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Abstract

The popular new economy theory argues that the U.S. economy can now
grow at rates much greater than in the past without igniting higher levels of
price inflation. At the core of the new economy paradigm is the belief that the
U.S. economy experienced an innovation in the 1990s that raised its so-called
constant-inflation trend growth rate. According to its advocates, evidence of
the new economy comes from the fact that the U.S. economy experienced rel-
atively strong output growth and low levels of price inflation over the 1990s.
This paper evaluates the new economy theory by formally testing whether the
growth rate of the constant-inflation trend changed significantly over the 1990s.
I find that there is no evidence of the new economy when the constant-inflation
trend is estimated using recent GDP and CPI data. My results suggest that
the robust economic expansion of the 1990s was not due to a increase in the
trend growth rate but rather a cyclical expansion and a level increase in the
trend.
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1 Introduction

It is virtually impossible these days to avoid articles in the popular press hailing the
dawn of the new economy in which all the old truths about the U.S. economy no
longer hold. A major tenet of this theory is that the economy can now grow at rates
much greater than in the past without igniting higher levels of price inflation. This
stems from the belief that the U.S. economy experienced an innovation in the 1990s
that raised its so-called constant-inflation trend growth rate.! Advocates claim that
evidence of this change comes from the fact that the U.S. economy has been growing
relatively fast while maintaining relatively low levels of price inflation. At the same
time, others have argued against the new economy by pointing to recent events, such
as the Asian crisis, that would have had a positive impact on the level of output and
inflation, but not altered the trend growth rate of output. This paper adds to the
debate by formally testing whether the growth rate of the constant-inflation trend of
U.S. output changed significantly over the 1990s.

The debate over the new economy boils down to the age old problem of decom-
posing movements in macroeconomic time series into trend and cyclical components.
The trend and cycle are latent variables, so their identification depends on the re-
searchers definition of the trend and/or cycle. Prior to the 1980s it was common for
applied economists to regard the trend as a deterministic function of time and the
cyclical component as a stationary process that fluctuated around the trend. In this
setting, all movements in a time series above or below its constant trend growth rate
were assigned to the cycle component, so periods of high growth indicated a cyclical
expansion. In other words, all output fluctuations were considered temporary. At
around that time Nelson and Plosser (1982) discovered that one could not reject the
hypothesis that most macroeconomic time series had a stochastic trend. In this set-
ting, fluctuations in a time series might be due to innovations in the trend or the
cycle. In other words, changes in output could signal a permanent shift in the level
(an innovation in the trend) or a temporary fluctuation (an innovation in the cycle).
This discovery (combined with renewed interest in the business cycle in the 1980s)
spawned three different approaches for isolating trend and cycle components in data
with stochastic trends: spectral analysis, ARIMA time series analysis and unobserved
component techniques (UC).

The most popular approach is spectral analysis. Its appeal comes the fact that
it attacks the problem of trend-cycle decomposition in the frequency domain, rather
than the more typical time domain used by the ARIMA and UC methods. Identifica-
tion is achieved by simply specifying the frequencies that define the trend and cycle.
These components are typically defined in the following way: the trend includes fre-
quencies of 8 years or more, the cycle includes frequencies between 18 months to
8 years, while frequencies of less than 18 months are assigned to an economically

1See, for example, recent articles by Cooper and Madigan (1999), Mandel (1999), Shepard (1997),
and Ullman, Cohen and Mandel (1999).



uninteresting irregular component. Another attraction of this approach is that the
computational costs of capturing these frequencies is very low because practitioners
use approximate band-pass filters (BPF) that are simple moving averages of the data
(see, for example, Baxter and King 1995).

The ARIMA and UC methods are not as popular as BPFs simply because they
require strong assumptions about the data generating process. In other words, they
require a structural model to identify the trend and cycle. Plus, the computational
costs of estimating these models is considerably higher than for BPFs. These ap-
proaches are, however, more attractive than the spectral approach in the context
present study because I want to test hypotheses related to the time series properties
of structural definitions of the trend.

The only restriction that economic theory appears to impose on trend-cycle de-
composition is that these components be independent. This is an outgrowth of the
independent study of growth and the business cycle; independence implying that in-
novations driving the trend and cycle are independent. I use the UC approach rather
than the ARIMA approach to address the question of whether the trend growth rate
has changed because the latter does not allow for independent trend-cycle decompo-
sition sought by growth and business cycle researchers.?

