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Bank Capital Standards for Market Risk: A Welfare Analysis 

David Marshall and Subu Venkataraman

Abstract 

We propose a simple model that is suitable for evaluating alternative bank capital regulatory proposals for market
risk.  Our model formalizes the conflict between bank objectives and regulatory goals.  Banks' decisions represent
a tension between their desire to exploit the deposit-insurance put option and their desire to preserve franchise
value.  Regulators seek to balance the social value of deposits in mediating transactions against the deadweight
costs of failure resolution.  Our social welfare criterion is standard:  a weighted average agents' utilities.  

We demonstrate that banks do not incrementally alter their portfolio risk as the economic environment changes.
Rather, banks either choose the minimal feasible risk or the maximal feasible risk.  This pattern, in turn, drives
regulatory decisions:  The first goal of the regulator is to induce banks to choose the minimal risk level.  For all
nontrivial cases, unregulated banks fail to choose the first-best allocations.  Traditional ex-ante capital
requirements can induce banks to choose the socially-optimal level of portfolio risk, but the required capital is
often inefficiently high.  In contrast, variants of the Federal Reserve Board's precommitment proposal imply far
smaller efficiency losses, and achieve allocations at or near the first-best for most reasonable model
specifications.  The ex-post penalties required for the optimal implementation of precommitment are not
excessively large.  The welfare gains from precommitment are even higher when the precommitment penalty
function is precluded from sending banks into default.  We conclude that state-contingent regulatory mechanisms,
of which the precommitment approach is an example, offer the possibility of substantial gains in regulatory
efficiency, relative to traditional state non-contingent regulation.



      See, e.g., Laffont and Tirole (1993).1

      The precommitment approach was developed in papers by Kupiec and O'Brien (1995a,b).  The Board of2

Governor's proposal is described in Federal Register, Vol 60, No. 142, pp. 38142-38144. 
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1.  INTRODUCTION

Over the last few years, a good deal of attention has been focused on how to set bank capital standards

for market risk (the risk that a bank's value may be adversely affected by price movements in financial markets).

The risk-based capital standards in the 1988 Basle Accords cover only credit risk.  A proposal to extend these

accords to cover market risk was published in April 1993.  This proposal (known as the "Standardized

Approach") followed the conventional approach of state non-contingent regulation:  Ex-ante capital

requirements would be determined by the regulator's assessment of a bank's market risk.  The standardized

approach was heavily criticized.  Many industry participants claimed that risk assessments by regulators would

be highly inaccurate, compared with those computed internally by the banks themselves.  In other words, bank

portfolio risk fundamentally represents private information.

    It is noteworthy therefore that subsequent proposals for market-risk capital standards have moved

towards state contingent regulation,  in which regulatory consequences for banks depend on the ex-post1

performance of the bank's trading portfolio.  For example, the standards adopted in December 1996 base

regulatory capital on banks' own reports of their trading portfolio risk.   State-contingency, in the form ex-post

back-testing, is used to induce banks to reveal truthfully their risk level.  A more innovative proposal

incorporating state-contingent regulation was put forth for comment by the Federal Reserve Board in June 1995.2

Known as the "Precommitment Approach", this proposal would have each bank state the maximum loss that its

trading portfolio will sustain over the next period.  The capital charge for market risk would equal this pre-

committed maximum loss.  If the bank's losses exceed the pre-committed level, a penalty would be imposed that

is proportional to the amount of the excess loss. 



      See Kupiec and O'Brien (1997), Bliss (1995), Prescott (1997).3

      Most notably, the New York Clearing House has embarked on a pilot study testing the feasibility of4

precommitment.
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The precommitment approach has attracted substantial attention from both regulatory economists  and3

from commercial banks.   However, there is still a good deal to be learned about this proposal.  Under what4

circumstances would precommitment dominate state-noncontingent regulation from a social welfare standpoint?

Would the precommitment approach impose undue costs on the banks themselves?  What would the optimal

precommitment penalty structure look like?   In particular, will the optimal precommitment penalty scheme

require extremely high (perhaps politically infeasible) ex-post fines? 

To address these questions, and to examine the problem of bank capital requirements for market risk

more generally, this paper constructs an optimizing model of bank and regulatory behavior in which bank market

risk is unobserved.  As is typical in welfare economics, our measure of social welfare is an equally-weighted sum

of agents' utilities.  This criterion makes precise the key conflicts between banks' objectives and the regulatory

goals, and formalizes the tradeoffs facing regulators.  Unlike some other papers of this type, our focus is not on

finding a mechanism that achieves the first-best allocation.  Rather, we wish to evaluate regulatory mechanisms

that are either currently in use or under consideration by regulatory bodies.  In particular,  we use the model to

study traditional state non-contingent regulation (ex-ante capital requirements) and two variants of the

precommitment approach.  We compute the socially optimal levels of risk and capital, determine  how closely

the choices of an unregulated bank approximate these socially optimal allocations, and rank the differing

regulatory approaches.

Our approach is closely related to models used in papers by John, John, and Senbet (1991), Giammarino,

Lewis, and Sappington (1993), Gorton and Winton (1995), and John, Saunders, and Senbet (1996).  In all these

papers, banks produce socially valuable liquidity as well as making socially valuable investments.  The regulator

must control the banks' tendency towards excessive risk-taking without unduly suppressing these valuable bank
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activities.  Giammarino, Lewis, and Sappington (1993) and Gorton and Winton (1995) formalize this tradeoff

with a social welfare function similar to that used in our model.  In particular, Gorton and Winton (1995)

formulate a general equilibrium model, in which the regulator chooses allocations to maximize the average utility

of agents in the economy.  In contrast, we use a partial equilibrium approach, in that the risk-free rate is set

outside the model.  

 In our model, the two bank-specific characteristics are the bank's franchise value and the quality of the

bank's loan portfolio.  We assume that these bank-specific characteristics are observable, so bank capital

regulations can be tailored to the characteristics of the regulated bank.  (Alternatively, one can think of this paper

as analyzing a simple economy in which all banks are alike.)  We do so to focus attention on the issue of moral

hazard (unobserved action) in the bank's choice of risk.  Of course, there are a host of important questions that

arise when both bank actions and bank characteristics are unobservable.  To analyze these questions in the

context of this model, one must draw in an essential way on the results in this paper. 

An implication of our model is that the regulator seeks to eliminate all uncompensated (idiosyncratic)

risk in the bank's trading portfolio.  In contrast, an unregulated bank either seeks to eliminate uncompensated risk

or to maximize uncompensated risk.  In effect, banks endogenously sort into prudent banks (those who are most

concerned with maximizing expected franchise value) and risk-seeking banks (those who are most concerned with

maximizing the deposit insurance put option).  The most important goal of the regulator is to induce risk-seeking

banks to behave prudently.  A secondary goal of regulation is to induce the optimal capital structure given that

the bank is behaving prudently.  

