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A First Order Conditions, Prices and Growth

This section describes details about the growth model that were omitted from the main
text. These include (1) the first order conditions of the planning problem, (2) how to map
the Lagrange multipliers for this problem into competitive equilibrium prices, (3) how the
planner’s first order conditions relate to those of the agents’ in the competitive equilibrium,
(4) the stationarity inducing transformation of the growing economy, and (5) how to calculate
the increase in steady state consumption and housing required to compensate households for
not having the growth due to local agglomeration.

A.1 The Model Without Growth

The competitive equilibrium can be found as the solution to an optimization problem with
side conditions. Idiosyncratic technology zt evolves as a stationary discrete Markov chain.
Let qt(z

t) denote the time t distribution of cities across productivity histories zt and Q(z, z′)
denote the probability that zt+1 = z′ conditional on zt = z. The planner’s problem is given
by:

max
{Ct,Kbt+1,Kst+1,y(zt),lb(z

t),lh(zt),
kb(z

t),ks(zt),kft+1(z
t),n(zt),h(zt)}∞t=0

[ ∞∑
t=0

βt ln Ct + ψ

∞∑
t=0

βt
∑

qt(z
t)n(zt) ln

h(zt)

n(zt)

]

subject to

Ct + Pbt [Kbt+1 − (1− κb)Kbt]

+ Pst [Kst+1 − (1− κs)Kst]

+ Pft

∑
qt(z

t)
[
kft+1(z

t)− (1− κf )kft(z
t−1)

]

≤
[∑

qt(z
t)y(zt)η

] 1
η

(1)

y(zt) ≤ A
(1−α)φ
t z

(1−α)φ
t

[
ỹ(zt)

l̃b(zt)

]λ−1
λ

lb(z
t)1−φkb(z

t)αφn(zt)(1−α)φ, ∀zt (2)

h(zt) ≤ lh(z
t)1−ωks(z

t)ω, ∀zt (3)

lh(z
t) + lb(z

t) ≤ kft(z
t−1)ζ , ∀zt (4)∑

qt(z
t)kb(z

t) ≤ Kbt (5)
∑

qt(z
t)ks(z

t) ≤ Kst (6)
∑

qt(z
t)n(zt) ≤ 1 (7)

and Kb0, Ks0, kf (z0), {At, Pbt, Pst, Pft, z
t}∞t=0 , ỹ(zt) and l̃b(z

t) given. Competitive equilibrium
allocations are obtained as a solution to this optimization problem such that y(zt) = ỹ(zt)
and lb(z

t) = l̃b(z
t). Prices corresponding to an equilibrium are easy to obtain from the

constraint’s Lagrange multipliers. We now show how to do this and how to relate the
planners first order conditions to those of individual agents in the competitive equilibrium.
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Let the Lagrange multipliers for the above constraints be βtπt, βtπtqt(z
t)py(z

t),
βtπtqt(z

t)rh(z
t), βtπtqt(z

t)rl(z
t), βtπtrbt, βtπtrst and βtπtθt. Then the first order conditions

for Ct, Kbt+1, Kst+1, kft+1(z
t), y(zt), lb(z

t), kb(z
t), n(zt), h(zt), lh(z

t), and ks(z
t) are

1

Ct

= πt (8)

πtPbt = βπt+1 [rbt+1 + Pbt+1(1− κb)] (9)

πtPst = βπt+1 [rst+1 + Pst+1(1− κs)] (10)

πtPft = βπt+1

∑
zt+1

[rft+1 + Pft+1(1− κf )] Q(zt, zt+1) (11)

py(z
t) = Y 1−η

t y(zt)η−1 (12)

rl(z
t) = py(z

t) (1− φ) ztlb(z
t)−φkb(z

t)αφn(zt)(1−α)φ (13)

rb(z
t) = py(z

t)αφztlb(z
t)1−φkb(z

t)αφ−1n(zt)(1−α)φ (14)

πtθt = ψ ln
h(zt)

n(zt)
− ψ + πtw(zt) (15)

ψ

h(zt)
= πtrh(z

t) (16)

rl(z
t) = (1− ω) rh(z

t)lh(z
t)−ωkh(z

t)ω (17)

rs(z
t) = ωrh(z

t)lh(z
t)1−ωks(z

t)ω−1 (18)

where

w(zt) = py(z
t)(1− α)φztlb(z

t)1−φkb(z
t)αφn(zt)(1−α)φ−1, (19)

Yt =
[∑

q(zt)y(zt)η
] 1

η
(20)

Q(zt, zt+1) =
qt+1(z

t, zt+1)

qt(zt)
(21)

rf (z
t) = rl(z

t)ζkft(z
t−1)ζ−1. (22)

In the competitive equilibrium {Pxt, x = b, s, f}, py, {rx, x = b, s, f, l, h}, and w corre-
spond to investment prices, intermediate good prices, rental rates and wages. Under this
this interpretation we can relate the planner’s first order conditions to those of the individual
agents described in Section 2.2 and referred to in Sections 3.1 and 3.2. Equations (9)-(11),
after substituting for π using (8), correspond to the representative household’s first order
conditions for capital accumulation. Equation (12) corresponds to the first order condition
of the final good producer for intermediate input demand. Equations (13),(14) and (19)
correspond to the intermediate good producers’ first order conditions for finished land, busi-
ness capital and labor. Equation (16), after substituting for π using (8), corresponds to
the household’s first order condition for housing in each location. Equations (17) and (18)
correspond to the first order conditions of housing service providers for finished land use
and rental of residential structures. Equation (22) corresponds to the first order condition
of finished land service providers (landlords) for infrastructure use.
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A.2 The Model With Growth

With growth, that is under the assumptions

Pxt = γ−t
x , x = s, b, f ;

At = γt
a;

Nt = γt
n,

we need to obtain the mapping from the growing economy to a stationary planning problem.
The mapping is driven by the balanced growth expressions derived in the main text.

The model’s quantities are transformed as follows:

gt
cC̄t = Ct

Nt
gt

xK̄xt = Kxt

Nt
, x = b, s gt

c
ȳ(zt)
n̄(zt)

= y(zt)
n(zt)

gt
l
l̄bt(z

t)
n̄(zt)

= lbt(z
t)

n(zt)
gt

x
k̄xt(zt)
n̄(zt)

= kxt(zt)
n(zt)

, x = b, s γ−t
x P̄xt = Pxt, x = b, s, f

gt
l l̄ht(z

t) = lht(z
t) gt

f
k̄ft(z

t−1)

n̄(zt)
=

kft(z
t−1)

n(zt)
n̄(zt) = n(zt)

Nt

gt
hh̄(zt) = h(zt)

All of the growth rates in these expressions are derived in the main text except for gh. This

growth rate equals
[
γζ−1

n gζ
f

]1−ω

gω
s .

The multipliers and prices are transformed as follows:

r̄xt = γt
xrxt, x = b, s, f

r̄lt = g−t
pl

rlt

r̄ht = g−t
ph

rhlt

θ̄t = g−t
c θt

π̄t = gt
cγ

t
nπt

w̄t(z
t) = g−t

c w(zt)

Replacing the growing variables in the original planning problem using these transformations
one can show the planning problem reduces to

max
{C̄t,K̄bt+1,K̄st+1,

ȳ(zt),l̄b(z
t),l̄h(zt),

n̄(zt),k̄b(z
t),k̄s(zt),

k̄f (zt),h̄(zt)}∞t=0

[ ∞∑
t=0

βt ln C̄t +
∞∑

t=0

βt
∑

qt(z
t)n̄(zt)ψ ln

h̄(zt)

n̄(zt)
+

∞∑
t=0

βt
∑

qt(z
t)n̄(zt)ψ ln gt

h

]
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subject to

C̄t + P̄bt

[
γngbK̄bt+1 − (1− κb)K̄bt

]

+ P̄st

[
γngsK̄st+1 − (1− κb)K̄st

]

+ P̄ft

∑
qt(z

t)
[
γngf k̄ft+1(z

t)− (1− κf )k̄ft(z
t)

]

≤
[∑

qt(z
t)

(
ȳ(zt)

)η
] 1

η

ȳ(zt) ≤ zt

[
ỹ(zt)

l̃b(zt)

]λ−1
λ [

l̄b(z
t)

]1−φ [
k̄b(z

t)
]αφ [

n̄(zt)
](1−α)φ

, ∀zt

h̄(zt) ≤ [
l̄h(z

t)
]1−ω [

k̄s(z
t)

]ω
, ∀zt

l̄h(z
t) + l̄b(z

t) ≤ [
k̄ft(z

t)
]ζ

γ1−ζ
n , ∀zt

∑
qt(z

t)k̄b(z
t) ≤ K̄bt∑

qt(z
t)k̄s(z

t) ≤ K̄st∑
qt(z

t)n̄(zt) ≤ 1

and K̄b0, K̄s0, k̄f (z0),
{
P̄bt, P̄st, P̄ft, z

t
}∞

t=0
, ỹ(zt) and l̃b(z

t) given. Competitive equilibrium al-
locations for the growing economy are obtained in two steps. First we find the solution to the
transformed problem such that y(zt) = ỹ(zt) and lb(z

t) = l̃b(z
t). The second step translates

the stationary allocations and prices to their growing counterparts using the transformations
described above.