My application builds on well-known UC models developed by Watson (1986) and
Kuttner (1994). Watson’s model is a parsimonious univariate model of output growth.
The natural logarithm of output is modeled as an additive trend and cycle. The trend
is modeled as a unit root with drift, while the independent cycle is assumed to be a
second order autoregression. The trend growth rate in Watson’s model is captured
by the trend drift term, which is a assumed to be constant. Watson’s model relied
on only output data to identify the trend and cycle. Kuttner on the other hand,
developed a multivariate model that allows the trend and cycle to be influenced
by fluctuations in the level of price inflation and output. Kuttner’s model extends
Watson’s analysis by adding an equation that links fluctuations in price inflation to
the cyclical component of output. Under appropriate restrictions the trend generated
by Kuttner’s specification is consistent with Gordon’s (1990, p.10) definition of the
trend as that level of output where inflation is constant. I refer to this as the constant-
inflation trend. This is precisely the definition of trend output that the new economy
advocates claim has been growing faster in the 1990s. With that in mind, Kuttner’s
model is better suited to testing inferences related to the new economy theory.

I adapt Watson and Kuttner’s analysis to the current problem by adding time-
varying drift terms to their models. This allows me to test whether the trend growth
rate of output has changed significantly over the 1990s. I do this in two ways. First, I

2Watson (1986) has shown that these closely related time series methods can have very different
implications for the trend and cycle. In particular, Watson revealed that the cycle estimate from a
parsimonious UC model of output was more persistent than the cycle from a similarly parameterized
ARIMA model proposed by Beveridge and Nelson (1981). One of the features of Watson’s UC model
was that it generated a cycle with turning points that matched NBER peaks and troughs.



introduce decade dummy variables that capture discrete jumps in the drift term from
the 1950s to 1990s. I maintain the 1990s as the base year and test if the coefficients
of the decade dummies are significantly different from zero. In this case, statistically
significantly lower growth rates in the decades before the 1990s would be evidence
in favor of the new economy. Second, a potential weakness of the discrete jump
approach is that the choice of jump dates is arbitrary, so I also allow the trend to
evolve smoothly over time by modeling it as a stationary first order autoregression.
This allows me to compare recent movements in the growth rate against its long
run mean. In this case, evidence in favor of the new economy would show up as a
significant positive deviation of recent trend growth rates (that is, over the 1990s)
from their long run mean.

I complete the analysis by comparing trend and cycle estimates from the UC
analysis with those from the more popular BPF approach. I find that the UC models
with smoothly varying drift terms yield cycle components that are highly correlated
with the cycle generated by widely used BPFs that extract business cycle frequencies
of 18 months to 8 years.

The remainder of the paper is structured as follows. Section 2 investigates the
trend properties of the data used in the empirical analysis. Section 3 describes in
detail the structural models underlying the unobserved component analysis. Section
4 discusses econometric issues. Section 5 reports estimates of the UC models and their
associated trends, cycles and trend growth rates. The paper concludes in Section 6
with a summary of the main results.

2 Trend properties of output and inflation

An important assumption in Watson (1986) and Kuttner (1994) is that the natural
logarithm of real output has a unit root. Kuttner’s model goes one step further in
assuming that price inflation also has a unit root. This section reports the results of
Augmented Dickey-Fuller (ADF) tests for nonstationarity using quarterly U.S. real
chain-weighted gross domestic product (GDP) and consumer price index (CPI) data
from 1951:Q1 to 1999:Q2.

The left hand panel of Table 1 reports ADF t-statistics for cases with a constant
and time trend, using various lags of first differences of the dependent variable, in
this case the natural logarithm of real GDP. These test statistics do not allow me to
reject the null of a unit root in the log of real GDP at typical levels of significance.

A potential time-varying model of the trend growth rate of GDP is a unit root
without drift (see, for example, Harvey and Todd’s (1983) analysis of UK output
and Clark’s (1987) analysis of U.S. output). A time-varying trend growth rate with
a unit root would require a unit root in the first difference of the log of real GDP.
The right hand panel of Table 1 reports ADF t-statistics for the first difference of
the natural logarithm of real GDP. I am able to reject the null of a unit root in the
growth rate of GDP at conventional levels of significance when a constant is included
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in the regression. This implies that the trend growth rate of real GDP is a stationary
process.

Table 2 repeats these experiments for inflation, measured as the first difference of
the natural logarithm of the CPI. The left hand panel suggests that at conventional
levels of significance I cannot reject the null of a unit root in inflation. The right
hand panel suggests that I can reject the null of a unit root in the growth rate (first
difference) of inflation at conventional levels of significance. This implies that the
first difference of inflation is also a stationary process.