For most reasonable parametric specifications, the precommitment approach dominates ex-ante capital

regulation, both according to the social welfare criterion and according to the bank’s own objective function.  The

magnitude of the optimal ex-post penalty under precommitment depends on bank characteristics.  For example,

when banks have high franchise value, the required penalty level is extremely small (less than 5% of the

precommitment violation).  When franchise value is low, however, the optimal penalty can exceed 30% of the



     We take deposit insurance as given.  We do not explicitly model the rationale for deposit insurance,5

which has been treated elsewhere (e.g., Diamond and Dybvig (1983)).

  The importance of liquidity services provided by deposits has been noted by many authors.  See Giammarino,6

Lewis, and Sappington (1993) and the references cited therein.
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precommitment violation.  While this is a substantial penalty, banks still prefer this penalty level to the optimal

capital requirement under state non-contingent regulation, which can be above 80% when franchise value is low.

The remainder of the paper is structured as follows:   Section 2 describes our model of bank activity.

Section 3 describes the social welfare criterion, and characterizes the first-best allocation.  Section 4 characterizes

the decisions of a bank in an unregulated economy.  In section 5, we describe the regulatory mechanisms we

explore:  ex-ante capital requirements and two variants of the precommitment approach.  In Section 6, we use

numerical methods to compare these regulatory mechanisms.  Section 7 summarizes the conclusions we draw

from this paper. 

2.  THE MODEL

2.1 The economic environment 

In this section, we describe in detail a model of bank activity that is suitable for studying capital

regulation for market risk.  There are two time periods, and two types of agents (households and banks), along

with a bank regulator.  All agents are risk-neutral price takers.  We assume that the risk-free return is set outside

the banking sector, and we normalize the gross risk-free rate to unity.

2.2 Households

In the first period, the household can invest in bank equity and bank deposits.  Deposits are government

insured,  and provide liquidity services to households.  In particular, let D denote the face value of deposits held5

by a household.  We assume that the liquidity services generated by these deposits have a consumption-good-

equivalent of DD (where D is a strictly positive parameter).   The parameter D gives the relative benefits of6



pd ' 1%D; pz ' E ṽ .

  All of our results go through if D is interpreted as the relative deadweight cost of issuing equity, rather than the7

relative social benefit to issuing deposits.

  If a bank can perfectly hedge all residual market risk, and if it faces no counterparty risk, then F  would equal8
0

zero.  Otherwise, F  would exceed zero.0

  In practice, the exact level of F̄ is unimportant, as long as it is sufficiently high.  While the value of the9

deposit insurance put option is increasing in F, it asymptotes to a constant as F64.  Therefore, the problem is
well-behaved even if F̄ = 4. In our simulations, we set F̄ sufficiently high to approximate infinite risk.
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(1)

deposits versus equity in our model.  It gives rise to a wedge between the cost of equity financing to the bank and

the cost of deposits.  An alternate justification for this wedge would be the "lemons" cost associated with the sale

of equity.  (See Gorton and Winton (1996)).   7

Let p  denote the price of one unit (face value, in units of the consumption good) of bank deposits, letd

p  denote the price per share of bank equity, (with the number of shares normalized to unity) and let ṽ denote thez

stochastic payoff (to be formalized later) to a share of bank equity.  The expected returns to deposits (inclusive

of the liquidity value D) and to bank equity must equal to the risk-free rate of unity, implying

2.3 Banks

2.3.1 The trading portfolio

There are two types of bank assets: loans and marketable securities.  The latter compose the bank's

trading portfolio.  Since the trading portfolio exhibits constant returns to scale, risk neutrality would imply that

the optimal portfolio size is indeterminate.  For this reason, we fix the size of the trading portfolio exogenously.

Without loss of generality, we normalize this size to unity.

The gross return to the trading portfolio is denoted r̃.  It is assumed that r̃ is a log-normal random variable

with mean µ > 1 (a constant parameter) and standard deviation F (a choice variable of the bank), where F 0 [F ,0

F̄].  Parameter F  is the minimum standard deviation that a bank can choose for its trading portfolio.   For0
8

technical convenience we impose a finite upper bound F̄ on the bank's risk choice.   Let f(r̃*F) denote the log9



pdD % pzZ ' 1

  In an earlier version of this paper, we also allowed the bank to include risk-free investments in its trading10

portfolio.  For reasonable specifications of µ > 0, however, we found that the optimal weight on the risk-free
asset was always zero.

 Gennotte and Pyle (1991) argue that, under some ad hoc specifications of the investment opportunity set,11

increased capital requirements can induce banks to increase risk.  Our specification avoids this perverse result.
See also Keeley and Furlong (1990).
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(2)

normal density function with mean µ and standard deviation F, and let F(r̃*F) denote the corresponding

cumulative distribution function. 

Note that there is no "risk-return" tradeoff.  Regardless of the level of risk F chosen by the bank, the

mean return is still µ. Essentially, this is an assumption of mean-variance efficiency:  A higher mean return is only

justified as compensation for extra risk.  In our economy, all agents are risk-neutral, so there is never

compensation for additional risk.  If the trading portfolio paid the risk-free return on average, one would set µ

= 1.  However, the trading portfolio would then represent a zero net present value investment, and would provide

no net social value.  The optimal regulatory strategy would then be to prohibit banks entirely from trading.  To

avoid this trivial conclusion, we assume that µ exceeds the risk-free rate of unity.   This assumption can be10

justified if banks have special expertise in performing certain valued trading activities (such as acting as

counterparty to swaps transactions for commercial clients), and if there are economies of scale or other natural

barriers to entering this activity. (One such barrier might be the informational monopoly a bank possesses with

respect to its clients.  See Petersen and Rajan (1994)).  11

The bank must fund the trading portfolio by selling a combination of deposits and outside equity to the

households.  This funding constraint can be written: 

where Z denotes the fraction of bank equity sold to the households.  The bank can short-sell neither deposits nor

equity, so 



D $ 0; 0 # Z # 1.

K(D) ' 1 & (1%D)D

x̃ '
x with probability p

0 with probability (1&p)

x > 1
1%D

.
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(3)

(4)

(5)

(6)

For regulatory purposes, we measure bank capital as p Z, the value of outside equity at the time it is issued.  Notez

that equations (1) and (2) associate each level of D with a particular capital ratio (denoted K(D)), defined as the

ratio of p Z to the size of the trading portfolio:z

2.3.2  The loan portfolio

While the focus of this paper is on the risk associated with the trading portfolio, we cannot properly

evaluate regulation of trading portfolio without explicitly modelling the loan portfolio.  We assume that both the

composition and the financing of the loan portfolio are predetermined.  Let  x̃ denote the (random) loan portfolio

payoff  in excess of the deposits used to finance the loan portfolio. Random variable x̃ has the following binomial

distribution: 

Under this specification, default can only occur if there are losses to the trading portfolio.  In this way, we avoid

confounding default induced by market risk with default due to loan portfolio risk.  We further assume that

default can never occur when x̃ = x̄.  A sufficient condition for this is 

Default can occur when x̃ = 0.  Parameter p measures the quality of the loan portfolio, in the following sense:

The region where x̃ = x̄ comprises those realizations of the loan portfolio where default cannot be induced by

trading losses of any magnitude.  Parameter p gives the probability of this region.  As long as equation (6) is



J̃' (1%$) max{D&x̃&r̃, 0}

ṽ '
x̃ % r̃ %R&D, if x̃% r̃ $ D,

0 otherwise

  As a formal matter, the portion of this relationship-value that is transferrable can be lumped into the12

payoff of the loan portfolio.
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(7)

(8)

satisfied, the precise value of x̄ is unimportant for the results of this paper. 

