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ABSTRACT

Productivity Growth in the 1990s: Technology, Utilization, or Adjustment?

Measured productivity growth increased substantially during the second half of the 1990s.  This
paper examines whether this increase owes to an increase in the rate of technological change or
whether it can be explained by non-technological factors relating to factor utilization, factor
accumulation, or returns to scale.  It finds that the recent increase in productivity growth does
appear to arise from an increase in technological change.   Cyclical utilization raised measured
productivity growth relative to technology growth in the first part of the expansion, but lowered
it subsequently.  Factor adjustment leads to a steady-state understatement of technology growth
by measured productivity growth.  The understatement was greater in the second half of the
expansion than the first.  Changes in the distribution of inputs across industries with different
returns to scale lead to a modest understatement in the growth in technology.  Although the
increase technological change is most pronounced in durable manufacturing, technological
change also increased outside of manufacturing.
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1. Introduction

Measured productivity growth increased dramatically during the second half of the 1990s.  Does

this increase in productivity growth herald a new industrial revolution based on computers and

information technology?  Is this increase just a bit of temporary good luck?  Or is it merely

mismeasurement arising from the increase in effort, factor utilization, or factor accumulation that

accompanies a booming economy?

The answers to these questions cannot be definitive until more time passes.1  In

particular, it is very hard to address the question of whether the current good performance of

productivity is temporary. The boom in the stock market provides some ancillary evidence that

might bear on this question, yet it is subject to differing interpretations.2  Our approach, however,

is to limit our attention to the internal evidence on output and inputs and their cyclical

relationship.  These relationships will allow us to extract an estimate of technology from

productivity and therefore shed light on what has happened in the recent past, but these estimates

will to an extent leave open the question of the future of growth in technology.

A major contribution of this paper is to analyze two potentially offsetting cyclical factors

in measured productivity:  factor utilization and adjustment costs.  Attention to factor utilization

has a long history in productivity measurement.  The basic idea is that unaccounted-for changes

                                                

1 Recent papers examining these issues include Baily and Lawrence (2001), Gordon (2000),
Jorgenson and Stiroh (2000), Nordhaus (2000), Oliner and Sichel (2000), Stiroh (2001), and
Whelan (2000a).
2 For example, both Robert Hall (2001a) and Robert Shiller (2000) attribute the boom to
information technology, but Hall presumes that the stock market is reacting to underlying
fundamentals relating to information technology while Shiller believes that popular perceptions
about  information technology have given impetus to a speculative bubble.
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in utilization and effort will raise measured productivity without having any effect on true

technology.  Solow (1957) made a correction for utilization of capital in his seminal paper.  In

the productivity literature that followed, such adjustments were routine (either explicitly or by

averaging over the business cycle).  Though early real business cycle literature missed the point

about cyclical productivity, there has been a resurgence of attention to this issue.3

Adjustment costs similarly require that measured productivity be adjusted to yield an

estimate of technology.  Broadly speaking, adjustment costs reduce output to the extent that

productive resources are diverted from production to adjustment when firms undertake capital

accumulation or hiring.  Hence, when adjustment is increasing, output growth will be

temporarily damped, yielding an underestimate of technological change.

Adjustment costs have received less attention than utilization, at least in the recent

literature in macroeconomics.  Yet, they have a role in productivity measurement that is closely

linked to that of utilization.  First, if increases in factor utilization and increases in factor

adjustment are positively correlated, then the utilization and adjustment have opposite effects on

measured productivity.  Second, costs of adjustment presumably drive cyclical variation in

utilization.  If quasi-fixed factors were costless to adjust (i.e., not really quasi-fixed), then there

would be no need to pay for costly variation in their utilization.4 Hence, the recent literature that

                                                

3 Greenwood, Hercowitz, and Huffman (1988) is an early real business cycle model that does
incorporate variable utilization.  See Shapiro (1986b, 1993, 1996), Basu (1996), Basu and
Kimball (1997), and Burnside, Eichenbaum, and Rebelo (1995) for the importance of variable
utilization in cyclical productivity.
4 Adjustment and utilization need not move together.  First, the timing may be different, as we
find during the 1990s.  That is, since utilization is confined to a bounded range, it may return to
its long-run level at some point during in an expansion, whereas factor accumulation continues;
see Sims (1974).  Second, adjustment and utilization could even move in opposite directions.
For example, if capital depreciates in use, a high shadow cost of current capital relative to future
capital can decrease utilization and increase adjustment.
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emphasizes variable utilization implicitly or explicitly assumes some quasi-fixity or fixed cost.

We show how measurement of technology is affected by this inherent interaction when the

quasi-fixity is motivated by adjustment costs.5

This paper also accounts for a third effect that creates a wedge between measured

productivity and true technology.  Basu and Fernald (1997) show how shifts in the composition

of input growth across industries with differing returns to scale can create such a wedge.  Though

this effect is not important cyclically in the 1990s, it does have a role in the appropriate measure

of technology.

Factor adjustment can have both cyclical and steady-state effects on measured

productivity.  The steady-state effect comes from the drag of adjustment costs on growth from

steady-state capital accumulation.  This drag increases when investment rises, as it did in the

1990s.   Kiley (2001) also suggests that these effects might be substantial.

Factor utilization and adjustment play a potentially important role in understanding the

acceleration in productivity in the 1990s.  The 1990s began with a shallow recession.  Though

the time between the peak in second quarter of 1990 and the trough in first quarter of 1991 was

not particularly long, the speed of the recovery was unusually slow.6  Once growth accelerated,

there was a substantial cyclical contribution of utilization to measured productivity.  This

cyclical bounce in measured productivity, of course, simply offset the cyclical decline

experienced going into the recession.  This cyclical effect is quite standard, though it is important

                                                

5 Time to build would be an alternative explanation of the quasi-fixity.  We do not account for it
here apart from a one-period lag that it takes investment to enter the capital stock.  The costs of
reallocation of existing capital emphasized by Ramey and Shapiro (1998) are another channel for
delayed adjustment.  We lack information on reallocation for recent years, so we will not
investigate this channel.
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to keep track of it in assessing the performance of the 1990s.  We find that utilization contributed

about 1/2 percentage point per year to growth in the measured Solow residual in the 1992-1994

period as the economy recovered from recession.  Since then, utilization has bounced around

from year to year, but on balance, has contributed negatively to growth in the Solow residual,

and thus does not explain the increase in growth in the second half of the 1990s.

The 1990s are distinct, however, in the changes in factor accumulation, particularly that

of capital.7  Figure 1 shows the ratio of nominal nonresidential fixed investment to GDP over the

post-war period.  The 1990s experienced a boom in business investment of unprecedented size

and duration.  The increase in investment in the 1970s was as sharp, but not as prolonged.  In the

two other long expansions since the World War II – the 1960s and the 1980s – investment

peaked well before the end of the expansions.

Information technology equipment – computers plus telecommunications equipment –

has been a major part of the story.  Its share in total business fixed equipment investment

increased dramatically in the 1990s.  Figure 2 shows how during the 1990s, the share of

information technology investment in GDP rose from 3 percent to almost 6 percent.8  Much of

this information processing equipment has been purchased by the non-manufacturing sector.

                                                                                                                                                            

6 See Economic Report of the President (1994, pp. 56-7, 98-101).  The growth in output and
labor were both unusually slow.
7 In contrast with capital, the growth in labor in the 1990s, though substantial, is not atypical.
There was a substantial increase in labor supply from every margin – population, participation,
and the decline in the unemployment rate.  Yet, notwithstanding the drop in the unemployment
rate, the growth in labor input during the 1990s is quite similar to that in the 1980s boom.  See
Blank and Shapiro (2001) for a discussion of the role of labor supply in the recent expansion.
8 The change in real terms is even more dramatic owing to the very rapid price decline for
information technology.  Direct comparison of real quantities is, however, problematic owing to
the chain-weighting of the national accounts.  See Whelan (2000b).
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Our analysis will show how adjustment to this new level of investment has had an important role

in the timing of productivity change in the 1990s.

Note, moreover, that this increase in investment is not a typical cyclical phenomenon.

Late in the booms of the 1960s and 1980s, the ratio of investment to GDP declined as strong

output growth outpaced investment.  In contrast, only as of early 2001 (a decade into the

expansion) is there any sign of a peak of the investment rate in the current expansion, though

Figure 2 shows a hint of a peak in non-information processing investment in 1998.

A key issue for our analysis is the cyclical pattern of factor utilization.  As discussed

below, our proxy for factor utilization is average weekly hours.  The principle underlying our

utilization correction is that firms will push on each utilization margin – hours of workers, hours

of capital, and effort – so as to equalize the cost of using each margin of adjustment.  The theory

implies that an observed margin of adjustment, e.g., average weekly hours, can be used as a

proxy for other margins of adjustment, such as effort or number of shifts, which are more

difficult to measure.  Figure 3 shows this series for manufacturing (available since 1947) and the

private sector (available since 1964).  Average weekly hours increase in the beginning of

expansions, but reach their peak well before their end.  (See also Sims, 1974.)  Since quasi-fixed

factors adjust as an expansion proceeds, firms can cut back on costly utilization margins, e.g.,

increasing hours via overtime.  In the 1990s, there are two cycles in average weekly hours.  They

increased following the trough of the recession, but decreased in the middle of the decade, only

to increase again when growth accelerated in the second half of the decade.  As this second

expansion matured, they again decreased.

The extraordinary performance of investment in the 1990s raises the possibility that

adjustment costs play a nontrivial role in measuring technology.  In the next section of the paper,
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we outline our framework for measuring technology.  Our method corrects productivity

measurement for adjustment costs, factor utilization, and biases from scale economies and

reallocations of inputs across industries.  The following sections discuss the data, estimates, and

results.

2.  Theoretical Framework for Measurement

We seek to identify the technology component of the aggregate Solow residual in the 1990s.

Only this component of productivity growth will increase production and income in the long run.

In particular, although one must account for short-run deviations from constant returns and

perfect competition in estimating a time series for aggregate technical change, growth in

productivity due to increasing returns is not likely to be permanent.  We also allow for two other

biases in measuring technical change:  Unobserved changes in the utilization of capital and labor

and costs of adjusting the capital stock and the labor force.