Let the Lagrange multipliers for the above constraints be βtπ̄t, βtπ̄tqt(z
t)py(z

t),
βtπtqt(z

t)r̄h(z
t), βtπtqt(z

t)r̄l(z
t), βtπtr̄bt, βtπtr̄st,and βtπtθ̄t Then the first order conditions

5



for C̄t, K̄bt+1, K̄st+1, k̄ft+1(z
t), ȳ(zt), l̄b(z

t), k̄bt(z
t), n̄(zt), h̄(zt),l̄h(z

t) and k̄s(z
t) are

1

C̄t

= π̄t

γngbπ̄tP̄bt = βπ̄t+1

[
r̄bt+1 + P̄bt+1(1− κb)

]

γngsπ̄tP̄st = βπ̄t+1

[
r̄st+1 + P̄st+1(1− κs)

]

γngf π̄tP̄ft = βπ̄t+1

∑
zt+1

[rft+1 + Pft+1(1− κf )] Q(zt, zt+1)

py(z
t) = Ȳ 1−η

t ȳ(zt)η−1

r̄l(z
t) = py(z

t) (1− φ) z
(1−α)φ
t

[
ỹ(zt)

l̃b(zt)

]λ−1
λ

l̄b(z
t)−φk̄b(z

t)αφn̄(zt)(1−α)φ

r̄b(z
t) = py(z

t)αφz
(1−α)φ
t

[
ỹ(zt)

l̃b(zt)

]λ−1
λ

l̄b(z
t)−φk̄b(z

t)αφ−1n̄(zt)(1−α)φ

π̄tθ̄t = ψ ln
h̄(zt)

n̄(zt)
− ψ + ψ ln gt

h + π̄tw̄(zt)

n̄(zt)
ψ

h̄(zt)
= πtr̄h(z

t)

r̄l(z
t) = (1− ω) r̄h(z

t)l̄h(z
t)−ωk̄h(z

t)ω

r̄s(z
t) = ωr̄h(z

t)l̄h(z
t)1−ωk̄s(z

t)ω−1

where

w̄(zt) = py(z
t)(1− α)φz

(1−α)φ
t

[
ỹ(zt)

l̃b(zt)

]λ−1
λ

l̄b(z
t)1−φk̄b(z

t)αφn̄(zt)(1−α)φ−1

and

Ȳt =
[∑

q(zt)ȳ(zt)η
] 1

η

It is straightforward to established that the first order conditions for the untransformed
economy correspond to these first order conditions once the stationary variables are replaced
with their growing counterparts using the transformations given above.

A.3 Compensation for lost growth

Here we derive the formulas used to evaluate the level increase in consumption and housing
required to compensate households for giving up the growth due to local agglomeration.

gh = g1−ω
l gω

s

=
[
γζ−1

n gζ
f

]1−ω

gω
s

=

[
γζ−1

n

(
gc

gpf

)ζ
]1−ω (

gc

gps

)ω
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Therefore the growth rate of per capita housing absent agglomeration is

g∗h =

[
γ̂ζ−1

n

(
g∗c
ĝpf

)ζ
]1−ω (

g∗c
ĝps

)ω

Notice that the utility of the representative household is

[ ∞∑
t=0

βt ln C̄t +
∞∑

t=0

βt ln gt
c +

∞∑
t=0

βt
∑

qt(z
t)n̄(zt)ψ ln

h̄(zt)

n̄(zt)
+

∞∑
t=0

βt
∑

qt(z
t)n̄(zt)ψ ln gt

h

]

=
ln C̄

1− β
+

β ln gc

(1− β)2 +
ln h̄

n̄

1− β
+ ψ

β ln gh

(1− β)2

We seek µ so that utility with and without agglomeration is equated. That is

(1 + ψ)
ln µ

1− β
+

ln C̄

1− β
+

β ln g∗c
(1− β)2 + ψ

ln h̄
n̄

1− β
+ ψ

β ln g∗h
(1− β)2

=
ln C̄

1− β
+

β ln ĝc

(1− β)2 + ψ
ln h̄

n̄

1− β
+ ψ

β ln ĝh

(1− β)2

Solving for µ,

µ =

(
ĝc

g∗c

(
ĝh

g∗h

)ψ
) β

(1−β)(1+ψ)

.

B Data

This section provides a detailed description of how we construct empirical counterparts to
model variables from various data sources and how we merge our different data sources.

B.1 MSA-Level Panel Data, 1978-2009

B.1.1 CPS Data (Wages and Hours Worked by Skill)

The March CPS data are available for download at http://cps.ipums.org/cps/ as part of the
Integrated Public Use Microdata Series (IPUMS-CPS) project at the University of Minnesota
Population Center.

We download the March CPS data from 1979 through 2009. We chose 1979 as our starting
year because the number of metropolitan areas we can identify in the CPS and then match
to data on housing rents drops off rapidly prior to 1979. The CPS wage and employment
questions refer to the “previous calendar year.” Therefore, data for any given year’s CPS is
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treated as data appropriate for the previous calendar year. For example, variables generated
from the March 2005 CPS would be treated as data for the year 2004.

In each year of our data, we use the following criteria to restrict the sample (with IPUMS-
CPS variables in italics)

• Respondent lives in a household, not in group quarters or vacant units (gq = 1)

• Is aged 20 to 65 (age ≥ 20 and age ≤ 65)

• Wage and salary income in the previous calendar year is identified and is nonzero
(incwage > 0 and incwage < 999998)

• Weeks worked in the previous calendar year is identified and is between 1 and 52
(wkswork1 ≥ 1 and weekswork1 ≤ 52)

• Hours worked in a typical week in the previous year (if the respondent worked) is
identified and is between 1 and 99 (uhrswork ≥ 1 and uhrswork ≤ 99)

• Educational attainment is recorded (educ ≥ 2 and educ ≤ 115)

• Has an identified metro area of residence (metarea non missing)1

For each MSA, we use the CPS data to create the following three variables:

1. Ratio of labor input of high skill to labor input of low skill, m = ne/nu

2. Ratio of total wages paid to total wages paid to low skill workers, s

3. Average weekly wage of high skill workers, we.

We use the educ categorical variable to label respondents as either “low” or “high” skill
workers. High skill workers are assumed to have completed 1+ years of college (educ ≥ 80
and educ ≤ 115). Everyone else in the sample is assumed to be a low skill worker.

ne is created as the total of weeks worked the previous calendar year (wkswork1) multi-
plied by the number of hours per week the respondent usually worked (uhrswork) for high
skill workers. nu is the same, but for low skill workers. For each respondent, we weigh the
product of wkswork1 and uhrswork using the IPUMS-CPS sampling person weights, perwt.

s is computed as

wene + wuni

wunu

=

∑
jεMSAi

perwtj · wagesj∑
jεMSAi

perwtj · wagesj · 1{unskilledj}
for respondent j in MSA i, i.e. as the sum of all low- and high- skill workers’ pre-tax wage
and salary income for the previous calendar year (incwage) divided by the sum of all low skill

1According to notes from the IPUMS-CPS, the metro area of residence was not collected from respondents,
but added by the Census Bureau. The metro areas of residence is based on FIPS codes used in the 1990
census.
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workers’ pre-tax wage and salary income for the previous calendar year. We weigh pre-tax
wage and salary income for all persons using the IPUMS-CPS sampling person weights.

we is created as the sum of all high skill workers’ pre-tax wage and salary income for the
previous calendar year (created as an input into s) divided by ne.

B.1.2 BEA Data (Output Prices)

We assume that the price of output varies across MSAs because that industry composition
varies across MSAs, and the price index for industry output varies across industries.

Chain-type price indexes for industry output are available over the 1947-2009 period
in the Annual Industry Accounts, http://www.bea.gov/industry/index.htm#annual. To con-
struct a price index for output produced by MSA, we merge this information with MSA-level
data on earnings by industry that is available in Tables CA05 and CA05N of the Regional
Economic Accounts, http://www.bea.gov/regional/reis/. Earnings is inclusive of wage and
salary disbursements, supplements to wages and salaries, and proprietors’ income.

In the remainder of this section, section B.1.2, the notation will differ from that used in
the paper.

Denote gt,j as the growth rate of the price of industry output j from periods t to t + 1
and gi

t as the growth rate of the price of all output produced in MSA i between years t and
t + 1. Assuming output from j = 1, . . . , N industries is produced in MSA i in year t, we set
the growth rate of the price of output produced in MSA i between years t and t + 1 as

gi
t =

N∑
j=1

ωi
t,j gt,j . (23)

The weight on each industry, ωi
t,j, is the share of our estimate of total value of the MSA i

attributable to value add of industry j in year t:

ωi
t,j =

µj εi
t,j

N∑
k=1

µj εi
t,k

, (24)

where εi
t,j stands for total earnings of employees in industry j in MSA i during year t and µj

is a time- and MSA- invariant “markup” that scales earnings of industry j to value add from
industry j (described next).2 For each MSA, we construct a price index for output, normal-
ized to 1.0 in the year 1969, that is consistent with the sequence of time-series estimates of
gi

t.

Before describing how we compute µj, we note two details about the earnings and in-
dustry data. First, on a somewhat infrequent basis, Tables CA05 and CA05N do not report
estimates of earnings for a given industry in an MSA in a given year. In these cases, we

2The markup is allowed to change in 1997, which industry classifications change from SIC-based to
NAICS-based.
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set earnings for this industry-MSA-year cell to zero.3 Also, some of the industry-MSA-year
employment estimates are marked with code E. According to the BEA web site, these esti-
mates “constitute the major portion of the true estimate.” In these cases, we assume that
the reported estimate is equal to the actual estimate.

Second, the definition of industries in the Regional Accounts is not consistent across years.
Table CA05 reports employment based on SIC-industry classifications over the 1969-2000
period and CA05N reports employment based on NAICS industry classifications spanning
the years 2001-2006.

We map SIC and NAICS industry employment from Tables CA05 and CA05N to prices
from the Annual Industry Accounts according to the tables shown later in this section.
These tables list all the categories of nonfarm private employment. The sum of the earnings
estimates in each of these categories is considered as total nonfarm earnings, and is used to
compute the denominator of equation (24).

In all cases except one, there is an exact correspondence of earnings estimates from Ta-
bles CA05 and CA05N to prices from the Annual Industry Accounts. For the SIC category
of “Transportation and public utilities,” line 500 of Table CA05, there is no clean analo-
gous price index in the Annual Industry Accounts. Instead, the Annual Industry Accounts
includes separate price indexes for “Transportation and warehousing” and “Utilities.” In
Table CA05, we therefore separate earnings of the single Transportation and public utilities
into earnings in two categories: Earnings from utilities (“electric, gas, and sanitary services”,
line 570) and earnings from transportation and public utilities less earnings from utilities
(i.e. line 500 less line 570).

Finally, we need to compute a markup that maps earnings to value add. For each in-
dustry, we compute the markup µj as the product of two estimated values. The first is the
fraction of earnings, by industry, not attributable to proprietor’s income. We compute this
in order to remove an estimate of proprietors’ income from reported earnings by industry
by MSA. For each of the SIC industry classifications covering the 47-97 period, we compute
this fraction using data on the components of value-add by industry, available in the file
“GDPbyInd VA SIC” which is available at http://www.bea.gov/industry/io histannual.htm.
Similar data are not available for NAICS, so we map our SIC-based estimates to NAICS
industries for the 97-09 period. Taking the construction industry as an example, in 1947
reported compensation of employees in this industry (in millions) is $6266 and reported
proprietors’ income is $2123. We compute the fraction of earnings not attributable to pro-
prietor’s income in this year as 0.747 = 6266/(6266+2123). We repeat this process each year
over the 47-97 period, and compute the average over all years for the construction sector as
0.788. Thus, for the construction sector, in each MSA in each year we scale reported earnings
of construction sector employees by 0.788 to remove an estimate of proprietor’s income.