3 Unobserved Component Models

This section introduces notation and describes in detail the unobserved component
models estimated in the paper. My starting point is a description of Watson’s (1986)
univariate stochastic trend model. Watson’s model is parsimonious in assuming that
the natural logarithm of GDP x; can be additively decomposed into a stochastic trend
7¢ and a stationary cyclical term c¢;:

Ty = T¢+ ¢, (1)
Tt = MU+ T 1+ Eng,y (2)
¢t = O1¢-1+ QaCi_o + €t (3)

and

2
Ert (ope 0
] (0T )

Equation (2) describes the trend as a random walk with drift, which is consistent
with the unit root tests of the last section. The constant drift term p measures the
steady state or trend growth rate (that is, the growth rate of output in the absence
of shocks to the trend or cycle). Note that the overall growth rate of the trend differs
from the steady state or trend growth rate by the error term £,;. In this setting, trend
growth above p indicates an increase in the level of the trend. The linear trend is a
special case of (2) and corresponds to the restriction 02 = 0. Equation (3) describes
the cyclical term, which is modeled as a second order autoregressive process.®> The
trend and cycle are independent in the sense that e, and e,_; are uncorrelated for
all 7.

3Others such as Clark (1987) and Lam (1990) estimate richer time series models of the cycle.
They find that increases in the value of the likelihood function over the second order autogressive
process are small enough to allow them to reject the richer specifications.



3.1 Time-varying trend growth rate models

My first extension to Watson’s model is to incorporate a time-varying drift term p,. I
consider two cases, both are consistent with the unit-root tests results of the previous
section. The first case assumes that changes in the trend growth rate of output take
on discrete jumps. In particular, the trend growth rate is assumed to jump to a new
level for a fixed interval (t = i to i +7T'). Changes in the trend growth rate p, are
measured as deviations p, from a base period trend growth rate p. The discrete jump
model is described by the following equations:

r = T+, (4)
Tt = Moy T Te-1+Em, (5)
e = p+p fori <t <i+T (6)
Ct = Q101+ GaCi—2 + Ect (7)

and

2
Ert (ops 0
] (5 2)

I allow for five trend growth rate changes spanning the decades from the 1950s to
1990s. I take the 1990s as the base year and test whether there are significant devia-
tions from the 1990s trend growth rate in the other decades. Within the context of
this set up the new economy theory implies that the u}s spanning the decades of the
1950s to 1980s are significantly less than zero.

The second case assumes that the trend growth rate follows a stable markov
process. The advantage of this model over the discrete jump model is that the
persistence and timing of fluctuations in the trend growth rate are determined by the
data. I limit the analysis to a stable first order autoregressive process. I do this for
two reasons. First, the model is not identified for higher order specifications. Second,
the analysis of the previous section ruled out a unit root in the trend growth rate.
Under this assumption the model is described by the following equations:

Ty = T+ G, (8)
Tt = M1 T Te—1+ Er, (9)
py = p(l—p)+pry +ep (10)
Ct = ¢1Ct_1 + ¢20t_2 + Eat (]_1)
and

Ert 0'72_ 0 0

Eut ~ NID |0, 0 ai 0

Eet 0 0 O'g



In this setting, fluctuations in the trend can come from two sources: a persistent
innovation ¢, that acts through the trend growth rate 1, and a noise term £,,. The
persistence of these trend growth rate fluctuations is determined by p. The steady
state or long run trend growth rate is given by . The new economy theory suggests
i, has been significantly higher than p over the 1990s.

3.2 A model of the constant-inflation trend

New economy advocates argue that strong domestic demand over the 1990s has not
ignited higher levels of price inflation because an innovation to the U.S. economy
caused the growth rate of the constant-inflation trend of output to rise. One way to
evaluate this hypothesis is to estimate a structural model that embodies this notion
of the trend and test whether the trend growth rate has changed over the 1990s. A
convenient starting point is Kuttner’s (1994) model. This model extends Watson’s
univariate stochastic trend model by allowing the trend and cycle of output to be
influenced by price inflation:

T = a4+ 1+ Y AT—1 + Yolio1 + Ent + 016mt—1 + 62Emi—2 + 036 m—3, (12)
Ty = T¢+ Gty (13)
Tt = WP+ Te 1+ Ergy (14)
¢t = ¢1¢—1+ Pacio + (15)
and

Ent O-?r 0 Orc

e |~ NID [0, O o 0

6Ct O-ﬂ'c O O-g

where 7; denotes the level of price inflation, Az;_;denotes the lagged first difference
of the natural log output, and ¢;_; represents the lagged cycle.