Our method begins by estimating technical change at a disaggregated level, allowing for

non-constant returns to scale, variations in utilization, and adjustment costs.  Our approach

modifies Hall (1990), which in turn generalizes Solow’s classic (1957) paper.  We then define

aggregate technology change as an appropriately-weighted sum of the resulting sectoral

residuals.  Section 2.1 presents the basic framework, while sections 2.2 and 2.3 discuss how to

correct the sectoral residuals for changes in utilization and costs of adjustment, respectively.

Section 2.4 presents our method of aggregating sectoral technical change into an economy-wide
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index, and section 2.5 discusses the relationship between productivity growth and technical

change in the long run. 9

2.1 Sectoral Technical Change

We assume that the representative firm in each sector has a production function for gross output

of the form:

( ) ( )( ) ( )( ), , , 1 1i i i
i i i i i i i i i i i iY F S K E H N M Z I K R N= − Φ − Ψ . (1)

The firm produces gross output, Yi, using its capital stock Ki, employees Ni, and intermediate

inputs (materials and purchased services) Mi.  We assume that the capital stock and number of

employees are quasi-fixed, so their levels cannot be changed costlessly; the functions Φ and

Ψ give the costs of adjustment, where I and R are, respectively, the flows of investment and

hiring.  At this level of generality, Φ and Ψ may be convex or non-convex.

Firms may, however, vary the intensity with which they use these quasi-fixed inputs:  Hi

is hours worked per employee; Ei is the effort of each worker; and Si is the capital utilization rate

(i.e., capital’s workweek, the number of shifts). Total labor input, Li, is the product EiHiNi.  The

firm's production function Fi is (locally) homogeneous of arbitrary degree γi in total inputs.  If γi

exceeds one, then the firm has increasing returns to scale, reflecting overhead costs, decreasing

marginal cost, or both.  Zi indexes technology.

Following Solow (1957), we implicitly define technical change as the fraction of output

growth that cannot be attributed to the growth rate of inputs, via a first-order (log-linear)

                                                

9 Basu and Fernald (2001) provide detailed derivations and discussion of utilization, reallocation,
and aggregation corrections.
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approximation to the production function.  For any variable J, we define dj as its logarithmic

growth rate, approximated by 1ln( / )t tJ J − .  The log-linearization shows:

( ) ( )

* * *

1 2 3( )
( ) ( )

,

i i i i i i i
i i i

i i ii i

F K F EHN F M
dy dk da de dn dh dm

F F F

di dk dr dn dzφ ψ

      = + + + + +             

− − − − +
(2)

where 
1i

i

I

K
φ

∗′Φ =  − Φ 
, and 

1i
i

R

N
ψ

∗′Ψ =  − Ψ 
.

A star (*) indicates the steady-state value of a variable.  We wish to express the steady-

state output elasticities JF J F  as functions of observed variables, possibly up to a single

unknown parameter.  Note that the log-linear approximation requires that we treat the output

elasticities as constants.  Below we relate the output elasticities to observed factor shares and the

markup or the degree of returns.  In practice, we make the output elasticities constant by taking

the sample averages of the annual shares and assuming that returns to scale do not vary over

time.

A higher-order approximation to the production function (e.g., the second-order

Törnqvist) would estimate time-varying elasticities by using the high-frequency variation in

observed shares, but these would be meaningful only if we were sure that the high-frequency

fluctuations in observed factor prices correspond to changes in allocative prices for the marginal

factor.  For reasons discussed by Hall (1980) and Carlton (1983), we doubt that the observed
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cyclical changes in wages and materials prices are allocative.10  We therefore avoid these higher-

order approximations, although in theory they are of course more accurate.

The part of equation (2) that may be least familiar is the role of adjustment costs in what

is essentially a productivity growth relationship.  To understand this issue better, note that we

can write the drag on output growth coming from adjustment costs for, e.g., capital as:

1

I
d

K

′Φ  
 − Φ  

.

Note that the drag on output growth is proportional to the change in the investment-capital ratio.

If investment is a constant fraction of the capital stock (as in steady state), then adjustment costs

reduce the level of output, but do not affect its growth rate.  When interpreting the time series on

corrections to productivity growth coming from adjustment costs in Section 4, one needs to

remember that this correction is most important when investment is rising (or falling), and not

when investment is high but stable.

One of the seminal insights of Solow (1957) was that with constant returns, perfect

competition, and (implicitly) no adjustment costs, the output elasticities can be observed directly

– they are just the payments to each factor divided by total revenue.  Hall (1990) dropped the

assumption of constant returns to scale and perfect competition in the product market (but

assumed price-taking in factor markets), and showed that cost-minimization implies:

for , ,J J
J

F J P J
s J K L M

Y PY
µ µ= ≡ = , (3)

                                                

10 Since the zero-profit assumption is reasonable only in steady state, we would also have to
estimate a time-varying rental cost of capital, allowing for the costs of adjustment we discuss in
section 2.3.
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where µ is the markup of price over marginal cost and JP  is the (purchase or rental) price of each

factor.11  Note that the shares are defined to be the total cost of each factor divided by total

revenue; thus, they correspond exactly to Solow’s shares if and only if the firm makes zero

profit.  Otherwise, payments to factors that receive the profits (usually assumed to be capital, but

possibly labor as well) will exceed the cost of hiring those factors.

We generalize the derivations of Solow and Hall by explicitly modeling the quasi-fixity

of capital, K, and the number of workers, N, which changes our expressions for the output

elasticities.12  We use a dynamic cost-minimization framework to solve for the necessary Euler

equations for capital and labor.  See Appendix A for details. We find that the steady-state

elasticities are:

* *
* * *1 ( )
i i i Ki i

i i

F K r q
s

F PY

δµ φ µ φ+   = − = −      
(4)

and

* * * *
* * * * *2 ( )

,i i i Li i
i i i i

F EHN WL N N
r s r

F PY R R

ψ ψµ ψ µ ψ       = − + = − +              
(5)

where q* is the steady-state shadow value of capital (which may not equal the purchase price of

investment goods), and r* is the steady-state real interest rate.

Some intuition for the capital elasticity comes from noting that the markup times capital’s

share (the first term on the right-hand-side of equation (4)) equals the elasticity of market output,

                                                

11  These derivations require no assumption about the form of imperfect competition (e.g., static
monopoly or monopolistic competition).  For the purpose of cost-minimization the markup is
treated parametrically, although of course the firm solves for the optimal markup as part of its
more complex dynamic profit-maximization problem.
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Y, with respect to capital.  But in our setup, the elasticity of Y with respect to K does not equal

the elasticity of F with respect to K, since having more capital also reduces the adjustment cost

of investment.  Thus, Ksµ  strictly exceeds the elasticity of F with respect to K, by an amount

equal to φi, the elasticity of adjustment costs with respect to investment.

The intuition for the labor elasticity is similar.  Note that the elasticity with respect to N

has a similar form to the elasticity with respect to K, but with the subtraction of one additional

term.  That term represents the annuity value of the adjustment cost of hiring an additional

worker.  The reason that this term appears in the expression for labor but not for capital is that

capital implicitly pays its own adjustment cost, but the firm must pay the adjustment cost for

labor.  Since hiring an extra worker now leads to costs as well as benefits, one cannot a priori

sign the difference between Lsµ  and LF L F .  Depending on parameter values, the difference

may be positive or negative.

In order to construct the shares Jis∗ , one generally needs to calculate the rental cost of

capital.  We avoid this difficulty by assuming that firms make zero economic profits in the

steady state, so we take total cost as approximately equal to total revenue and follow Solow

(1957) in estimating capital’s share as a residual.  Rotemberg and Woodford (1995) discuss a

variety of evidence supporting the zero-profit assumption.

Substituting in our expressions for the output elasticities, we can write equation (2) in

terms of the markup of price over marginal cost, which comes directly from the optimization.

But we could equally easily, and without additional assumptions, express (2) in terms of returns

                                                                                                                                                            

12 As explained below, we assume that E, H and M may be varied without cost of adjustment
(although the firm may face upward-sloping factor supply curves for effort and hours per
worker).
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to scale, which is perhaps more intuitive when discussing a technological relationship.  Returns

to scale γi and the markup iµ  are linked by the following equation:

( )1i i isπµ γ− = , (6)

where isπ  is the share of pure profits in gross output and the markup equals one if the firm is

perfectly competitive.  Thus, as in Chamberlinian monopolistic competition, firms can charge

markups even if entry eliminates pure profits, but only if average cost exceeds marginal cost.

Since we are assuming that isπ  is zero in steady state, we can interpret the coefficient

multiplying the shares as the degree of returns to scale, γi.

We describe in Section 2.3 how we use additional information to calibrate the adjustment

elasticities φ and ψ.  Since terms in these parameters effectively become observable, we put them

on the left-hand side of our estimating equation.  Thus, that equation is:

( )

*

* * * *

* * * *

* *

( ) ( )

( )

( ) ( )

i i i i i i i i
i

i Ki i Li i i i Mi i

i Ki i i Li i i i i

i i i i i

r N
dy di dr dh dn dh

R

s dk s de dn dh s dm

s da s r N R de dz

dx du dz

ψφ ψ

γ

γ φ ψ ψ

γ γ

 + + + − +  
 = + + + + 
 − + − + + 

≡ + +

(7)

Writing the equation in this form makes it somewhat easier to interpret why terms like diφ

should appear symmetrically with the growth rate of market output dy.  The reason is that the

firm is actually producing two types of output – goods and services that it sells, and the

internally-used services of installing its new investment goods and training its new hires.  Total

output correctly computed should add these implicit services to the explicit market output (see

also Abel, 1999).
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Note that in principle, it does not matter whether the firm produces these installation

services in-house – using its own capital or labor – or out-sources them – hiring as an

intermediate input a systems integration firm, say, to install a new computer system.  In either

case, the firm has a joint product of observed market output and unobserved installation services.

Outsourcing the installation rather than doing the task in-house means the firm purchases those

installation services, so it affects the composition of inputs dxi on the right-hand-side of (7), as

the firm substitutes purchased intermediate services for its own capital and labor.

The next subsection presents our method for measuring dui.  Lack of an observable

counterpart to this variable is the only barrier to estimating equation (7).  Our primary interest is

to measure true technical change, dzi, which we cannot observe directly.

