at www.chicagofed.org/digital_assets/publications/ 
cfnai/background/cfnai_indicators_list.pdf.
2The normalization constraints most commonly used with one 
factor are =

N
1′Γ Γ  and ′ =F F

T
t t 1.

3See Stock and Watson (2002) for more details on the connec-
tion between PCA and factor analysis. Also, note that identifi-
cation here is achieved only up to the scale provided by the 
normalization constraint on the factor loadings. To be able to 
interpret the CFNAI, we use the normalization ′ =F F

T
t t 1.

The values of Ft  and Γ are then jointly estimated by 
maximizing Tr[Γ′Xt Xt′Γ] subject to a normalization 
constraint.2 This linear optimization problem is 
solved by setting the estimator ′

N
Γ
∧

 equal to w.3 The 
estimated factor in our example, given by ,F X

Nt
t=

′Γ∧ ∧

 
corresponds to the CFNAI. As such, it is the principal 
component common to all N = 85 indicators that  
explains the largest amount of variation among them.

www.chicagofed.org/digital_assets/publications/cfnai/background/cfnai_indicators_list.pdf
www.chicagofed.org/digital_assets/publications/cfnai/background/cfnai_indicators_list.pdf
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to the month in which the index is produced according 
to individual autoregressive processes with five lags 
before the index is constructed.

This method of completing the panel of indicators 
in order to construct a first principal component is very 
flexible but not unique or even necessary. Stock and 
Watson (2002) also demonstrate how to produce an 
index estimate when data are missing with the same 
desirable statistical properties as PCA. Their method-
ology relies explicitly on the incomplete data methods 
of the expectation–maximization (EM) algorithm made 
popular by Watson and Engle (1983); and although it 
does not take into account the serial correlation properties 
of each data series like the current CFNAI procedure 
for inferring missing data or the dynamic properties of 
the index itself, it does account for the data’s underlying 
factor representation to both estimate the index and 
impute missing values.5

The Stock and Watson (2002) EM algorithm uses 
the information from the complete, or “balanced,” panel 
of indicators to make the best possible prediction of 
the incomplete, or “unbalanced,” panel of indicators. 
When applied to the construction of the CFNAI, it begins 
by performing PCA on the subset of data series that 
are available in all time periods. Missing values are 
then predicted based upon linear regressions of each 
of the 85 data series on the first principal component. 
Finally, PCA is repeated on the balanced panel of data, 
which combines the observed and predicted data. This 
process continues until the difference in the sum of 
the squared prediction errors between iterations reaches 
a desired level of convergence. 

Since the inception of the CFNAI in March 2001, 
several alternative methods of constructing economic 
activity indexes that build on PCA have been proposed. 
Each of these is also an example of factor analytic 
methods; the differences across the methodologies mainly 
depend on how variation due to common drivers versus  
idiosyncratic ones is decomposed across data series and 
time periods. Here, we briefly describe a few of these 
alternative methodologies, contrasting them with the 
traditional methodology used for the CFNAI and each 
other before we explain the collapsed dynamic factor 
model of Bräuning and Koopman (2014). Boxes 2 and 3 
present many of the technical details of these methods 
that are omitted in the discussion that follows.

Giannone, Reichlin, and Small (2008) extended 
the static representation of the factor model of Stock 
and Watson (2002) into a dynamic factor model by 
incorporating both information from the cross section 
of data series (at each point in time) and information 
on data series across time into the process of estimating 
the index and imputing missing values. Doz, Giannone, 

and Reichlin (2012) then subsequently provided an 
alternative EM algorithm with which to estimate the 
dynamic factor model. In the first step, PCA is performed 
up to the point in time for which all data series are 
available. The first principal component from this static 
factor model is then used to obtain the initial parameter 
values for the dynamic factor model shown in box 2. 
The estimation of the CFNAI in this case proceeds by 
means of the Kalman filter and smoother equations 
applied to this model. The resulting index is then used 
to reestimate parameter values, and the process is re-
peated until convergence of the model’s log-likelihood 
is achieved as shown in box 2. 

In the methodology of Doz, Giannone, and 
Reichlin (2012), data series that are unavailable each 
month are ignored for inferring the value of the index, 
but are forecasted using information on the dynamic 
properties of the index via the Kalman filter. Further-
more, unlike PCA, the idiosyncratic error structure of 
the data can be relaxed to accommodate unequal vari-
ances across unobserved idiosyncratic drivers of the 
data series (that is, heteroskedasticity). These modifi-
cations of the underlying factor model for the CFNAI 
are not costless, however, as they come at the price of 
estimating a much larger number of parameters. Besides 
the obvious increase in complexity and in the time and 
computing power necessary to estimate and construct 
the index using dynamic factor methods versus static 
factor methods, other potential drawbacks from this 
richer class of factor models include the additional 
uncertainty introduced when using the index to make 
out-of-sample projections of inflation and economic 
growth as in Fisher (2000) and Brave and Butters (2010). 

Collapsed dynamic factor analysis as presented in 
Jungbacker, Koopman, and van der Wel (2011) and 
explained in box 3 minimizes these costs by transform-
ing the static portion of the dynamic factor model in 
such a way as to significantly reduce the number of 
estimated parameters needed to run the Kalman filter 
and compute projections of auxiliary variables of interest, 
such as real GDP growth. We follow their methodology 
in order to incorporate serial correlation within data 
series (idiosyncratic autocorrelation) in addition to 
heteroskedasticity into the static factor model. All of the 
alternative methods for constructing the CFNAI that 
we have presented thus far, however, remain sensitive 
to the use of PCA as a starting point for estimation.6 
If the PCA estimate of the index is biased even after 
accounting for its dynamics, none of the dynamic  
factor models considered here is guaranteed to produce 
an unbiased estimate of the index. 

Bräuning and Koopman (2014) provide an alter-
native transformation of the static factor model that does 
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not assume that PCA produces an unbiased estimate of 
the index. In their framework, each data series’ factor 
loadings are fixed at their PCA values. Then, by treat-
ing the PCA estimate of the index as a noisy indicator 
of the “true” measure, their method reoptimizes the 
index such that it explains the largest percentage of 
the variation in the PCA estimate of the index that is 
consistent with both its own estimated dynamics and 
that of an auxiliary “target” variable. The target vari-
able is described as a more comprehensive but perhaps 

less frequently available indicator of the information 
set over which the other data series span. The target 
variable is also unique in that it alone follows its own 
estimated dynamics and loads directly on both current 
and past values of the index, whereas in our applica-
tion the dynamics of the index do not depend on the 
target variable. In our application and theirs, real 
GDP growth is used as the target variable. 

