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Abstract. Previous work on multifactor term structure models has proposed that the

short rate process is a function of some unobserved diffusion process. We consider a

model in which the short rate process is a function of a Markov chain which represents

the ‘state of the world’. This enables us to obtain explicit expressions for the prices of

zero-coupon bonds and other securities. Discretizing our model allows the use of signal

processing techniques from Hidden Markov Models. This means we can estimate not only

the unobserved Markov chain but also the parameters of the model, so the model is self-

calibrating. The estimation procedure is tested on a selection of U.S. Treasury bills and

bonds.
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1. Introduction

The modelling of interest rates and term structure is a central problem in financial

theory. A comprehensive survey can be found in the paper of Duffie and Kan (1993a).

There, both single factor and multi-factor term structure models are described and a new

model for the ‘short rate’ process rt is proposed under which rt is a function r(Xt)

of a ‘state process’ Xt which takes values in a subset D ⊂ Rn. In fact Duffie and Kan

suppose that Xt is given by a stochastic differential equation

dXt = µ(Xt)dt + σ(Xt)dwt

X0 ∈ D ⊂ Rn, t ≥ 0,

where µ and σσ′ are affine functions of X, (i.e. µ(X) = A + BX). Duffie and

Kan then show that the yield process also has the form

yt,τ = α(τ ) + β(τ ) ·Xt.

It is known from the work of Harrison and Kreps (1979), and others, that only tech-

nical conditions are required for the equivalence between the absence of arbitrage and the

existence of an equivalent martingale measure. Here we are assuming our processes are

defined on a complete probability space (Ω,F , P ) and a martingale measure is a proba-

bility measure Q equivalent to P such that the price processes of any security is a Q

martingale after normalization at each time t by exp (
∫ t

0
rsds) = exp

( ∫ t

0
r(Xs)ds

)
.

Duffie and Kan (1993a,b) do not discuss the existence of an equivalent martingale mea-

sure, but assume such a measure Q exists; we shall follow their example and work under

measure Q.

However, instead of assuming the short term rate r is a function of another diffu-

sion process we shall suppose r is a function of a continuous time Markov chain. This is

not unreasonable as any diffusion can be approximated by a Markov chain. Discrete time

2



Markov chain models for term structure have been discussed by Pye (1966) and Zipkin

(1993). However, the novel feature of this work is the application of new results from El-

liott, Aggoun and Moore (1995) which provide not only recursive estimates of the Markov

chain but also formulae for re-estimating all parameters of the model, so that our model

is ‘self calibrating’.

Maximum likelihood estimation of the Cox, Ingersoll, Ross term structure model is

carried out in the paper by Pearson and Sun (1994). The conclusion of the Pearson and Sun

(1994) paper is that their data rejects the Cox, Ingersoll, Ross model. Filtering methods

provide a continual, recursive up-date of optimal estimates in contrast to the static model-

fitting of maximum likelihood. Consequently, our application of Hidden Markov filtering

and estimation techniques appears new. We do not need to specify a priori the dynamics

of the short rate process, other than to say it is a Markov chain.

2. Short Term Rate

Processes will be defined on a probability space (Ω,F , Q) where, for pricing pur-

poses, Q is an equivalent martingale measure.

Suppose {Xt}, t ≥ 0, is a finite state Markov chain on (Ω,F , Q) with state

space S = {s1, s2, . . . , sN}. Here the points si may be points in RN , or any space

whatsoever; however, without loss of generality we may identify the points in S with

the unit vectors {e1, e2, . . . , eN}. We suppose our vectors are column vectors in RN ,

so with ′ denoting transpose ei = (0, . . . , 0, 1, 0, . . . , 0)′ ∈ RN . This representation

of the state space of X will simplify the algebra. E will denote expectation under

measure Q. The distribution of Xt is then E[Xt] = pt = (p1
t , p

2
t , . . . , p

N
t ), where

pi
t = Q(Xt = ei) = E[〈Xt, ei〉].