2.2  Controlling for Variable Factor Utilization

Utilization growth, dui, is a weighted average of capital utilization, Ai, and labor effort, Ei.  The

challenge in estimating firm or sectoral technology change using equation (2) is to relate dui to

observable variables.  We do so following Basu and Kimball (1997), who use the basic insight

that a cost-minimizing firm operates on all margins simultaneously, so the firm’s first-order

conditions imply a relationship between observed and unobserved variables.  Thus, increases in

observed inputs can, in principle, proxy for unobserved changes in utilization.  Shapiro (1986b)

shows that the excess output elasticity of worker hours relative to the number of workers

disappears when one explicitly accounts for changes in the number of shifts, which provides

direct support for the usefulness of hours per worker as a proxy for capital utilization.

Basu and Kimball (1997) show that under plausible conditions there is a simple,

observable proxy for variations in utilization.  In particular, if the sole cost of changing the

workweek of capital (the number of shifts) is that workers need to be compensated for working
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at night (a shift premium), then changes in hours per worker proxy appropriately for unobserved

changes in both effort and capital utilization.13  We are thus able to control for variable utilization

without assuming, unrealistically, that one can observe either the firm’s internal shadow prices of

capital, labor and output, or the true quantities of capital and labor input at high frequencies.  The

Basu-Kimball model uses only the cost-minimization problem and the assumption that firms are

price-takers in factor markets; it does not require any assumptions about the firm’s pricing and

output behavior in the goods market.

Details of the model are given in Appendix A.  Here we present the solution, and discuss

the intuition.  The appendix shows that

( )* * *( ) ( )i
i Ki i i Li i i i

i

du s s r N R dh
η φ ζ ψ ψ
ν

 
= − + − + 

 
, (8)

where idu  is the share-weighted change in capital and labor utilization, as defined in equation (7)

and, as before, idh  is the growth rate of hours per worker.

The parameter iζ  is the elasticity of effort with respect to hours per worker, reflecting the

fact that observed hours per worker should be an excellent proxy for labor effort.  From the

firm’s perspective, labor input is symmetric – it can come from either greater work intensity or a

longer workday.  In the model in the appendix we assume, loosely speaking, that the worker’s

disutility of labor is convex along both margins.  For example, workers’ marginal disutility for

working an extra hour per day increases as the workday becomes longer, thus requiring a firm to

                                                

13 Basu and Kimball (1997) generalize this model to allow the rate of depreciation to vary
depending on capital utilization, as in a variety of papers. This modification introduces two new
terms into the estimating equation at the end of this section, but Basu and Kimball cannot reject
the hypothesis that these terms are insignificant.  In any case, we have noted in previous work



15

pay an increasingly large “overtime premium” as it lengthens its workday.  Under these

assumptions, it always pays a firm to push along both margins simultaneously when it needs

more labor input from a fixed labor force – that is, to increase both hours per worker and effort.

Equation (8) also says that the change in hours per worker should be a proxy for changes

in the unmeasured workweek of capital, with i iη ν  the elasticity of shifts with respect to hours

per worker.  The parameter iη  indicates the rate at which the elasticity of labor costs with respect

to hours increases and iν  indicates the rate at which the elasticity of labor costs with respect to

capital utilization increases.  The reason that hours per worker proxies for capital utilization as

well as labor effort is that shift premia create a link between capital hours and labor

compensation.  The shift premium is most worth paying when the marginal hourly cost of labor

is high relative to its average cost, which is the time when hours per worker are also high.  The

faster the rate of growth of the overtime premium relative to the rate of growth of the shift

premium, the more firms will tend to use capital utilization as the dominant margin of

adjustment.

Putting everything together, we have an estimating equation that controls for variable

utilization:

( )

*

* * * * *

*

( ) ( )

( ) ( )

i i i i i i i i
i

i
i i i Ki i i Li i i i i

i

i i i i i

r N
dy di dr dh dn dh

R

dx s s r N R dh dz

dx dh dz

ψφ ψ

ηγ γ φ ζ ψ ψ
ν

γ ξ

 + + + − +  
 

= + − + − + + 
 

≡ + +

(9)

                                                                                                                                                            

(Basu, Fernald and Kimball, 1999) that including these terms barely affects estimates of
technical change.
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This specification controls for both labor utilization and capital utilization, as well as costs of

adjustment, non-constant returns to scale, and imperfect competition.  Since we treat the shares

and other parameters as constant, we can simply estimate a single coefficient on dh.  This

procedure does not allow us to estimate the structural parameters governing changes in

utilization, but that is not our objective.  We do estimate the markup γi that, as we show below, is

needed to aggregate our estimates of sectoral technical change.

2.3  Calibrating Adjustment Costs

Equation (7) can, in principle, be estimated directly to control for costs of adjustment (by putting

the terms in φ and ψ on the right-hand side).  As we discussed above, these costs can camouflage

the extent to which technical progress has been faster in a period like the 1990s, which has also

seen large increases in the rates of investment and hiring.  However, our attempts to estimate

equation (7) directly almost never produced estimates of adjustment costs that are significant

statistically.  We do not take this evidence as dispositive, however, since we are disregarding the

main sources of information usually used to estimate adjustment costs.  These are typically

estimates of the Euler equation for capital or a regression of investment on Tobin’s q.

In order to incorporate the information from these studies of adjustment costs, we

calibrate the φ andψ terms instead of estimating them.  We base this calibration on the marginal

adjustment cost function, that is, the derivative of output with respect to investment.  The

marginal adjustment cost function is a well-known object in the context of the capital

accumulation literature.  In the Euler equation literature, it is directly estimated.  In the q-

theoretic literature, the q investment function is derived by inverting the condition that marginal

adjustment cost equals q.  In this paper, we calibrate our parameters based on estimates of an

Euler equation.  The Euler equation attempts to quantify directly the parameter we require, that



17

is, the output loss from factor adjustment.  Moreover, the Euler equation estimates do not suffer

from the incredibly high estimates of adjustment costs typically found in regressions of q on the

investment rate.  Hall (2001b) follows the same procedure to calibrate adjustment costs in his

recent work on intangible capital.

Recall that

1

I

K
φ ′Φ =  − Φ 

is the elasticity of the adjustment cost with respect to the investment rate.  Marginal adjustment

cost, the partial derivative of output with respect to investment, is related to φ as

.
1

Y Y Y

I K I
φ′∂ Φ= − = −

∂ − Φ
(10)

Shapiro (1986a) estimates marginal adjustment cost from the Euler equation for capital

accumulation.  His parameterization of marginal adjustment cost is as follows

(1 )kk K

V
g I V

I
τ∂ = − ⋅ ⋅ −

∂
(11)

where V denotes real value added (as opposed to real gross output Y).  Using the steady-state

approximation that real value added is real gross output times one minus the materials share,

(1 )MV s Y= − , combining equations (10) and (11) allows us to calibrate φi for each industry i as

2(1 )

1
kk k

i
Mi

g I

s

τφ −=
−

(12)

where gkk = 0.0015 is Shapiro’s estimate of the the adjustment-cost parameter, sMi is the

industry-specific average materials share from our data, and τk and I are set to their average

values of 0.49 and 4.83 in Shapiro’s data.  On a value-added basis, (i.e., abstracting from the

materials share adjustment), the estimate of φ is therefore equal to 0.018 quarterly rate.  Though
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this estimate implies relatively rapid adjustment to steady state, adjustment costs are not trivial.

They account for 0.7 percent of output or about 9 percent of the cost of investment.

Our data are annual.  To convert the coefficient to an annual rate, we multiply it by

2 31 λ λ λ+ + + , where λ is the root of the Euler equation.  Shapiro’s estimates imply a root of

0.75, so the annualization factor is 2.7; this factor is smaller than mechanical multiplication by 4

owing to within-year adjustment of the capital stock.  Therefore, the estimate of φ is 0.05 at an

annual rate on a value-added basis.

Recall that φ is calculated at the steady-state I/K ratio.  Thus, the finding that φ is non-

zero implies that marginal q cannot equal one, even in steady state.

The case of labor adjustment costs, however, is rather different.  First, Shapiro’s

estimates of labor adjustment costs are mixed.  He finds that there are significant labor

adjustment costs for non-production workers, but not for production workers or their hours.

The data sets available to us do not separately report the employment of production and non-

production workers.  Second, Shapiro’s estimates pertain to gross flows of employment, as must

any sensible model of adjustment costs – it cannot be the case that a firm that hires 1,000

employees and fires 1,000 other employees suffers the same adjustment cost as a firm that does

zero hiring.  However, we are again constrained by data limitations – there is no consistent time

series of gross flows of employment by industry for the entire economy.  For these reasons, we

make the assumption that the marginal adjustment cost for labor is zero in the vicinity of the

steady state.  We freely admit that this assumption is strong and in some respects unsatisfactory,

and hope that future researchers armed with more extensive data sets will revisit this issue.  In

terms of the calibration, therefore, we henceforth assume that ψ = 0.  Note that out-of-steady
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state adjustment costs can nonetheless rationalize the variability of hours per work required for

our utilization adjustment.

2.4  Aggregate Technical Change

So far we have sketched a framework for measuring firm-level (in practice, industry-level)

technology shocks dzi, the residual in equation (2).  The natural question, therefore, is how the

sectoral shocks in the production of gross output are related to aggregate technical change in the

production of value added, in an economy with increasing returns to scale and imperfect

competition.  This section gives a condensed version of the analysis of aggregate productivity

growth with imperfect competition found in Basu and Fernald (1997), and uses that analysis to

motivate our definition of aggregate technical change.

Define value added as a Divisia index (that is, in growth rates in continuous time; the

chain-linked U.S. national income accounts approximate this index in discrete time):

( )
1 1
i Mi i Mi

i i i i
Mi Mi

dy s dm s
dv dy dm dy

s s

 −= = − − − − 
. (13)

From the production side of the national accounts identity, aggregate output is a Divisia index of

firm-level value-added.  In growth rates:

1

N

i ii
dv w dv

=
≡ ∑ , (14)

where iw  is the firm’s share of nominal value added:

V
i i

i V

P V
w

P V
≡ . (15)

The aggregate Solow residual is then defined as:

Vdp dv dx≡ − , (16)
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where Vdx  is the growth rate of aggregate capital and labor inputs, multiplied by the shares of

each factor in national income.  Note that since we are now considering the shares of capital and

labor in value added, the shares used to compute Vdx  sum to 1.  (Henceforth we use a

superscript V to denote the value-added version of variables previously defined in a gross-output

context.)