2.3.3.  Franchise value

 In the event of bank failure, a portion of the bank’s value, denoted R, is lost both to the bank

shareholders and to society as a whole.  We refer to R as franchise value.  Intuitively, the value of the bank is

in part determined by the network of relationships it has built up.  This relationship-value is highly information-

sensitive, so is imperfectly transferrable.  We think of franchise value as that portion this relationship-value that

cannot be transferred, sold, or claimed by the deposit insurer in the event of bank failure.   We model R as a12

predetermined positive parameter. 

2.3.4  Deposit Insurance

The deposit insurer ensures that the depositors of failed banks are paid off in full.  Failure resolution

generates deadweight costs equal to $ times the cash shortfall, where $ $ 0.  The total costs faced by the deposit

insurer are paid via a lump-sum tax J̃, assessed ex-post on the households:

Note that we preclude risk-based deposit insurance premiums.  We do so to focus on the issue of capital

regulation.  However, as noted by Berger, Herring, and Szego (1995), deposit insurance premiums in the U.S.

are only weakly tied to the underlying levels of bank asset risk.

2.4 Formal Statement of the Bank's Objective

Under limited liability, the bank's equity payoff, ṽ, is given by



Z E ṽ ' p x%µ &D %R % (1&p)m
4

D

r̃ %R&D f(r̃*F)dr̃ & 1 % (1%D)

0 # D # 1
1%D

/D max; F0 # F # F.

max (1/2) E Zṽ&J̃ %(1%D)D % (1/2) (1&Z)E ṽ , s.t. equation (10

9

(9)

(10)

(11)

The bank seeks to maximize the expected value of inside equity, which is given by: 

Equation (9) follows from equations (1), (2), (6) and (8).  In equation (9), D and F must satisfy:

3. THE REGULATOR'S PROBLEM:  COMPUTING THE FIRST-BEST ALLOCATION

In this section, we posit an explicit social welfare criterion.  In contrast to many studies on banking

regulation that impose ad hoc specifications for the regulator's objective, our model has a natural candidate:  We

assume that the regulator seeks to maximize an equally-weighted average of the utilities of the agents in the

economy.  In our economy, there are two types of agents, households and bank insiders, both of whom are risk-

neutral.  Therefore, the regulator's problem is:  

In equation (11), the first term in square brackets gives the bank's contribution to household 

expected wealth (including the liquidity value of deposits).  The second term gives the expected value of inside

bank equity.  Since both types of agents are risk-neutral, equal weighting is the only sensible choice.  If the

weights were unequal, the social optimum would be attained by maximizing the utility of the higher-weighted type

of agent, ignoring the lower-weighted type.  

In our model, maximizing this equally-weighted welfare problem is equivalent to maximizing the

expected total output of the banking sector, inclusive of the liquidity value of deposits (DD), the franchise value



max px % µ %R%DD & (1&p)m
D

0

$D & r̃ % R f(r̃*F)dr̃, s.t. equation (

D & (1&p) $F(D*F) % Rf(D*F)

# 0 if D ' 0

' 0 if 0 < D < D max

$ 0 if D 'D max

&(1&p)$f(D)%Rf )(D) < 0.

(1&p)m
D

0

$ r̃&D &R fF(r̃*F)dr̃

# 0 if F'F0

' 0 if F0 <F<F

$ 0 if F'F

D > 0
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(12)

(13)

(14)

(15)

of the bank (R), and taking account of the deadweight costs of failure resolution:

The first-order condition with respect to D is as follows:

where D  is defined in (10).  Note that the optimal default probability is not zero. According to (13), the optimalmax

probability of default when R = 0 (at an interior solution) equals D/$.  When R > 0, the regulator also considers

the marginal expected loss in bank franchise value.  If the solution for D is interior, the following second-order

necessary condition must hold:

Once the optimal D is determined, the optimal capital ratio follows immediately from equation (4). 

   The first-order condition with respect to F is:

Not surprisingly, it can be shown that (ignoring the trivial case of D = 0, where F drops out of the regulator's

problem entirely) the regulator always chooses F = F :0

Proposition 1:  If , the social planning optimum sets F = F . 0

Proof: All proofs are in the Appendix.



µ&1) %DD %R % (1&p)m
D

0

D& r̃ f(r̃*F)dr̃ & (1&p)RF(D*F) , s.t. equation

11

(16)

Let the socially optimal level of D be denoted D .  The following comparative static results hold:*

Proposition 2:  

(i) D  is strictly positive;*

(ii) If D  < D , then D  is strictly decreasing in R and $;* max *

(iii) If D  < D , then D  is strictly increasing in D and p.* max *

Proof: Appendix.

These comparative static results are intuitive.  Increasing p reduces the probability of default, and decreasing $

reduces the cost of default.  Either change reduces the social cost of deposits.  Similarly, increasing D increases

the social benefits to deposits.  Decreasing R decreases the social cost of default, since reducing R reduces the

value of the bank to society. 

4. THE BANK'S OPTIMAL CHOICES IN AN UNREGULATED ECONOMY  

In the previous section we characterized the first-best allocation in this economy.  In this section, we

study the bank's optimization problem in the absence of regulation.  We assume that the bank's choice of trading

portfolio risk, F, cannot be observed by regulators. This creates the potential for moral hazard between the risk

level preferred by the regulator and that selected by the bank.  One of the objectives of regulation will be to

control this moral hazard problem. 

Using equation (9), we can rewrite the bank's problem as:

The first term in parentheses gives the value of the bank under unlimited liability.  The second term gives the



D % (1&p) F(D*F) & Rf(D*F)

# 0 if D ' 0

' 0 if 0 < D < D max

$ 0 if D 'D max

(1&p) f(D*F) & Rf )(D*F) < 0.

(1&p)m
D

0

D&r̃ &R fF(r̃*F)dr̃

# 0 if F ' F0

' 0 if F0 <F<F

$ 0 if F ' F

(1&p)m
D

0

D & r̃&R fFF(r̃*F)dr̃ < 0.