We suppose this distribution evolves according to the Kolmogorov equation

dpt

dt
= Apt;
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here A is a ‘Q-matrix’, that is, if A = (aji), 1 ≤ i, j ≤ N,
∑N

j=1 aji = 1 and

aji ≥ 0 if i 6= j. We could take the components aji to be time varying, though this

would complicate their estimation.

Recall that at any time t the state Xt of the Markov chain is one of the unit

vectors, e1, e2, . . . , eN . Consequently, any real valued function of Xt, say h(Xt), is

just given by a vector (h1, h2, . . . , hN ) = h, so h(Xt) = 〈h,Xt〉 where the brackets

denote the scalar product in RN .

Hypothesis 1.1. We suppose the short rate process rt is a function of Xt, that is,

rt = r(Xt) = 〈r,Xt〉 for some vector r ∈ RN .

Again, we could take r to be time varying. This would still allow estimation of

X but would complicate the parameter estimation of the model.

Write {Ft} for the right continuous, complete, filtration generated by X. Then,

because we are working under the equivalent martingale measure Q, the price of a

security paying u at time T ≥ t is given by

E[exp
(− ∫ T

t

r(Xs)ds
)
u|Ft] = E[exp

(− ∫ T

t

r(Xs)ds
)
u|Xt],

as X is a Markov process. Taking u = 1 we obtain the price of a zero-coupon bond

maturing at time T :

pt,T = E[exp
(− ∫ T

t

r(Xs)ds
)|Xt].

The yield for such a bond is then yt,T = − 1
(T−t) log pt,T . Note all expectations are

under Q, so the dynamics and estimates derived below are also under measure Q.

3. Bond Dynamics

Suppose we have a security paying u(XT ) at time T ≥ t. As noted above, its
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price at time t is

F (Xt, t) = E[exp
(− ∫ T

t

r(Xs)ds
)
u(XT )|Xt].

This is a function of Xt. Consequently there is a function φt = (φ1
t , φ

2
t , . . . , φ

N
t )′ ∈ RN ,

where φi
t = F (ei, t), such that

F (Xt, t) = 〈φt,Xt〉 .

Now

exp
(− ∫ t

0

r(Xs)ds
)
F (Xt, t) = exp

(− ∫ t

0

r(Xs)ds
) 〈φt,Xt〉

= E[exp
(− ∫ T

0

r(Xs)ds
)
u(XT )|Ft],

and so is a (Q,Ft) martingale.

Differentiating we have the following Itô representation:

exp
(− ∫ t

0

r(Xs)ds
)
F (Xt, t) = F (X0, 0) +

∫ t

0

(− r(Xs) exp (−
∫ s

0

r(Xv)dv
) 〈φs,Xs〉 ds

+
∫ t

0

exp
(− ∫ s

0

r(Xv)dv
)[〈 dφs

ds
,Xs〉+ 〈φs, AXs〉

]
ds

+
∫ t

0

exp
(− ∫ s

0

r(Xv)dv
) 〈φs, dMs〉 . (3.1)

We are using here the representation

F (Xs, s) = 〈φs,Xs〉,

as above; consequently dF (Xs, s) = 〈dφs,Xs〉+ 〈φs, dXs〉. Further, the semimartingale

form of the Markov chain is:

Xt = X0 +
∫ t

0

AXvdv + Mt (3.2)
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where {Mt} is a (Q,Ft) martingale. For the derivation of (3.2) see Elliott, Aggoun

and Moore (1995). The left side of (3.1) is a martingale; therefore, the bounded variation

terms on the right side of (3.1) must be the identically zero process. That is

exp
(− ∫ s

0

r(Xu)du
)
[−r(Xs) 〈φs,Xs〉 + 〈 dφs

ds
,Xs〉+ 〈φs, AXs〉 ] = 0. (3.3)

Now r(Xs) = 〈r,Xs〉 where r = (r1, r2, . . . , rN )′ and r(Xs) 〈φs,Xs〉 =

〈 diag r ·φs,Xs〉, where diag r is the matrix with r on the diagonal. Therefore, from

(3.3), with A∗ denoting the transpose of matrix A,

〈 dφs

ds
,Xs〉+ 〈A∗φs,Xs〉 − 〈diag r · φs,Xs〉 = 0 for all Xs.