We now need to consider the value-added-augmenting form of increasing returns and

technical change.  Since value added is only a fraction of gross output, increasing returns in the

production of gross output translates to larger returns increasing returns in the production of

value added, and a gross-output-augmenting technology shock is a larger value-added-

augmenting technology shock.  Rotemberg and Woodford (1995) show that the precise formulas

are:

1

1
MiV

i i
i Mi

s

s
γ γ

γ
−

=
−

, and

1
V i
i

i Mi

dz
dz

sγ
=

−
.

We also define PL as the economy-wide average hourly wage (total payments to labor divided by

total labor hours) and PK as the average payment to a unit of capital (total payments to capital

divided by the aggregate capital stock).

Basu and Fernald (1997) show that taking a simple weighted sum of equation (2) over the

entire economy and substituting definitions (14)-(17) gives the following decomposition for

aggregate productivity:

( 1)

V

V V V V V
M K L

dp R du da dz

dx R R R R du da dzγγ γ γ
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= − + + + + + + +

(17)

where
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The key point to note about equation (17) is that it is qualitatively different from the firm-

level equation (2).  With a simple rearrangement (subtracting dxi from both sides) equation (2)

relates measured productivity growth in gross output to a scale effect, utilization and adjustment

corrections, and technical change.  Analogous terms are present in the expression for aggregate

productivity growth, but the RM, Rγ, and RK and RL terms are new.  The RM term corrects for

mismeasurement in value added:  Value added is computed using sMi as a measure of the output

elasticity of materials, but with increasing returns the output elasticity exceeds material’s share.

The Rγ term shows that the effect of increasing returns on productivity growth is not confined to

the average scale effect, the first term in equation (17), because if returns to scale vary across

sectors, productivity growth receives an extra boost if the sectors that have above-average

increasing returns also experience above-average input growth.

The RK and RL terms reflect possible heterogeneity in the marginal products of identical

factors.  We begin with the labor heterogeneity term, RL.  It is easier to explain the intuition

behind this term if we assume that there is a single type of worker, although our empirical
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procedure recognizes and corrects for heterogeneity in worker attributes.  The Solow residual

calculation assumes that the marginal product of all workers is identical, and equal to the

economy-wide average real wage.  Now suppose that in some sectors workers are unionized, or

firms pay efficiency wages.  Either would raise the industry wage rate above the competitive

level.  Since firms would still equate their marginal revenue products of labor to the wage,

marginal products would be higher than average in the sectors with labor market imperfections

(holding everything else constant).  Even if all labor markets are competitive, the fact that there

are adjustment costs of capital and labor would also prevent the marginal products of labor from

equalizing at all points in time.  In such situations the distribution of input growth would again

matter:  Productivity growth will receive an extra boost if labor input growth is higher in sectors

where labor has above-average marginal product.  The intuition for the RK term is identical,

although we believe that the heterogeneity in capital’s marginal product is due solely to

adjustment costs.

Equation (17) highlights an unfortunate implication of imperfect competition and

heterogeneity:  It shows that there is no unambiguous definition of aggregate technical change in

an imperfectly competitive economy.  Economists are used to defining economy-wide technical

change either from a top-down perspective, as the change in value added for given aggregate

inputs of capital and labor, or from a bottom-up perspective, as an appropriately-weighted

average of technical change at every firm.  Under perfect competition these two approaches

coincide, but this is no longer the case with imperfect competition.  The bottom-up perspective

says that aggregate technical change is just dzV.  But, as equation (17) shows, the ability of the

economy to produce final goods and services for given inputs of capital and labor generally

fluctuates if there are changes in markups or in the distribution of inputs across heterogeneous
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firms, even if aggregate inputs are held fixed and technology at every firm remains unchanged.

Thus, the top-down perspective would add all the R terms to dzV.

However, in the next section we argue that only dzV is responsible for long-run changes

in productivity, which are our primary interest in this paper.  We therefore define our measure of

aggregate technical change as equal to dzV only.14

Given this definition, equation (17) shows why we implement our corrections with

disaggregated data.   Measuring dzV properly requires us to estimate the dzi at a sectoral level,

and then aggregate using the observed shares, wi, and the estimated returns to scale parameters γi.

2.5 Productivity Growth and Returns to Scale in the Short and Long Run

The focus of our paper is on long-run productivity.  Productivity growth is the key to rising

living standards; Basu and Fernald (1997) show that productivity growth – measured almost

exactly as in Solow (1957) – is the right measure of welfare change for a representative

consumer.  The intuition for this result is that the consumer values extra output at the marginal

utility of wealth, but dislikes supplying more labor or capital by an amount equal to the marginal

utility of wealth multiplied by the real wage or the real rental rate.  Thus, the relative prices used

to compute the Solow residual measure the consumer’s marginal rate of substitution between

output and inputs even when – due to imperfect competition or increasing returns – they fail to

                                                

14 We can show that dzV is the unambiguous measure of technical change (in the sense that the
top-down and bottom-up definitions coincide) in certain models with imperfectly competitive
product markets (e.g., Rotemberg and Woodford’s (1995) dynamic general-equilibrium model).
However, this result is true only under certain restrictive conditions, which are satisfied in the
Rotemberg-Woodford model: factor markets must be competitive, and all firms must have
identical separable gross-output production functions, charge prices that are the same markup
over marginal cost, and always use intermediate inputs in fixed proportions to gross output.
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measure the social marginal rate of transformation between these goods.15  Importantly, to the

extent that productivity growth and technical change differ, it is productivity, not technology,

that is the key to welfare.  For example, the consumer does not care whether a boost in

productivity is due to superior technology or greater exploitation of scale economies – the extra

output still confers the same utility, and supplying the extra inputs still gives the same disutility.16

Thus, given that we wish to predict long-run productivity levels, our emphasis on

measuring technical change per se may seem misplaced.  As we showed above, short-run

productivity (correctly measured, hence net of utilization) can change for a variety of reasons

unrelated to technical change.

We have in mind, however, a model where the non-technological effects in equation (17)

do not operate in the long run, so that so that over long horizons productivity is driven solely by

technology.  In such a model, the distribution of inputs over firms of the same type (e.g., with the

same size markup) does not change in the long run, and neither does output per firm.  Whenever

a shock to the economy increases demand, since the number of firms is roughly fixed in the short

run, the increased production mandates a higher output per firm.  But if firms produce with fixed

costs of operation, the increased output will lead to increases in economic profit.  In the model

we have in mind, the increased profit would spur entry, and drive per-firm output and profits

down to their steady-state levels.  This is essentially the canonical model of Chamberlinian

                                                

15 This discussion has ignored taxes on wages and capital rents, which drive a large wedge
between the after-tax marginal products relevant for consumer optimization and the before-tax
payments used to measure factor shares in the standard Solow residual.  If the Solow residual is
to measure welfare, it must be calculated using factor prices as perceived by the consumer, i.e.,
after-tax prices.
16 Productivity growth must be measured net of utilization.  For example, both the firm and the
worker perceive extra effort as additional labor input, which requires additional compensation.
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imperfect competition, embedded in a growth setting.  As we argue next, this kind of model

makes the distinction between short- and long-run returns to scale advocated by Solow:

I would be inclined to try very hard to formulate some sort of increasing

returns to scale in the short run (when output is below capacity), combined

with a closer approximation to constant returns to scale in the long run

(Solow, 1990, p. 225).

It is worth elaborating on this point, since it is conceptually important for our approach.  Take,

for example, the issue of whether we should expect increasing returns at the firm level to drive a

wedge between productivity and technology in the long run.  By definition, returns to scale

equals the ratio of average cost to marginal cost, and increasing returns implies that average cost

falls with scale.  Abstracting from adjustment costs for simplicity, assume that firms of type i

have the production function

( ) ( ), , , , , ,i i
i i i i i i i i i i i i i i i iY F A K E H N M Z G A K E H N M Z C= = − , (18)

where iC  is a fixed (per-period) cost and G is homogeneous of constant degree iρ .  Then, for

this type of firm, returns to scale at any point in time, iγ , equals i i
i

i

Y C

Y
ρ +

.

In order for increasing returns to contribute to long-run productivity growth, firms must

always expand their scale of operations, thereby reducing unit costs forever.  First, this is

impossible if (as we think likely) increasing returns are due solely to fixed costs (i.e., ρ ���������

these costs are spread over more and more units of output, returns to scale must fall

asymptotically to ρ.  Second, even if ρ > 1, as long as C > 0 firms will make ever-larger profits

                                                                                                                                                            

The division of inputs into observed factors and unobserved utilization is motivated solely by
issues of measurement.
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as their scale of operations expand indefinitely (assuming no change in their degree of market

power).  But presumably these rising profits would trigger entry by other firms, thus limiting the

expansion in the size of existing firms.  As new firms enter, scale economies would be reduced

because per-firm output would fall.  If output returns exactly to its pre-shock level at each type of

firm i, then firm-level returns to scale in that group will return to the pre-shock iγ .

In such a world, however, long-run aggregate returns to scale would always be 1,

regardless of the returns to scale at any firm.  (Intuitively, assuming zero economic profits in the

long run, the long-run industry supply curve is horizontal at the steady-state level of average

cost, even if average cost exceeds marginal cost at every firm.)  Thus, aggregate returns to scale

would tend back to their steady-state value of 1 after a shock as the number of firms adjusts.

Furthermore, assuming homothetic demand, the distribution of inputs across the different

categories of output would also be unchanged, thus implying no long-run reallocation effects.

This of course raises the interesting question of the length of time that this process of

adjustment might take.  If entry is relatively slow, the economy might reap extra productivity

benefits by exploiting firm-level increasing returns for a non-negligible period of time.  On the

other hand, if new firms also produce new products, correctly-measured productivity growth

might suffer because the steady-state number of varieties is not available during the transition

period.  Our decision not to model explicitly the process of adjustment of aggregate returns to

scale can be justified if we assume that these two effects roughly offset one another.