This model links changes in inflation and output in two ways. Equation (12)
models changes in the level of inflation as a function of lagged output growth and
the lagged cycle. Inflation and the cycle are further linked by allowing innovations to
inflation £,; to be contemporaneously correlated with innovations to the cycle e.;. The
correlation coefficient of these innovations is denoted by p,. = 0z/(00.). Kuttner
argues that this specification is consistent with expectations-augmented Phillips curve
models in which the expected rate of inflation is set equal to the lagged inflation
rate. The other terms in equation (12) model serial correlation in the innovations
to inflation. I follow Kuttner in modelling the innovations as a third order moving
average. This specification is successful in removing the serial correlation present in
the error term. The remaining equations (13-15) are the same as Watson’s constant
drift stochastic trend model.



The advantage of this model over Watson’s is that under the restriction that
a = —py, the trend of this model matches Gordon’s (1990) definition of trend output
as the level of output at which inflation is constant. I refer to this as the constant-
inflation trend. This is the definition of trend output that the new economy theorists
argue has been growing faster in the 1990s. With that in mind, Kuttner’s model is
better suited to testing the new economy theory.

I adapt this model (as I did the univariate model) to the new economy analysis
by allowing the trend growth rate to vary by discrete jumps and a stable markov
process. I also modify the restriction on the constant in the inflation equation oy
to ensure that the trend measure is consistent with the constant-inflation definition.
The multivariate time-varying growth rate models are described by the following
equations:

T o= o+ T+ VA% 1+ VoCio1 + Emp + 01601 + 026mt—2 + 036m—3, (16)
Ty = Tt + Ct, (17)
Tt = Mgt Ti—1+Em, (18)
¢t = 101+ QaC 2+ e (19)
where
e = iy fori <t <i+T Discrete jump
QO = =714
pe=p(l=p) F oty +eps g
Qr = =71,
and
Ent 0-72r 0 0 Orme
2
et | o NID 0, 0 o 02 0
Eput 0 0 o, 0
Ect Ore 0 0 0'%

4 Econometric issues

I estimate these UC models using maximum likelihood (MLE). In each case the
likelihood function is evaluated by using the Kalman filter on the model’s state space
representation.? I simplify the estimation by transforming the models so that they

4T use the Nedler-Mead simplex routine of Matlab (fmins) to search the parameter space. This
procedure is slower but argued to be more reliable than other procedures typically used for non-linear
optimization.



are specified in first differences rather than levels of the observables. In addition,
I rewrite the unobserved component describing the time-varying trend growth rate
in the stable markov model so that it represents the demeaned growth rate. For
example, the constant-inflation trend model with stable markov drift is estimated
using the following structure:

Amy = =y b+ YAz + Y91 + Ext + 016mt—1 + 02Ert—2 + O3Emi—3,
Axy = p+ py_q+c¢— i1+ e,

Ky = Ppy_1 T Ept;

€t = Q1Ci-1+ QoCi_2 + Ects

and
Ent O-gr 0 0 Orc
Ert 0 0'3 0 0
Eput NID |0, 0 0 (ri 0
Ect o 0 O 0'3

The advantages of this approach are twofold. First, the computation costs are lower
because the state vector is reduced to current and lagged values of the cycle, demeaned
growth rate and inflation innovation. Second, these components are assumed to be
stationary so the initial values of the state vector and the initial mean square error
matrix of the state vector can simply be written in terms of the population moments
of the state vector:

*2
r ¢ 7 0:2 % 0 Orc Q107c Q207c A30¢
s 2
Ct—1 =gy e , 0 , 0 Ore @10z Q207
e 0 lif;)z f_“é;z 0 0 0 0
2
/;t—l ~NID [0,] 0 L 200 0 0
T
6’: X Ore 0 0 0 o2 0 0 0
;t‘z 0me One 0 0 0 o2 0 0
;;3 30 10z 0 0 0 0 o2 0
LT 30z Q0. 0 0 0 O 0 o?
2 : A : j—2 _
where 0% = 17¢%7¢%75¢1¢§/(17¢2), aj=¢ 4+ (j—1)¢] "¢y and 0rc = pr0r0e.

This avoids the many problems associated with estimating the models in levels, such
as, the unobserved components estimates depending critically on initial values of the
state vector and its associated mean square error matrix.

5 Empirical findings

This section reports MLE estimates of the univariate and multivariate UC models
described in the previous section using quarterly chain-weighted real GDP and CPI
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data from 1951:Q1 to 1999:Q2. I present the results in the following way. First,
I report parameter estimates for the univariate model under the three growth rate
assumptions. Next, I compare parameter estimates of the univariate model with those
of the multivariate model. This allows me to contrast the cycle and time-varying
growth rate components estimated with and without inflation data.