Our use of the Bräuning and Koopman (2014) 
methodology is motivated by several persistent criticisms 

BOX 2

Dynamic factor analysis

PCA and traditional factor analysis are static estima-
tion methods in that they do not incorporate informa-
tion from both the cross section of data series and the 
information from across time. Dynamic factor analy-
sis instead makes use of variation in both forms. To do 
so, it relies on signal extraction methods, such as the 
Kalman filter, applied to a system of equations relat-
ing the latent factor, or the CFNAI as in the example 
in box 1 (p. 21), to both the cross section of data series 
at each point in time (a “measurement” or “observa-
tion” equation) and the dynamic factors that drive its 
fluctuations over time (a “state” equation).

Mathematically, this involves specifying the  
following state-space representation:

Xt = ΓFt + εt  ,

Ft = AFt  –1 + υt  ,

where Ft   is the 1 × T latent factor capturing a time-
varying common source of variation in the 85 × T 
matrix of indicators Xt ; Γ is the 85 × 1 loadings onto 
the factor; and A is the transition matrix describing 
the evolution of the latent factor over time. We write 
the A parameter of the model assuming a first-order 
autoregressive process (AR(1)) for Ft  , which can be 
generalized to an arbitrary number of lags, p.1 The 
static factor model representation of the CFNAI  
described in box 1 thus forms the measurement equa-
tion of the state-space representation of the dynamic 
factor model. Adding dynamics of some finite order 
to Ft  yields its state equation.

Both εt and υt are assumed to be independently 
normally distributed mean zero random variables. We 
follow the dynamic factor model of Doz, Giannone, 
and Reichlin (2012) and assume that Var(εt  ) = H (an 
85 × 85 diagonal matrix) and Var(υt) = 1.2 The signal 
extraction methods of the Kalman filter and smoother 
are capable of estimating such a model given the coef-
ficient matrices of the measurement and state equations, 
that is, Γ and A, and the idiosyncratic error variances 
along the diagonal of H. All of these parameters can 

be consistently estimated from linear regressions in-
volving Xt and the smoothed or PCA estimate of Ft  as 
demonstrated in Giannone, Reichlin, and Small (2008).

With the model in state-space form and initial esti-
mates of the system matrices, the expectation–maximi-
zation (EM) algorithm outlined by Shumway and Stoffer 
(1982) can be used to estimate the latent factor Ft    . At 
each iteration of the algorithm, one pass of the data 
through the Kalman filter and smoother is made followed 
by reestimating the system matrices.3 The log-likelihood 
that results is nondecreasing, and convergence is gov-
erned by its stability.4 This iterative estimation process 
combines the efficiency of likelihood-based estimation 
of the latent factor with the consistency of ordinary 
least squares (OLS) parameter estimates. 

To see the relationship between the static and  
dynamic factor models, consider the case where the 
transition matrix of the state equation, A, is the zero 
matrix. That is, nullify the impact of dynamics for the 
latent factor. Notice that if we specify the variance–
covariance matrix of the measurement equation’s error 
term is proportional to the identity matrix (and based 
on the description of PCA discussed in box 1), we end 
up with an estimate of the latent factor that is propor-
tional to the first principal component. For this reason, 
our traditional methodology for the CFNAI can be con-
sidered a special case of the dynamic factor model with 
a zero transition matrix and a homoskedastic idiosyn-
cratic error structure (that is, the assumption of equal 
variances across unobserved idiosyncratic drivers of 
the underlying data series).
1We choose p depending on the model being estimated, but all 
models use either three or four lags. 
2The latter restriction acts to set the scale of the dynamic factor 
model just as the normalization on the scale of the factor loadings 
used in PCA does for the static factor model.
3In addition, a small alteration in the least-squares step is required 
to account for the fact that the unobserved components of the 
model must first be estimated. See Durbin and Koopman (2012) 
for further details.
4Our stability criterion where k references iteration is as follows: 
|log L(k) – log L(k – 1)/((\log L(k) + \log L(k – 1))/2)| < 10–6.
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BOX 3

Collapsed dynamic factor analysis

Collapsed dynamic factor analysis reflects its name. 
It begins by applying a transformation to the measure-
ment equation of the dynamic factor model’s state-
space representation in order to collapse its size to 
match the typically smaller size of the state equation. 
In the context of the Jungbacker, Koopman, and van 
der Wel (2011) model applied to the CFNAI, this 
amounts to premultiplying the 85 × T matrix of indi-
cators Xt by the transformation AL = (Γ′Ω−1Γ) −1Γ′Ω−1, 
where Ω is the variance–covariance matrix of εt: 

X F ut
L

t t= + .  

The transformed measurement equation, shown here, 
then relates a scalar, X A Xt

L
L t= , with a unit factor 

loading to the latent factor, Ft  , and a mean zero  
normally distributed random scalar ut with variance  
H = (Γ′Ω−1Γ)−1. The state equation is unaltered from 
the example in box 2 (p. 23).

Notice that the transformation here when applied 
to Xt takes the familiar form of the generalized least 
squares (GLS) solution for the latent factor Ft  with  
Ω as the weight matrix. Bräuning and Koopman (2014) 
suggest the use of an alternative transformation. In 

their example, AL =
′
N
Γ
∧

, where ′Γ
∧  is the PCA estimate 

of the factor loadings of the static factor model, 

X X
Nt

L t= ′Γ
∧

 is the traditional CFNAI as shown in box 1 

(p. 21), and u Nt
t=

′ε .Γ
∧

 Furthermore, H is not assumed
to be a predetermined function of the dynamic factor 
model’s factor loadings and the variance–covariance 
matrix of its idiosyncratic errors. It is instead estimated 
as an additional parameter. The estimation of H is made 
possible by the inclusion of an additional measurement 
equation containing a “target” variable, which is real 
GDP growth in their example and ours. 

The random scalar ut in this context has the in-
terpretation of a “measurement error” between the 
PCA estimate of the CFNAI and its dynamic factor 
counterpart. Notice that it is also a weighted average 
of the idiosyncratic disturbances of the static factor 
model, with the weights corresponding to the PCA 
factor loadings. The implicit assumption maintained 
by Bräuning and Koopman (2014) to derive their 

transformation is that ′ ≅N 1.Γ
∧
Γ
∧

 Deviations from this 
assumption will produce some approximation error 
as well in ut.

We modify the Bräuning and Koopman (2014) 
methodology for our purposes by applying the trans-
formation to an alternative representation of the indi-
cators, X X Xt t t= −ρ .1

∼
−

This modification allows us 

to draw finer comparisons with the collapsed dynamic 
factor model of Jungbacker, Koopman, and van der Wel 
(2011), which also allows for heteroskedasticity and 
serial correlation in the idiosyncratic errors εt but as-
sumes PCA produces an unbiased estimate of the la-
tent factor. To make this modification operative, we 
first estimate the collapsed dynamic factor model of 
Jungbacker, Koopman, and van der Wel (2011) to  
obtain estimates of the ρ vector and construct Xt .