In the second step, we scale the estimate of compensation of employees less proprietors’
income to value added. For SIC industries over the 47-97 period, we use data from the “GDP-

3The three reasons that are listed for omission are (a) avoid disclosure of confidential information (code
D), (b) earnings are less than $50,000 (code L), or (c) data not available for this year (code N). These
omissions occur in approximately six percent of industry-MSA-year cells from 1969 to the mid-1990s and
about thirteen percent of cells after the mid-1990s.
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byInd VA SIC” file and for NAICS industries over the 98-09 period we use similar data from
the “GDPbyInd VA NAICS” file available at http://www.bea.gov/industry/gdpbyind data.htm
to make this computation. Again, using the example of the construction industry to illustrate
how this process works, according to the GDPbyInd VA SIC file, in 1947 the reported value-
added of the industry (in millions) is $9057 and compensation of employees is $6266, and
thus the ratio of value-add to compensation of employees in that year is 1.445 = 9057/6266.
Averaged over all years in the 47-97 period, the ratio of value-add to compensation of em-
ployees in the construction industry is 1.432. We use a similar procedure to compute the
mapping of compensation of employees to value add using a similar procedure for the NAICS
industries over the 98-09 period.

Summarizing our procedure for the construction sector: We set value added from the
construction sector in MSA i in any year t over 47-97 equal to total earnings of employees
(from table CA05) in that year in that MSA multiplied by µj for construction, which we
compute as 1.128 = 0.788*1.432. We repeat this for every SIC industry (47-97) and every
NAICS industry (98-09) for every MSA in every year. In the tables below, we list our
estimates of the two components of µj in the right-most columns.

Data for Earnings, wi
t,j Data for Growth in Prices, gp

t,j µj = a ∗ b

Regional Accounts Table CA05, 1969-2000 Industry Accounts, 1969-2001 a b
Line Label Line Label
100 Agricultural services, forestry 3 Agriculture, forestry, 0.300 4.858

fishing and other fishing and hunting
200 Mining 6 Mining 0.895 3.092
300 Construction 11 Construction 0.788 1.432
400 Manufacturing 12 Manufacturing 0.979 1.454
500c Transportation and public utilities less 36 Transportation and warehousing 0.932 1.981

electric, gas, and sanitary services
570 Electric, gas, and sanitary services 10 Utilities 0.925 3.197
610 Wholesale trade 34 Wholesale trade 0.899 1.873
620 Retail trade 35 Retail trade 0.806 1.721
700 Finance, insurance 50 Finance, insurance, 0.856 4.784

and real estate real estate, rental and leasing
800 Services 59 Professional and business services 0.742 1.557
900 Government and government enterprises 82 Government 1.000 1.236

a. Adjustment to remove proprietor’s income from earnings. b. Mapping of wage compensation to value
added. c. See text for details.
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Data for Earnings, wi
t,j Data for Growth in Prices, gp

t,j µj = a ∗ b

Regional Accounts Table CA05N, 2001-2005 Industry Accounts, 2001-2006 a b
Line Label Line Label
100 Forestry, fishing, 5 Forestry, fishing 0.300 3.441

related activities and other and related activities
200 Mining 6 Mining 0.895 3.397
300 Utilities 10 Utilities 0.925 3.737
400 Construction 11 Construction 0.788 1.520
500 Manufacturing 12 Manufacturing 0.979 1.659
600 Wholesale trade 34 Wholesale trade 0.899 1.889
700 Retail trade 35 Retail trade 0.806 1.729
800 Transportation and warehousing 36 Transportation and warehousing 0.932 1.541
900 Information 45 Information 0.742 2.203
1000 Finance and insurance 51 Finance and insurance 0.856 1.888
1100 Real estate 56 Real estate 0.856 15.856

and rental and leasing and rental and leasing
1200 Professional, scientific 60 Professional, scientific 0.742 1.534

and technical services and technical services
1300 Management of 64 Management of 0.742 1.174

companies and enterprises companies and enterprises
1400 Administrative and 65 Administrative and 0.742 1.329

waste services waste management services
1500 Educational services 69 Educational services 0.742 1.132
1600 Health care and social assistance 70 Health care and social assistance 0.742 1.218
1700 Arts, entertainment and recreation 75 Arts, entertainment and recreation 0.742 1.705
1800 Accommodation and food services 78 Accommodation and food services 0.742 1.625
1900 Other services 81 Other services 0.742 1.546

except public administration except government
2000 Government and government enterprises 82 Government 1.000 1.236

a. Adjustment to remove proprietor’s income from earnings. b. Mapping of wage compensation to value
added.

B.1.3 BLS Data and 1990 Decennial Census of Housing (Housing Rents)

We create annual estimates over the 1978-2009 period of the average rents paid for certain
types of rental units, by MSA, using a two-step procedure.

In the first step, we estimate the average rents paid for certain types of rental housing
units in 1990 using household-level data from the 1990 Decennial Census of Housing (DCH).
These data are available for download at http://usa.ipums.org/usa/ as part of the Integrated
Public Use Microdata Series (IPUMS-USA) project at the University of Minnesota Popula-
tion Center. We use data from the 1990 DCH reports data by metropolitan area for more
metropolitan areas than the 2000 DCH.

With IPUMS-USA variables in italics, we restrict the 1990 DCH sample to renter non-
farm households in 2-19 unit residences in a building built between 1940 and 1986 and living
in an identifiable MSA (ownershg = 2, farm 6= 1, unitsstr ∈ {5, 8}, builtyr ∈ {3, 7}, and
metarea > 0) who live in households and do not live in group quarters (gq ∈ {3, 4, 6}) and
where the reported monthly gross rent of the house (rent inclusive of utilities) is nonzero
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(rentgrs > 0). Conditional on these restrictions, we compute the weighted average value of
units by MSA using the sampling weight variable hhwt. These calculations yield estimates
of the average rental price of housing for 272 metro areas as identified in the 1990 DCH. We
exclude single-family rented units, rented high-rise units (> 20 units), and units in very old
(built before 1940) or very new (built after 1986) apartment buildings to attempt to keep the
average characteristics of rental units roughly constant across metropolitan areas without
resorting to hedonic regressions.

In the second step, we extrapolate the annual rental price of housing in each metro area
forward from 1990 to 2009 and backwards from 1990 to 1978 using annual MSA-specific
constant-quality price indexes for the price per unit of shelter. These price indexes for
shelter are published by the Bureau of Labor Statistics (BLS) as part of computations for
the Consumer Price Index, and are available at http://www.bls.gov. The BLS reports rental
price indexes for 27 MSAs, but the indexes of three of these MSAs (Phoenix, AZ, Washington,
DC, and Tampa Bay, FL) do not have data available prior to 1985 and we exclude these
from our sample. The CPS does not have data on Anchorage and Honolulu back to 1978,
explaining our sample of 22 MSAs.

In 1983, the BEA changed its procedure for measuring the price of owner-occupied rent,
which accounts for about 73 percent of all spending on shelter. After 1983 the BEA began
measuring the price of owner-occupied rent using the “rental equivalence” approach, whereas
in earlier years the BLS used the “asset price method.”4 To eliminate this nontrivial incon-
sistency in the data, we replace the reported values of the shelter indexes from 1978-1982
with predicted values, essentially predicting what the BLS would have reported if the owner-
occupied data had been collected using the “rental equivalence approach.” Specifically, we
regress the log BLS shelter indexes on MSA dummies and the log BLS tenant-rent indexes
over the 1983-2009 period. The R2 of the regression is 0.99 and the coefficient on log tenant
rents is 1.055. Based on the regression results, and the values of the log tenant-rent indexes
in the 1978-1982 period, we predict the log MSA shelter indexes from 1978-1982.

B.1.4 Merging the MSA-Level Data, 1978-2009

We merge the CPS data on wages and employment (section B.1.1) with the BEA data on
output prices (B.1.2) and the annual data we construct on housing rents (B.1.3). The data
are merged by MSA and by year. After all data are merged, we are left with a balanced
panel of 22 MSAs. Note that the MSA definitions may not be completely consistent across
data sources. In the BEA data, MSAs definitions are given by the list in the December,
2009 report of the Office of Management and Budget (OMB).5 The MSA definitions in the
CPS data are consistent with the definitions as of the 1990 Census. The MSA definitions
in the BLS rental data change over time – in each year, they are consistent with the OMB
definition of that year, but as OMB definitions change, the definitions of the MSA change.
Since the MSAs in our sample constitute most of the largest concentrations of populations in

4See http://www.bls.gov/cpi/cpifact6.htm for details.
5For a complete list of the counties comprising each MSA, go to

http://www.census.gov/population/www/metroareas/metrodef.html.
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the U.S. changes or inconsistencies in in MSA definitions over our sample period are likely
to be inconsequential to our results.

In every MSA and date in our sample, the minimum number of respondents from the
CPS is never less than 200; it is typically about 250 until 1999 and then jumps to about
450 after 2000. The median number of respondents is about 540 until about 2000, at which
point the median jumps to about 1,000. The maximum number of respondents is always
above 3,000 and is typically about 4,000.

B.2 Aggregate Data

B.2.1 Data used for Depreciation Rate of Residential Structures

One of our moment conditions involving the depreciation rate on residential structures, κS,
is

E

[
κs − PstDst

PstKst

]
= 0 ,

where PstDst is nominal value of aggregate depreciation on structures in year t and PstKst

is the nominal value of the aggregate stock of structures in year t. Our data on PstDst are
from line 7 (Residential Fixed Assets) of the BEA Fixed Assets Table 1.3, Current Cost
Depreciation of Fixed Assets and Consumer Durable Goods.6 Our data on PstKst are from
line 7 of the BEA Fixed Assets Table 1.1, Current-Cost Net Stock of Fixed Assets and
Consumer Durable Goods. The capital stocks reported Fixed Assets Table 1.1 are year-end
values. To adjust for this, we set Kst as the once-lagged reported year-end value, that is we
set Kst for the year 2000 as the year-end reported value for 1999.