12

(17)

(18)

(19)

(20)

value of the put option given by the deposit insurer to the bank.  The third term subtracts off the expected lost

franchise value due to default.  The bank first-order condition with respect to D is 

If the solution for D is interior, the following second-order necessary condition must hold:

The first-order condition with respect to F is:

If the solution to (19) is interior, the following second-order necessary condition must hold:

Equations (19) and (20) imply an important property of the bank's optimal choice for F:  The bank never

chooses an interior value for F.  This is shown in the following Proposition:

Proposition 3:  The bank's optimal choice of F is either F  or F̄.0

Proof: Appendix



 This is easiest to see in terms of a mean preserving spread around a uniform distribution.13

13

The intuition behind this result is illustrated in Figure 1.  When a bank considers the effects of higher

risk, it trades off the benefits of the deposit insurance put option (the dot-dash line in the figure) against the

potential loss of franchise value (the dotted lines).  Consider the case where franchise value is very low (R  inlow

the figure).  As risk is increased, more probability mass is placed on the area at the right edge of the bankruptcy

region.  Here, the (probability weighted) area associated with lost franchise value is larger than the area associated

with the deposit insurance put option.   As risk is increased, more weight is placed on the area further to the left.13

As one moves into this region, the area under the put option payoff is increasing much faster that the area under

the franchise value line.  It is possible that at some point the expected payoff of the put option begins to dominate.

This is especially likely when franchise value is low.  When franchise value is high (R ), however, the potentialhi

loss of franchise value is always the dominant concern to the bank. This analysis implies that the bank’s net

payoff as a function of risk is either (i) always increasing (when franchise value is zero), (ii) initially decreasing

but then uniformly increasing, or (iii) always decreasing.  Since these are the only possible outcomes, the bank

will always select either minimal or maximal risk.

This proposition implies a striking characteristic of bank behavior in this model:  While it is feasible for

banks to choose any value of F in the closed interval [F ,F̄], their optimal strategy is to choose either F , the0 0

lowest feasible variance for their trading portfolio, or F̄, the highest feasible variance.  In other words, banks self-

select into one of two types:  prudent banks (defined as those who choose F ) and risk-seeking banks (defined0

as those who chose F̄).  Prudent banks are those for whom preservation of franchise value is of paramount

concern, while risk-seeking banks are those for whom the paramount consideration is exploiting the deposit

insurance put option.  Of course, this bifurcation into two, and only two, choices for portfolio variance is specific

to this model.  A more general model that allowed for a limited mean-variance tradeoff (that is, µ increasing in

F) would imply a range of portfolio variances for "prudent" banks.  Still, the key qualitative lesson from

proposition 3 is informative:  High franchise value banks eschew uncompensated (idiosyncratic) risk, while low



 A similar results was noted in papers by Marcus (1984) and Ritchkin, Thomson, DeGennaro, and Li14

(1993).
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franchise value banks maximally take on uncompensated risk in order to exploit the deposit insurance put

option.14

The following Proposition further characterizes the bank's optimal choices:

Proposition 4:  

(i) The bank's optimal choice of D is strictly positive.

(ii) The bank's problem has at most one local maximum with respect to D.

(iii) At D < D , and for a fixed level of risk F, the bank's optimal choice of D ismax

strictly decreasing in R and strictly increasing in D.  

(iv) If R = 0, the bank's optimal choice of D = D , and the bank's optimal choice ofmax

 F = F̄.

(v) Holding other structural parameters constant, there exists R̄ > 0 such that the

bank's optimal choice of F = F , ú  R > R̄, and is F = F̄, ú  R < R̄0

Proof: Appendix

According to Proposition 4 (iv) and (v), the bank trades off franchise value loss against the deposit insurance put

option.  If a bank has no franchise value, it has no disincentive to taking maximal risk.  On the other hand, a

sufficiently high franchise value induces the bank to choose the minimum risk level.

Even if the bank sets F = F , it does not follow that the bank's choices correspond to the first-best.  In0

general, even prudent banks choose suboptimally low levels of capital relative to the social-planner's optimum.

This is formalized in Proposition 5, subject to the following technical restriction that is sufficient to ensure that



1
1%D

< µ4

µ2%F2
0

3/2

 Notice that since the condition is satisfied when F  is sufficiently low. 15
0

15

(21)

the regulator's problem is globally concave.15

Proposition 5:  Suppose (21) is satisfied and the bank chooses F = F .  Except in the case where0

both the bank and the regulator set D = D , the bank's optimal choice of D is strictly above themax

socially optimal choice of D.

Proof: Appendix

Recall from equations (4) and (10)) that the D  corresponds to zero capital.  Proposition 5 says that themax

unregulated bank's choices can only correspond to the social optimum in the rather extreme case where deposits

are so valuable (high D) or default has such a low cost (low $) that the regulatory optimum sets bank capital at

zero.  In all other cases, the unregulated bank fails to make the socially optimal choices.

5. REGULATORY MECHANISMS

According to section 4, above, the choices of banks in an unregulated economy are generally suboptimal.

The goals of capital regulation are to induce risk-seeking banks (who would choose F = F̄ in the absence of

regulation) to behave prudently (that is, to chose F = F ), and to provide them with incentives to hold sufficient0

capital.  In this section we describe three regulatory mechanisms: ex-ante capital requirements, and two variants

of the Board of Governors' 1995 precommitment proposal.  For each mechanism, we define the optimal

implementation of that mechanism as the implementation whose associated allocation (D, F) achieves the highest

value of social welfare function (12).



Fex(D) '

F0 if m
D

0

D & r̃&R f(r̃*F0) $ m
D

0

D & r̃&R f(r̃*F)

F otherwise

16

(22)

5.1 State Non-contingent Capital Regulation:  Ex-ante capital requirements

Under ex-ante capital requirements, the regulator sets the bank capital ratio, which is equivalent to

choosing a value for D.  The bank then maximizes its profits subject to this capital constraint by choosing its

preferred level of portfolio risk, denoted F (D).  Using (16),ex

Let D  denote the regulator's choice of D under ex-ante capital requirements.  As long as franchise value isex

positive, this mechanism can induce prudent behavior by imposing a sufficiently high capital ratio:

Proposition 6:  If R > 0, there exists D  such that F (D ) = F .ex ex ex
0

Proof: Appendix

Intuitively, the strike price of the deposit insurance put option is D, which is strictly decreasing in the capital ratio.

By increasing the required capital ratio, this strike price (and therefore the value of the deposit insurance put

option) can be made arbitrarily small.  As long as R > 0, this put-option value can be made sufficiently low that

it is dominated by the bank's concern for preserving franchise value.  However, for very low R's, the required

capital ratio is quite high.  In the limit, when R = 0, the optimal ex-ante capital regulation is 100% capital, which

reduces the put-option value to zero.