∼
1 We 

then apply PCA to the covariance matrix of Xt
∼

to obtain

 AL =
′
N
Γ
∧

 and proceed as described earlier in this box.2

Our application of the Bräuning and Koopman 
(2014) methodology also requires an additional mea-
surement equation relating quarterly real GDP growth, 
Yt , to its own lagged value, Yt–3; current and past  
values of the three-month moving average of the  
CFNAI, Ft

3; and a time-varying intercept, Tt
3. Real 

GDP growth in this framework acts to “clean” the 
PCA estimate of the three-month moving average of 
the monthly index by apportioning it in each quarter 
into a fragment that is correlated with quarterly real 
GDP growth, γ γ0

3
1

3 3F Ft k k t k+ = −Σ ,  and a fragment that 
is not, T Y vt t t

3
3+ +−δ , based on the regression coeffi-

cients, γk and δ. The mean zero normally distributed 
random variables ut and vt are assumed to be indepen-
dent. Box 4 provides more details on this particular 
nowcasting specification:

Y T Y F F vt t t t k t k
k

t= + + + +− −
=
∑3

3 0
3 3

1

3

δ γ γ .

This errors-in-variables framework is estimated 
by Bräuning and Koopman (2014) by full maximum 
likelihood techniques. Here, to maintain consistency 
with the way the other dynamic and collapsed dynamic 
factor models are estimated, we instead use a variant 
of the EM algorithm described in box 2 to estimate 
the transformed state-space representation. In order 
to use the Jungbacker, Koopman, and van der Wel 
(2011) estimate of the smoothed latent factor in the 
first step, this process requires a restricted least-squares 
regression of the PCA estimate of the factor on the 
smoothed latent factor and an additional linear regression 
for the target variable equation. Additional details on 
the estimation process can be found in box 4.

1The maintained assumption in this exercise in order for our  
estimate of ρ to be unbiased is that Cov(Xt–1, ξ t ) = 0, where ξ t 
is a composite error term comprising εt and the contemporane-
ous measurement error in the estimated factor.
2Because the indicators have already been demeaned and stan-
dardized, they are measured in common units. Thus, obtaining 
principal components from the covariance matrix instead of the
correlation matrix of ∼Xt allows us to incorporate unequal variances 
across the indicators.
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of perceived bias in the CFNAI. One source of bias in 
the CFNAI could stem from not including enough 
variables to span the space of U.S. economic activity—
for instance, by omitting international trade or govern-
ment spending indicators (which inform real GDP 
growth) as the CFNAI currently does. Another source 
of bias in the CFNAI could be due to a preponderance 
of data confined to one or more sectors of the economy—
for instance, the potential overweighting of manufac-
turing data series that dominate the production and 
income category of indicators and the CFNAI. Yet 
another source of bias in the CFNAI could result from 
the omission of any additional common components in 
the CFNAI data series in the estimation of the dynamic 
factor model. Here, we consider only the likelihood 
of the first two potential sources of bias, but note that 
our results remain sensitive to the possibility of the last 
one. See box 3 for more details on how the Bräuning 
and Koopman (2014) methodology helps to correct 
for these potential sources of bias in the CFNAI. 

Implications of the update for the CFNAI

The estimation of the dynamic factor models for the 
CFNAI requires only slight modifications to existing 
methods as shown in box 3.7 To be able to compare 
indexes based on alternative methodologies, we include 
real GDP growth as an additional indicator for each 
of the dynamic factor alternatives to the CFNAI’s tra-
ditional methodology discussed previously. This way 
we can highlight the joint role played by including real 
GDP growth along with the dynamic factor elements 
discussed in the previous section. Moreover, to capture 
the role played by allowing for dynamics in the esti-
mation process instead of relaxing various PCA restric-
tions, we use a variant of the Giannone, Reichlin,  
and Small (2008) methodology. In this case, the factor 
model for the CFNAI is estimated using the Doz,  
Giannone, and Reichlin (2012) EM algorithm, preserving 
the PCA restrictions on the idiosyncratic error structure 
of the data but allowing for a dynamic process of the 
index to be estimated. 

Another benefit of the alternative estimation frame-
works presented in the previous section is that, follow-
ing Bräuning and Koopman (2014), it becomes feasible 
to decompose real GDP growth into its trend and cycli-
cal components.8 Based on our past work (Brave and 
Butters, 2010, 2013), this ability to decompose real 
GDP growth has turned out to be vital to capturing 
changes in average real GDP growth over long periods. 
Given this finding, we developed a specification that 
allows for a time-varying intercept in the equation for 
quarterly real GDP growth to capture changes over time 
in its trend rate of growth (see box 4). To capture cyclical 

movements, we follow Brave and Butters (2010) in 
using one lag of quarterly real GDP growth in addition 
to current and past values of the three-month moving 
average of the monthly index. 

Figure 2 plots in separate panels the difference 
between the CFNAI and each of the four dynamic-factor-
based indexes. Simply adding dynamic elements to 
the static factor model, as well as quarterly real GDP 
growth in the construction of the index, produces small 
differences from the traditional CFNAI. This can be 
seen in the difference between the CFNAI and the first 
dynamic-factor-based index (labeled DF in panel A of 
figure 2). Further relaxing the PCA restrictions on the 
idiosyncratic error structure of the data has a more pro-
nounced effect; this is apparent in the difference between 
the CFNAI and the dynamic-factor-based index with 
heteroskedastic errors (labeled DF-HC in panel B of 
figure 2) and between the CFNAI and the dynamic-
factor-based index with heteroskedastic and serially 
correlated errors (labeled DF-HAC in panel C). However, 
the difference from the traditional CFNAI is most prom-
inent for the dynamic-factor-based index based on  
the methodology of Bräuning and Koopman (2014) 
(labeled CDF-HAC in panel D of figure 2)—which 
we refer to as the alternative CFNAI in figure 1 (p. 20). 
These results are detailed further in table 1 (p. 28), which 
displays the cumulative effect on the explained variance 
of the 85 underlying data series for the traditional CFNAI 
from altering the various assumptions underlying its 
static factor model. Each successive addition to the 
static factor model for the CFNAI—from dynamics 
and real GDP growth (first row, second column) to 
heteroskedastic errors (first row, third column) and 
serially correlated idiosyncratic errors (first row, fourth 
column)—reduces the explained variance of the 85 
underlying data series by the index, but none more so 
than the Bräuning and Koopman (2014) methodology 
(first row, fifth column), which corrects for bias arising 
from the use of PCA. It is important to note here that the 
reductions in explained variance do not reflect a failure 
of the dynamic factor model to account for variation 
among these data series at a certain point in time or 
within them across time. Instead, such reductions reflect 
the fact that more of the variation in these series is es-
timated to arise from idiosyncratic drivers (including 
potential bias due to the use of PCA) rather than common 
ones. The alternative CFNAI (first row, fifth column) 
explains only 20 percent of the total variance of the 
85 data series—a reduction of almost one-third of the 
total variance explained by the traditional CFNAI (first 
row, first column) and a reduction of almost one-fourth 
of the total variance explained by its closest counter-
part, the DF-HAC index (first row, fourth column). 
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Overall, correcting for bias is of greater importance 
than any other modification in explaining the differences 
between the traditional CFNAI and the alternative 
CFNAI according to the results in table 1. However, 
the other modifications to the underlying static factor 

model for the CFNAI reflected in the table are also 
worth highlighting. For instance, the various dynamic-
factor-based indexes exhibit very different shares of 
explained variance by the index across the four broad 
categories of indicators. Allowing for heteroskedastic 

BOX 4

The model for nowcasting real GDP growth

Our dynamic factor model for the CFNAI is given  
by the system of equations in box 2 (p. 23), and is  
repeated here for convenience:

Xt = ΓFt + εt ,

Ft = AFt   –1 + υt .