I use the following conventions when reporting parameters estimates or plotting
the unobserved components. The trend growth rate p and the standard deviation of
the innovation to the trend o, and cycle o, are expressed as annualized rates. Plots
of the unobserved components refer to the smooth or two-sided estimate generated
by the Kalman smoother. Confidence intervals for the unobserved components are
calculated via the Monte Carlo method described in Hamilton (1994, p.397-399)
using 1000 draws. In the case of the cycle ¢; it is expressed as quarterly percentage
deviations from the trend. The time varying trend growth rate u, is expressed as an
annualized rate.

One of the secondary goals of this paper is to compare structural and spectral
trend-cycle decomposition methods. I fulfil this objective by using the cycle (and
trend) generated by Baxter and King’s (1995) quarterly business cycle BPF and
NBER peak-to-trough dates as reference series in plots of the UC cycles (and trends).
You should note that this BPF is approximated by a two-sided moving average, with
a lag length of 12 quarters, so I am unable to report BPF estimates for the first and
last 12 observations. Note also that the NBER dates begin with a peak in 1953:Q3
and end with a trough in 1991:Q1.

5.1 Univariate model

Table 3 reports parameter estimates of Watson’s (1986) univariate model with a
constant drift term. Despite additional data and the move to chain-weighted real
quantity indices the parameter estimates in Table 3 are very close to those reported by
Watson. The annualized trend growth rate of real GDP is estimated at 3.14 percent.
This is somewhat higher than the trend growth rate typically quoted by business
economists of around 2.25 percent.” Innovations to the trend have an annualized
standard deviation of 2.42 percent, while innovations to the cycle have an annualized
standard deviation of 2.59 percent. The autoregressive coefficients of the cyclical
term are 1.48 and -0.54 respectively, which suggests the cycle is persistent.

Figure 1A plots the smoothed UC cyclical term (solid line) against the business
cycle frequency component of GDP extracted using a Baxter-King business cycle
BPF (dashed line) and the NBER peak-to-trough dates (light vertical lines). The
UC and BPF cycles have similar turning points, which line up with NBER dates.
However, the series have different amplitudes. The BPF estimate tends to oscillate
around zero, while the UC estimate tends to lie above or below the zero for longer
periods. For example, in the period following the most recent trough, 1991:Q1, the

%See, for example, the estimates reported in Cooper and Madigan (1999) and Shepard (1997).



BPF suggests that U.S. output has been at or close to trend, while the univariate
UC model indicates that U.S. output has been below trend. Figure 2A provides a
different view of the trend-cycle decomposition by comparing the UC trend (solid
line) and BPF trend (dashed line). The UC trend tends to be more linear than the
BPF trend. In contrast to the cycle, the UC trend has been above the BPF trend
since the last trough.

Table 4 reports estimates of the univariate model with time-varying growth rates.
I turn your attention first to the results for the discrete jump model reported in
the upper panel. Estimates of the difference between the trend growth rate of the
1990s and the preceding four decades are reported in the upper row. The estimates
suggest that the 1990s trend growth rate was not significantly higher than in the
earlier decades. In fact, the point estimates suggest that the growth rate of the 1990s
was below that of the other decades. This is especially true for the 1960s. The point
estimate of the difference between the 1960s trend growth rate and that of the 1990s is
a statistically significant 1.88 percent. Figure 3A reveals that the trend growth rates
from the UC model (thin solid line) take on the same pattern as the decade average
GDP growth rates (thick solid line). Overall, these findings suggest that there is no
evidence of a significant positive increase in the trend growth rate over the 1990s,
which rejects the new economy theory.

One consequence of the discrete jump assumption is that the standard deviation of
the trend innovation in considerably lower. This means that the trend is essentially a
series of linear trends (see Figure 2B). Figure 1B describes the cycle under the discrete
jump assumption. The obvious implication is that the UC cycle (solid line) has
greater amplitudes than the BPF business cycle component (dashed line). Another
implication of the discrete jump assumption is that it suggests U.S. output is currently
well above its trend.

The lower panel of Table 4 reports estimates of the stable markov drift model
which allows for the trend growth rate to vary according to a stable first order au-
toregressive process. The estimates of the direction change and the size of the shifts
in the growth rate are reported in the upper row of the panel. The point estimates
suggest that innovations to the demeaned trend growth rate are large with a stan-
dard deviation of 1.06 percent, while the deviations from the mean growth rate are
persistent with an autoregressive coefficient of 0.67. However, these estimates are
imprecise which suggests there has not been significant variation in the growth rate
over the sample. The lack of precision in the direction of change and the size of inno-
vations to the growth rate is revealed in Figure 3B by the volatility of the smoothed
time-varying trend growth rate (thin solid line).