B.2.2 Data used for Depreciation Rate of Infrastructure Capital

One of our moment conditions involving the depreciation rate on residential structures, κF ,
is

E

[
κf − PftDft

PftKft

]
= 0 ,

where PftDft is nominal value of aggregate depreciation on infrastructure capital in year t
and PftKft is the nominal value of the aggregate stock of infrastructure in year t.

• We compute the nominal value of infrastructure capital, PftKft, as the sum of the
nominal stocks of (a) federal non-defense and state and local government highways
and streets, (b) federal non-defense and state and local “other structures” (pre-1996)
and Transportation and Power structures (post-1997) (c) state and local sewer systems
structures, (d) state and local water supply facilities, and (d) privately owned power

6These tables are available at http://www.bea.gov/national/FA2004/SelectTable.asp.
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and communication, transportation, and “other” structures. The data for the nominal
stocks of federal and state and local infrastructure capital are in the BEA Fixed Asset
Tables 7.1a (lines 38, 40, 49, 51, 52, and 53 covering the period 1925-1996) and 7.1b
(lines 41, 42, 43, 56, 57, 58, 59, and 60 covering 1997-2009). The data for the nominal
stocks of private infrastructure capital are in the BEA Fixed Asset Table 2.1, lines 50,
63, and 67.7

• We compute the nominal value of depreciation of infrastructure capital, PftDft, anal-
ogously. The data for the nominal depreciation of infrastructure capital for the federal
and state and local government are in BEA Fixed Asset Tables 7.3a (lines 38, 40, 49,
51, 52, and 53) and 7.3b (lines 41, 42, 43, 56, 57, 58, 59, and 60). Depreciation for
privately owned infrastructure capital is reported in BEA Fixed Asset Table 2.4, lines
50, 63, and 67.

As mentioned earlier, the BEA reports the capital stocks data at year-end. To adjust for
this we define Kft as the lag of reported year-end values.

B.2.3 Data used for Depreciation Rate of Business Capital

One of our moment conditions involving the depreciation rate on capital used in production,
κB, is

E

[
κb − PbtDbt

PbtKbt

]
= 0 ,

where PbtDbt is the nominal value of aggregate depreciation on capital used in production in
year t and PbtKbt is the nominal aggregate stock of capita used in production in year t.

• We compute PbtDbt as nominal depreciation of all fixed assets and consumer durable
goods (line 1) less nominal depreciation of private residential structures (line 7) of the
BEA Fixed Assets Table 1.3, all less nominal depreciation of infrastructure capital,
defined in section B.2.2.

• We compute PbtKbt as the nominal stock of all fixed assets and consumer durable goods
(line 1) less the nominal stock of private residential structures (line 7) of the BEA Fixed
Assets Table 1.1, all less nominal depreciation of infrastructure capital as defined in
section B.2.2.

As mentioned earlier, the BEA reports the capital stocks data at year-end, and we adjust
for this by setting PbtKbt equal to the lag of reported year-end values.

7The BEA notes that “other” government structures consist “primarily of electric and gas facilities, transit
systems, and airfields” whereas “other” private structures include structures pertaining to “water supply,
sewage and waste disposal, public safety, highway and street, and conservation and development.”
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B.2.4 Data used for the Growth Rate of the Price of Housing Structures, In-
frastructure Capital, and Business Capital

Our moment conditions involving the trend growth rate of the aggregate real price of housing
structures gPS and the trend growth rate of the aggregate real price of business capital gpb

are

E {(ln Pst − ln (gps) t) t} = 0

E
{(

ln Pft − ln
(
gpf

)
t
)
t
}

= 0

E {(ln Pbt − ln (gpb
) t) t} = 0

• Pst is the real price for housing structures, defined as the nominal price index for
structures divided by the price index of consumption. The nominal price index for
structures is computed as the nominal stock of housing structures, line 7 of BEA Fixed
Asset Table 1.1, divided by the chain-type quantity index for residential structures,
line 7 of BEA Fixed Asset Table 1.2.

• Pft is the real price for infrastructure capital, defined as the nominal price index for
infrastructure capital divided by the price index of consumption. The nominal price
index for infrastructure capital is computed by chain-weighting the price indexes of
each of the components of infrastructure capital described in section B.2.2: federal
non-defense and state and local government highways and streets and other (pre-1996)
or transportation and power (post-1997), state and local sewer systems structures, state
and local water supply facilities, state and local transportation structures and power
structures, and privately owned power and communication structures, transportation
structures, and other structures. The price indexes for each of the components is
computed as the ratio of the nominal stock (Fixed Asset Tables 7.1a, 7.1b, and 2.1) to
the chain-type quantity indexes (Fixed Asset Tables 7.2a, 7.2b, and 2.2).

• Pbt is the real price for business capital, defined as the nominal price index for business
capital divided by the price index of consumption. We compute the nominal price
index for business capital by chain-weighting the price index for (a) all fixed assets
and consumer durable goods less (b) the price index for housing structures less (c) the
price index for infrastructure capital.

– The nominal price index for all fixed assets and consumer durable goods is com-
puted by dividing the nominal stock of all fixed assets and consumer durable
goods, line 1 of BEA Fixed Asset Table 1.1, by the chain-type quantity index for
all fixed assets and consumer durable goods, line 1 of BEA Fixed Asset Table 1.2.

– The price indexes for housing structures and infrastructure capital are defined
above.

• We discuss how we create the price index for consumption in section B.2.9.
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B.2.5 Data used for Growth Rate of Housing, Structures, and Land Prices

Our moment condition involving the average of rental prices across MSAs, the aggregate
growth rate of the real price of land rents gpl

and the real price of housing structures gps ,
and the share of housing rents attributable to housing structures ω is

E{(ln Etrhit − [(1− ω) ln (gpl
) + ω ln (gps)] t) t} = 0

We compute Etrhit in each period as the average level of real rental prices in each MSA. In
each MSA, the real rental price is computed as the nominal rental price divided by the price
index for consumption. We discuss how we create the price index for consumption in section
B.2.9.

B.2.6 Data used for Structures’ Share of Housing Rents

One of our moment conditions for structures’ share of housing rents, ω, the growth rate of
the price of land rents, gpl

, the growth rate of the price of housing structures, gps , and the
depreciation rate on housing structures, κs, is:

E

( ∑
plitlhit∑

(Pstksit + plitlhit)

[
ω

1− ω

R/gpl
− (1− κf )

ζ

R/gps + κs − 1
+ 1

]
− 1

)
= 0,

We set
∑

plitlhit as the market value aggregate value of finished land in residential use, taken
from a study by Davis and Heathcote (2007), and available at
http://www.lincolninst.edu/subcenters/land-values/price-and-quantity.asp. We compute the
annual data as the average of the reported quarterly data. We set

∑
(Pstksit + plitlhit) as the

market value of housing (land and structures), taken from the same Davis and Heathcote
(2007) study. Again, we set annual values as the average of the reported quarterly values.

B.2.7 Parameters of the Production Function Related to Capital and Land
Shares of Production

Two of our moment conditions related to capital’s and finished land’s share of production,
α and φ are

E

( ∑
plitlbit∑

(Pbtkbit + plitlbit)

[
αφ

1− φ

R/gpl
− (1− κf )

ζ

R/gpb
+ κb − 1

+ 1

]
− 1

)
= 0 (25)

E

( ∑
witnit∑

[witnit + rLitlbit + rbtkbit]
− φ (1− α)

)
= 0 (26)

Data for equation (25)

We set
∑

plitlbit equal to the aggregate value of finished land used in production, computed
as the sum of
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1. The value of land used for nonresidential purposes by Nonfarm Nonfinancial Corporate
Businesses. These data come from Table B.102 of the Flow of Funds Accounts of the
United States (FFA). We set the value of land equal to the value of real estate owned
by this sector (line 3) less the replacement cost of structures owned by this sector (lines
33 and 34). We set the annual as the average of the reported quarterly observations.

2. The value of land used for nonresidential purposes by Nonfarm Nonfinancial Noncor-
porate Businesses. These data come from Table B.103 of the FFA. We set the value of
land equal to the value of nonresidential real estate owned by this sector (line 5) less
the replacement cost of nonresidential structures owned by this sector (line 33). We
set the annual as the average of the reported quarterly observations.

3. The current cost of privately owned infrastructure capital (power and communication
structures, transportation structures, and other structures) as described in section
B.2.2.

4. The value of land used for nonresidential purposes by financial corporations. We com-
pute this as R (to be defined later) times the Current-Cost Net Stock of Private
Nonresidential Fixed Assets Owned by Financial Corporations, line 25 of BEA Fixed
Asset Table 4.1. We set the annual as the average of the current and lagged year-end
observations.

5. The value of land used for nonresidential purposes by Nonprofit Organizations. We
compute this as R times the sum of equipment and software owned by nonprofit
organizations (line 6 of B.100 of the FFA) and the replacement cost of nonresidential
structures owned by nonprofit organizations (line 46 of B.100 of the FFA). We set the
annual as the average of the reported quarterly observations.

6. The value of land used for nonresidential purposes by the Government. We compute
this asR times the following: The Current-Cost Net Stock of Government Fixed Assets,
line 8 of BEA Fixed Asset Table 1.1, less the current cost of infrastructure capital owned
by the federal and state and local government, as defined in section B.2.2. We set the
annual as the average of the current and lagged year-end observations.

We set
∑

(Pbtkbit + plitlbit) equal to the aggregate value of all capital and finished land
used in production, computed as the sum of

a. The total market value of tangible assets owned by Nonfarm Nonfinancial Corporate
Businesses less the replacement cost of residential structures owned by Nonfarm Non-
financial Businesses, line 2 less line 33 of Table B. 102 of the FFA.8 We set the annual
as the average of the reported quarterly observations.

b. The total market value of tangible assets less the market value of residential real estate
owned by Nonfarm Nonfinancial Noncorporate Businesses, line 2 less line 4 of Table B.
103 of the FFA. We set the annual as the average of the reported quarterly observations.