To obtain the collapsed dynamic factor models dis-
cussed in the text, we substitute the measurement 
equations described in box 3 (p. 24) for the first equa-
tion here. 

The variant of this system based on Giannone, 
Reichlin, and Small (2008) parameterizes the variance–
covariance matrix of εt  , or H, as σ2I, in accordance with 
the description of PCA in box 1 (p. 21). The variant 
based on Doz, Giannone, and Reichlin (2012) instead 
assumes a heteroskedastic H with diagonal elements 
equal to σi

2. In addition to allowing for heteroskedas-
ticity, the variant based on Jungbacker, Koopman, 
and van der Wel (2011) allows for idiosyncratic serial 
correlation up to the first order, where we choose the 
degree of serial correlation for each of the 85 data  
series prior to estimating according to the Bayesian 
information criterion. The CDF variant referenced in 
the text estimates H as a scalar parameter according 
to Bräuning and Koopman (2014).

We append to this model a nowcasting equation 
relating annualized quarterly real GDP growth, Yt  , in 
each time period to its own lagged value, Yt–3; current 
and past values of the three-month moving average 
of the latent factor, Ft

3; and a time-varying intercept, 
Tt
3.We only observe Yt in the third month of each 

quarter, so that this equation strictly relates each 
quarterly realization of real GDP growth to only the 
corresponding end-of-quarter value of Tt

3:  

Y T Y F F vt t t t k t
k

t= + + + +− −
=
∑3

3 0
3 3

1

3

δ γ γ k .

To be able to estimate the model, we must first 
specify a dynamic process for the latent time-varying 
intercept, Tt

3, by adding a second state equation to the 
model. We assume that it is the quarterly average of  
a monthly process Tt that follows a random walk with 
drift parameter a: 

Tt = a + Tt–1 + ηt .

As such, Tt
3 represents the time-varying mean of 

quarterly real GDP growth conditional on the previous 
quarter’s value of real GDP growth Yt–3 and current 
and past values of Ft

3, and can be interpreted as trend 
real GDP growth. Furthermore, we assume that vt   and 
ηt are mean zero normally distributed random variables 
with variances V and W, respectively, that are uncor-
related with each other, εt , and υt . 

This particular specification of the nowcasting 
equation expands on Brave and Butters (2010), in which 
we used the CFNAI to nowcast real GDP growth, and 
is largely taken from the follow-up discussion in Brave 
and Butters (2013). It is based on a decomposition of 
trend and cyclical components for real GDP growth as 
in Bräuning and Koopman (2014), where the cyclical 
dynamics of real GDP growth are assumed to be cap-
tured by lagged real GDP growth and current and past 
values of the three-month moving average of the latent 
factor. However, it also represents a departure from the 
specification considered by Bräuning and Koopman 
(2014), which uses a different method of aggregation 
to relate real GDP growth to the monthly latent factor, 
includes additional lags of real GDP growth, and 
does not include a time-varying intercept. 

Our model is estimated using a variant of the EM 
algorithms described in boxes 2 and 3. The use of the 
Kalman filter requires that we specify initial values 
for the mean and variance of Ft  and Tt . Here, we use 
the exact initialization procedure described in Harvey 
(1989) for Ft , as well as a diffuse initialization for Tt 
by assuming that its initial mean value is the estimated 
constant in the presample regression of annualized 
quarterly real GDP growth on a constant in the 20 
quarters prior to our sample beginning in March 1967 
and setting its initial variance to the variance of this 
estimate. From the in-sample regression of annualized 
quarterly real GDP growth on a constant, one lag of 
itself, and current and previous values of the CFNAI-
MA3, we then obtain our initial parameter estimates 
of δ, γ, and V. Initializing α at zero, we then obtain our 
initial estimate of W according to the median unbiased 
estimation procedure described in Stock and Watson 
(1998) applied to a local-level unobserved components 
model for quarterly real GDP growth. At subsequent 
iterations, α and W are then reestimated by restricted 
linear regression using our estimate of Tt . 
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FIGURE 2

Differences between the CFNAI and four dynamic-factor-based indexes

Notes: The figure displays the differences between the monthly Chicago Fed National Activity Index (CFNAI) and each of the four dynamic-
factor-based indexes—DF, DF-HC, DF-HAC, and CDF-HAC—derived from methodologies based on Giannone, Reichlin, and Small (2008), 
Doz, Giannone, and Reichlin (2012), Jungbacker, Koopman, and van der Wel (2011), and Bräuning and Koopman (2014), respectively (see 
the text for further details). Each index was standardized (that is, transformed to have a zero mean and a standard deviation of one) prior to 
calculating the differences so that the displayed units are standard deviations from the respective index means. The differences are plotted over the 
period March 1967 through February 2014. Shading indicates U.S. recessions as identified by the National Bureau of Economic Research. 
Source: Authors’ calculations based on data from Haver Analytics.
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errors shifts explained variance toward the production 
and income category of indicators and away from the 
other three categories (see second through fifth rows, 
differences between second and third columns). Addi-
tionally allowing for idiosyncratic autocorrelation has  
a similar effect but also boosts the share of explained 
variance due to the sales, orders, and inventories category 
(see second through fifth rows, differences between third 
and fourth columns). The employment, unemployment, 
and hours category and personal consumption and hous-
ing category are particularly affected by the modifica-
tions to the idiosyncratic error structure of the static 
factor model for the CFNAI.9 For these reasons (and as 
explained in box 3, p. 24), we deviate slightly from the 
Bräuning and Koopman (2014) model by continuing 
to account for both heteroskedastic and serially corre-
lated errors in the CDF-HAC index.