The remainder of the panel reveals that the point estimates of the trend and cycle
parameters are slightly different to the model with a constant mean. The annualized
trend growth rate is unchanged at 3.15 percent, while the standard deviation of
innovations to the trend remain at 2.43 percent. The changes are confined to the
cycle component. The cycle has a smaller innovation standard deviation of 2.19
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percent, down from 2.42 percent in the constant case. The autoregressive coefficients
suggest the cycle is less persistent. These differences are evident in plots of the cycle.
Figures 1C and 1D plot the smoothed UC stable markov cycle (solid line) against
the BPF cycle (dashed line) and UC constant drift cycle (dashed line), respectively.
In contrast to the constant growth rate model the UC cycle from the stable markov
model has a smaller amplitude than the BPF cycle. Notice also that the correlation
between the BPF and UC cycle components has risen from 0.81 in the constant
growth model to 0.99 in the markov model.

Figure 2C reveals that the stable markov model and BPF trend are quite similar.
This is not surprising after looking at Figure 3B, which plots the markov model trend
growth rate (thin solid line) against the BPF estimate (thick solid line). The stable
markov model displays growth rate fluctuations that have a similar amplitude to the
BPF trend growth rate series. Focusing on the results over the 1990s, the stable
markov model suggests that the trend growth rate of GDP rose over that period but
only to levels that had been experienced in the 1970s and 1980s. More importantly
the estimates suggests the growth rate has been constant over the last three years
(the period when most advocates argue the new economy was apparent in the data)
at close to the annualized long run mean of 3.15 percent. These findings suggest that
there is currently no evidence of the new economy in real GDP data.

5.2 Multivariate model

Table 5 reports estimates of Kuttner’s (1994) constant-inflation trend model using re-
cent real GDP and CPI data that cover the period from 1951:Q1 to 1999:Q2. Despite
numerous methodological changes to the data the parameter estimates are essentially
unchanged from Kuttner’s original estimates. The parameters describing the trend
and cycle components of output differ slightly from the univariate estimates. The
annualized trend rate of growth is roughly similar at 3.10 percent, while the standard
deviation of the innovations to the trend are higher at 2.87 percent. There are subtle
differences in the parameters describing the cyclical term. The autoregressive coef-
ficients are larger in absolute value, while the standard deviation of the innovations
to the cycle is smaller. Visually the differences are more noticeable. The smoothed
cycle from the constant-inflation trend model (solid line) is virtually identical to the
business cycle component generated by a BPF (dashed line) in Figure 4A. The corre-
lation of the BPF and constant trend UC cycle has risen from 0.81 in the univariate
model to 0.96 in the multivariate case, while the amplitudes of the series are closer.
The BPF cycle is slightly more volatile. Not surprisingly, Figure 5A reveals that the
constant inflation and BPF trend are also closely related.

Fluctuations in the multivariate cycle match the movements in the BPF business
cycle component over the early 1990s. I noted above that the BPF cycle suggested
that U.S. output was close to its trend over this period, the multivariate cycle com-
ponent suggests that this pattern continued over the last three years of the sample.
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Recall that the univariate model suggested that the U.S. was operating below its
trend, so the introduction of information on changes in the level of inflation has actu-
ally lowered the level of the trend over the 1990s (see Figures 6A and 6B). Note also,
that while the overall growth rate of the multivariate trend is higher than the overall
growth rate of the univariate trend in the early to mid 1990s, their overall grow rates
converge over the last three years of the sample. One way to see this is by comparing
the cycle estimates; parallel movements in the cycle imply parallel movements in the
trend or a common growth rate. These results work against the new economy the-
ory since the theory suggests that recent movements in inflation should have had a
positive impact on the overall growth rate of trend output.

Figures 7TA and 7B provide another measure of the effect of inflation information
on the parameter estimates of the cycle. These figures show that information on
inflation greatly improves the precision of the unobserved component by substantially
lowering the size of the 95 percent confidence intervals of the cycle.

The next step is to relax the assumption of a constant trend growth rate. I do this
by allowing for discrete jumps in the trend growth rate over decade long intervals and
by allowing the trend growth rate to be a smoothly evolving first order autoregressive
process. The parameter estimates are reported in Table 6. I report the findings for
the discrete jump model in the upper panel. The results are similar to the univariate
case. | find that the growth rate of the constant-inflation trend over the 1990s is not
significantly different from estimates of the trend growth rates of the 1950s, 1970s and
1980s, while it is significantly lower than the growth rate experienced in the 1960s.
Figure 3A reveals two pieces of information. First, the estimated trend growth rates
from the univariate (thin solid line) and multivariate (dashed line) discrete jump
models are similar, which suggests that incorporating information on inflation has
little impact on the results. Second, the multivariate discrete jump model generates
trend growth rate estimates that are similar to the decade average growth rates of
GDP (thick solid line). These findings suggest that there is no evidence of the new
economy in GDP and CPI data.