Rotemberg and Woodford (1995) show that one can formalize a simpler version of the

model we have sketched verbally.  (In their model firms are not heterogeneous.)  Thus, we take

as a working approximation the hypothesis that in the long run productivity and technology

coincide.  However, when measuring technical change, it is important to allow for short-run
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deviations from constant returns.  (For example, in the Rotemberg-Woodford model the number

of firms is essentially fixed in the short run, so with firm-level increasing returns, short-run

productivity growth exceeds technical change when output is rising.)  Thus, we allow for

deviations from constant returns and perfect competition in the short run when estimating the

extent of technical change from data over short periods of time, as in the recent productivity

boom that is our primary interest.  But in projecting the long-run impact of that boom, we

believe that only the technical change is permanent.

3. Data and Estimates

In selecting the data for this paper, we face a trade-off between the span of the data and its

timeliness.  There are two well-established sources of data for U.S. multifactor productivity at

the aggregate and sectoral level – the BLS’s multifactor productivity data, and the data

assembled by Dale Jorgenson and his associates.17  Both datasets control carefully for changes in

the composition of the capital stock and the labor force.  Nevertheless, for our purposes, both

datasets suffer disadvantages.  The Jorgenson industry dataset covers the entire U.S. economy at

a disaggregated level, but unfortunately, ends in 1996 – too early to address the questions in this

paper.  The BLS dataset now runs through 1999,18 but its detailed industry coverage excludes

non-manufacturing – the vast majority of the economy.

Given these shortcomings, we construct our own dataset on industry inputs and outputs.

We obtain data on industry gross output and intermediate inputs from the Bureau of Economic

                                                

17 See Jorgenson, Gollop, and Fraumeni (1987) for a detailed discussion of the construction of
these data.  Jorgenson and Stiroh (2000) provide a recent use and discussion of these data, which
we will henceforth refer to as the “Jorgenson-Stiroh” dataset.
18 The updated data through 1999 were released in April 2001, after this paper was completed.
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Analysis’s Gross Product Originating dataset.  On a consistent basis, the BEA data are available

only from 1987 through 1999.  We combine these data with estimates of labor hours from the

BLS and estimates of industry capital stocks from the BEA.  Appendix B describes our dataset

(which we will refer to as the “BEA dataset”) in greater detail.  Relative to the BLS and

Jorgenson-Stiroh datasets, the major shortcomings of our dataset are the short time period of

coverage (1987-1999) and the lack of controls for changes in the composition of capital and

labor.

Since our sample period with the BEA dataset is too short for reliable estimation, we use

the Jorgenson-Stiroh dataset for all estimation. Those data are available from 1959 to 1996.  (We

begin all estimation in 1965, however, because that is the first year for which we have consistent

data on hours growth for all industries, as discussed below.)  Note that it would be inappropriate

to splice the BEA data onto the Jorgenson-Stiroh data.  The BEA’s data are based on the recent

rebenchmark of the National Income and Product Accounts while the Jorgenson-Stiroh are not.

In addition, they have conceptually different measures of capital and labor.  Finally, we do not

want to splice the data at the same point where there might have been a shift in underlying

growth rates.  Hence our strategy with respect to the data is as follows:

• Estimate parameters using the long span of the Jorgenson-Stiroh data.

• Apply these estimated parameters to the BEA data.

Though we do not report results based on BLS’s data, we have referred to them to check our

results.

As discussed in Section 2, the equation we use to extract an estimate of technological

change from output growth, input growth, and adjustment terms is as follows:

*
i i i i i i i idy di dx dh dzφ γ ξ+ = + +
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where i index industry, time subscript is suppressed, and an industry-specific constant is

suppressed.   The residual, dzi, plus the industry-specific constant, is our estimate of the period-

by-period growth in technology for industry i.  We estimate the returns to scale/markup

parameter, *
iγ , and the utilization parameter, ξi.  We calibrate the adjustment cost parameter φi

using the procedure discussed in Section 2.3.  For data on output growth, dyi, and share-weighted

input growth, dxi, we use Jorgenson and Stiroh’s data.  For the capital adjustment term, dii, we

use industry data from the BEA’s Tangible Wealth dataset.

For the dhi term in the utilization adjustment, we used the growth rate of average weekly

hours of production workers (where the log level is detrended with a Hodrick-Prescott filter),

since that is the series that is available for the full sample period.  (See Appendix B for further

details.)  Hours per worker has low frequency movements not related to cyclical utilization.  For

the private sector as a whole, there is a downward trend in hours per worker until about 1990,

when the trend flattened.  See Figure 3.  In manufacturing, the pattern is reversed.  Hours per

worker are flat until 1990 and then may show an upward trend.  Since our utilization measure is

the cyclical change in hours per worker, getting the trend right is important.  Given the change in

the trend at the end of the sample, there is substantial uncertainty about the correct trend.

To estimate the equation, we allow for heterogeneity in the coefficients where there is

sufficient variation in the data and signal in the instruments to provide precise estimates.  In

other cases, we pool the estimates across industries.  For our main results, we allow the returns to

scale parameter *
iγ , and utilization parameter, ξi, to vary across the broad sectors, specifically,

durable manufacturing, non-durable manufacturing, and non-manufacturing.  Within these
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sectors, we constrain the coefficients to be equal.19  The calibrated adjustment cost parameters,

φi, reflect industry heterogeneity in materials shares as in equation (12).  The estimated equation

also includes industry-level constants to allow for differences in growth rates across industries,

i.e., the estimated equations have industry-level fixed effects.  These constants are added back in

to our estimate of growth in technology.

The returns-to-scale and utilization parameters are estimated by instrumental variables

owing to the simultaneous determination of inputs and technology.  Valid instruments need to be

correlated with the various transformations of inputs on the right-hand side of the equation above

and uncorrelated with technology.  We use oil prices (current and one lag), defense spending

shocks [current and one lag; from Ramey and Shapiro (1998)], and monetary policy shocks [one

lag; from Christiano, Eichenbaum and Evans (1996)] as instruments.20  These should be

correlated with demand for inputs, but not with technology.  The instruments appear to be

adequate in terms of first-stage fit.

Table 1 gives the estimates of the returns-to-scale and utilization parameters.

The returns to scale (also the markup) parameter *
iγ  is precisely estimated.  Outside of non-

durable manufacturing, where it is significantly below one, the estimated parameter is very close

to one.  These estimates confirm recent finding that widespread increasing returns to scale are

                                                

19 In earlier work, Basu and Fernald allow for more heterogeneity across industries.  In the
preliminary work for this paper we found that allowing for this heterogeneity does not have
much effect on the aggregate estimate of technology although it does make a difference for the
industry-by-industry estimates of scale versus utilization effects.
20 We thank Charles Evans for providing us with updated quarterly estimates of money shocks
from 1960 through 1999.  We sum the quarterly series to obtain an annual series. In principle, we
could use the four quarterly shocks as instruments, but the first-stage F-statistic falls sharply.
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generally absent in the data.  The estimates of the utilization-correction parameter ξi are less

precise, though taken together, they are statistically significant.

4. Corrections to Productivity and the Growth of Technology:  Results

4.1. Aggregate Results

The purpose of the estimates presented in the previous section is to yield an estimate of the

growth in technology.  The aggregate estimate of technology is, rearranging equation (17),

dzV = dp – du – da – R

where dp is the Solow residual, du is the utilization correction, da is the adjustment-cost

correction, and R is the reallocation/returns-to-scale correction.  The corrections du, da, and R

are based on the estimated and calibrated parameters.  To produce the sectoral and private-

industry aggregate, the industry-level estimates are aggregated according to the formulas given

in Section 2.4.

Figures 4 though 7 report the year-by-year estimates of technology and its components.

Table 2 gives the estimates of growth in technology averaged over various periods.   Table 3

decomposes these estimates of the growth in technology into growth in output, inputs, and the

corrections to the Solow residual.

The top left panel of Figure 4 shows the growth rates of output and input and the Solow

residual. The bottom left panel cumulates these growth rates to yield log levels normalized to be

100 in 1989, the peak of the expansion of the 1980s. We use this same format with growth rates

in the top panel and log levels in the bottom panel in all of Figures 4 through 7.  Figure 4 shows

the decline in output and input going into the recession and sustained recovery following the

trough in early 1991.  The Solow residual, except for a blip in 1993, has a similar pattern.  Its
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growth increases in the second half of the 1990s as the gap between output and input growth

widens.  The question for this paper is, of course, how much of this increase represents

acceleration in technology and how much is due to cyclical factors?

The middle panels of Figure 4 gives the corrections to the Solow residual that allow us to

give an answer to this question.  The top middle panel shows the three corrections to the Solow

residual.  These corrections – for utilization, adjustment, and reallocation – are subtracted from

the Solow residual to provide an estimate of the period-by-period growth rate in technology.

Again, the second panel of the figure cumulates these percent changes.  The utilization correction

is, as expected, highly cyclical.  In the peak year of 1989, utilization added over a percentage

point to output and hence would lead the Solow residual to overstate technological change.

During the recession years of 1990 and 1991, utilization is a subtraction from output.  It

rebounds sharply during the recovery year of 1992 and bounces back and forth during the

remainder of the decade.  This behavior of utilization is what one would expect for a mature

recovery.  As capacity expands, firms can economize on utilization.  There is a second peak in

utilization when output accelerated in the second half of the 1990s.

The other corrections are much less volatile.   In the recession year of 1990 and in 1991,

the first year of the weak recover, the adjustment-cost correction is neutral to weakly positive,

that is, lower than steady-state investment was a net boost to measured output growth.  With the

onset of the investment boom in 1993, it was a drag on growth and therefore causes the Solow

residual to understate the growth in technology.  From 1992 forward, the adjustment-cost

correction is negative and increasing, so it gives an increasing boost to our estimate of growth in

technology relative to the growth in the Solow residual.
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The final correction is what we term reallocation.  This term is driven by movements of

inputs across industries when the production function is not constant returns to scale.  The

reallocation correction uniformly adds to output (i.e., leads to an understatement of growth in

technology were this term to be neglected).  Again, this correction is being driven almost

exclusively by the estimated diseconomies of scale in non-durable manufacturing.  There is a

slight acceleration of the correction in 1996, but since this correction is otherwise so smooth it

simply affects the baseline and not the timing of the growth in technology.