8Residential structures are typically a very small fraction of total tangible assets: In 2009, they accounted
for 1.4 percent of value.
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c. The value of land used for nonresidential purposes by financial corporations computed
in step 4 above; plus the Current-Cost Net Stock of Private Nonresidential Fixed Assets
owned by Financial Corporations, line 25 of BEA Fixed Asset Table 4.1. We set the
annual as the average of the current and lagged year-end observations.

d. The value of land used for nonresidential purposes by Nonprofit Organizations com-
puted in step 5 above; plus equipment and software owned by nonprofit organizations
(line 6 of B.100 of the FFA); plus the replacement cost of nonresidential structures
owned by nonprofit organizations (line 46 of B.100 of the FFA). We set the annual as
the average of the reported quarterly observations.

e. The value of land used for nonresidential purposes by the Government computed in
step 6 above; plus the Current-Cost Net Stock of Government Fixed Assets, line 8 of
BEA Fixed Asset Table 1.1; less the current cost of infrastructure capital owned by
the federal and state and local governments, as defined in section B.2.2. We set the
annual as the average of the current and lagged year-end observations.

f. The Current-Cost Net Stock of Consumer Durable Goods, line 13 of BEA Fixed As-
set Table 1.1. We set the annual as the average of the current and lagged year-end
observations.

We define R as the value of all land used for nonresidential purposes by businesses
(the sum of items 1-3 above) divided by the value of all tangible assets less land used for
nonresidential purposes by businesses (the sum of a and b above less the sum of items 1-3
above).

Also note that (as mentioned previously), when we use data from the BEA Fixed Asset
Tables, we compute current-year values as the average of the reported current- and previous-
year values. We do this because the BEA reports values at year-end; this adjustment aligns
the timing of the BEA data with that of the FFA data.

Data for equation (26)

We compute

∑
witnit∑

[witnit + rlitlbit + rbtkbit]

as follows. We set the numerator equal to “unambiguous labor income.” We set the denomi-
nator equal to total gross domestic income plus an estimate of the nominal service flow from
the stock of durable goods less the reported consumption of housing services less an estimate
of “ambiguous income” (i.e. income that is not either unambiguous capital or unambiguous
labor income).

• We set unambiguous labor income equal to line 2 of Table 1.10 of the National Income
and Product Accounts (NIPA), “Compensation of employees, paid.” This table is
available at http://www.bea.gov/national/nipaweb/SelectTable.asp?Selected=N.
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• We set gross domestic income equal to line 1 of NIPA Table 1.10, “Gross domestic
income.”

• We estimate the nominal service flow from the stock of durable goods as the sum of
nominal depreciation on the stock of durable goods, line 13 of BEA Fixed Asset Table
1.3, plus the rate of interest on a 5-year Treasury bond times the nominal stock of
durable goods. We take the nominal rate of interest on a 5-year Treasury bond from
the web site of the Federal Reserve Board,
http://www.federalreserve.gov/releases/h15/data.htm. We set the nominal stock of
durable goods as the average of the current- and previous- year reported (year-end)
values of the stock, as reported in line 13 of BEA Fixed Asset Table 1.1.

The graph below compares our estimate of the user cost of durables to expenditures on
consumer durable goods as reported in the NIPA over our sample period, 1978-2009.
Both data series are in billions of dollars. Broadly speaking, the levels and growth
rates of the two series are similar.
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Expenditures on Consumer Durable Goods

• We set consumption of housing services equal to line 50 of NIPA Table 2.4.5., “House-
hold consumption expenditures (for services): Housing.”

• As in Cooley and Prescott (1995), we use the following data from NIPA Table 1.10 to
determine ambiguous income

Line 9, Taxes on production and imports

− line 10, Subsidies

+ line 15, Proprietors’ income with inventory valuation and CCA

+ line 22, Current surplus of government enterprises

+ line 26, Statistical discrepancy
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B.2.8 Data used for Infrastructure Share of Finished Land

One of our moment conditions for infrastructure’s share of finished land rents, ζ, the growth
rates of the price of finished land and infrastructure capital, gpl

and gpf
, and the depreciation

rate on infrastructure capital κf , is

E

( ∑
Pftkfit∑

(plitlbit + plitlhit)
− R/gpl

− (1− κf )
ζ

R/gpf
− (1− κf )

ζ

)
= 0

We set
∑

pftkfit equal to the aggregate value of infrastructure capital, measured as defined
in section B.2.2. We set

∑
(plitlbit + plitlhit) as the sum of the aggregate value of finished

land used for business purposes,
∑

plitlbit, measured as defined in B.2.7 - data for equation
(26), and the aggregate value of finished land used in housing,

∑
plitlhit, measured as defined

in B.2.6.

B.2.9 Data for the growth of aggregate per-capita real consumption

Our moment condition for growth in aggregate real per-capita consumption, gc, is

E{(ln Ct − ln (gc) t) t} = 0 .

We compute Ct as nominal aggregate consumption, divided by the appropriate price index,
and divided again by the population.

We define the population as the civilian non-institutional population ages 16 and older.
These data are available from the Bureau of Labor Statistics. We replace the reported
population with a predicted value based on a regression of the BLS data on a 4th order
polynomial in year (R2 of 0.998). This smoothes a few odd peaks in the reported BLS series.

We define nominal aggregate consumption as

• Total consumption as reported by the NIPA, line 1 of NIPA Table 2.4.5,

• Less expenditures on durable consumption goods, line 3 of NIPA Table 2.4.5,

• Less the consumption of housing services, line 50 of NIPA Table 2.4.5,

• Plus government consumption expenditures, line 3 of NIPA Table 3.9.5,

• Plus an estimate of the nominal service flow from the stock of durable goods. This
estimate is described in detail in the previous section.

We compute the price index for this definition of consumption by chain-weighting the
appropriate price indexes. For total consumption, expenditures on durable goods, and the
consumption of housing services, the price indexes are available in NIPA Table 2.4.4. The
price index for government consumption expenditures is available in NIPA Table 3.9.4. Fi-
nally, we set the price index for the service flow from durable goods equal to an estimate of
the price index for the stock of durable goods. We estimate this as the average of the current
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and previous year values of the price index, which is computed as the reported nominal
year-end stock of consumer durable goods (line 13 of BEA Fixed Asset Table 1.1) divided
by the reported quantity index for this stock (line 13 of BEA Fixed Asset Table 1.2).

B.3 Other Data

In addition to the lagged endogenous panel variables in the system, we use two other MSA-
level variables as instruments in our GMM analysis: Per-capita personal income, as measured
by the BEA in Table CA1-3 of its Local Area Personal Income and Employment Tables, and
repeat-sales price indexes for existing homes as produced by the Federal Housing Finance
Agency. In our GMM analysis, we log and demean both variables. For the purposes of
comparing simulated model output on employment and average wages across all 366 MSAs
in the United States, we use data from the Local Area Personal Income and Employment
Tables of the BEA. By MSA, wage and salary employment is reported on line 7020 of Table
AMSA04 (Personal income and its components) and we compute average wage as the sum
of “Wage and salary disbursements” (line 50) and “Supplements to wages and salaries” (line
60) divided by wage and salary employment. For the 22 MSAs in our sample, we compare
the BEA-based average wage and total employment measures to estimates from the CPS,
generated as total hours worked for all respondents (for employment) and average wage per
hour for all hours worked by all workers. After removing year effects and taking logs, the
correlation of the average wage estimates is 0.76 and for the employment estimates is 0.99.

C Derivation of Aggregate Moment Conditions

In the main text we assumed variables were de-meaned when stating moment conditions used
to calculate trend rates of growth. In practice we incorporate the estimates of the means
in our calculations. The moment conditions stated here incorporate this estimation of the
means.

We use the following moment conditions to identify κb, κs, κf :

E

{
κb − Dbt

Kbt

}
= 0

E

{
κs − Dst

Kst

}
= 0

E

{
κf − Dbt

Kft

}
= 0

where DXt is nominal depreciation of capital of type X = B, S, F .

Along the balanced growth path (without aggregate uncertainty, but with idiosyncratic
uncertainty) the household’s Euler equation for finished land holds for each city:

plit = Et|i

{
1

R

[
rlit+1 + (1− κf )

ζplit+1

]}
(27)
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where Et|i denotes expectation at t conditional on i, rli is the rental price of finished land
in city i and pli is the capital price of finished land in city i. This equation is derived as
follows. Finished land klit is a Cobb-Douglas aggregate of raw land Li (normalized to one in
the main text) and infrastructure capital kfit, such that

klit = l1−ζ
i kζ

fit

Raw land does not depreciate but infrastructure capital depreciates at rate κf such that in
the absence of any investment

klit+1

klit

= (1− κf )

This implies that in the absence of any investment in infrastructure capital, finished land
essentially depreciates. To see this, write:

klit+1

klit

=

(
kfit+1

kfit

)ζ

= (1− κf )
ζ

Consider the household raising its holdings of finished land in city i by klit units this period,
and next period you rents the land and then resell it after it depreciates. The no arbitrage
condition for this transaction is equation (27).

Equation (27) implies that along a balanced growth path the average rental price of land
and the average price of land grow at the same rate, gpl

. We do not measure rents from
land, but we do measure rents from housing, which includes land and structures. We assume
housing services are derived from structures and finished land as follows:

hit = kω
sitl

1−ω
hit

From profit maximization of housing service providers, at each date and in each city

rhit = ω−ω(1− ω)ω−1r1−ω
lit rω

st (28)

where rh denotes the rent on services from houses and rs denotes the rent on housing struc-
tures. Therefore along a balanced growth path

rhit = g(1−ω)t
pl

gωt
ps

rhi0

ln Etrhit = ln rhi0 + [(1− ω) ln(gpl
) + ω ln(gps)] t

since rent on housing structures and land follow the same trends as their respective asset
prices.

Along a balanced growth path, for x = b, s, f, l

Pxt = Px0g
t
px

ln Pxt = ln Px0 + ln(gpx)t
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where Pxt is the real price of the indicated type of capital (in the case of land this is the
average price). We identify gPB

, gPS
, gPF

and gPL
using the following moment conditions:

E {ln Pxt − ln Px0 − ln(gpx)t} = 0, x = b, s, f

E {(ln Pbt − ln Px0 − ln(gpx)t) · t} = 0, x = b, s, f

E {ln Etrhit − ln Erhi0 − [(1− ω) ln(gpl
) + ω ln(gps)] t} = 0

E {(ln Etrhit − ln Etrhi0 − [(1− ω) ln(gpl
) + ω ln(gps)] t) · t} = 0

The moment conditions for identifying gpl
(the final two conditions) are based on the fact

that rlit = gt
pl
rli0 implies Etrlit = gt

pl
E0rli0, where Et denotes expectation at t over i.