The lower panel of Table 6 reports parameter estimates for the multivariate model
with stable markov drift. In contrast to the univariate model the direction of change
in the demeaned trend growth rate term is slightly larger at 0.84, while the estimated
standard deviation of the innovation to the demeaned trend growth rate is consid-
erably smaller at 0.43 percent. Both parameters have smaller standard errors than
the univariate estimates. The other parameters of the model are virtually unchanged
from the constant growth model (see Table 5). This observation is reinforced by
Figure 4D which shows that the cycle from the stable markov model (solid line) is
virtually identical to the constant growth rate cycle (dashed line). A comparison
of standard deviations suggest that the constant growth model has a slightly more
volatile cycle. This comes about because some of the temporary fluctuations are
passed to the constant-inflation trend growth rate.

Figure 3B reveals that the multivariate trend growth rate shares common turning
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points with the univariate and BPF trend growth rates. Although, the multivariate
estimate has a smaller amplitude than the other estimates. The multivariate model
also suggests that the trend growth rate has been increasing over the 1990s. The
estimates from the constant-inflation trend model also imply that the trend growth
rate has merely returned to levels experienced in the 1970s and 1980s. Over the
last three years the constant-inflation trend has been constant at around its long run
mean of 3.1 percent. These results suggest that there is no evidence of a significant
increase in the trend growth rate of U.S. output over the 1990s in real GDP and CPI
data, which rejects the new economy theory.

Figures 6C and 6D compare the trends and cycles of the univariate and multi-
variate models with stable markov drift. This comparison gives a measure of the
impact of incorporating information on inflation on the trend and cycle. In contrast
to the constant drift case, presented in Figures 6A and 6B, incorporating information
on inflation appears to have a small impact on the point estimates of the trend and
cycle. Figures 7C and 7D reveal that while information on inflation appears to have
a negligible impact on the point estimates of the trend growth rate it does improve
the precision of the estimates by substantially lowering the size of the 95 percent
confidence intervals. However, the point estimates remain imprecise. This suggests
that there is no evidence of significant variation in the trend growth rate over the
sample.

6 Conclusion

The popular press has hailed the dawn of a new paradigm in which the U.S. economy
can expand at rates much greater than the past without igniting higher levels of price
inflation. Underlying this theory is the belief that the U.S. experienced structural
change in the 1990s that raised its constant-inflation trend growth rate. New economy
advocates argue that evidence of the structural change is embodied in the low rates
of price inflation and high output growth rates of the 1990s. I respond to this by
formally estimating the constant-inflation trend using these price and output data.
I estimate models that allow for two types of variation in the trend growth rate. In
the first model the trend growth rate is allowed to vary by discrete jumps. The other
model allows for smooth changes in the growth rate by modeling it as a first order
autoregression. Estimates from both these models suggest that the trend growth rate
of the 1990s is not significantly different from the trend growth rates the 1970s and
1980s. Overall, the statistical models suggests that the robust performance of the U.S.
economy over the 1990s was due to factors that permanently raised its productive
capacity, but did not change its trend growth rate.
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Table 1

Unit-Root Tests for Real GDP

X; = In(GDPy) AX; = X¢ - X
Lags Constant, Trend Constant
2 -2.14 -7.12
4 -1.87 -6.93
8 -1.48 -4.97
12 -1.62 -4.52

Source: Author’s calculations based on GDP data from 1951:Q1 to 1999:Q2.

Table 2

Unit-Root Tests for CPI Inflation

T, = In(CPIy)- In(CPI, ) Amg =T, - T,
Lags Constant, Trend Constant
2 -2.12 -8.69
4 -2.57 -6.90
8 -2.67 -5.74
12 -1.84 -5.52

Source: Author’s calculations based on CPI data from 1951:Q1 to 1999:Q2.



Table 3

Estimated Univariate Model for Real GDP

Parameter estimates

Summary Statistics

u ¢ o o; o SE Q(16) LLF
3.14 1.48 -0.54 2.42 2.59 0.94 13.79 -82.11
(0.21) (0.15) (0.17) (0.63) (0.70)

Notes: Standard errors in parenthesis. SE denotes equation standard error.
Q(n) is the Box-Ljung test for randomness of the errors distributed xn.
LLF denotes the log of the likehood function.

Source: Author’s calculations based on GDP data from 1951:Q1 to 1999:Q2.