Additionally, allowing (and correcting) for bias 
from using PCA in the estimation of the CFNAI, as 
shown in the fifth column of table 1, serves to reap-
portion the explained variance shares slightly more 
equally among the remaining three categories at the 
expense of the production and income category of in-
dicators. In fact, much of the bias in the CFNAI that 
we estimate can be traced back to the contribution of 
the production and income category of indicators. 
Hence, the concern over potential overweighting of 
manufacturing data sources that dominate this category 
of indicators appears to be valid. The end result is an 
index (that is, the CDF-HAC index) that puts slightly 
more weight on the sales, orders, and inventories and 
production and income categories than the traditional 
CFNAI does (despite the correction for bias arising from 
the latter category) and less weight on the personal 
consumption and housing and employment, unemploy-
ment, and hours categories. Furthermore, we should 
point out that although the difference in the personal 

consumption and housing category’s share of the frac-
tion of data variance explained by the CFNAI and the 
alternative CFNAI (the CDF-HAC index) may at first 
seem small, its economic significance is anything but 
small given the outsized contribution of this category 
to the weakness in economic activity during the recent 
recession and subsequent recovery. In fact, we find 
that a sizable portion of the upward revision seen in the 
alternative CFNAI during the recovery can be traced 
back to this result, as we discuss in the next section.

Capturing business cycles

One of the CFNAI’s key successes has been its 
use as an indicator of U.S. business cycles. Tradition-
ally, the three-month moving average of the index—
the CFNAI-MA3—has been used for this purpose in 
the past on account of the volatile nature of the monthly 
CFNAI. We follow this precedent here, but note that 
one clear benefit of the Bräuning and Koopman (2014) 
methodology is that it mitigates to some degree the 
concern about the volatility of the monthly index.  
Using the nonparametric method developed in Berge 
and Jordà (2011), we can quantify the accuracy of both 
the CFNAI-MA3 and the three-month moving average 
of the alternative CFNAI in capturing U.S. expansions 
and recessions as defined by the NBER.10 The receiver 
operating characteristic (ROC) analysis framework 
that Berge and Jordà describe produces a simple sum-
mary statistic in this regard (the area under the receiver 
operating characteristic curve, or AUROC). We briefly 
explain how we use this method next, while technical 
details for our ROC analysis can be found in box 5. 

Our use of ROC analysis can be explained graphi-
cally by a histogram, as shown in figure 3. This figure 
plots the relative frequency of every observed value 
of the alternative CFNAI-MA3 separately for values 
that occur during NBER recessions and expansions. One 

		  TABLE 1

Fraction of data variance explained by the index

	 CFNAI	 DF	 DF-HC	 DF-HAC	 CDF-HAC

Total	 0.29	 0.28	 0.27	 0.26	 0.20
 					      
Production and income	 0.39	 0.38	 0.46	 0.50	 0.43
Employment, unemployment, and hours	 0.36	 0.37	 0.33	 0.29	 0.32
Personal consumption and housing	 0.08	 0.08	 0.05	 0.03	 0.04
Sales, orders, and inventories	 0.17	 0.17	 0.16	 0.18	 0.21

Notes: The table displays the fraction of the overall variance of the 85 underlying indicators in the Chicago Fed National Activity Index (CFNAI)  
that is explained by the CFNAI and each of the four dynamic-factor-based indexes over the period March 1967 through February 2014. In addition, 
it decomposes this fraction into the share explained by each of the four broad categories of indicators listed here. The four dynamic-factor-based 
indexes—DF, DF-HC, DF-HAC, and CDF-HAC—are derived from methodologies based on Giannone, Reichlin, and Small (2008), Doz, Giannone, 
and Reichlin (2012), Jungbacker, Koopman, and van der Wel (2011), and Bräuning and Koopman (2014), respectively (see the text for further details). 
Source: Authors’ calculations based on data from Haver Analytics.



29Federal Reserve Bank of Chicago

BOX 5

Receiver operating characteristics analysis

FIGURE B1

The ROC curve for the alternative 
CFNAI-MA3

Notes: The solid blue line is the receiver operating 
characteristic (ROC) curve for the three-month moving 
average of the alternative Chicago Fed National Activity 
Index (alternative CFNAI-MA3), which is constructed  
using the Bräuning and Koopman (2014) methodology 
(see the text for further details), and U.S. expansions 
and recessions as identified by the National Bureau of 
Economic Research over the period March 1967 through 
February 2014. The solid black line is a 45-degree line 
from the origin, with a slope equal to 1 and an area under 
the line equal to 0.5. The red dot on the ROC curve 
corresponds with the recession prediction threshold 
explained in the text of box 5. 
Source: Authors’ calculations based on data from Haver 
Analytics.

true positive rate

false positive rate

ROC analysis applied to the CFNAI and its dynamic-
factor-based alternatives requires that we categorize 
each observation of an index as falling within a reces-
sion or expansion. Following the dating conventions 
for U.S. business cycles of the NBER, we then need 
to construct these conditional probabilities:

TP(c) = P[It ≥ c|St = 1] ,

FP(c) = P[It ≥ c|St = 0],

with St ∈{0, 1} indicating recessions and expansions, 
respectively. TP(c) is typically referred to as the true 
positive rate, and FP(c) is known as the false positive 
rate for an index It and particular observed value c. 
The relationship between the two is described by the 
ROC curve. With the Cartesian convention, this curve 
is given by

{ ( ), } ,ROC r r r=0
1

where ROC(r) = TP(c) and r = FP(c). In what follows, 
we describe how to construct the ROC curve.

Using the data in figure 4 (p. 32), we find the 
fraction of observations that fall outside and inside the 
shaded regions denoting U.S. recessions according to 
the NBER for the alternative CFNAI-MA3. These 
fractions are the unconditional probabilities associated 
with expansions and recessions. To obtain conditional 
probabilities, we use the following algorithm: For each 
value between the minimum and maximum observa-
tions of an index, we find the fraction of observations 
where that value and all subsequently higher values 
fall outside the shaded regions. We then do the same 
to find the fraction of observations that fall inside the 
shaded regions. These two statistics are equivalent to 
the true and false positive rates for separating expan-
sions from recessions defined previously. By plotting 
the true and false positive rates against each other for 
every historical value of an index, we produce a non-
parametric estimate of its ROC curve. 

Berge and Jordà (2011) show that by calculating 
the AUROC we arrive at an estimate of the ability of 
the index to delineate recessions from expansions. As 
the area under the curve approaches 1, the more predic-
tive it is of U.S. expansions and recessions; its statis-
tical significance is judged relative to the area under 
the line from the origin extending at a 45-degree angle 
(see the next paragraph for more details).1 It is also 
possible to compare the area under two different 
curves to distinguish the statistical significance of  
differences in predictive ability. This technique is 
commonly used in the medical statistics literature  
to evaluate the ability of a procedure or medical test 