We now use equation (27) evaluated along the balanced growth path to relate prices of
land to rent from land. Analogous relationships hold for the other forms of capital. We will
use these relationships to formulate moment conditions to identify ω, α, φ and ζ. Notice that
along a balanced growth path

Etplit+1 = gpl
Etplit

Etrlit+1 = gpl
Etrlit

Since EtEt|ixt = Etxt, it follows from (27) that

Etplit =
gpl

R− (1− κf )ζgpl

Etrlit.

Similar conditions hold for the other types of capital.

We identify ζ, the share of development capital in the production of finished land as
follows. In every city

ζ =
rfitkfit

rlitlbit + rlitlhit

,

so that

ζ =
Etrfitkfit

Etrlitlbit + Etrlitlhit

.

Using the relationship between values and incomes,

EtPftkfit

Etplitlbit + Etplitlhit

=
R/gpl

− (1− κf )
ζ

R/gpf
− (1− κf )

Etrftkfit

[Etrlitlbit + Etrlitlhit]

Therefore we identify ζ using

E

{
R/gpl

− (1− κf )
ζ

R/gpf
− (1− κf )

ζ −
∑

Pftkfit∑
(plitlbit + plitlhit)

}
= 0

To identify ω first relate the ratio of capital to land income in the housing sector:

rstksit

rlitlhit

=
ω

1− ω
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Use this and the relationship between value and income ratios to obtain a relationship
between the share of land in house values and ω:

Etplitlhit

Etpstksit + Etplitlhit

=
1

EtPstksit

Etplitlhit
+ 1

=
1

ω
1−ω

R/gpl
−(1−κf )ζ

R/gps+κs−1
+ 1

The moment condition identifying ω is then

E

{ ∑
plitlhit∑

(Pstksit + plitlhit)

[
ω

1− ω

R/gpl
− (1− κf )

ζ

R/gps + κs − 1
+ 1

]
− 1

}
= 0,

Now consider the identification of α and φ. For this we make use of the following rela-
tionships implied by the intermediate good producer’s production function:

φ(1− α) =
Etwitnit

Etwitnit + Etrlitlbit + Etrbtkbit

(29)

αφ

1− φ
=

Etrbtkbit

Etrlitlbit

We use the last equality to relate the ratio of the value of land to the value of tangible assets
in the business sector to α and φ :

Etplitlbit
EtPbtkbit + Etplitlbit

=
1

EtPbtkbit

Etplitlbit
+ 1

=
1

αφ
1−φ

R/gpl
−1

R/gpb
+κb−1

+ 1

Using the last equality and (29) we arrive at the moment conditions used to identify α and
φ:

E

{ ∑
plitlbit∑

[Pbtkbit + plitlbit]

[
αφ

1− φ

R/gpl
− 1

R/gpb
+ κb − 1

+ 1

]
− 1

}
= 0

E

{ ∑
witnit∑

[witnit + rlitlbit + rbtkbit]
− φ(1− α)

}
= 0

We also need to estimate gc, the gross growth rate of per capita consumption. Along a
balanced growth path

Ct = C0gc
t

ln Ct = ln C0 + ln(gc)t

where Ct is per capita consumption. Therefore we identify gc using the following two moment
conditions:

E {ln Ct − ln C0 − ln(gc)t} = 0

E {(ln Ct − ln C0 − ln(gc)t) · t} = 0
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D Measuring the Effect of Agglomeration on Per Capita

Consumption Growth

The balanced growth path of our model has

gc = γ
(1−α)δ

(1−α)δ+(ζ−1)(δ−1)
a γ

(1−ζ)(δ−1)
(1−α)δ+(ζ−1)(δ−1)
n γ

αδ
(1−α)δ+(ζ−1)(δ−1)

b γ
ζ 1−δ

(1−α)δ+(ζ−1)(δ−1)

f

Use the balanced growth equation to express γa as

γ̂a = ĝ
(1−α)δ+(ζ−1)(δ−1)

(1−α)δ
c γ̂

(1−ζ)(1−δ)
(1−α)δ

n ĝ
α

(1−α)
pb ĝ

ζ 1−δ
(1−α)δ

pf

g∗c = γ̂
(1−α)φ

(1−α)φ+(ζ−1)(φ−1)
a γ

(1−ζ)(φ−1)
(1−α)φ+(ζ−1)(φ−1)
n g

−αφ
(1−α)φ+(ζ−1)(φ−1)
pb g

−ζ 1−φ
(1−α)φ+(ζ−1)(φ−1)

pf

=

[
ĝ

(1−α)δ+(ζ−1)(δ−1)
(1−α)δ

c γ̂
(1−ζ)(1−δ)

(1−α)δ
m ĝ

α
(1−α)
pb ĝ

ζ 1−δ
(1−α)δ

pf

] (1−α)φ
(1−α)φ+(ζ−1)(φ−1)

×γ
(1−ζ)(φ−1)

(1−α)φ+(ζ−1)(φ−1)
n g

−αφ
(1−α)φ+(ζ−1)(φ−1)
pb g

−ζ 1−φ
(1−α)φ+(ζ−1)(φ−1)

pf

= ĝ
φ[(1−α)δ+(ζ−1)(δ−1)]
δ[(1−α)φ+(ζ−1)(φ−1)]
c γ̂

(φ−δ)(1−ζ)
δ[(1−α)φ+(1−ζ)(1−φ)]
n ĝ

ζ(φ−δ)
δ[(1−α)φ+(ζ−1)(φ−1)]
pf

Therefore

Λ =
ĝc − g∗c
g∗c − 1

=
ĝc − ĝ

φ[(1−α)δ+(ζ−1)(δ−1)]
δ[(1−α)φ+(ζ−1)(φ−1)]
c γ̂

(φ−δ)(1−ζ)
δ[(1−α)φ+(1−ζ)(1−φ)]
n ĝ

ζ(φ−δ)
δ[(1−α)φ+(ζ−1)(φ−1)]
pf

ĝ
φ[(1−α)δ+(ζ−1)(δ−1)]
δ[(1−α)φ+(ζ−1)(φ−1)]
c γ̂

(φ−δ)(1−ζ)
δ[(1−α)φ+(1−ζ)(1−φ)]

N ĝ
ζ(φ−δ)

δ[(1−α)φ+(ζ−1)(φ−1)]
pf − 1

E Solving the Model and Comparing it to Data

This section describes how we solve our model with ω = 0 and ξ = 1. The notation is
somewhat different from the main text of the paper, but is internally consistent.

In this model there is a representative household with a large number of members who
share consumption risk perfectly. Each period the household allocates its workers and capital
across locations, chooses how much infrastructure capital to build in each location for the
next period, and decides much business capital it wants to allocate across locations in the
next period. We assume these decisions are made after the household observes total factor
productivity in each location in that period. The household takes all prices and the distribu-
tion of total factor productivity as given. That is, it behaves competitively and does not take
into account the effect of its actions on the density of production in each location. In each
location there are developers and producers. The developers rent local infrastructure capital
from the household and combine it with raw land to produce developed land which they then
rent to local producers. Producers rent capital and labor from the household and developed
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land to produce the city-specific intermediate good. There is also a final good producer who
combines city-specific intermediate goods to produce the final good. Developers and goods
producers maximize profits taking all prices and total factor productivity as given.

The competitive equilibrium for this economy can be found as the solution to an op-
timization problem with side conditions. Notation is borrowed from the main text except
that here we assume the support of the distribution of technology is discrete. Let m(zt)
denote the distribution of cities across idiosyncratic productivity histories zt. The household
perfectly insures itself against consumption risk, so we write the optimization problem as

max
{Ct,Kt+1,y(zt),l(zt),k(zt),n(zt),h(zt),x(zt),d(zt)}∞t=0

∞∑
t=0

βt
∑

m(zt)n(zt)
[
ln Ct + ψ ln h(zt)

]

subject to

Ct + Kt+1 − (1− κ)Kt + Xt ≤
[∑

m(zt)y(zt)η
] 1

η

y(zt) ≤ z
(1−α)φ
t

[
ŷ(zt)

l̂(zt)

]λ−1
λ

l(zt)1−φk(zt)αφn(zt)(1−α)φ

∑
m(zt)k(zt) ≤ Kt

n(zt)h(zt) + l(zt) ≤ d(zt−1)ς , ∀zt

∑
m(zt)n(zt) ≤ 1

d(zt) ≤ (1− ζ)d(st−1) + x(zt), ∀zt

∑
m(zt)x(zt) ≤ Xt

K0, d(z0)∀ z0, ŷ(zt) and l̂(zt) given.

The un-indexed summations are over productivity histories zt. The competitive equilibrium
corresponds to a solution to this optimization problem such that y(zt) = ŷ(zt) and l(zt) =
l̂(zt). Note that for simplicity, and in contrast to the main text, we have assumed that
housing services are derived from developed land only.

E.1 Steady State with One City

This section derives the steady state with one city which we use for starting values in the
general case. The first order condition and constraints for land development, evaluated in
steady state, are

1 =
1

R
[rd + (1− ζ)]

x = ζd
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where rd is the rental rate for infrastructure capital. Then

1 =
1

R

[
rlςd

ς−1 + (1− ζ)
]

r∗d = R− 1 + ζ

R = 1/β

rlςd
ς−1 = r∗d

where rl is rent on finished land.

Output in the city is

y = z(1−α)φ
[y

l

]λ−1
λ

l1−φkαφn(1−α)φ

Let δ = λφ. Solving for output:

y = zδ(1−α)l1−δkδαnδ(1−α) (30)

Aggregate output is
Y = y,

output prices are
q = 1

The labor supply constraint implies
n = 1

and the aggregate resource constraint is

C + κK + ζD = Y.

where the total stock of developed land is equal to the developed land in the city, D = d.
The equilibrium rent on business capital r∗k is found using the business capital accumulation
and is given by

r∗k = 1/β − 1 + κ

Rental demand for capital, developed land demand, labor demand, housing, land devel-
opment, labor allocation first order necessary conditions (FONCS) and the land constraint
are:

k = αφyr∗−1
k

rl = y (1− φ) l−1

w = (1− α)φyn−1

ψC = rlh

rlςd
ς−1 = r∗d

ψ ln h =
1

C
θ +

1

C
[ψC − w]

nh + l = dς .
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Here w denotes the wage. From the infrastructure FONC

dς =
r∗dd
ςrl

Since n = 1 the land constraint can be written

l =
r∗dd
ςrl

− h

Using this, the land demand FONC and the housing demand FONC, we have

y (1− φ) =
r∗dd
ς
− ψC. (31)

Substitute from the capital rental and land demand FONCS into 30 to express y as
function of rl

y = zδ(1−α)

[
(1− φ) y

rl

]1−δ [
αφ

r∗k
y

]δα

=

[
zδ(1−α) [1− φ]1−δ

[
αφ

r∗k

]δα
] 1

δ(1−α)

rl

Use the definition of rd to solve for d as function of rl

d =

[
ς

r∗d

] 1
1−ς

rl

Solve for k as function of rl using the capital rental FONC

k =
αφ

r∗k

[
zδ(1−α) [1− φ]1−δ

[
αφ

r∗k

]δα
] 1

δ(1−α)

rl

Solve for C as function of y and d using 31

C =
r∗d
ψς

d− 1− φ

ψ
y.