In the top middle panel of Figure 4, the high volatility of utilization makes it appear to

swamp the other two corrections.  The persistence of the other corrections, however, makes this

impression incorrect.  The bottom panel shows that the cumulative effect of all the adjustments is

significant.  Despite the rebound in utilization from 1992, the net effect of utilization summed

through 1999 is about neutral for the level of productivity.  Hence, though the cyclical factors

raised utilization early in the period, our estimates imply that the acceleration in productivity –

especially late in the decade – is not due to cyclical factors.

The cumulative effect of the adjustment-cost correction over the decade is significant.

Note that this adjustment will be nonzero in the long run because the estimates underlying our

calibration find costs of adjustment even in steady state.  An implication of this analysis is that

traditional estimates of the growth in technology based on the Solow residual understate the

growth in technology because they fail to add the growth in unmeasured output (internal

installation services) to the residual.  As shown in Table 3, we estimate that this correction to the

Solow residual is 0.3 percent per year over the entire expansion from 1987 to 1999.  It is even

higher in the second half of the 1990s when investment continued to boom as the expansion

progressed.
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Though less volatile than the utilization correction, the adjustment-cost correction does

affect the timing of the estimates of growth in technology.  In the 1990 to 1992 period, low

investment provided a boost to output, but high investment has been a steady subtraction since

1992.  Hence, adjustment affects the timing of the acceleration in technology.  It is easiest to see

this in the right hand panels of Figure 4, which plots the Solow residual and the estimate of

technological change.  Again, the top panel shows growth rates while the bottom panel

cumulates them.    The factor adjustment correction adds to output in 1990 through 1992 and

subtracts thereafter, so making this correction tends to accelerate estimated technology beginning

in 1992.  Hence, the main result of accounting for adjustment is the finding that the acceleration

in productivity began earlier in the 1990s than is implied by other estimates.

Table 2 shows the annual growth rates of the estimates of technology over various

periods.  Taking into account the corrections for utilization, adjustment, and reallocation, there is

a marked acceleration in technology at the end of 1990s.  During the period 1995-1999, we

estimate that technology grew at an annual rate of 3.1 percent.  This rate is over a percentage

point faster than the 2.0 percent rate over the 1987 to 1998 period as a whole.  It also represents

an acceleration compared with the longer, Jorgenson-Stiroh sample shown in the Appendix

Table 1.  Bearing in mind that one needs to add on the order of one percentage point to the

Jorgenson-Stiroh rates to make them comparable to the BEA data owing to the quality

adjustments, the last few years’ growth has been substantially faster than the overall period.

Moreover, the last few years roughly equal the strong performance of technological change

during the 1960 to 1973 period.

Let’s summarize our main findings concerning the aggregate:
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1. Cyclical utilization accounts for some of the behavior of measured productivity during

the early part of the 1990s expansion, but does not explain the acceleration in

productivity at the end of the decade.

2. Adjustment costs from the onset of the boom initially obscured the acceleration in

technology.  In steady state, they add to correctly-measured technology relative to the

Solow residual.

3. Reallocation affects the baseline growth in technology, but has not contributed

substantially to the increase in its growth rate.

4. There is evidence of a substantial increase in the pace of technological change in the later

half of the 1990s.

We conclude this section by noting that the main findings appear quite robust to datasets

and parameter estimates.  In terms of data, all datasets that we know of show an acceleration in

productivity; different datasets (such as the BLS multifactor dataset) may show different

magnitudes for the acceleration in productivity (and – after applying our corrections for

utilization, adjustment, and reallocation – technology) but those differences do not affect the

qualitative conclusion that an acceleration took place.  In terms of parameters, consider, for

example, the coefficients on hours growth.  Reducing the coefficient on hours would reduce the

potential impact of utilization – but that would simply strengthen the conclusion that utilization

cannot explain the acceleration in productivity.  Raising the coefficient on hours would have its

largest effect in the 1992-94 period, and hence, would once again strengthen the conclusion that

utilization does not explain the acceleration in productivity.
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4.2. Sectoral Results

The remaining lines of Table 2 report the results for the durable manufacturing, non-durable

manufacturing, and non-manufacturing.  To summarize the results,

1. Durable manufacturing has the fastest rate of growth in technology and the largest

acceleration.  In the last half of the 1990s, technology in durable manufacturing increased

over 6 percent per year.

2. Non-durable manufacturing shows very slow growth in technology recently.

3. Non-manufacturing also shows acceleration in technology relative to its recent

performance.

Figures 5, 6, and 7 and Table 3 show the detail underlying these calculations.  In durable

manufacturing, there has been a substantial acceleration of output and inputs.  This acceleration,

of course, corresponds to the boom in investment discussed in the introduction.  The utilization

adjustment in durable manufacturing is very volatile, but has had little cumulative effect over the

1990s.   The point estimate of returns to scale in durables is slightly greater than one (Table 1)

and input growth has been strong, so the reallocation/scale effects are positive over the period.

The adjustment-cost correction also plays a small role, with the pattern being similar to the

aggregate.  Its cumulative magnitude durable manufacturing is the same as in the aggregate

private sector (see Table 3A and 3B), but the growth in technology is so large in aggregate

manufacturing that the Solow residual and technology in Figure 5 move strongly together.

The data on non-durable manufacturing during the 1995-1999 period are somewhat

surprising.  The BEA’s data show an acceleration in intermediate inputs.  It is enough so that

non-durable manufacturing value added actually falls despite healthy increases in gross output

(see Figure 6 and Table 3C). This feature of the data warrants further investigation.  It does
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imply negative growth in the Solow residual.  Figure 6 shows that the reallocation/scale

correction is substantial.  Given that the point estimates of returns to scale are less than one in

non-durable manufacturing (Table 1), the growth in input leads to some negative reallocation

correction.  Even more importantly, the rising materials-output ratio in the BEA data leads to a

substantially negative materials-reallocation term.  This correction increases our estimate of

technology relative to the Solow residual (see right panels of Figure 6 and Table 3C).  Hence,

technology is growing modestly.  In contrast, the Solow residual is negative.

Non-manufacturing, like durable manufacturing, shows strong growth in output, input

and the Solow residual throughout the 1990s in the left panels of Figure 7.  The corrections on

non-manufacturing are not as volatile as in manufacturing, mainly owing to the much lower

volatility of utilization (middle panels of Figure 7).  The adjustment correction has an important

impact in the early part of the decade with the same pattern as in the aggregate data.

Non-manufacturing contributes a substantial fraction of the acceleration in technology in

the second half of the 1990s.  Growth in private sector technology increased 2.9 percentage

points, from 1.2 percent to 3.1 percent.  Growth in non-manufacturing technology increased by

1.6 percentage points, from 0.9 percent to 2.7 percent.  Because non-manufacturing constitutes

most of GDP, the non-manufacturing acceleration in technology accounts for most of the

aggregate acceleration, despite the greater acceleration in durable manufacturing.  Moreover, the

acceleration in durable manufacturing was offset somewhat by the deceleration in non-durable

manufacturing.  In particular, non-manufacturing makes up about 80 percent of private output, so

it accounted for 1.3 percentage points of the 2.9 percent point acceleration in private technology.

Hence, while non-manufacturing contributes less than its share to the acceleration in technology,

its contribution is nonetheless substantial.
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The finding that non-manufacturing is so important in the increase in technology is

important.  It shows that the improvement in the pace of technological progress was quite

widespread in the 1990s.  In particular, it was not merely concentrated in the production of

computers and other information technology goods, as claimed by Gordon (2000).  Our results,

and those of Baily and Lawrence (2001), Nordhaus (2000), Oliner and Sichel (2000), and Stiroh

(2001), suggest by contrast that the acceleration in technology was widespread.

5. Discussion

Our results show a marked increase in the rate of technological change since 1995.  These results

complement Oliner and Sichel (2000), who also find an increase in the rate of technological

change.  Oliner and Sichel’s work carefully focuses on the role of information technology

investment.  They do not, however, make the corrections to the Solow residual necessary to

transform it into a reliable estimate of technological change.  High utilization might account for

their results.  On the other hand, the high rate of investment that underlies the technology boom

could be an offsetting factor pulling down the Solow residual relative to technology.

Our finding of a technology acceleration in durable manufacturing seems relatively

uncontroversial – even New Economy skeptics such as Gordon (2000) agree that in computers,

telecommunications, and other areas of durable manufacturing, technology has been improving

at a rapid rate.  Outside of durable manufacturing, however, our results contrast sharply with

those of Gordon, who argues that the acceleration in labor productivity largely reflects cyclical

factors.  Gordon uses the quarterly labor-productivity data for the private business and durable

manufacturing sectors to “back out” a series on labor productivity outside of durable

manufacturing, which he then attempts to decompose econometrically into trend versus cycle.
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Because of data limitations, Gordon’s mapping is not necessarily precise – output in durable

manufacturing is a gross output measure, whereas private business output is a measure of final

sales (or value added).  Changes in the materials-output ratio will, for example, change the

mapping. Our industry data and the form of our utilization correction are also important

differences.

Our results provide added support for the view that recent increase in the pace of

productivity does correspond to an increase in technology:  The corrections for utilization and

adjustment have subtle effects on the timing of growth in the 1990s, but do not explain the

notable acceleration in the latter half of the 1990s.

Is the increase in the growth of technology sustainable?  Our results do not provide

evidence one way other or the other.  Nothing in our technique of calculating technical change

can detect momentum.  Our framework does, however, provide one forecast that is favorable for

the level of technology.  Suppose the investment boom experienced in the 1990s is reversed.

Our framework suggests, all other things equal, such a reversal will provide a once-and-for-all

boost to the estimated level of productive capacity.  During the boom, resources are being

diverted to adjustment.  If this pace of adjustment slows, those resources will be available

permanently for production.  While the effect on the growth rate is temporary, the effect on the

level of output is permanent.
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Appendix A:  Derivation of the Utilization Proxy21

Following Basu and Kimball (1997), we model the firm as facing adjustment costs in both

investment and hiring, so that both the amount of capital (number of machines and buildings), K,

and employment (number of workers), N, are quasi-fixed.  We believe that quasi-fixity is

necessary for a meaningful model of variable factor utilization.  Higher utilization must be more

costly to the firm; otherwise factors would always be fully utilized.  If there were no cost to

increasing the rate of investment or hiring, firms would always keep utilization at its minimum

level and vary inputs using only the extensive margin, hiring and firing workers and capital

costlessly.  Only if it is costly to adjust along the extensive margin is it sensible to adjust along

the intensive margin, and pay the costs of higher utilization.