Consequently, φs is given by the system of equations

dφt

dt
= (diag r − A∗)φt

with terminal condition

φT = u = (u1, u2, . . . , uN )′,

where u(XT ) = 〈u,XT 〉.
Write B = diag r −A∗, so φt = e−B(T−t)u and the price at time t ≤ T of a

security paying u(XT ) at time T is

〈φt,Xt〉 = 〈e−B(T−t)u,Xt〉.

A zero-coupon bond corresponds to taking u = 111 = (1, 1, . . . , 1)′ so its price at

time t ≤ T is F (Xt, t) = 〈e−B(T−t)111,Xt〉.

4. Filtering and Model Estimation

We have shown the zero-coupon bond price which expires at time t+τi, i = 1, . . . ,m,
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is

F i(Xt, t) = E[exp
(− ∫ t+τi

t

r(Xs)ds|Xt]

= 〈e−Bτi111,Xt〉.

Our hypothesis now is that the X process represents unobserved factors which would

give rise to bond prices F i(Xt, t) in some ‘ideal’ world. That is, we suppose the

state process Xt and the corresponding prices F i(Xt, t) are not observed directly.

Rather we observe these prices F i(Xt, t) in noise for the different times to maturity

τ1, . . . , τm, at discrete times t1, t2, . . . , tk, . . . . As F i(Xt, t) > 0 we suppose the

noise is multiplicative, that is, we suppose that what we actually observe are the quantities

F i(Xt, t)e〈σ̂
i ,Xt〉bi

t, i = 1, . . . ,m, where bi
t ∼ N(0, 1), t = tj , j = 1, 2, . . . , k, . . .

and σ̂i =
(
σ̂i(1), σ̂i(2), . . . , σ̂i(N)

)′
. (Note that theoretically this model would allow

bond prices greater than one; in practice these are not observed.) In the estimation theory

developed below the Gaussian random variables b, representing noise, could be replaced

by other random variables, such as those with ‘long tails’.

Equivalently, we suppose we observe the yield values in additive noise:

yi
t = − 1

τi
log F i(Xt, t) − 〈σ̂i,Xt〉

τi
bi
t,

i = 1, . . . ,m, t = t1, t2, . . . , tk, . . . .

Write σi(j) = −σ̂i(j)/τi and

σi =
(
σi(1), σi(2), . . . , σi(N)

)′
.

Also,

− 1
τi

log F i(Xt, t) = − 1
τi

log 〈e−Bτi111,Xt〉

= 〈gi,Xt〉
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for gi ∈ RN , i = 1, . . . ,m. Here gi =
(
gi(1), gi(2), . . . , gi(N)

)
and gi(j) =

− 1
τi

log 〈e−Bτi111, ej〉. Suppose the observation times t1 ≤ t2 ≤ t3 ≤ . . . are equally

spaced, that is, tj+1 − tj = s > 0, and write ` = t`,

eAs = P.

Then we have a discrete time version of the state process X` = Xt` , ` = 1, 2, . . . , k, . . .

with

X` = PX`−1 + M`

where M` is an (F`, Q) martingale increment. The multivariate observation process

y has dynamics

yi
` = 〈gi,X`〉+ 〈σi,X`〉 bi

`, 1 ≤ i ≤ m, ` = 1, 2, . . . , k, . . . .

The filtering and estimation algorithms for the parameters P = (pij), gi, σi are given

in the Appendix.

5. Application

The results of the paper were applied in an example using data on the yields of

3-month and 6-month U.S. Treasury bills and 10-year and 30-year U.S. bonds. In what

follows, the choice of the value of parameter N is discussed, the data are described, and

the results of parameter estimation and yield prediction are presented and evaluated.

5.1. The Choice of N

In the estimation procedure proposed above, parameter N, which represents the

size of the state space of the Markov chain, is the only parameter which is not estimated.