With this last expression we solve the aggregate resource constraint for rl using the
expressions for y and d as functions of rl from above. First substitute in for the right hand
side of the aggregate resource constraint:

y = C + κk + ζd

=
r∗d
ψς

d− 1− φ

ψ
y + κ

αφ

r∗k
y + ζd
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Substituting for y and d in the last equation and solving for rl we arrive at

r∗l =




[
r∗d
ςψ

+ ζ
] [

ς
r∗d

] 1
1−ς

[
1 + 1−φ

ψ
− καφ

r∗k

] [
zδ(1−α) [1− φ]1−δ

[
αφ
r∗k

]δα
] 1

δ(1−α)




1
δ−1

δ(1−α)
− 1

1−ς

.

With r∗l in hand we can solve for C∗, k∗, d∗, y∗ using expressions derived above. In addition,
from the housing FONC

h∗ = ψC∗/r∗l

and from the land constraint
l∗ = r∗dd

∗/r∗l − h∗.

Finally the labor demand and labor allocation FONCS yield

w∗ = y∗(1− α)φ

θ∗ = C∗ψ ln h∗ − ψC∗ + w∗

The foregoing demonstrates that, for admissible parameters, a non-stochastic steady state
exists and is unique with one level of productivity.

E.2 General Steady State Solution

The solution strategy is to fix C,K, D, θ, solve for all other endogenous variables conditional
on these variables, and then find a fixed point in C, K, D, θ that satisfies market clearing.

Using the transition equation for exogenous productivity it is straightforward to compute
the steady state distribution of cities by exogenous productivity. The mass of cities of type
i is mi and aggregate output is

Y =
[∑

miyi
η
] 1

η
. (32)

Output prices are
qi = Y 1−ηyη−1

i .

The aggregate resource constraint is

C + κK + ζD = Y.

So that
qi = [C + κK + ζD]1−η yη−1

i .

Except where it helps the exposition we drop the i subscript hereon. The FONC for
infrastructure capital accumulation is

1 = βE
[
rlςd

′ς−1 + 1− ζ
]
.
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From the housing FONC and land constraint

rl =
ψCn

dς − l
.

Therefore the FONC for infrastructure capital can be written

1 = βE

[
ψCn′

d′ς − l′
ςd′ς−1 + 1− ζ

]
.

Equilibrium rk is given by
r∗k = 1/β − 1 + κ.

From the FONCS and constraints:

nihi + li = dς
i (33)

ψC = rlhi (34)

ψC ln hi = θ + [ψC − wi] (35)

wi = qi(1− α)φyin
−1
i (36)

rli = qi (1− φ) yil
−1
i (37)

qi = [C + κK + ζD]1−η yη−1
i (38)

r∗k = qiαφyik
−1
i (39)

yi = z
δ(1−α)
i l1−δ

i kδα
i n

δ(1−α)
i (40)

1 = βE

[
ψC

h′i
ςd′ς−1

i + 1− ζ

]
(41)

ki = qiαφyir
∗−1
k . (42)

Here we have used the i subscript to be clear on which variables are location specific and
which are common to all locations. Combine all but 38 and 40, 41, 42 to form

ψC

r∗kh
=

(1− φ)

αφ

k

l
(43)

(1− α)k

αn
=

θ + ψC − ψC ln h

r∗k
(44)

nh + l = dς . (45)

It follows that

lψC

r∗k(d
ς − l)

=
(1− φ)

αφ

k

n
. (46)

Using 43, we can rewrite the infrastructure FONC

1 = βE

[
(1− φ) r∗k

αφ

k

l
ςd′ς−1 + 1

]
.
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Furthermore, combining 44 and 46:

lψC

r∗k(d
ς − l)

=
(1− φ)

(1− α)φ

θ + ψC − ψC ln h

r∗k
.

Solving this last equation for h :

h = exp

(
θ

ψC
+ 1− (1− α)φl

(dς − l) (1− φ)

)

= ĥ(d, l; C, θ).

Using 43

k =
αφψC

(1− φ) r∗kĥ(d, l; C, θ)
l

= k̂(d, l; C, θ).

Using 33

n =
dς − l

ĥ(d, l; C, θ)

= n̂(d, l; C, θ).

Using 38, 39 and 40 and substituting in the expressions for k and n we solve for lj for each
d′i using

r∗k = αφ [C + κK + ζD]1−η z
δ(1−α)η
j l

(1−δ)η
j k̂(d′i, lj; C, θ)δαη−1n̂(d′i, lj; C, θ)δ(1−α)η

The ‘prime’ superscript denotes choice of the indicated variable made for the following period
when the current state is given by the subscript. For each i this yields

lji = l̃(C, K, D, θ, zj, d
′
i) (47)

nji = ñ(C,K,D, θ, zj, d
′
i) (48)

kji = k̃(C, K, D, θ, zj, d
′
i). (49)

Here we use the subscript convention that the variable is chosen contemporaneous with the
technology state corresponding to the first subscript and state corresponding to the second
subscript in the period before.

From the land infrastructure FONC, for each i

1 = β
∑

πij

[
(1− φ) r∗k

αφ

k̃(C, K, D, θ, zj, d
′
i)

l̃(C, K, D, θ, zj, d′i)
ςd′ς−1

i + 1− ζ

]

= β
∑

πij [f(C,K,D, θ, zj, d
′
i) + 1− ζ] . (50)

Here the πij denote the probability of transitioning from state i to state j. Because πij

depends on zi, solving 50 yields

d
′
i = d(C,K,D, θ, zi).
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Using 47, 48 and 49 we may now obtain

lij = l(C, K, D, θ, zi, zj)

nij = n(C, K, D, θ, zi, zj)

kij = k(C, K, D, θ, zi, zj).

The switch in the order of the subscripts is by design. These expressions can be substituted
into 40 to construct

yij = y(C, K, θ, D, zi, zj)

By the definition of developed land investment

xij = d′i − (1− ζ)dj

= x(C,K,D, θ, zi, zj).

In addition

Y = C + κK + ζD

= Y (C, K, X)

We solve for C,K,D, θ using

Y (C,K,D, θ) =
[∑

mijy(C, K, D, θ, zi, zj)
η
] 1

η

K =
∑

mijk(C, K, D, θ, zi, zj)

1 =
∑

mijn(C,K,D, θ, zi, zj)

X =
∑

mijx(C, K, D, θ, zi, zj)

where mij denotes the steady state mass of cities that have zi today and zj yesterday. Notice
that the city level variables are entirely determined by lagged and current technology. In
particular for each possible pair of technology states there is a unique value of infrastructure
capital chosen for the next period. Consequently the number of infrastructure capital states
corresponds to the number of possible pairs of technology states.

We use the GAUSS non-linear equation solver eqSolve to solve this system of four
equations. To evaluate these equations we need to solve 50. We accomplish this using a
version of eqSolve that we have modified to exploit the sparseness of the transition matrix
formed with the πij (see below).

For this we need to find mij, the steady state distribution of (zt, zt−1). For simplicity,
consider the case of three z states. The results described below are based on a grid for zt

with 75 points so there are 5,625 (zt, zt−1) states. We need the transition probabilities for
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(zt, zt−1) to (zt+1, zt). The state is summarized by




z1 z1

z1 z2

z1 z3

z2 z1

z2 z2

z2 z3

z3 z1

z3 z2

z3 z3




We obtain the πij (defined above) from the underlying transition matrix for zt. Then the
matrix of transition probabilities is




π11 0 0 π12 0 0 π13 0 0
π11 0 0 π12 0 0 π13 0 0
π11 0 0 π12 0 0 π13 0 0
0 π21 0 0 π22 0 0 π23 0
0 π21 0 0 π22 0 0 π23 0
0 π21 0 0 π22 0 0 π23 0
0 0 π31 0 0 π32 0 0 π33

0 0 π31 0 0 π32 0 0 π33

0 0 π31 0 0 π32 0 0 π33




From this matrix we can calculate the steady state mij. Obtaining the steady state and
evaluating conditional expectations is greatly accelerated by exploiting the sparseness of
this matrix.

E.3 Approximating the Technology Process

We consider an underlying technology process

ln zt = max {γz + ln zt−1 + εt, ln zmin} (51)

where εt is iid normally distributed with mean zero and variance σ2
ε . This is isomorphic to

the process considered by Gabaix (2000). As long as g < 0 for fixed zmin this process has
an invariant distribution in zt, which is convenient for solving our model. The tail of this
distrubtion is exponential, that is it has the property that

Pr [zt > b] =
a

bϑ

for some a > 0 and ϑ > 0. Zipf’s law is ϑ = 1 for zt population. We can always find a γz

to match an admissible ϑ. The parameter ϑ can be estimated in our data by regressing the
log rank zt on ln zt. The coefficient on ln zt is a consistent estimate of ϑ. Technology is well
approximated by an exponential distribution with ϑ = 2.5.
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We approximate 51 with a discrete Markov chain. The grid is chosen to be equally spaced
in logs. The elements of the transition equation are conditional probabilities of transiting
from a given grid point to intervals around all possible grid points, where the intervals are
equally spaced from the mid-points between grid points. These probabilities are calculated
using 51. In practice we assume a wide domain for the grid that is 200 times the standard
deviation of the innovation. This ensures that mass does not accumulate on the largest grid
points. We solve for the γz which yields ϑ = 2.5 in the steady state, excluding a small
number of the smallest and largest grid points. We exclude some grid points to focus on the
region of the state space where the approximation is best. This strategy yields a remarkably
good approximation to an exponential distribution, except in the extreme tails. In fact the
overall approximation resembles empirical plots of log city rank by population versus log
population, with a different slope of course. We set zmin = 1 − 1/ζ. This sets the mean of
the distribution to approximately 1.