to distinguish patients afflicted with a condition from 
those who are not.2

Figure B1 displays the ROC curve for the alter-
native CFNAI-MA3 along with a line from the origin 
at a 45-degree angle. By construction, this line has 
an AUROC equal to 0.5. The more the ROC curve 
deviates in total above this 45-degree line, the higher 
an index’s AUROC will be. In addition, for an index’s 
AUROC to exceed 0.5, it must have a slope greater 
than 1 at some point on the ROC curve such that, for 
a given increase in the true positive rate, the associ-
ated increase in the false positive rate is smaller. The 
red dot on the curve marks the point at which it is no 
longer possible to increase the true positive rate without 
producing more false positives than are consistent 
with the observed relative frequency of expansions 
and recessions. 
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can see from figure 3 that the alternative CFNAI-MA3 
is in fact quite accurate at separating recessions from 
expansions, as the empirical distributions seldom over-
lap. The AUROC statistic measures the degree of sep-
aration of the two distributions, such that the more 
accurate an index is at distinguishing expansions 
from recessions, the higher its AUROC value will be. 
As noted in box 5, it is even possible to compare two 
AUROC values to assess whether or not their differ-
ences are statistically significant. The CFNAI-MA3 
has 94 percent accuracy in describing NBER expan-
sions and recessions, so surpassing its level of accuracy 
in this respect is a tall task for any of the dynamic-factor-
based indexes to achieve; however, one—the three-month 
moving average of the alternative CFNAI (CDF-HAC  
index)—does in fact surpass the CFNAI-MA3’s accuracy 
at the 95 percent confidence level, with an AUROC of 
98 percent. None of the other three-month moving aver-
ages of the dynamic-factor-based indexes we considered 
were able to produce a statistically significant improve-
ment in AUROC compared with the CFNAI-MA3, as 
shown in the first column of table 2. Yet, it was true for 
the alternative CFNAI regardless of whether or not 
we smoothed through some of the monthly volatility 
by applying a three-month moving average transfor-
mation prior to calculating the AUROC statistic. Thus, 
the ability to capture U.S. business cycle properties 
that the NBER deems most important appears to be a 
unique feature of the Bräuning and Koopman (2014) 
collapsed dynamic factor methodology. 

Figure 4 plots the time series of the CFNAI-MA3 
and the alternative CFNAI-MA3 with NBER recession 

shading. Comparing the two indexes in figure 4, we 
note that the alternative CFNAI-MA3’s improvement 
in AUROC over the CFNAI-MA3 stems largely from 
its ability to more accurately capture the timing of U.S. 
recessions prior to 1990. One way in which to see this 
is to examine periods where the alternative CFNAI-MA3 
falls below the dashed line in figure 4. As described 
in box 5, the ROC framework can also be used to arrive 
at a single threshold value distinguishing NBER expan-
sions from recessions that equally weights the desire 
to correctly capture both. The dashed line in the figure 
is our estimate of this threshold. At –0.7, this threshold 
for the alternative CFNAI-MA3 is in line with the value 
first put forth in Evans, Liu, and Pham-Kanter (2002) 
that has been used as a threshold for the CFNAI-MA3 
and slightly above the value computed by Berge and 
Jordà (2011) using the same ROC methodology (–0.8). 
Examining values above and below –0.7 during the 
NBER recessions for the alternative CFNAI-MA3, 
we note an improvement in AUROC, largely resulting 
from the fact that it produces fewer false positives and 
false negatives during the 1969–70, 1973–75, 1980, 
and 1981–82 recessions. This is the case even though 
it is slightly ahead of the CFNAI-MA3 in the timing 
of several remaining recessions. 

We can get a sense of what is driving the differences 
in timing of U.S. recessions across the two measures by 
breaking down the difference between the CFNAI-MA3 
and the alternative CFNAI-MA3 into contributions from 
the various assumptions of the dynamic factor models 
building up to the alternative CFNAI-MA3. In essence, 
this calculation amounts to redisplaying the information 

BOX 5 (continued)

Receiver operating characteristics analysis

1The procedure for evaluating statistical significance is  
described in DeLong, DeLong, and Clarke-Pearson (1988). 
2See Brave and Butters (2012a, 2012b) for further examples 
using this approach to predict financial crises.

Baker and Kramer (2007) show that the point on 
the curve denoted in figure B1 by the red dot meets 
the decision-theoretic criteria for a threshold rule, c*, 
that equally penalizes type I (false positive) and type 
II (false negative) classification errors for recessions 
and expansions. To see this, consider the following 
utility function: 

U = 	U11ROC(r)π + U01(1– ROC(r))π + U10r (1– π) 
	 + U00(1– r) (1– π),

where Uij is the utility (or disutility) associated with 
the prediction i given that the true state of the business 
cycle, St , is j, with {i, j} ∈{0, 1}and where π is the 
unconditional probability of an expansion. Utility 
maximization implies the following first-order condi-
tion determining c*:

∂
=

−
−

−ROC
r

U U
U U∂
00 10

11 01

1 π
π

If we set the leading ratio of utilities to 1, this thresh-
old equates the slope of the ROC curve to the ratio of 
the unconditional probabilities of expansion and re-
cession. In doing so, one is essentially equally 
weighting the net benefit of making a type I error  
versus a type II error relative to correctly predicting 
the true state of the business cycle.
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already presented in figure 2 (p. 27) in a slightly dif-
ferent manner in order to highlight the impact of the cu-
mulative changes across three-month moving averages 

of the CFNAI and DF-HAC and 
CDF-HAC indexes (that is, CFNAI- 
MA3, DF-HAC-MA3, and CDF-
HAC-MA3) discussed previously 
around business cycle turning points. 
We can decompose the difference  
between the CFNAI and alternative 
CFNAI into 1) the difference between 
the CFNAI and DF-HAC index and  
2) the difference between the DF-HAC 
index and the CDF-HAC index.11 To 
arrive at the same measure for the  
difference between the CFNAI-MA3 
and alternative CFNAI-MA3, we 
take three-month moving averages  
of all three indexes. 

Figure 5 displays our decompo-
sition of the difference between the 
CFNAI-MA3 and alternative CFNAI-
MA3 into two components. The bars 
in the figure represent contributions 
to the total difference (represented 

by the dashed line in the figure) by these two compo-
nents. The red bars capture the cumulative effect of in-
corporating dynamics in the static factor model and real 

		  TABLE 2

AUROC for NBER recessions and RMSE ratios 
for current quarter GDP growth predictions

		  In-sample 	 Out-of-sample 
	 AUROC	 RMSE ratio	 RMSE ratio

DF	 0.95	 0.89	 0.98
DF-HC	 0.95	 0.93	 0.99
DF-HAC	 0.95	 0.93	 0.85
CDF-HAC	 0.98	 0.58	 0.81

Notes: The table displays areas under the receiver operating characteristic (ROC) curve 
(AUROC) and root mean squared error (RMSE) ratios for current quarter real gross domestic 
product (GDP) growth forecasts based on the three-month moving averages of the four 
dynamic-factor-based alternatives to the Chicago Fed National Activity Index (CFNAI).  
The four dynamic-factor-based indexes—DF, DF-HC, DF-HAC, and CDF-HAC—are 
derived from methodologies based on Giannone, Reichlin, and Small (2008), Doz, Giannone, 
and Reichlin (2012), Jungbacker, Koopman, and van der Wel (2011), and Bräuning and 
Koopman (2014), respectively (see the text for further details). The closer the AUROC value 
is to 1, the more accurate a dynamic-factor-based index is in signaling U.S. recessions  
and expansions as determined by the National Bureau of Economic Research (NBER).  
An RMSE value of less than 1 indicates a dynamic-factor-based index’s forecast that is 
more accurate than a similar forecast based on the traditional CFNAI using the nowcasting 
models described in Brave and Butters (2013) for in-sample comparisons over the period 
March 1967 through February 2014 and Brave and Butters (2010) for out-of-sample comparisons 
over the period December 2003 through April 2013 (see the text for further details).  
Sources: Authors’ calculations based on data from the Federal Reserve Bank of Philadelphia, 
Real-Time Data Set for Macroeconomists; and Haver Analytics.