Rather, a value is assigned to N which can be thought to represent the number of states

of the world, e.g. ‘good’ and ‘bad’.
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The determination of the optimal value of N, for a particular data set, is an impor-

tant problem which has been considered in the literature. Although this problem cannot

be resolved using the likelihood ratio test, a number of proposals have been advanced to

address it.1 In this paper, we do not explore this issue further, other than to compare the

results obtained when N is assigned different values. However, it is interesting to note

that in the regime-switching model, discussed in Hamilton (1988, 1994) for example, in

which the state or regime of a time series process is modelled as a Markov chain, a state

space of size two is typically assumed.

The model that we propose here requires the estimation of N2 +2mN parameters,

where m equals the number of securities being considered (four, in this case). Thus, the

dimensionality of the model increases rapidly as N increases in size. From a numerical

point of view, a smaller value of N is, therefore, preferable, unless our results are

sensitive to the value assigned to N and superior for large N. Also, there is evidence,

reported in what follows, that suggests that the model is overfitting the data; this provides

further support for assigning N a smaller, rather than larger, value.

5.2. Data Description

We assembled a data set consisting of 270 weekly observations on the yields of 3-

month and 6-month U.S. Treasury bills and 10-year and 30-year U.S. coupon bonds. The

data were compiled by the Royal Bank of Canada and published in The Financial Post.

The sample period ran from January 17, 1992 to June 21, 1997.

Table 1 provides descriptive statistics for the yield data, demonstrating that the

yield curve was typically upward sloping during the sample period. If the entire period is

considered, yield volatilities, as measured by standard deviations, appear to decline with

maturity. However, if we consider the two subperiods, before mid-1994 and after mid-1994,

a reverse pattern is observed; that is, yield volatilities increase with maturity. Also, the

earlier period coincides with a relatively low short-term rate regime and the later period

1For more on this issue, see Hamilton (1994), pages 698-699.
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with a relatively high short-term rate regime.

5.3. Analysis and Results

A computer program, written to implement the estimation procedure proposed in

Section 4, was run on the data set. The data were processed in 18 groups of observations,

the first group consisting of 100 yield vectors and subsequent groups consisting of 10 yield

vectors each. At the end of each of the 18 passes through the data, parameter estimates

were updated using the formulas given in the paper. As well, price estimates were obtained.

To start, a value of two was assigned to parameter N. Because the first group

of observations consists of 100 yield vectors, a value of N in excess of 15 would be

inappropriate since it would result in a situation where the number of parameters to be

estimated exceeds the number of observations.

Table 2 gives the initial values that were assumed for the distribution of the state of

the Markov chain, that is, for E[X0], and for the matrices g and σ. All entries in

the transition matrix, A, were assigned an initial value of 1/N. Table 2 also reports

the re-estimated values of these parameters after the eighteenth pass through the data.

Estimated prices are also reported. Note that the columns of the g and σ matrices

and the price vector correspond, respectively, to the 3- and 6-month Treasury bills and the

10- and 30-year bonds.

To assess the predictive performance of the model, we calculated predicted yields

using the formula:

E[yi
l+1 | y1, . . . , yl] = 〈gi, AX̂l〉

where X̂l = E[Xl | yl], i = 1, . . . ,m, and l = 1, 2, . . . , k, . . . . At the end of each

pass through the data, predicted yields for the following week were obtained for each of

the four securities considered. We then regressed actual yields on predicted yields for each
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of the securities in turn, using the model:

Actual yield = α + β ∗ Predicted yield + ε .

The regression results obtained were then assessed on the basis of the following criteria

proposed by Fama and Gibbons (1984): (1) conditional unbiasedness, that is, an intercept,

α, close to zero, and a regression coefficient, β, close to one; (2) serially uncorrelated

residuals; and (3) a low residual standard error. Table 3 reports the results. For each

of the four securities considered, the results suggest that the first criterion, conditional

unbiasedness, is satisfied. However, the standard error of the estimate of α is relatively

large in all four cases. Also, while the results for the 3- and 6-month Treasury bills indicate

that the test for serially uncorrelated residuals is inconclusive, evidence for the 10- and

30-year bonds supports the hypothesis that residuals are not autocorrelated.