We select σε to match our estimate of the variance of employment growth. This yields
σε = .005.

E.4 Estimating Statistics to Compare to Model

We study log growth rates in the model. The empirical counterpart to the log growth rate
of variable xit is x̂it − x̂it−1. The empirical statistics take into account measurement error
in employment and in wages. We have two sources of data for these series, the BEA and
the BLS. We assume classical measurement error, that the measurement error in the BEA
is orthogonal to that in the BLS and that measurement error in wages and employment is
correlated if the measures are from the same source (BEA or BLS).

To be specific, denote two measures of variable x̂t as x̃1t = x̂t+ux
1t and x̃2t = x̂t+ux

2t where
ux

i is classical measurement error associated with measures x̃it, i = 1, 2. We have dropped
the dependence of each variable on its city of origin for simplicity. It follows that consistent
estimates of var(∆x̂t) and cov(∆x̂t, ∆ŷt) are cov(∆x̃1t, ∆x̃2t) and cov(∆x̃1t∆ỹ2t) from which
we can derive all statistics involving employment and wages. Here ∆ is the first difference
operator. With only one source for each of the remaining variables we must assume they are
measured without error. Statistics are based on our sample of 22 cities (results are similar
for a broader sample of cities).

F Standard Errors

We estimate Λ in three steps. To begin, we collect the expressions in the moment conditions
described in the last sub-section into a vector-valued function Ψ1 (Xt, θ1) , so that

EΨ1 (Xt, θ1) = 0. (52)

Here, Xt is a vector of the aggregate variables included in these moment conditions, and θ1

is a parameter vector given by:

θ1 ≡
[
κb, κb, κb, gpl

, gpb
, gps , gpf

, γn, gc, α, φ, ω, ζ
]′

.
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Because this system of moment conditions is exactly identified, the dimensions of Ψ1 and θ1

are equal. The first step is to estimate equation (34) by GMM, in which we use a Newey-West
weight matrix with a lag length of 2.

In the second step we estimate δ and ξ using the moment conditions in equation (26)
in the main text. This estimation requires that we plug in the estimates of ω and α from
the first step into (26). To account for the sampling variation associated with these two
plug-in parameters, we adjust the weight matrix using the methods described in Newey and
McFadden (1994). Specifically, write the moment condition in (26) as

EΨ2 (Xit, θ2) = 0, (53)

in which Xit is the vector of panel data in (26) and θ2 = {δ, ξ, ω, α}. Next, let ψω (Xt) and
ψα (Xt) be the influence functions associated with ω and α. To express the optimal weight
matrix for the GMM estimation based on the moment condition in (53), we define

Ψ̃2 (Xit, θ2) ≡ Ψ2 (Xit, θ2)−
√

N

(
∂Ψ2 (Xit, θ2)

∂ω
ψω (Xt) +

∂Ψ2 (Xit, θ2)

∂α
ψα (Xt)

)
. (54)

The
√

N term appears in this expression to account for the fact that the parameters ω and
α are estimated with only T observations, instead of with NT observations. Finally, the
optimal weight matrix is given by

Ω ≡ E
[
Ψ̃2 (Xit, δ, ξ, ω, α) Ψ̃2 (Xit, δ, ξ, ω, α)′

]
.

The rest of the GMM estimation proceeds by averaging the moment conditions over both i
and t, and by clustering the weight matrix at the city level.

The third step is to substitute the point estimates for gc, gpf
, δ, α, φ, and ζ into equation

(17) in the main text to obtain Λ. To calculate the sampling variance of Λ, we need the joint
covariance matrix of these six parameters, which we calculate by stacking the parameters’
influence functions as shown by Erickson and Whited (2002). As in (54), we multiply the
influence functions for the parameters estimated with time-series data by

√
N . After this

calculation, a standard application of the delta method gives the variance of Λ.

G Monte Carlo Study

We perform a Monte Carlo study of our estimator using simulated data whose distribution
closely approximates that of our own data set, which consists of some variables that vary in
only the time dimension and others that vary in both the time and city dimension. We first
consider the times series variables:

xt ≡
(

Dbt

Kbt
, Dst

Kst
,

Dft

Kft
, Erhit, pbt, pst, pft, ct,∑

plitlhit∑
(pstksit+plitlhit)

,
∑

plitlbit∑
(pbtkbit+plitlbit)

,
∑

witnit∑
(witnit+rlitlbit+rbtkbit)

,
∑

pftkfit∑
(plitlbit+plitlhit)

)
. (55)

As a first step, we use our actual data to estimate a time-trend regression for xt:

xt = a + bt + uxt, (56)
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in which b is a vector of time-trends for the individual elements of xt, a is a vector of
intercepts, and uxt is a vector of disturbances with covariance matrix Σux. With the esti-
mates of (a, b,Σux), we simulate each variable as follows. We generate a matrix of normal
disturbances of length 132 and width equal to the dimension of xt. These disturbances are
serially uncorrelated, but are contemporaneously correlated with a covariance matrix of Σu.
We then generate xt using (56). Finally, we keep the last 32 observations, where 32 is the
time-span of our actual data set. This procedure give us time series variables with the same
first and second moments as those in our actual data.

Next we describe our panel variables ∆ŷit = (∆ŵeit, ∆r̂hit, ∆p̂yit, ∆ŝit, ∆m̂it, ∆v̂it) , in
which ∆v̂it is a vector containing our two additional instrumental variables, house prices,
and per capita income. We simulate directly in first-differenced, hatted form. We first
calculate the means and covariances of these variables in our actual data. We also calculate
the first-order serial correlations from OLS estimates of a simple AR (1) model:

∆ŷit = A∆ŷit−1 + uyit, (57)

in which A is a diagonal matrix of autoregressive coefficients. We denote the estimated
covariance matrix of the residuals as Σy.

Next, we use these estimates to create simulated panel variables. First we generate
a matrix of normal disturbances, ũyit of length 132 and width equal to the dimension of
∆ŷit times 22, which is the number of cities in our panel. We then update the variables
(∆r̂hit, ∆p̂yit, ∆ŝit, ∆m̂it, ∆v̂it) in each of these cities using (57). Finally, we construct ∆ŵeit

using

∆ŵeit =
1

1− ω

δ − 1

δ (1− α)
∆r̂hit +

1

δ (1− α)
∆q̂it +

1− ξ

ξ
∆χ̂it + (ξ − 1) ∆m̂it + εit, (58)

in which εit is constructed as ε∗it +a
′
ũyit, in which a is vector of coefficients corresponding to

(∆r̂hit, ∆p̂yit, ∆ŝit, ∆m̂it), and in which ε∗it an i.i.d. normal variable. Thus, the error term in
(58) shares common contemporaneous variation with (∆r̂hit, ∆p̂yit, ∆ŝit, ∆m̂it) , as our model
predicts. We set the variance of ε∗it so that the variance of ∆ŵeit in our simulated data equals
the variance of ∆ŵeit in our real data. We set the correlation parameters, a, so that the
covariance between ∆ŵeit and (∆r̂hit, ∆p̂yit, ∆ŝit, ∆m̂it) in our simulated data approximates
this covariance in our actual data.

Finally, we note that all of the panel variables are the residuals from regressing the raw
variables on time dummies. They are therefore by construction orthogonal to any time-series
variables, so we set the covariances between the time-series and panel variables equal to zero.

We repeat this procedure 10,000 times (thus generating 10,000 data sets), where we set
the true value values of the coefficients equal to our estimates from Table 3. Specifically,
δ = 1.04, ξ = 0.54, and the time series coefficients all equal their estimated values. We use
these true values to evaluate Λ = 0.102.

We estimate the model using twice lagged values of (∆ŵeit, ∆r̂hit, ∆q̂it, ∆χ̂it, ∆m̂it, ∆v̂it) .
We average our GMM moment conditions in both the cross-sectional and time-series dimen-
sions. We calculate standard errors as we do for Table ???, with a Newey-West correction
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for the first-stage time-series estimation, and clustering at the city level for the second stage
panel estimation.

We report the results from this simulation in the following table.

δ ξ Λ
Coefficients

Average Coefficient 1.0414 0.5493 0.1021
Average Bias 0.0014 0.0093 0.0013
Mean Absolute Deviation 0.0366 0.0319 0.0600
RMSE 0.0475 0.0505 0.0803

Test statistics
Upside null rejection frequency (2.5%) 0.0300 0.0468 0.0083
Downside null rejection frequency (2.5%) 0.0823 0.0542 0.0907
J-test 5% rejection rate 0.0102
m2-test 5% rejection rate 0.0968
m3-test 5% rejection rate 0.0000

The top panel of this table reports the average estimated coefficient over the 10,000 trials,
as well as the average bias, mean absolute deviation, and root mean square error (RMSE).
We see that despite the small sample size, the our two-step GMM estimator produces nearly
unbiased coefficient estimates. The mean absolute deviations and RMSEs are low for δ and
ξ, but somewhat larger for Λ. This result makes sense inasmuch as Λ is estimated from both
time-series and panel data, and the time-series data contains much less variation identifying
information.

The bottom panel of this table reports the two tail probabilities from nominal 5% tests
that the coefficient estimates equal their true values. “Upside” refers to the right tail, and
“downside” refers to the left tail. In general, these tests are slightly oversized, which arises
because the standard errors are “too small.” However, the overrejection is not symmetric.
For δ and Λ the probability of rejecting the null on the upside is much smaller that the
probability of rejecting the null on the downside. For δ the right tail is approximately
correctly sized, and for Λ the right tail is undersized, which means that there is a negligible
probability of rejecting the null in favor of the alternative of Λ > 0. Of course, the right tails
are the ones that matter for our application because our theory implies that both δ and Λ
are positive. Our test rejection results are therefore comforting in that they imply that our
significant coefficients are not an artifact of a test over-rejection in small samples.

Finally, we report the rejection rates for our three diagnostic tests. We find that the
J-test and the m3-test underreject but that the m2-test overrejects slightly. The first two
results imply that the J-test and the m3-test are unlikely to be useful specification tests. In
contrast, the third result implies that the insignificant m2 statistic we find in our estimation
is not likely to be an artifact of an undersized test.
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