5.2 The Basic Precommitment Approach

Under the Board of Governor's precommitment approach, the bank chooses a level K of capital.  This

is interpreted as a commitment that the loss to the trading portfolio, (1 - r̃), will not exceed K.  If the loss exceeds
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(23)

(24)

(25)

(26)

this pre-committed level, a penalty N is imposed that is proportional to the excess loss.  Formally, the penalty

function N(D,r̃) can be written:

where ( $ 0 is a constant of proportionality.  

We now modify the bank's objective function (16) to incorporate the penalty function N(D,r̃).  First, we

must fix some additional notation.  Denote the portfolio return that triggers the penalty by r :  where we useN

equation (4).  We must also determine when the bank is in default under precommitment. In the basic

precommitment approach, we cannot rule out the possibility of default even when the loan portfolio pays off x̄.

Let r̄  and r  denote the portfolio returns that trigger bankruptcy under precommitment when x̃ = x̄, and x̃ = 0,* *

respectively:

Note that if both D > 0 and ( > 0, then r (D) > r (D) > r̄ (D) for all D > 0. N * *

The bank's problem is analogous to equation (16), except that the expected value of N(D,r̃) is subtracted

off, and bankruptcy when x̃ = x̄ is allowed to have non-zero probability: 



N(D,r̃,x̃) '
0 if (r̃&1) %K(D) > 0
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4

r( (D)

r̃ &D f(r̃*F)dr̃ & (m
rN

r( (D)

(1%D)D& r̃ f(r̃*F)dr

% R p % (1&p)(1&F(D*F) & 1 % (1%D)D, s.t. equation (10).
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(27)

(28)

5.3 Re-Negotiation Proof Precommitment 

In the basic precommitment mechanism, the penalty is imposed even if the penalty itself drives the bank

into default.  This possibility ("hitting them when they're down") has received a fair amount of comment.  Some

argue that to modify the penalty whenever it induces financial distress would constitute forbearance, with all the

associated negative consequences for regulatory credibility.  On the other hand, a penalty that induces default

imposes deadweight societal costs ex post.  This arrangement is clearly not re-negotiation proof:  When there is

imminent danger of a penalty-induced default, both the bank and the regulator can be made better off if the

regulator modifies the penalty to keep the bank solvent. Therefore, in this section we consider an alternative

specification for precommitment in which the penalty function is modified to avoid triggering default.

The renegotiation-proof penalty structure analogous to (23) has the following form: 

The penalty function in (27) is the same as in (23) unless the penalty would induce default, in which case the

regulator imposes the maximum penalty that does not trigger default.  From the bank shareholders' perspective,

the only change is that they keep the bank franchise value unless r̃ falls below D - x̃.  (Here, we are assuming that

if  r̃ + x̃ - N exactly equals D, the bank is not technically in default.)  Equation (26) must be changed to: 

6. COMPARISON OF REGULATORY MECHANISMS:  NUMERICAL RESULTS
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In this section, we examine the allocations of risk and capital that can be implemented by the alternative

mechanisms.  We approach this inquiry in two ways.  First,  we choose parameters randomly, numerically solve

the model at each parameterization, and analyze the performance of each type of regulation.  The purpose of this

exercise is to seek fairly robust general results.  Second, we examine in depth a plausible "baseline"

parameterization, along with perturbations away from the baseline.  

6.1 General Results from Random Numerical Exercises

We select randomly 250 parameter combinations from the following uniform distributions: F  0 [0.001,0

1]; F̄ 0 [10, 15]; µ 0 [1.001, 2]; D 0 [0.001, 1]; $ 0 [0.001, 3]; p 0 [0.01, 0.99]; R 0 [0, 3].  Using the results of

these experiments, we determine how the various regulatory mechanisms operate, and we evaluate the approaches

according to both the social welfare criterion and the bank's objective function.

In all our parameterizations, F̄ is big relative to F .  As a result, the portfolio risk chosen by the bank is0

the critical determinant of social welfare.  Stated more formally,  

Numerical Result 1: For all of the random parameter draws, an allocation (D , F ) attains a1 0

higher value of the social welfare criterion (12) than an allocation (D , F̄), for any feasible2

D , D . 1 2

That is, for the parameter ranges we consider, the regulator always seeks to deter risk-seeking behavior, even at

the cost of excessive capital.  

6.1.1 Ex-ante capital regulation

First, let us consider the behavior of the bank under the ex-ante capital regulation described in section

5.1, above.  Numerical Result 2 characterizes the function F (D), defined in (22):ex



 If D  = D̄, the bank is indifferent between F  and F̄.  We assume that the bank chooses the prudent risk level16 ex
0

F  in this case.0
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Numerical Result 2: For all 250 random parameter draws, we find that  

(i) if R > 0, there exists a critical level D̄ $ 0 such that

F (D) = F , ú  D # D̄, andex
0

F (D) = F̄, ú  D > D̄;ex

(ii) D̄ = 0 if and only if R = 0.

(iii) D̄ is strictly increasing in R. 

Figure 2 illustrates Numerical Result 2.  If the regulator imposes stringent capital requirements (i.e. D

is 'sufficiently low') the bank behaves prudently, setting F = F .  As these capital requirements are lowered (D is0

increased), a point is reached beyond which the bank switches from prudent behavior to risk-seeking behavior

(i.e. it selects F̄).  We denote this switching point by D̄.16

 Numerical Result 2 enables us to characterize when ex-ante capital requirements can achieve the first-

best allocation:  

Numerical Result 3:  For all 250 random parameter draws,  the first-best allocation (D , F ) is*
0

attained by ex-ante capital requirements if and only if D  # D̄. *

That is, if mandating D  induces the bank to behave prudently, ex-ante capital requirements can implement the*

first-best allocation. 

6.1.2 State contingent regulation:  The precommitment approach

We now turn to bank behavior under the precommitment mechanism.  Let D (() and F (() denote thepc pc



21

bank's optimal choices of D and F under precommitment when the penalty function parameter equals (.  These

functions are characterized in Numerical Result 4: 

Numerical Result 4:  For all random parameter draws, and for both variants of precommitment,

(i)  for fixed F=F , if D (()<D ,  D (() is strictly decreasing in (;0
pc max pc

(ii) for very low values of p and R, F (() = F̄, ú  (.pc

(iii) for p and R sufficiently high, there exists (̄ < 4 s.t. 

F (() = F , ú  ( $ (̄, andpc
0

F (() = F̄, ú  ( < (̄.pc

Part (i) of Numerical Result 4 is intuitive: If the bank is already acting prudently, increasing the penalty induces

the bank to increase its capital level.  (If the bank sets F = F̄, we find that the bank also sets D = D , so D ismax

unresponsive to small changes in (.)   According to part (ii) of Numerical Result 4, there may not exist a finite

( that induces banks to behave prudently.  Intuitively, ( = 4 would mean that any loss to the trading portfolio

results in immediate default, with consequent closure of the bank.  If the costs of default to the bank insiders are

sufficiently small, (because p and R are sufficiently small) and the benefits from exploiting the deposit insurance

put option are sufficiently large, even this draconian penalty might be insufficient to deter risk-seeking behavior.