We assume that the number of hours per week for each worker, H, can vary freely, with

no adjustment cost.  In addition, both capital and labor have freely variable utilization rates.  For

both capital and labor, the benefit of higher utilization is its multiplication of effective inputs.

We assume the major cost of increasing capital utilization, S, is that firms may have to pay a shift

premium (a higher base wage) to compensate employees for working at night, or at other

undesirable times.22  Variations in the workday of capital (i.e., the number of shifts) are perhaps

the most plausible reason for variations in utilization.  The variable-shifts model has had

considerable empirical success in manufacturing data, where, for a short period of time, one can

observe the number of shifts directly.  We take S to be a continuous variable for simplicity.  The

cost of higher labor utilization, E, is a higher disutility on the part of workers that must be

compensated with a higher wage.  We allow for the possibility that high-frequency fluctuations

                                                

21 The material in this appendix is taken from Basu, Fernald, and Kimball (1999).
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in this wage might be unobserved, as could be the case if wage payments are governed by an

implicit contract in a long-term relationship.

We consider the following dynamic problem, in which an industry’s representative firm

minimizes the present value of expected costs:

( ) ( ) ( )1

, , , , ,
Min 1 ,

s

t j M
S E H M I R

s t j t

E r WNG H E V S P M
∞ −

= =

 
+ +    

 
∑ ∏ (A1)

subject to

( ) ( )( ) ( )( ), , , 1 1Y F SK EHN M Z I K R N= − Φ − Ψ (A2)

( )1 1t t tK I Kδ+ = + − (A3)

1t t tN N R+ = + (A4)

I is gross investment, and R is hiring net of separations.  ( ) ( ),WG H E V S  is total compensation

per worker (which may take the form of an implicit contract, and hence not be observed period-

by-period).  W is the base wage; the function G specifies how the hourly wage depends on effort,

E, and the length of the workday, H; and V(S) is the shift premium.  MP  is the price of materials.

δ is the rate of depreciation.  We omit time subscripts where this practice does not cause

confusion.

We assume that Ψ and Φ are convex, and make the appropriate technical assumptions on

G in the spirit of convexity and normality.23

                                                                                                                                                            

22 Basu and Kimball (1997) extend this model to allow utilization to affect the rate at which
capital depreciates.
23 The conditions on G are easiest to state in terms of a function Θ defined by

ln G(H,E) = Θ (ln H, ln E).  Convex Θ guarantees a global optimum; assuming Θ11 > Θ12 and
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There are six intra-temporal first-order conditions and two Euler equations, for the state

variables K and N.  To conserve space, we analyze only the optimization conditions that affect

our derivation. Let λ be the multiplier on constraint (A2); λ has the interpretation of marginal

cost.  Numerical subscripts denote derivatives of the production function F with respect to its

first, second and third arguments, and literal subscripts denote derivatives of the labor cost

function G.  The conditions that we require are those for optimization with respect to choices of

S, H, and E.  These are:

S: ( ) ( )1 1 1 ( , ) ( )F K wNG H E V Sλ ′− Φ − Ψ = (A5)

H: ( ) ( )2 1 1 ( , ) ( )HF EN wNG H E V Sλ − Φ − Ψ = (A6)

E: ( ) ( )2 1 1 ( , ) ( )EF HN wNG H E V Sλ − Φ − Ψ = (A7)

Note that the firm’s uncertainty about future variables does not affect our derivations, which rely

only on (some of) the intra-temporal equations for optimization.  Uncertainty affects the

evolution of the state variables (as the Euler equations would show) but not the minimization of

variable cost at a point in time, conditional on the levels of the state variables.  Our utilization

proxy depends only on this static variable-cost minimization.

Equations (A6) and (A7) can be combined into an equation implicitly relating E and H:

( )
( )

( )
( )

, ,

, ,
H EH G H E EG H E

G H E G H E
= . (A9)

The elasticity of labor costs with respect to H and E must be equal, because on the benefit side

the elasticities of effective labor input with respect to H and E are equal.  Given the assumptions

on G, (A9) implies a unique, upward-sloping E-H expansion path, so that we can write

                                                                                                                                                            

Θ22 > Θ12 ensures that optimal H and E move together.
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( ) ( ), 0.E E H E H′= > (A10)

Equation (A10) expresses unobservable intensity of labor utilization E as a function of the

observed number of hours per worker H.  We define ( ) ( )H E H E Hζ ∗ ∗ ∗′≡ as the elasticity of

effort with respect to hours.  Log-linearizing, we can write the growth rate of effective labor

input as:

( ) ( )ln 1d EHN dn dh de dn dhζ= + + = + + . (A11)

To find a proxy for capital utilization, we combine (A5) and (A6).  Rearranging, we find:

1

2

( , ) ( )

( , ) ( )H

F SK F G H E SV S
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(A12)

The left-hand side is a ratio of output elasticities, which (as in Hall, 1990) one can show

are proportional to factor cost shares.  We denote these cost shares by Kα  and Lα .  Define g(H)

as the elasticity of cost with respect to hours, and v(S) as the ratio of the marginal shift premium

to the average shift premium:

( ) ( )( )
( )( )

,

,
HH G H E H

g H
G H E H

= (A13)

( ) ( )
( )v

SV S
S

V S

′
= . (A14)

With these definitions, we can write equation (A12) as:

v( ) ( )K

L

S g H
α
α

= . (A15)

The labor cost elasticity with respect to hours given by the function ( )g H  is positive and

increasing by the assumptions we have made on ( ),G H E .  The labor cost elasticity with respect

to capital utilization given by the function v(S) is positive as long as there is a positive shift
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premium.  We assume that the shift premium increases rapidly enough with S to make the

elasticity increasing in S.  We also assume that K Lα α  is constant, which requires that F be a

generalized Cobb-Douglas in K and L.24

Under this assumption, the log-linearization of (A15) is simply

ds dh
η
ν

= . (A16)

where η  is the elasticity of g with respect to H and ν is the elasticity of v with respect to S.  The

parameter η indicates the rate at which the elasticity of labor costs with respect to hours

increases.  The parameter ν indicates the rate at which the elasticity of labor costs with respect to

capital utilization increases.

                                                

24 Thus, we assume ( ) ( )( ),K LY Z SK EHN M
α α= Γ , where Γ is a monotonically increasing

function.  Basu and Kimball (1997) argue that estimating the general case where the ratio of the
elasticities is a function of all four input quantities would demand too much of the data and the
instruments.
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Appendix B:  Data Sources
Overview

We use three datasets on industry output and inputs.

The first is industry data from Dale Jorgenson and Kevin Stiroh, which runs from 1959

through 1996.25  Unfortunately, much of the recent interest in productivity developments focuses

on events after 1996, so we augment the Jorgenson-Stiroh dataset with other data.

The second dataset (which we use mainly for comparison) is from the Bureau of Labor

Statistics, which provides measures of input, output, and TFP from 1948 to 1999 for the private

business economy, for aggregate manufacturing, and for two-digit industries within

manufacturing.  Unfortunately, there is no industry coverage outside of manufacturing.  This lack

of coverage is a substantial shortcoming, since a major question is how pervasive the

productivity acceleration is outside of durable manufacturing.26

The third dataset, which we constructed, attempts to overcome some of the shortcomings

of these first two datasets, and forms the core of the results we present.  This dataset starts in

1987 and runs through 1999, and covers the entire non-farm, non-mining business economy at

(roughly) the same level of disaggregation as the Jorgenson-Stiroh dataset.  Our dataset has the

advantages of being recent and comprehensive.  It does not, however, incorporate adjustments

for capital and labor composition.  Our dataset is also relatively short (because of the availability

of consistent measures of gross output and intermediate inputs from the Bureau of Economic

Analysis.)

                                                

25 These data are available (as of November 6, 2000) at Dale Jorgenson’s web site,
http://www.economics.harvard.edu/faculty/jorgenson/data.html.
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Our basic strategy is to use the Jorgenson-Stiroh data to estimate all parameters.  We then

apply these estimated parameters to our dataset, to construct a parallel set of estimates of

productivity and technology growth from 1987 to 1998.  Appendix Table 1 provides results

analogous to Table 2 for these data.

Details

The Jorgenson-Stiroh dataset is disaggregated at roughly the two-digit level within

manufacturing and the one-digit level outside manufacturing.27  For each of the 29 non-farm,

non-mining private industries in our sample, the data include real measures of gross output Y,

capital input K, labor input L, and intermediate inputs M.  For each variable, Jorgenson and

Stiroh also provide a corresponding price; by construction, nominal factor payments are equal to

the nominal value of output (excluding taxes).

Jorgenson tries to ensure that the data are as consistent as possible with production

theory.  Notably, inputs are adjusted for composition, or “quality.”  Some workers, for example,

are paid more than others, which under standard neoclassical assumptions should be associated

with differences in marginal products. Similarly, computers depreciate quickly, and rapidly lose

their value (largely because technological progress has led to rapid declines in prices), while

structures depreciate slowly and have price increases; thus, computers must have a higher

                                                                                                                                                            

26 Data through 1999 were released only in April 2001, too late to be used extensively in this
paper.
27 Jorgenson differentiates between motor vehicles (SIC 371) and other transportation equipment
(SIC 372-379).  Otherwise, the manufacturing industries match the two-digit SIC classifications.
Jorgenson combines wholesale and retail trade into a single “trade” sector.  In our dataset for the
more recent period, we combine electric and gas utilities into a single ‘utilities’ industry, because
of data limitations.  For this reason, we compute Tornquist indices of output and inputs for
Jorgenson’s two utilities industries before estimating parameters.
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expected service flow than structures to ensure that same expected return. The quality corrections

in the dataset attempt to take account of these differences in marginal products.