FIGURE 3

Recession and expansion distributions for the alternative CFNAI-MA3

Notes: The three-month moving average of the alternative Chicago Fed National Activity Index (alternative CFNAI-MA3) is constructed using 
the Bräuning and Koopman (2014) methodology (see the text for further details). The figure displays histograms for the distribution of alternative 
CFNAI-MA3 values during U.S. recessions (blue) and expansions (red), according to the timing conventions established by the National Bureau 
of Economic Research, with the bin sizes based on the number of observations in each sample over the period May 1967 through February 2014. 
Source: Authors’ calculations based on data from Haver Analytics.
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GDP growth along with relaxing the PCA assump-
tions on the idiosyncratic error structure of the static 
factor model—that is, the CFNAI-MA3 minus the 
DF-HAC-MA3. We refer to this component as HAC 
in the figure as it is primarily the latter feature that 
dominates the contribution to the total difference. The 
blue bars capture the marginal effect of the measure-
ment error (ME) we estimate in the Bräuning and 
Koopman (2014) model that arises from bias in the 
use of PCA—that is, the DF-HAC-MA3 minus the 
CDF-HAC-MA3. While ME is mean zero by construc-
tion over the entire sample period, the large magnitude 
of many of its realizations in this figure suggests that  
the CFNAI-MA3 is likely biased. One can see from 
figures 4 and 5 that HAC primarily accounts for the 
better fit of the alternative CFNAI-MA3 (relative to 
the CFNAI-MA3) for the 1969–70 and 1973–75 re-
cessions, while ME is mostly responsible for the im-
provement in fit for the 1980 and 1981–82 recessions. 

More recently, measurement error has begun to 
play more of a secondary role in explaining the dis-
crepancies between the CFNAI-MA3 and alternative 
CFNAI-MA3. This has primarily to do with the way 

in which each index accounts for the protracted weak-
ness of personal consumption and housing indicators 
during the recovery from the 2007–09 recession and, to 
a lesser extent, the employment-related indicators as 
well. The alternative CFNAI-MA3 reinterprets what 
is due to idiosyncratic drivers of variance in the under-
lying data series versus what is due to common drivers 
on the basis of how it has related historically to real 
GDP growth. For the HAC component to be so strongly 
negative in figure 5 since 2007 implies that the alter-
native CFNAI-MA3 indicates growth in economic 
activity due to personal consumption and housing 
during the recovery has been greater than what has 
been indicated by the traditional CFNAI-MA3. 

However, since 2007, real GDP growth on average  
has been weak enough in comparison with the alter-
native CFNAI-MA3 to suggest that the trend rate of 
real GDP growth has fallen. This result can be seen in 
figure 6, with our estimate of the trend rate of real GDP 
growth decreasing from 2.9 percent in the fourth quar-
ter of 2007 to 2.4 percent in the fourth quarter of 2013. 
As a point of comparison, the Congressional Budget 
Office’s (CBO) estimate of potential real GDP growth 

FIGURE 4

CFNAI-MA3 versus alternative CFNAI-MA3

Notes: The figure displays the three-month moving average of the Chicago Fed National Activity Index (CFNAI-MA3) and the alternative  
CFNAI-MA3, which is constructed using the Bräuning and Koopman (2014) methodology (see the text for further details). Both indexes are 
shown over the period May 1967 through February 2014. The dashed black line at –0.7 is the recession prediction threshold for the alternative 
CFNAI-MA3 described in the text. Shading indicates U.S. recessions as identified by the National Bureau of Economic Research.
Source: Authors’ calculations based on data from Haver Analytics.
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is also displayed in figure 6. Our estimate of the decrease 
in the trend rate of real GDP growth is somewhat smaller 
than the concurrent change in the CBO’s estimate of 
potential real GDP growth—a decline from 2.4 percent 
in the fourth quarter of 2007 to 1.7 percent in the fourth 
quarter of 2013. That said, our estimate of trend GDP 
growth is also slightly higher than the CBO’s estimate 
of potential real GDP growth for much of the past de-
cade. This is the case even though over the full sample 
period (1967:Q1–2013:Q4) they exhibit a correlation 
coefficient of 0.85. The large negative HAC values 
from personal consumption and housing indicators since 
2007 have been often wholly or partially offset by 
large positive measurement errors from the production 
and income indicators. This feature of the data has 
prevented the alternative CFNAI-MA3 from being 
even further above the CFNAI-MA3 during this period, 
masking the implied inference for the decline in trend 
GDP growth. 

With recent HAC values near zero or slightly posi-
tive (see figure 5), the alternative CFNAI-MA3 suggests 
that the pervasiveness of the weakness in the household 

sector is currently more limited than previously thought 
according to the CFNAI-MA3. This development is a 
good omen for the continued expansion of the U.S. 
economy in 2014 if the ongoing recovery in the housing 
market persists. Recent negative ME values (see figure 5) 
also suggest that the impact of the weakness in produc-
tion and income indicators in early 2014 on the CFNAI-
MA3 will likely be transitory. While the alternative 
CFNAI-MA3 also fell into negative territory in February 
2014 (see figure 4), it remained much closer to its histori-
cal average than the CFNAI-MA3. Using the nowcasting 
model for real GDP growth described in box 4 (p. 26) 
as of March 20, 2014, we estimate that real GDP in 
the first quarter of 2014 increased at an annual rate  
of 1.8 percent, which is 0.5 percentage points below 
our current estimate of 2.3 percent for trend real GDP 
growth. By comparison, the Blue Chip Economic  
Indicators consensus forecast for first quarter real 
GDP growth on March 10, 2014, was 1.9 percent.  
In the next section, we evaluate the historical perfor-
mance of our nowcasting model. 