Barring this case, there exists a critical value of the penalty parameter (denoted (̄) above which the bank will set

F = F .  That is, the penalty can be set sufficiently high so that an otherwise risk-seeking bank behaves prudently.0

The only cases we found where (̄ did not exist were when p < 0.4 and R < 0.3.  These parameterizations

represent very poor quality banks:  A value of p < 0.4 implies that with probability exceeding 60% the value of

the loan portfolio would fall below the face value of deposits, leaving the bank vulnerable to trading-induced

default.  Such a bank would clearly be considered extremely troubled, and would be subject to prompt corrective

action under FDICIA.
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For all other parameterizations, (̄ exists.  Figures 3a and 3b illustrate the way precommitment functions.

When ( > (̄, the bank selects the low risk F .  In this region, increasing ( induces the bank to increase capital0

(reduce D).  The location of (̄ determines whether precommitment can implement the optimal allocation:

Numerical Result 5:  Let (  denote the regulator's optimal choice of the precommitment penalty*

parameter.  For all random parameter draws 

(i) If (̄ < 4 exists and D  # D ((̄), precommitment can implement the first-best* pc

allocation (D , F ), and (  is defined by D  = D (( ).* * * pc *
0

(ii) If (̄ < 4 exists and D  > D ((̄), precommitment cannot implement the first-best* pc

allocation, and (  = (̄. *

Numerical Result 6 describes the way (  varies with bank characteristics.*

Numerical Result 6:  For all of the random parameter draws  where (̄ < 4 exists and where D  is*

interior (that is, D  < D ), (  is strictly decreasing in R and p for both basic* max *

precommitment and re-negotiation proof precommitment.

6.1.3 Comparison of the regulatory mechanisms

In this section, we compare the various regulatory approaches according to the social welfare criterion.

According to Numerical Result 1, the critical task of bank regulation is to induce banks to behave prudently.

According to Proposition 6, ex-ante capital requirements can always do this (although, as we shall see, the

requisite capital ratios can be extremely high for low R's).  According to Numerical Result 4(ii), precommitment

cannot always do this.  It follows that, when p and R are very low, ex-ante capital requirements dominate

precommitment from a social welfare standpoint.



  Both cases involved a low value of p, a low value of R, and a very high value of F  (above 0.70). 17
0

23

When there exists a finite (̄ (in Numerical Result 4(iii)), precommitment can induce prudent behavior.

For most such parameterizations, basic precommitment weakly dominates ex-ante capital requirements in the

following sense: 

Numerical Result 7: For most cases where (̄ exists,

(i) When ex-ante capital regulation can achieve the first-best allocation, the basic

precommitment approach can also achieve the first-best allocation.

(ii) For parameterizations where ex-ante capital regulation fails to achieve the first-best

allocation, the optimal implementation of the basic precommitment approach attains a

strictly higher value of both the social welfare criterion and the bank's objective function

than ex-ante capital regulation.

In particular, of the 250 random parameter draws, we found only two parameterizations where a value (̄ exists

(so precommitment could induce prudent behavior) but where ex-ante capital requirements attains a strictly higher

value of the social welfare criterion than precommitment.   For the remaining parameterizations where (̄ exists,17

precommitment dominates ex-ante capital requirements according to both the social welfare criterion and the

bank's objective function.  We conclude that precommitment provides a superior regulatory environment unless

franchise value or loan portfolio quality are extremely low.

In Numerical Result 8, we find a similar weak domination of basic precommitment by re-negotiation

proof precommitment.

Numerical Result 8:  For all random parameter draws, where (̄ exists (in the sense of Numerical

Result 4(iii)) for renegotiation-proof precommitment,
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(i) Whenever basic precommitment can achieve the first-best allocation, re-negotiation proof

precommitment approach can also achieve the first-best allocation.

(ii) For all parameterizations where basic precommitment fails to achieve the first-best

allocation, the optimal implementation of re-negotiation proof precommitment attains a

strictly higher value of both the social welfare criterion and the bank's objective function

than basic precommitment.

According to Numerical Result 8, it is not necessarily bad to reduce the severity of regulatory sanctions for a weak

bank.  (Gorton and Winton (1995) arrive at a similar conclusion.)  However, one should build that contingency

explicitly into the regulation.  This does not constitute "forbearance", since the regulator is in no way failing to

enforce the regulation as written. 

6.2 Numerical results for specific parameterizations

In this section, we display detailed results for a "baseline" parameterization, and we discuss perturbations

away from the baseline.  We think of the length of each period as one year.  We set D = 0.05, implying a 5%

annual return differential between monetary and non-monetary assets.  We set  µ = 1.04, which gives the bank's

trading portfolio a risk-adjusted premium of 4% over the risk-free rate.  To calibrate $, we note that if R = 0, the

socially-optimal bank failure rate equals D/$.  It would be difficult to justify the optimality of a failure rate above

5% per year, even with zero franchise value, so we set $ = D/.05 = 1.  Literally interpreted, this value of $ implies

that the deadweight loss due to failure resolution equals 100% of the failed bank's shortfall.  This high value can

be justified if we think of $ as a parameter summarizing all of the factors that make bank failure costly from a

social welfare standpoint.  These factors might include costs of systemic risk, loss of confidence in the banking

system, and losses due to the portion of bank deposits that is uninsured.

The remaining parameters in our baseline case are as follows:  We set F  = 0.10 (so the minimum0
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standard deviation for the trading portfolio return is 10%).  The value of F̄ has little effect on the results, provided

it is high enough to approximate infinite risk.   We set F̄ = 10.  The exact value of x̄ does not affect bank or

regulatory choices as long as it is sufficiently large to preclude trading-induced default, including defaults

triggered by the penalty in the basic precommitment approach.  We set x̄ = 4.  The bank-specific parameters are

R (franchise value, as a fraction of the ex-ante value of the trading portfolio) and p (the probability of loan

portfolio outcomes where default has zero probability).  We explore the following ranges:  R 0 [0, 1.5]; p 0 [0.2,

0.95].

In Figure 4, we fix p = 0.8 and we vary R, while Figure 5 fixes R at 0.5 and varies p.  For both figures,

Panel A displays the capital ratios K(D) for the regulatory optimum (solid line), the unregulated bank's optimum

(dotted line), and the optimal implementation of ex-ante capital regulation (dashed line), while Panel B gives

capital ratios for the optimal implementation of the basic precommitment approach (dashed line), and the re-

negotiation proof precommitment (dotted line).  The regulatory optimum is also displayed as the solid line in

Panel B.  (Note that the vertical scale differs from the vertical scale in Panel A.)   Consider first Figure 4.  For

all values of R below 0.84 the unregulated bank is risk-seeking, choosing zero capital and setting F = F̄.  For R

$ 0.84, the unregulated bank sets F = F  and chooses capital ratios only slightly below the regulatory optimum.0

In this sense, high franchise-value banks are almost self-regulating.  For low values of R, ex-ante capital

regulation induces prudent behavior, but only by imposing very high capital requirements.  For example, when

R = 0.1, the optimal ex-ante capital requirement equals 85% of the trading portfolio.  As R increases, the optimal

capital requirement falls dramatically.  For R $ 0.69, ex-ante capital regulation achieves the first-best allocation.