Our theory of utilization suggests that utilization should be proportional to hours per

worker.  We use data from the BLS establishment survey to measure hours per worker of

production and non-supervisory workers (the vast majority of the workforce).  In most cases, the

data from the establishment survey provides a reasonably consistent time series by industry since

1947 for most two-digit manufacturing industries, and since 1964 for most other industries.  For

electronic and electrical equipment (SIC 36) and instruments (SIC 38), the hour-per-worker

series begins only in 1988.  That is, of course, fine for our main focus on the 1990s; but for other

purposes, we would like to be able to create a series that goes back farther.  We assume that

before 1988, hours per worker grows at the same rate as in total durable manufacturing.  For

services, the data begin in 1989; we assume hours per worker is flat before that date (given that

they are relatively flat after that date).  We downloaded all data from Haver Analytics at a

monthly frequency, seasonally adjusted (except for finance-insurance-and-real-estate, where we

used the NSA data, because the SA data are available only since 1995).

To estimate the trend, we applied the Hodrick-Prescott filter to the log of the level of

average weekly hours using monthly data from 1964 to 1999.  We converted to an annual

frequency by averaging the monthly log-levels; and then took first differences to calculate dhi.

We estimated a different trend for each industry.  We set the Hodrick-Prescott coefficient to

10,000,000.  Using lower values put too much of the high-frequency variation into the trend so

that, by construction, utilization could not vary much.  The utilization measure, dhi, is the change

in the deviation of the log of average weekly hours from their industry-specific Hodrick-Prescott

trend.
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Using other data sources, such as the Current Population Survey  (downloaded from the

BLS web site) or data from Dale Jorgenson on hours per employee (non-production as well as

production), does not appear to substantively affect our results.  For example, one alternative

series we looked at was the CPS series for hours per worker of full-time (more than 35

hours/week) employees.  Conceptually, hours per worker of full-time workers seems preferable,

but unfortunately the series only begins in 1979.  Because of the greater time period of coverage,

and because results were largely unaffected, we relied primarily on the establishment-survey

measure.

For our constructed industry dataset from 1987 to 1999, we use a variety of data sources.

Gross output, intermediate inputs, and nominal factor shares (which, again, sum to one by

construction) are from the Bureau of Economic Analysis, Gross Product by Industry dataset.

These data are available through 1999, and are available at

http://www.bea.doc.gov/bea/dn2/gpo4799.exe (Downloaded January 15, 2001).   Several issues

arise with these data:

• A consistent time series is only available from 1987 onwards; we have not attempted to

bridge the pre- and post-1987 data (which requires dealing with some differences in

industry definitions) to create a longer time series.

• Electric and gas utilities are combined in the BEA data, so we created a corresponding

Divisia aggregate for Jorgenson’s data.

• Wholesale and retail trade are distinguished in the BEA data (and in most of the other

data which follow), which we aggregate to get a composite trade sector to match

Jorgenson’s data.
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• We remove owner-occupied housing from the finance, insurance, and real estate industry,

since our measures correspond to private business output.

Industry investment and net capital stock data are available from the BEA fixed-asset

dataset.  These data are discussed in the September 2000 Survey of Current Business, and are

available from the BEA web site at http://www.bea.doc.gov/bea/dn2/facd.htm (downloaded

March 2001).  We take the capital stock at the beginning of the year as our measure of capital

input during the year.  Note the following:

• Conceptually, these data do not make the composition corrections made by Jorgenson or

in the BLS multifactor productivity dataset.  That is, they are capital stock measures (a

wealth measure), not capital input measures (a productivity measure).28

• Comparing the growth rate between 1995-99 to the rate between 1990 and 1995, the

capital stock accelerated by 1.3 percent per year (from 1.5 percent in the first half of the

1990s to 2.8 percent in the second half of the 1990s).  By contrast, in the BLS MFP

dataset, capital input accelerates by 2.6 percent per year, from 2.7 percent in the first half

to 5.3 percent in the second half.  Hence, omitted capital-composition effects can account

for perhaps 0.4 percentage points of the technology acceleration we find ((2.6-1.3)*.33).

• As with the output data, we remove owner-occupied housing from the stock of capital in

the finance-insurance-and-real-estate industry as well as from the economy-wide

aggregate.  (In 1999, owner-occupied housing accounted for $7.3 billion of the $19.8

billion in tangible private capital).

                                                

28 Note:  The BEA methodology is discussed in Department of Commerce (1999).  The
methodology section from that reference is available at
http://www.bea.doc.gov/bea/ARTICLES/NATIONAL/NIPAREL/Meth/wlth2594.pdf
(downloaded November 6, 2000).
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Annual industry data on total employment, and on hours per worker of production and

non-supervisory workers, are available from the BLS.  We estimate industry hours as the product

of these two series, and take that as our measure of industry labor input.  We do not control

separately for the hours per worker of non-production and supervisory workers.  (This probably

has a relatively small effect, since the majority of workers are, in fact, production or non-

supervisory, and the hours of non-production workers are likely to be correlated with those of

production workers.)  Note the following:

• We do not make any adjustments for labor composition at this point.  Preliminary

estimates by Dan Aaronson and Dan Sullivan of the Federal Reserve Bank of Chicago

suggest that labor quality grew 0.6 percent per year from 1988 to 1995, but only 0.3

percent per year from 1995 to 2000.29

• According to BLS estimates in the April 2001, labor quality improved contributed 0.6

percent from 1990-95, and by 0.4 percent 1995-99.30

• Hence, by omitting a correction for labor quality we probably understate the acceleration

in technology in the second half of the 1990s.

In all cases where we need to aggregate data across industries (for example, when we

create indices for durable manufacturing), we use Törnqvist indices, which provide a close

approximation to the chain-linked indices used in the national accounts  (See Whelan (2000b) for

a discussion).

                                                

29 Forthcoming in the Federal Reserve Bank of Chicago’s Economic Perspectives in 2001.
30 From mfp2ddot.txt, obtained from
ftp://146.142.4.23/pub/special.requests/opt/mp/mfptable.zip, downloaded May 18, 2001.
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Instruments

We use the following as demand-side instruments:

1. The price of oil, measured as the PPI for crude petroleum deflated by the GDP deflator.

2. Ramey-Shapiro (1998) military buildup dates.  These dates are a dummy variable, equal

to one in 1950, 1965, and 1980, and zero otherwise.  It measures upward shifts in

government defense spending.

3. Money shocks from an identified VAR, using an updated version of Christiano,

Eichenbaum, and Evans (1999) and Christiano, Eichenbaum, and Evans (1996).   We

sum the four quarterly policy shocks in year t-1 as instruments for year t.  These shocks

are available from 1960 through 1999.
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Table 1.  Parameter Estimates

*
i i i i i i i idy di dx dh dzφ γ ξ− = + +

Durable

Manufacturing

Non-durable

Manufacturing Non-manufacturing

Returns to scale, *
iγ 1.03

(0.04)

0.78

(0.04)

1.00

(0.09)

Utilization, ξi 0.74

(0.17)

1.21

(0.21)

1.33

(0.55)

Note:  Estimation by three-stage least squares pooling across industries within sectors.  Data are

from Jorgenson and Stiroh and are at an industry level from 1965 to 1996.  Instruments are

monetary policy shocks, growth in PPI for crude oil, and Ramey-Shapiro (1998) military buildup

dates.  Sectoral estimates include industry fixed effects (not reported).  Standard errors are in

parentheses.
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Table 2.  Estimated Growth in Technology

(Percent per Year)

1987-

1999

1990-

1995

1995-

1999

Private Sector 2.0 1.2 3.1

Durable Manufacturing 4.6 3.4 6.7

Non-durable Manufacturing 1.2 1.4 0.9

Non-manufacturing 1.7 0.9 2.7

BEA data.  Estimates of technological change based on theoretical framework of Section 2 and

parameter estimates in Table 1.  Conceptually, these estimates represent an appropriately

weighted average of estimated technology growth in 29 sectors that span the private non-farm

business economy, after controlling for utilization, capital-adjustment, and deviations from

constant returns and perfect competition.
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Table 3.  Output, Input, and Productivity Growth and Corrections

(Percent per Year)

A. Private Sector

1987-

1999

1990-

1995

1995-

1999

Output 3.5 2.6 5.1

-  Inputs 1.8 1.4 2.5

= Solow residual 1.6 1.2 2.5

-  Utilization correction 0.0 0.2 0.1

-  Adjustment correction -0.3 -0.2 -0.6

-  Reallocation and scale correction -0.1 0.0 -0.1

= Technology 2.0 1.2 3.1

B. Durable Manufacturing

1987-

1999

1990-

1995

1995-

1999

Output 4.8 3.9 7.6

-  Inputs 0.6 0.0 1.9

= Solow residual 4.2 3.9 5.7

-  Utilization correction -0.1 0.7 -0.6

-  Adjustment correction -0.4 -0.3 -0.6

-  Reallocation and scale correction 0.1 0.1 0.2

= Technology 4.6 3.4 6.7
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Table 3 (continued)

C. Non-durable manufacturing

1987-

1999

1990-

1995

1995-

1999

Output 0.7 2.0 -0.7

-  Inputs 0.7 0.7 0.5

= Solow residual 0.0 1.3 -1.2

-  Utilization correction -0.1 0.0 0.0

-  Adjustment correction -0.3 -0.1 -0.4

-  Reallocation and scale correction -0.8 0.0 -1.6

= Technology 1.2 1.4 0.9

D.  Non-manufacturing

1987-

1999

1990-

1995

1995-

1999

Output 3.3 2.4 4.7

-  Inputs 2.0 1.5 2.6

= Solow residual 1.3 0.8 2.1

-  Utilization correction 0.0 0.1 0.1

-  Adjustment correction -0.3 -0.2 -0.5

-  Reallocation and scale correction -0.1 0.0 -0.1

= Technology 1.7 0.9 2.7
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Appendix Table 1.  Estimated Growth in Technology:  Jorgenson-Stiroh Data

(Percent per Year)

1965-

1996

1965-

1973

1973-

1979

1979-

1990

1990-

1995

1995-

1996

Private Sector 0.6 1.5   0.3   0.2 -0.4   1.2

Durable Manufacturing 2.1 1.7   3.2   1.5   2.2   7.7

Non-durable Manufacturing 2.2 3.6   2.1   1.1   1.2   1.4

Non-manufacturing 2.2 1.1 -1.0 -0.2 -1.1 -0.2

Note:  Estimates of technological change based on parameter estimates in Table 1.  The

Jorgenson-Stiroh data contains adjustments for the quality of inputs, so estimates of growth in

technology based on those data should be smaller on average than from the BEA data.