Table 4

Estimated Univariate Model for Real GDP with Time-Varying Drift
Discrete Jump
Parameter estimates

Summary Statistics

Hso Heo H70 Hso
0.31 1.88 0.17 0.21
(0.61) (0.58) (0.54) (0.78)

U G () Or Oc SE Q(lﬁ) LLF
2.56 1.26 -0.39 0.00 3.52 0.91 15.49 -73.89
(0.53) (0.07) (0.08) (270.59) (0.23)

Stable Markov
Parameter estimates

Summary Statistics

p Ou
0.67 1.06
(4.94) (15.69)

U G () Or Oc SE Q(lﬁ) LLF
3.15 1.43 -0.58 2.43 2.19 0.94 12.16 -81.38
(0.30) (0.38) (0.50) (0.71) (5.82)

Notes: Standard errors in parenthesis. SE denotes equation standard error.
Q(n) is the Box-Ljung test for randomness of the errors distributed xn.
LLF denotes the log of the likehood function.

Source: Author’s calculations based on GDP data from 1951:Q1 to 1999:Q2.



Table 5

Estimated Multivariate Model for Real GDP
Parameter estimates

Summary Statistics

o G (%) Ot O¢ Prc SE Q(16)
3.10 1.54 -0.68 2.87 1.96 0.15 0.95 13.56
(0.24) (0.12) (0.11) (0.32) (0.45) (0.16)

V1 Y2 & &, Oy O SE Q(16) LLF
0.06 0.05 -0.43 -0.44 0.49 1.58 0.44 18.70 -4.51
(0.02) (0.01) (0.08) (0.07) (0.06) (0.07)

Notes: Standard errors in parenthesis. SE denotes equation standard error.

Q(n) is the Box-Ljung test for randomness of the errors distributedxn.

LLF denotes the log of the likehood function.
Source: Author’s calculations based on GDP and CPI data from 1951:Q1 to 1999:Q2.

Table 6

Estimated Multivariate Model for Real GDP with Time Varying-Drift
Discrete Jump

Parameter estimates Summary Statistics

Hso Heo Hzo Hso
-0.06 1.88 0.23 0.18
(0.41) (0.41) (0.34) (0.52)

o G (%) Ot O¢ Prc SE Q(16)
2.56 1.27 -0.40 0.12 3.54 0.07 0.93 15.59
(0.34) (0.07) (0.07) (2.76) (0.20) (0.07)

V1 Y2 & &, Oy O SE Q(16) LLF
0.06 0.03 -0.39 -0.43 0.48 1.61 0.45 19.38 451
(0.02) (0.01) (0.07) (0.07) (0.06) (0.07)

Stable Markov
Parameter estimates Summary Statistics

p Oy
0.84 0.43
(0.49) (2.09)

o G (%) Ot O¢ Prc SE Q(16)
3.09 1.50 -0.65 2.67 2.08 0.16 0.95 12.03
(0.31) (0.13) (0.13) (0.38) (0.52) (0.15)

V1 Y2 & &, Oy O SE Q(16) LLF
0.07 0.05 -0.42 -0.44 0.48 1.58 0.45 19.26 -3.72
(0.02) (0.02) (0.09) (0.08) (0.06) (0.07)

Notes: Standard errors in parenthesis. SE denotes equation standard error.
Q(n) is the Box-Ljung test for randomness of the errors distributedxn.
LLF denotes the log of the likehood function.

Source: Authors calculation’s based on GDP and CPI data from 1951:Q1 to 1999:Q2.



Univariate Cycle Component of GDP

A: BPF vs. Univariate Model with Constant Drift B: BPF vs. Univariate Model with Discrete Jump Drift
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Univariate Trend Component of GDP
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Trend Growth Rate

A: Decade Average vs. UC Models with Discrete Jumps

6
Decade Average
UC-Univariate
s- (Vv t+v v+t vt A1ty t f----- UC-Multivariate
4,
—
c
[}
b
[}
[a
3] | ‘l
. \
2 |
1 T T T T A T T A T

1951:01 1955:01 1959:01 1963:01 1967:01 1971:01 1975:01 1979:01 1983:01 1987:01 1991:01 1995:01 1999:01

B: BPF vs. UC Models with Stable Markov Drift

6
BPF
UC-Univariate
5 UC-Multivariate

Percent

1 T T T T T T T T T T I

1951:01 1955:01 1959:01 1963:01 1967:01 1971:01 1975:01 1979:01 1983:01 1987:01 1991:01 1995:01 1999:01




Multivariate Cycle Component of GDP

A: BPF vs. Multivariate Model with Constant Drift B: BPF vs. Multivariate Model with Discrete Jump Drift
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Multivariate Trend Component of GDP

Log level
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Comparison of Univariate and Multivariate UC Models
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Confidence Intervals for Unobserved Components

A: Cycle component of GDP
Univariate Model with Constant Drift

B: Cycle component of GDP
Multivariate Model with Constant Drift
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