Figures 1 to 4 provide plots of actual yields and predicted yields for the 3- and 6-

month Treasury bills and the 10- and 30-year bonds, respectively. They also give standard

error bands for the predicted yields, derived using the method of cross-validation. To apply

this method, we divided the data in half. The first 135 observations were processed in 18

groups, the first group consisting of 50 observations and subsequent groups consisting

of 5 yield vectors each. At the end of each of the 18 passes through the data, a yield

prediction for the following week was obtained. For each of the securities in turn, the

predicted yields were then compared to the actual yields, residuals were recorded, and the

standard deviation of the residuals was calculated. The second set of 135 observations

was similarly processed and a set of 18 vectors of predicted yields obtained. These values

were plotted, along with the corresponding actual yields, in Figures 1 to 4. Standard

error bands around the predicted yields were derived by adding and subtracting to each

predicted yield an amount equal to the product of a critical value, 1.96, and the standard

deviation of the residuals derived using the first 135 observations.

The use of cross-validation to determine the standard error bands was deemed nec-
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essary because evidence suggested that the model was overfitting the data. This evidence

included the observations that our data on Treasury bill and bond yields are not highly

variable; our estimates of yield volatility, as reported in the σ matrix, are small in value;

and standard error bands for predicted yields, calculated using the following formula:

〈gi, AX̂l〉 ± 1.96
√

gi′(diagAX̂l)gi + σi′(diagAX̂l)σi − [〈gi, AX̂l〉]2 ,

i = 1, . . . ,m and l = 1, 2, . . . , k, . . . , are too narrow in width. Thus, it was deemed

appropriate to derive the standard error bands using cross-validation methods.

Although possible overfitting of the data militates against increasing the value of

N, the analysis was repeated for some alternative N values to determine whether the

results appear sensitive to changes in the value of N. Tables 4 and 5 report results, of the

type given in Table 2, for the cases N = 4 and N = 6, respectively. The estimated

values reported here are similar in magnitude to those given earlier in Table 2. Tables 6

to 8 report results, of the type given in Table 3, for the cases N = 4, N = 6, and

N = 9, respectively. These results lead to conclusions identical to those reached earlier

for Table 3.

6. Conclusion

Our model of the short rate process gives rise to expressions for yields which in-

corporate two random components: a Markov chain X and a Gaussian noise term b.

Filtering techniques, using new results presented in Elliott, Aggoun and Moore (1995),

enable us to estimate not only X but also the parameters of the model. Empirical work

on bond prices show that a small state space for X is better and that our model predicts

yields quite well.
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Appendix

With a state process X`, ` = 1, 2, . . . , having dynamics

X` = PX`−1 + M`

and a multivariate observation process Y with components

Y i
` = 〈gi,X`〉 + 〈σi,X`〉bi

`, 1 ≤ i ≤ M, ` = 1, 2, . . .

we are, therefore, in a situation analogous to the Hidden Markov Models discussed in
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Elliott (1993), (see also the book by Elliott, Aggoun and Moore (1995)). The differences

are that

a) the observation process is multidimensional, as discussed in Section 7 of Elliott

(1993), and

b) the observations have the form mentioned in Section 8 of Elliott (1993).

Following Elliott (1993), we recall that the analysis takes place under a probability

measure Q for which the {yi
`} are i.i.d. N(0, 1) random variables. (Note this

change of measure is a mathematical artifact and is different to the equivalent martingale

measure Q which gives rise to the prices.)

In fact we suppose we have a probability measure Q on (Ω,F) such that under

Q :

a) X`, ` = 1, 2, . . . , is a Markov chain with transition matrix P, so that

Xn = PXn−1 + Mn,

where E[Mn|Fn−1] = 0, (here E denotes expectation under Q), and

b) yi
`, 1 ≤ i ≤ m, ` = 1, 2, . . . is a sequence of N(0, 1) i.i.d. random variables.

Write φ(x) = (2π)−1/2 exp (−x2/2) and set

γi
`

=
φ
(
(yi

` − 〈gi,X`〉)/〈σi,X`〉
)

〈σi,X`〉 φ(yi
`)

γ
`

=
m∏

i=1

γi
`

and
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Λn =
n∏

`=1

γ` for n ≥ 1.

Write {G`} for the complete filtration generated by the processes X and y; {Y`}
will denote the complete filtration generated by y.