FIGURE 5

Accounting for the difference between the CFNAI-MA3 and alternative CFNAI-MA3

Notes: The figure displays the difference between the three-month moving average of the Chicago Fed National Activity Index (CFNAI-MA3) 
and the alternative CFNAI-MA3, which is constructed using the Bräuning and Koopman (2014) methodology (see the text for further details). 
Moreover, it shows this difference broken down into contributions from allowing for heteroskedastic and serially correlated errors (HAC) and  
measurement error (ME) over the period May 1967 through February 2014 (see the text for further details). Shading indicates  
U.S. recessions as identified by the National Bureau of Economic Research.
Source: Authors’ calculations based on data from Haver Analytics.

standard deviations

1967

1.5

1.0

0.5

0

–0.5

–1.0

–1.5
’72 ’77 ’82 ’87 ’92 ’97 2002 ’07 ’12

Measurement error (ME)

Heteroskedastic and serially correlated errors (HAC)

CFNAI-MA3 minus alternative CFNAI-MA3



34 1Q/2014, Economic Perspectives

Nowcasting real GDP growth

Real GDP is the broadest measure of U.S. economic 
activity, but it is produced with a significant lag of up 
to three months. Therefore, linking its current quarter 
growth rate to the more readily available monthly CFNAI 
with a nowcasting model has a natural appeal. Further-
more, nowcasts of real GDP growth produced using 
the CFNAI and similar indexes have been shown to 
be quite accurate in several instances.12 To generate 
nowcasts, we incorporate annualized quarterly real 
GDP growth into all of our dynamic factor models. 
However, we show here that only the alternative CFNAI, 
which is based on the Bräuning and Koopman (2014) 
methodology, significantly boosts the explanatory power 
of the dynamic factor model for real GDP growth, 
further suggesting that the PCA estimate of the index 
is indeed biased because of a lack of international 
trade, government spending, and other indicators that 
inform real GDP growth. 

This can be seen in the second column of table 2 
(p. 31), which displays in-sample root mean squared 

error (RMSE) ratios for the nowcasts from the three-
month moving averages of the DF, DF-HC, DF-HAC, 
and CDF-HAC indexes. A number less than 1 indicates 
an improvement in fit for the quarterly real GDP growth 
data relative to traditional CFNAI-MA3 nowcasts based 
on the nowcasting model described in Brave and Butters 
(2013). While all of the dynamic-factor-based indexes 
demonstrate an in-sample RMSE ratio of less than 1, 
the improvement in relative fit for the CDF-HAC index, 
or alternative CFNAI, at 42 percent dwarfs the others. 
This is perhaps not surprising given the flexibility of 
the CDF method in matching the index to observed 
real GDP growth. A more convincing test of the ability 
of the Bräuning and Koopman (2014) methodology to 
correct for potential bias due to a lack of international 
trade, government spending, and other indicators in-
forming real GDP growth would be to test its ability 
to nowcast when current quarter real GDP growth is 
not observed.

As it turns out, the Bräuning and Koopman (2014) 
methodology is also important for improving the out-
of-sample accuracy of our nowcasts, though its relative 

FIGURE 6

Actual versus potential and trend real GDP growth

Notes: The figure displays the annualized quarterly rate of real gross domestic product (GDP) growth, the Congressional Budget Office’s 
(CBO) estimate of the rate of potential real GDP growth, and our estimate of real GDP’s historical trend rate of growth based on the three-
month moving average of the alternative Chicago Fed National Activity Index (alternative CFNAI-MA3), which is constructed using the 
Bräuning and Koopman (2014) methodology (see the text for further details). All data are plotted over the period 1967:Q1 through 2013:Q4. 
Shading indicates U.S. recessions as identified by the National Bureau of Economic Research.
Source: Authors’ calculations based on data from Haver Analytics.
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improvement is not much larger than that achieved with 
the methodology for the DF-HAC index. To arrive at 
this conclusion, we estimated three-month moving aver-
ages of all four dynamic-factor-based indexes using a 
real-time archive of the CFNAI data series covering 
the period December 2003 through April 2013 and 
the available “vintage” of real GDP growth in those 
months from the Federal Reserve Bank of Philadelphia’s 
Real-Time Data Set for Macroeconomists.13 We then 
compared our nowcasts made in the months of each 
vintage of real GDP growth to the subsequent real-time 
GDP release being forecasted to compute out-of-sample 
RMSE ratios similar to the in-sample fits discussed 
before.14 As the basis for comparison in this exercise, 
we used similarly constructed RMSE values based  
on the within-quarter nowcasting model described in 
Brave and Butters (2010). The out-of-sample RMSE 
ratios are shown in the third column of table 2 (p. 31). 
While all of the ratios are again less than 1, the three-
month moving average of the CDF-HAC index (alter-
native CFNAI) is still the best model in this real-time 
setting, with a 19 percent improvement in forecast  
accuracy compared with the Brave and Butters 
(2010) nowcast.

The differential accuracy of the CDF-HAC-MA3 
nowcasts in our real-time out-of-sample nowcasting 
exercise is not as large in comparison to what we find 
based on in-sample evidence. This result suggests to 
us that the advantage provided by allowing for mea-
surement error in the CFNAI-MA3 in nowcasting real 
GDP growth is somewhat limited given our current 
nowcasting framework. In fact, when we correlate the 
forecast errors from our real-time exercise with the 
real-time contribution of net exports and government 
spending to real GDP growth, we obtain a correlation 
coefficient of 0.4. In many ways, however, we are  
not making full use of the flexibility provided by the 
Bräuning and Koopman (2014) methodology. In future 
research, we plan to explore ways in which to improve 
on our results—by incorporating additional factors, 
by adding international trade and government spending 
indicators to the current list of 85, or by employing 
estimation methods that allow for more informed  
dynamics and/or parameter shrinkage.

Conclusion

By building on the existing framework of the 
CFNAI with Bräuning and Koopman’s (2014) method 
of collapsed dynamic factor analysis, we are able to 
readily extend and improve our existing methodology. 
Given the resulting alternative CFNAI’s superior past 
performance in predicting current quarter U.S. real GDP 
growth and very high correlation with NBER recessions, 
it may very well be a better method to both nowcast 
real GDP growth and assess the state of U.S. business 
cycles than the current CFNAI. Bräuning and Koopman’s 
methodology also allows us to address several of the 
persistent criticisms of the CFNAI, including the problem 
of overweighting certain sectors of the U.S. economy 
and the important omissions of certain data series (for 
example, those concerning international trade and 
government spending) in nowcasting real GDP growth. 

Another benefit of Bräuning and Koopman’s (2014) 
methodology is that it makes it possible to produce 
both current quarter predictions of real GDP growth 
and an estimate of the trend rate of real GDP growth 
with each new index release. As of March 20, 2014, 
we estimate that real GDP in the first quarter of 2014 
increased at an annual rate of 1.8 percent, which is 
0.5 percentage points below our current estimate of 
2.3 percent for trend real GDP growth. While we are 
still in the process of investigating the best nowcasting 
model with which to achieve both of these goals, our 
work so far suggests that this is a promising direction 
for future research with the CFNAI. Our analysis here 
also has implications for the current interpretation of 
the index. While the alternative CFNAI fell into neg-
ative territory in early 2014, it suggests that the per-
vasiveness of the weakness in the household sector 
(as well as its drag on U.S. economic activity) is more 
limited than previously thought according to the tradi-
tional CFNAI and that the impact of the recent weak-
ness in the production and income indicators on the 
index is likely to be transitory. 
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