For example, with R = 1, ex-ante capital regulation achieves the first-best allocation with a capital requirement

of 14.2%.

Panel B of Figure 4 shows that, for all values of R, the basic precommitment specification induces banks

to choose F = F .  However, for positive values of R less than 0.69, the optimal precommitment specification0

induces banks to overcapitalize slightly, relative to the regulatory optimum.  When R = 0, precommitment attains
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the socially optimal capital ratio of zero.  Intuitively, with R = 0 the bank has little value to society.  The marginal

social cost of mandating positive capital exceeds the marginal social value of reducing the default risk for such

a low-value bank.   Panel B of Figure 4 also illustrates the weak domination of basic precommitment by

re-negotiation proof precommitment.  Notice that when the capital level induced by the latter differs from the

regulatory optimum, it is always closer to the regulatory optimum than the capital level induced by the basic

precommitment approach.

Panels A and B of Figure 5 show that the first-best capital ratio and the capital ratios under the optimal

implementations of precommitment fall as p increases.  In this example the optimal ex-ante capital requirement

(dashed line in Panel A) is unaffected by p.  The reason for this is that D̄ is invariant to p.  (This follows from

equation (19).)  For the parameterization of Figure 5, D  always equals D̄, so ex-ante capital requirements failex

to achieve the first-best allocation.  In contrast, basic precommitment achieves the first-best for p $ 0.9, and re-

negotiation proof precommitment does so for p $ 0.5.  

An important question is whether precommitment requires extremely harsh penalties.  Panels C and D

of Figures 4 and 5 provide some answers.  Panel C plots (  under the basic precommitment mechanism (solid*

line) and re-negotiation proof precommitment (dashed line).  Consider first Figure 4.  When R = 0, (  = 0.241,*

implying a fine slightly less that 25% of the portfolio loss in excess of the pre-committed amount.  As franchise

value increases, (  decreases rapidly.  The magnitude of these fines are non-trivial, but they are not unreasonably*

large.  Furthermore, when we perturb parameters {F , D, µ, $} away from our baseline (keeping p = 0.8, as in0

Figure 4), (  changes only modestly.  For example, when we double portfolio risk by increasing F  from 0.10 to*
0

0.20, the value of (  for R = 0 rises from 0.24 to 0.35 under both precommitment mechanisms. Similarly, a 50%*

increase in the cost of default (from $ = 1.0 to $ = 1.5) increases (  from 0.24 to 0.30 when R = 0. *

According to Figure 4, Panel C, (  for re-negotiation proof precommitment is considerably higher than*

that for the basic precommitment approach, except for the lowest levels of R.  For example, when R = 1, the

optimal implementation of basic precommitment uses a (  of only 3.2%, while re-negotiation proof*
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precommitment sets (  = 11.9%.  This is no surprise: For a given (, re-negotiation proof precommitment imposes*

a less onerous penalty than basic precommitment, so a higher value of ( is needed to have the same effect on bank

incentives. 

 Figure 5, Panel C, shows how sensitive the optimal precommitment penalty is to the quality of the loan

portfolio.  When p = 0.2 (the poorest quality loan portfolio we examine), the optimal precommitment penalty

requires ( . 150%.  However, we regard this value of p as unrealistically low.  When p is increased to 0.9 5

(implying that, even with a total loss to the trading portfolio, the bank will be solvent 95% of the time), the

optimal values of ( are only 3.8% with basic precommitment and 4.4% with re-negotiation proof precommitment.

Panel D of Figures 4 and 5 illustrates the impact of the penalty function.  In Figure 4, the probability that

the penalty is imposed (dotted line) ranges from 31.5% (for R = 0) down to 2% (for the higher values of R).

Conditional on the penalty being imposed, the average penalty (solid line) ranges from 0.014 for R = 0 (that is,

1.4% of the value of the trading portfolio) to less than 0.0009 (0.09% of the value of the trading portfolio) for

R's above 1.0.  As with Panel C, these results do not imply a particularly burdensome penalty, except possibly

for the lowest franchise values.  Figure 5 shows that the probability that the penalty is imposed increases sharply

for the highest values of p, even as the expected magnitude of the penalty falls.  That is, a very high quality of

the loan portfolio reduces the expected social costs associated with poor performance in the trading portfolio, so

the regulator views precommitment violations as less dangerous. 

Finally, we have chosen a value of x̄ sufficiently large that the precommitment penalty never triggers

default when x̃ = x̄.   The dashed line in Panel D gives the probability that the penalty triggers default when x̃ =

0.  According to Figure 4, this happens 2.9% of the time for R = 0.  However, this probability falls off rapidly

as R increases, becoming negligible (less than 0.5%) for R's over 0.25.  According to Figure 5, this probability

is unaffected by changes in p. 
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7. CONCLUSIONS

Our model provides a precise characterization of the conflicts between regulators, who seek to enhance

public welfare, and banks who act as private value maximizers.  It implies that banks either behave prudently or

seek maximal uncompensated risk, but do not choose intermediate risk levels.  In this environment, the most

important role of the regulator is to induce the risk-seeking banks to behave prudently, by switching to a low level

of risk.  While traditional ex-ante capital requirements can induce prudent behavior even for the most risk-seeking

of banks, the needed capital ratios are often inefficiently high.  The precommitment approach cannot always

induce prudent behavior, especially  with the poorest quality banks.  This result supports the provision in the

Board of Governors' 1995 proposal that prohibits weak banks from using precommitment to set capital

requirements.  For most other bank types, precommitment is generally preferable to ex-ante capital regulation,

both according to the social welfare criterion and according to the bank's objective function.  Furthermore, the

optimal precommitment penalty levels, while non-trivial, are not excessively large.

Given the simplicity of the precommitment mechanism, we find these results striking.  They support the

work currently being done to explore precommitment as an alternative to the current structure of capital

regulation.  More generally, they suggest that substantial efficiency gains can be obtained by moving away from

ex-ante capital requirements towards structures that seek to modify the ex-ante behavior of regulated firms via

state contingent rewards and penalties.
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(a.1)

(a.2)

(a.3)

APPENDIX

Proofs and Lemmas

The following Lemma is used in the proof of Proposition 1.

Lemma A.1: (i)  F (r|F) > 0, ú r < µ;F

  (ii) .