The probability measure Q can be defined by putting

dQ

dQ
|Gn = Λn.

If we define bi
` = (yi

`−〈gi ,X`〉)
〈σi,X`〉 it can be shown, as in Elliott (1994), that under Q

the bi
` are i.i.d. N(0, 1) random variables, that is, under Q

yi
` = 〈gi,X`〉+ 〈σi,X`〉 bi

`,

so the yi give noisy observations of the state X. However, Q is an easier measure

mathematically with which to work.

If {H`} is any {G`} adapted sequence we write

σn(Hn) = E[ΛnHn|Yn].

A version of Bayes’ Theorem (see [4]) implies

E[H`|Y`] =
E[Λ`H`|Y`]
E[Λ`|Y`]

=
σ`(H`)
σ`(1)

, say, (A.1)

where σ`(H`) = E[Λ`H`|Y`] is an unnormalized conditional expectation of H` given

Y`.
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Write Γi(yn) =
m∏

j=1

φ
(
(yj

n−gj (i)
)
/σj(i)

)
σj(i)φ(yj

n)
. In particular consider

σn(Xn) = E[ΛnXn|Yn]

= E
[
Λn−1γnXn

( N∑
j=1

〈Xn, ej〉
)
|Yn

]

(
because

N∑
j=1

〈Xn, ej〉 = 1
)

=
N∑

j=1

E[Λn−1Γj(yn)ej〈PXn−1 + Mn, ej〉|Yn]

=
N∑

j=1

〈Pσn−1(Xn−1), ej〉Γj(yn)ej

= Γ(yn)Pσn−1(Xn−1) (A.2)

where Γ(yn) is the diagonal matrix with (Γ1(yn), . . . ,ΓN (yn)) on the diagonal. Sup-

pose Nrs
n =

n∑
`=1

〈X`−1, er〉 〈X`, es〉; then Nrs
n is the number of jumps from state er

to es up to time n. Similar calculations give

σn(Nrs
n Xn) =

N∑
i=1

〈Pσn−1(Nrs
n−1Xn−1), ei〉 Γi(yn)ei

+ 〈σn−1(Xn−1), er〉 Γs(yn)psres.

With Jr
n =

n∑
`=1

〈X`−1, er〉, the occupation time in er,

σn(Jr
nXn) =

N∑
i=1

〈Pσn−1(Jr
n−1Xn−1), ei〉 Γi(yn)ei

+ 〈σn−1(Xn−1), er〉
N∑

i=1

Γi(yn)pirei.

With f(y) a function of y and

Gr
n(f) =

n∑
`=1

〈X`, er〉 f(y`)
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σn

(
Gr

n(f)Xn

)
=

N∑
i=1

〈Pσn−1

(
Gr

n−1(f)Xn−1

)
, ei〉 Γi(yn)ei

+ 〈σn−1(Xn−1), er〉
N∑

i=1

Γi(yn)pirf(yn)ei.

Now for any scalar process Hn

σn(Hn) = 〈σn(HnXn),111〉

= σn(Hn〈Xn, 1〉).

Therefore, summing the components, the above formulae give expressions for σn(Nrs
n ), σn(Jr

n)

and σn(Gr
n(f)). As noted in Elliott (1994), we consider HnXn because, unlike Hn

alone, closed form recursions are obtained. Also, the normalizing factor in (4.1) is

σn(1) = 〈σn(Xn),111〉 = E[Λn|Yn].

Following Elliott (1994), the above estimates enable us to re-estimate the gi(j)

and σi(j) at time n as:

ĝi(j) = 〈gi, ej〉

= − 1
τi

log 〈e−Bτi , ej〉

= − 1
τi

log E
[
exp

(− ∫ τi

0

r(Xs)ds
)|X0 = ej

]

=
σn

(
Gj

n(yi)
)

σn(J j
n)

(A.3)

σ̂i(j) = σn(J j
n)−1

[
σn

(
Gj

n((yi)2)
)− 2gi(j)σn

(
Gj

n(yi)
)

+ gi(j)2σn(J j
n)

]
.