Proof of (i):  The cumulative log-normal distribution function can be written:

where

In (a.1), µ  and F  are the mean and variance of the normal distribution to which the log-normal corresponds.n n

Differentiating F(r|F) with respect to F, one obtains:

Equation (a.3) implies that 



sign FF(r*F) ' sign1 &
log(r)&µn

F2
n

' signF2
n& log(r)%µn

' sign log µ2%F2

µ2
& log(r) % 1

2
log µ4

µ2%F2

' sign log µ2%F2

r
> 0

&(1&p)R FF(D*F) % $I0m
D

0

FF(r̃*F)dr̃

D # D max / 1
1%D

< 1 # µ

F(0|F) ' f(0|F) ' 0

 Note that the only property of the log-normal distribution used in this proof is that F (r) > 0, ú r < µ.  This18
F

property holds for most distribution functions typically used to model portfolio returns, so the proposition is
more general than for the log-normal returns assumed here. Indeed, if the portfolio return distribution did not
satisfy this property, then value-at-risk might be decreasing in F, in which case portfolio variance would
arguably be a poor measure of portfolio risk.  Also note that, in Proposition 1, we exclude the case of D = 0
because, in that case, there is zero probability of default, so the social welfare function is unaffected by F.
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(a.4)

(a.5)

where the final inequality is implied by r < µ.

Proof of (ii): With the log-normal distribution, an increase in F without changing µ represents a mean-preserving

spread.  This immediately implies the result.   (See Rothschild and Stiglitz, 1970).

Ä

Proof of Proposition 1: To prove the proposition, it is sufficient to show that the left-hand side of (15) is strictly

negative for all D > 0.  To that end, we use integration by parts to  write the left-hand side of (15) as

Since ,  Lemma A.1 implies that both terms in the bracketed expression in (a.5)

are strictly positive.  This implies the conclusion of the Proposition.   Ä18

Proof of Proposition 2:

Proof of (i): Note that , úF.  Since D > 0, the left-hand side of (13) is strictly positive at D

= 0, implying that D = 0 is never an optimum.
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(a.6)

(a.7)

(a.8)

Proof of (ii) and (iii):  D  is interior, so we can totally differentiate the first-order condition (13), first with respect*

to R, second with respect to $, third with respect to D, and fourth with respect to p, to obtain

  

implying 

where the final inequalities are implied by second-order condition (14).  Ä

The following Lemma is required for the proof of Proposition 3.

Lemma  A.2: For any fixed r < µ, 
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(a.9)

(a.10)

(a.11)

(a.12)

Proof: The numerator of the object in brackets in (a.8) is 

The denominator of the object in brackets in (a.8) is given by equation (a.3).  Taking the ratio of (a.9) to (a.3),

substituting definitions from (a.2) and doing a bit of algebra, one obtains

The derivative of the right-hand side of (a.10) has the same sign as 

where the final inequality follows from r < µ. Ä

Proof of Proposition 3 :

To prove the proposition, it is sufficient to show that (20) cannot hold if (19) holds at equality.  Equation (19)

holding at equality can be written:

where we use  and .  (The latter result uses the fact that

an increase in F does not affect the mean of the distribution for a mean-preserving spread.)  Similarly, second-
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(a.13)

(a.14)

(a.15)

(a.16)

(a.17)

order condition (20) can be written

Let us assume towards a contradiction that, for some (D,F) combination, (a.12) and (a.13) both hold.  Lemma

A.1 (along with D# D  < 1 # µ, implied by (12)) implies that F (D) > 0, so (a.12) implies max
F

Substituting (a.14) into (a.13), and rearranging, we obtain

Equation (a.15) can only hold if 

However, in Lemma A.2 (proved earlier), it is demonstrated that, for any fixed r < µ, 

Equations (a.16) and (a.17) provide the needed contradiction. Ä

The following Lemma is required for the proof of Proposition 4.

Lemma A.3: For all r < µ, .
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(a.18)

Proof:

where the first equality in (a.18) uses integration by parts, and the second equality uses equation (a.11).

Differentiating the right-hand side of (a.18) with respect to r, one obtains  

,

where the inequality follows from r < µ. Ä

Proof of Proposition 4:

Proof of (i): Note that F(0|F) = f(0|F) = 0, úF.  Since D > 0, the left-hand side of (17) evaluated at D=0 equals

D > 0,  implying that D = 0 is never an optimum.

Proof of (ii):  We show that there exists D̄ such that the second derivative of the bank's objective function with

respect to D (which is the left-hand side of (18)) is nonpositive for D # D̄ and is positive for D > D̄.  Using

 and , one can evaluate the left-hand side

of (18) as:

.

The object in brackets is strictly increasing in D.  In particular, there exists a unique  D̄ > 0 such that

.  For D < D̄ the left-hand side of (18) is nonpositive; for D > D̄ the left-hand

side of (18) is positive.

Proof of (iii):  According to part (ii) of this proposition, there exists at most one interior solution with respect to
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(a.19)

(a.20)

D.  Therefore, part (iii) of the proposition can be proved by totally differentiating the interior solution case in

equation (17), first with respect to R, and second with respect to D. The derivatives MD/MRt and MD/MD can then

be signed by using the second-order condition (17). 

Proof of (iv):  If R = 0, the left-hand side of (17) equals D + F(D|F) > 0, so D = D .  To prove that the banksmax

optimal F = F̄ in this case, note that the left-hand side of (19) can be written: 

where the equality in (a.19) uses integration by parts.  If R = 0, the right-hand side of (a.19) is positive.

Proof of (v):  According to Lemma A.3, for any given F,  ú  r < µ. Therefore,

For any R greater than the object in brackets on the left-hand side of (a.20), the left-hand side of (19) is strictly

negative (see equation (a.19)), implying that the optimal F = F .  Ä0

Proof of Proposition 5:

Under the conditions of this Proposition, (and using Propositions 2(i) and 4(i)) both the regulator's optimal

deposit level, D , and the bank's optimal deposit level (denoted D ) represent interior solutions to the respective* B

agent's first-order conditions (13) and (17).  Condition (21) ensures that this solution for the regulator's problem

is unique.  Note that, for any given D, the left-hand side of (17) lies strictly above the left-hand side of (13).  Note

also that, according to Propositions 2(i) and 4(i), the left-hand side of both (13) and (17) are strictly positive.

Finally, Proposition 4(ii) states that the left-hand side of (17) attains a value of zero at no more than one value

of D.  These facts together imply that if both D  and D  are interior, then D  > D .  * B B *

Ä

Proof of Proposition 6:
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(a.21)

According to equation (19), the bank chooses F (D ) = F  if ex ex
0

 

for F = F , F̄.  It is sufficient to demonstrate that 0

For the log normal distribution, f (0*F) = 0, so the ratio on the left-hand side of equation (a.21) is anF

indeterminate form.  Repeated application of l'Hôpital's rule verifies equation (a.21). Ä
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