Also, the transition probabilities in the matrix P = (psr) can be re-estimated at

17



time n by

p̂sr = σn(Nrs
n )/σn(Jr

n).

Consequently, if we accept the model is reasonable, (and almost any process can be

approximated by a Markov chain), our algorithms give a recursive filter for the unobserved

chain. This in turn allows the re-estimation of the model parameters, which include the

yield prices for varying maturities. For example, with

F i(Xt, t) = E[exp
(− ∫ t+τi

t

r(Xs)ds
)|Xt]

= 〈e−Bτi111,Xt〉,

if t = t` so Xt` = X`

E[F i(X`, t`)|Y`] = 〈e−Bτi111, E[X`|Y`]〉

and

E[X`|Y`] =
σ`(X`)
σ`(1)

.

Here, σ`(X`) is given recursively by (A.2) and σ`(1) = σ`(〈X`,111〉) is the sum of the

components of σ`(X`). Furthermore,

− 1
τi

log 〈e−Bτi111, ej〉 = ĝi(j),

so the jth component of e−Bτi111 is exp
( − ĝi(j)τi

)
. The components ĝi(j) are

re-estimated in our model by equation (A.3).
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TABLE 1: Descriptive Statistics for Treasury Yields

1/92-6/97 1/92-6/94 7/94-6/97

Maturity Mean STD Mean STD Mean STD

3-month 4.30 1.01 3.27 0.50 5.12 0.35

6-month 4.46 1.02 3.42 0.47 5.29 0.37

10-year 6.61 0.70 6.48 0.79 6.71 0.61

30-year 7.02 0.57 7.07 0.61 6.97 0.54

Note: ’STD’ denotes standard deviation.
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TABLE 2: Starting values and parameter estimates – 3- and 6-

month Treasury bills and 10- and 30-year bonds; N = 2

E[X0] vector: (0.50, 0.50)

A matrix:

0
B@ 0.50 0.50

0.50 0.50

1
CA

g matrix:

0
B@ 0.00 0.00 0.00 0.00

−0.50 −0.50 −0.50 −0.50

1
CA

σ matrix:

0
B@ 0.50 0.50 0.50 0.50

0.50 0.50 0.50 0.50

1
CA

After the eighteenth pass:

E[X18 | Y18] vector: (0.90, 0.10)

A matrix:

0
B@ 0.89 0.91

0.11 0.09

1
CA

g matrix:

0
B@ 0.05 0.05 0.07 0.07

0.05 0.05 0.07 0.07

1
CA

σ matrix:

0
B@ 0.97 2.13 5.51 4.24

0.89 1.94 5.01 3.58

1
CA

Estmated prices: (0.99, 0.97, 0.51, 0.13)

Note: All entries in the σ matrix that was derived after

the eighteenth pass are to be multiplied by 10−6.
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TABLE 3: Regressions of actual yields on predicted yields – 3- and

6-month Treasury bills and 10- and 30-year bonds; N = 2

Term to maturity of security

Parameter 3-month 6-month 10-year 30-year

α 0.21 0.34 0.73 1.11

(0.22) (0.33) (0.96) (1.08)

β 0.97 0.95 0.89 0.84

(0.05) (0.06) (0.14) (0.15)

R-squared 0.97 0.93 0.71 0.65

Durbin-Watson

D statistic 1.17 1.21 1.94 1.88

s 0.14 0.19 0.33 0.32

Note: The numbers in parentheses are the standard errors of the

corresponding parameter estimates. ’s’ denotes the residual standard error.
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TABLE 4: Starting values and parameter estimates – 3- and
6-month Treasury bills and 10- and 30-year bonds; N = 4

Starting values:

E[X0] vector: (0.25, 0.25, 0.25, 0.25)

g matrix:

0
BBBBBBBB@

0.00 0.00 0.00 0.00

−0.25 −0.25 −0.25 −0.25

0.00 0.00 0.00 0.00

−0.25 −0.25 −0.25 −0.25

1
CCCCCCCCA

σ matrix:

0
BBBBBBBB@

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.50 0.50 0.50 0.50

0.50 0.50 0.50 0.50

1
CCCCCCCCA

After the eighteenth pass:

E[X18 | Y18] vector: (0.89, 0.04, 0.04, 0.04)

A matrix:

0
BBBBBBBB@

0.88 0.90 0.92 0.91

0.04 0.04 0.04 0.03

0.04 0.03 0.04 0.05

0.04 0.03 0.01 0.01

1
CCCCCCCCA

g matrix:

0
BBBBBBBB@

0.05 0.05 0.07 0.07

0.05 0.05 0.07 0.07

0.05 0.05 0.07 0.07

0.05 0.05 0.07 0.07

1
CCCCCCCCA

σ matrix:

0
BBBBBBBB@

0.96 2.13 5.51 4.28

0.84 1.84 4.73 3.34

0.84 1.85 4.76 3.37

0.83 1.78 4.61 3.18

1
CCCCCCCCA

Estimated prices: (0.99, 0.97, 0.51, 0.13)

Note: All entries in the σ matrix that was derived after

the eighteenth pass are to be multiplied by 10−6.
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TABLE 5: Parameter estimates – 3- and 6-month Treasury bills

and 10- and 30-year bonds; N = 6

After the eighteenth pass:

g matrix:

0
BBBBBBBBBBBBBBB@

0.05 0.52 0.07 0.07

0.05 0.05 0.07 0.07

0.05 0.05 0.07 0.07

0.05 0.05 0.07 0.07

0.05 0.05 0.07 0.07

0.05 0.05 0.07 0.07

1
CCCCCCCCCCCCCCCA

σ matrix:

0
BBBBBBBBBBBBBBB@

0.96 2.12 5.49 4.26

0.84 1.85 4.76 3.37

0.95 2.10 5.42 4.01

0.96 2.13 5.49 4.11

0.96 2.12 5.48 4.09

0.85 1.84 4.77 3.33

1
CCCCCCCCCCCCCCCA

Estimated prices: (0.99, 0.97, 0.51, 0.13)

Note: All entries in the σ matrix that was derived after

the eighteenth pass are to be multiplied by 10−6.
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TABLE 6: Regressions of actual yields on predicted yields – 3-

and 6-month Treasury bills and 10- and 30-year bonds; N = 4

Term to maturity of security

Parameter 3-month 6-month 10-year 30-year

α 0.21 0.35 0.75 1.12

(0.22) (0.32) (0.96) (1.08)

β 0.97 0.94 0.89 0.84

(0.05) (0.06) (0.14) (0.15)

R-squared 0.97 0.93 0.71 0.65

Durbin-Watson

D statistic 1.18 1.22 1.95 1.89

s 0.14 0.19 0.35 0.32

Note: The numbers in parentheses are the standard errors of the

corresponding parameter estimates. ’s’ denotes the residual standard error.
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TABLE 7: Regressions of actual yields on predicted yields – 3- and

6-month Treasury bills and 10- and 30-year bonds; N = 6

Term to maturity of security

Parameter 3-month 6-month 10-year 30-year

α 0.22 0.35 0.75 1.12

(0.22) (0.32) (0.96) (1.08)

β 0.97 0.94 0.89 0.84

(0.05) (0.06) (0.14) (0.15)

R-squared 0.97 0.93 0.71 0.65

Durbin-Watson

D statistic 1.19 1.23 1.96 1.89

s 0.14 0.19 0.35 0.32

Note: The numbers in parentheses are the standard errors of the

corresponding parameter estimates. ’s’ denotes the residual standard error.
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TABLE 8: Regressions of actual yields on predicted yields – 3- and

6-month Treasury bills and 10- and 30-year bonds; N = 9

Term to maturity of security

Parameter 3-month 6-month 10-year 30-year

α 0.20 0.32 0.74 1.12

(0.22) (0.32) (0.95) (1.07)

β 0.97 0.95 0.89 0.84

(0.04) (0.06) (0.14) (0.15)

R-squared 0.97 0.93 0.71 0.65

Durbin-Watson

D statistic 1.18 1.21 1.95 1.89

s 0.14 0.19 0.34 0.32

Note: The numbers in parentheses are the standard errors of the

corresponding parameter estimates. ’s’ denotes the residual standard error.
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